
Citation: Ma, H.; Wang, C.; Liu, J.;

Wang, X.; Zhang, F.; Yuan, Z.; Yao, C.;

Pan, X. A Framework for Retrieving

Soil Organic Matter by Coupling

Multi-Temporal Remote Sensing

Images and Variable Selection in the

Sanjiang Plain, China. Remote Sens.

2023, 15, 3191. https://doi.org/

10.3390/rs15123191

Academic Editors: Dominique

Arrouays and Emmanuelle Vaudour

Received: 24 April 2023

Revised: 27 May 2023

Accepted: 15 June 2023

Published: 20 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

A Framework for Retrieving Soil Organic Matter by Coupling
Multi-Temporal Remote Sensing Images and Variable Selection
in the Sanjiang Plain, China
Haiyi Ma 1,2, Changkun Wang 1,2,*, Jie Liu 1,2, Xinyi Wang 1,2, Fangfang Zhang 1,2, Ziran Yuan 1,2,
Chengshuo Yao 1,2 and Xianzhang Pan 1,2

1 State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of
Sciences, Nanjing 210008, China; mahaiyi@issas.ac.cn (H.M.); liujie@issas.ac.cn (J.L.)

2 College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
* Correspondence: ckwang@issas.ac.cn

Abstract: Soil organic matter (SOM) is an important soil property for agricultural production. Rising
grain demand has increased the intensity of cultivated land development in the Sanjiang Plain of
China, and there is a strong demand for SOM monitoring in this region. Therefore, Baoqing County
of the Sanjiang Plain, an important grain production area, was considered the study area. In the
study, we proposed a framework for high-accuracy SOM retrieval by coupling multi-temporal remote
sensing (RS) images and variable selection algorithms. A total of 73 surface soil samples (0–20 cm)
were collected in 2010, and Landsat 5 images acquired during the bare soil period (April, May, and
June) were selected from 2008 to 2011. Three variable selection algorithms, namely, Genetic Algorithm,
Random Frog and Competitive Adaptive Reweighted Sampling (CARS), were combined with Partial
Least Squares Regression (PLSR) to build SOM retrieval models on the spectral bands and indices of
the images. The results using a single-date image showed that the combination of variable selection
algorithms and PLSR outperformed using PLSR alone, and CARS showed the best performance
(R2 = 0.34, RMSE = 15.66 g/kg) among all the algorithms. Therefore, only CARS was applied to
SOM retrieval in the different year interval groups. To investigate the effect of the image acquisition
time, all images were divided into various year interval groups, and the resulting images were then
stacked. The results using multi-temporal images showed that the SOM retrieval accuracy improved
as the year interval lengthened. The optimal result (R2 = 0.59, RMSE = 11.81 g/kg) was obtained
from the 2008–2011 group, wherein the difference indices derived from the images of 2009, 2010, and
2011 dominated the selected spectral variables. Moreover, the spatial prediction of SOM based on the
optimal model was consistent with the distribution of SOM. Our study suggested that the proposed
framework that couples stacked multi-temporal RS images with variable selection algorithms has
potential for SOM retrieval.

Keywords: soil organic matter; multi-temporal remote sensing; spectral index; variable selection
algorithm; soil mapping

1. Introduction

Soil organic matter (SOM) is an essential component of soil that supports multiple
ecosystem functions, including carbon storage and plant nutrient retention and supply [1–4].
For soils, natural factors and human activities together result in strong spatial heterogeneity
of SOM at different scales [5–7]. Many studies have attempted to develop a reliable scheme
to achieve a quantitative estimation and mapping of SOM [8–10].

Geostatistical methods have been broadly used to create SOM maps at various
scales. However, they often require a relatively high density of sampling and gener-
ally come with a high cost and low efficiency, especially for a large area [11,12]. Soil
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reflectance spectra demonstrated a negative correlation with SOM in the visible, near-
infrared (400–1400 nm), and shortwave infrared (SWIR; 1400–2500 nm) regions of the
electromagnetic spectrum [13,14], which provided a theoretical basis for SOM retrieval
based on remote sensing (RS). High prediction accuracy of SOM or soil organic carbon
(SOC) has been shown when using soil spectra measured in the laboratory, with R2 values
close to or above 0.8 depending on the soil type [15,16].

In recent years, RS data has been used to retrieve SOM/SOC. Peón et al. [17] used
airborne and satellite hyperspectral imagery to retrieve SOC in the burned mountain areas
of northwestern Spain, with values of the coefficient of determination (R2) ranging from
0.60 to 0.62 and 0.49 to 0.61 for the airborne scanner and Hyperion sensors, respectively.
However, the scarcity of hyperspectral imagery limits its application to relatively large areas.
Increasing multi-spectral RS data has provided more soil observations for evaluating soil
properties of interest, though the low spectral resolution may result in the loss of some soil
spectral characteristics [18]. For example, Winowiecki et al. [19] used Moderate Resolution
Imaging Spectroradiometer (MODIS) imagery to estimate SOC stocks across Tanzania.
Sentinel2 imagery could provide RS data with a higher spatial resolution, which has been
successfully used for the fine mapping of SOM in the Versailles Plain with an R2; value of
0.56 [20]. Currently, many multi-spectral images are free and easily available to users, but
not all high-quality images free of atmospheric interferences meet the requirements of soil
property retrieval.

Crops, crop residues, snow, and other matter covering the surface of the soil hinder
the acquisition of soil spectra through RS. Hence, only images acquired during the bare
soil period can directly capture soil spectral information to retrieve the soil properties
of interest and are appropriate for building retrieval models. In the Sanjiang Plain, due
to the higher latitude and long periods of snowfall during winter, the bare soil period is
short. Therefore, in this type of region, only limited bare soil spectral information on the
ground could be obtained in a single observation of RS, and thus a low retrieval accuracy
of SOM was expected for a single-date image. Moreover, soil moisture could significantly
decrease soil reflectance and affect the accuracy of remote sensing of soils. In the literature,
to improve the retrieval accuracy of SOM, several researchers have considered the use of
multi-temporal RS data. For example, a bare pixel composite method has been provided by
calculating different composite variables, such as the mean or median, from multi-temporal
RS data. Using this composite method for multi-temporal Sentinel2 images, Luo et al. [21]
achieved a high SOM retrieval accuracy (R2 = 0.58). However, Diek et al. [22] obtained a
low prediction accuracy for SOM (R2 = 0.26) when using all the available Landsat images
acquired from 1985 to 2017 to create the barest pixel composite in the Swiss Plateau. The
obvious differences in SOM retrieval accuracy in different studies might be caused by the
fact that the composite spectral variables were not free from the effects of soil moisture or
other external factors. Therefore, it is necessary to investigate other approaches that use
multi-temporal images.

An alternative approach to using multi-temporal images is called stacking. This
method has commonly been used in the detection of land cover changes [23,24], but it has
rarely been applied to SOM retrieval. It directly stacks the bands of different temporal
images, resulting in an image cube with different temporal information. Compared with the
abovementioned bare pixel composite method, the stacking approach has the advantage of
preserving raw spectral information in the image cube stacked by multi-temporal images.
Hence, there is a high possibility of capturing soil spectra free of external interference
factors such as crop residues in the cube when long-series RS images are available. These
soil spectra could be selected by a variable selection algorithm in modeling. Therefore,
selecting pertinent bands for soil properties of interest is necessary. Additionally, when
the image cube is relatively large, variable selection is also necessary to reduce the effects
of multicollinearity. Gasmi et al. [25] used a feature selection algorithm of mean decrease
accuracy (MDA) to select image bands of different sensors for improving the retrieval
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performance of soil clay content (0.6 ≤ R2 ≤ 0.71). However, few studies have coupled
stacked multi-temporal images and variable selection algorithms for SOM retrieval.

Therefore, to achieve high-accuracy SOM retrieval in the cultivated lands of the
Sanjiang Plain of Northeast China, we proposed a framework that couples stacked multi-
temporal images and variable selection in this study. By stacking multi-temporal images,
the proposed framework could provide more temporal information about soil spectra,
which were identified by variable selection algorithms and subsequently used for mod-
eling. Therefore, compared with the abovementioned bare pixel composite method, the
framework has the potential for remote sensing of SOM in the Sanjiang Plain of Northeast
China, where the bare soil period is short. To choose the appropriate algorithm in the study,
three variable selection algorithms were compared: Genetic Algorithm (GA), Random
Frog (RF), and Competitive Adaptive Reweighted Sampling (CARS). GA is a metaheuristic
optimization algorithm inspired by the biological evolution process. It exhibits a high
degree of robustness in variable selection and multivariate analysis [26]. RF is developed
based on the reversible jump Markov Chain Monte Carlo (MCMC) method. As it does not
require any demanding mathematical formulation, RF is easy to implement [27]. CARS
is an effective spectral variable selection algorithm that selects key variables using an
exponentially decreasing function and adaptive reweighted sampling [28]. These were
combined with Partial Least Squares Regression (PLSR) to build SOM retrieval models,
and the optimal model was used for SOM mapping in the study area. We investigated the
performance of the proposed framework for SOM retrieval in an area with a relatively short
bare soil period, which could provide a new idea about how to employ multi-temporal
images to retrieve SOM.

2. Materials and Methods
2.1. Study Area and Soil Sample Collection

The study area was located in Baoqing County (131◦12′E–133◦30′E, 45◦45′N–46◦55′N;
Figure 1), in the center of the Sanjiang Plain, Northeast China. The study area covers
an approximate area of 10,000 km2, almost half of which is arable land. The ratio of
dryland to paddy fields is approximately 4:1, and forestland is present in the southern and
eastern regions. The area is within the temperate monsoon climate zone, with an annual
mean precipitation of 574 mm and an annual average air temperature of 3.2 ◦C [29]. Its
hydrothermal conditions enable local corn or rice to be harvested annually. The primary
soil types are Phaeozems, Cambisols, and Gleysols according to the classification of the
World Reference Base for Soil Resources (WRB) and the cross-reference between the Genetic
Soil Classification of China and the WRB [30,31].

In the study area, corn and rice were often harvested between mid-October and early
November. Few growing crops and crop residues emerged on the soil surface in drylands
from early April to late June, while some paddy fields may be covered by water or rice
seedlings in June due to the different cultivation practices in the dryland. The period from
April to June could be regarded as the bare soil period [32,33], during which the RS sensors
have a high probability of acquiring soil spectra free of external factors.

In 2010, 76 surface soil samples (0–20 cm) were collected from croplands (Figure 1),
where 44 and 32 sampling points were in the drylands and paddy fields, respectively. At
each sampling site, we collected five soil subsamples in a circular area within a radius of
5 m. The samples were then mixed into one composite sample for laboratory analysis. In
the field, the center point coordinate among the five subsamples was recorded using a
handheld GPS device. The collected samples were first air-dried indoors, and then ground
and passed through a 2-mm sieve. The SOM contents were measured using potassium
dichromate oxidation with an external heating method [34]. For more details on the
methods of soil sampling and SOM measurement, see Zhao et al. [35].
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2.2. Selection and Preprocessing of Remote Sensing Data

SOM gradually changes over time, and its content is generally stable over short periods.
Therefore, we used Landsat 5 Thematic Mapper (TM) imagery within four years from 2008
to 2011. To alleviate the impact of surface coverage, such as crops, crop residues, and snow,
only images captured during the bare soil period in April, May, and June were selected, with
a total of 15 images available (Table 1). The optical bands of the TM imagery, namely, Band 1
(blue band, 450–520 nm), Band 2 (green band, 520–600 nm), Band 3 (red band, 630–690 nm),
Band 4 (near-infrared band, 760–900 nm), Band 5 (SWIR1 band, 1550–1750 nm) and Band 7
(SWIR2 band, 2080–2350 nm), were extracted to retrieve the SOM. For each image, the pixels
affected by clouds and cloud shadows were masked using the Pixel Quality Assessment
Band (QA_Pixel). After removing these pixels, most images did not cover all the sampling
points (Table 1). Only images covering more than 60 samples were retained to ensure
sufficient calibration samples for a reliable SOM retrieval model. Consequently, eight
single-date images (presented in bold in Table 1) qualified for modeling.

Table 1. The number of samples covered in different Landsat 5 TM images. The images selected to
model are indicated in bold.

Image Acquisition Date Cloud Cover (%) Number of Samples

13 April 2008 10 73
29 April 2008 20 56
15 May 2008 1 73
16 June 2008 0 73
16 April 2009 31 44
18 May 2009 26 66
3 June 2009 86 13

19 April 2010 67 19
21 May 2010 27 63
6 June 2010 6 71
22 June 2010 45 32
6 April 2011 69 1
8 May 2011 31 33

24 May 2011 44 68
25 June 2011 1 73

All the processes were implemented through the Google Earth Engine (GEE), a free
cloud-based computational platform that enables users to access and process remotely
sensed data. In recent years, GEE has been widely applied to remote soil sensing [36,37]. In
this study, we used GEE to conduct cloud and cloud shadow masking on Landsat 5 Level 2
surface reflectance data products stored in it.

2.3. Combination of Multi-Temporal Images

To investigate the performance of multi-temporal images, the images were divided
into various year interval groups, namely, one, two, three, and four years, where at least
two images were stacked into an image cube. A total of nine multi-temporal image datasets
were established (Table 2). For instance, the 2008 group included three images acquired in
2008, and the 2009–2011 group included five images acquired from 2009 to 2011.

Table 2. Multi-temporal image dataset.

Year Intervals Year Interval Groups Number of Images

One year
2008 3
2010 2
2011 2

Two years
2008–2009 4
2009–2010 3
2010–2011 4

Three years 2008–2010 6
2009–2011 5

Four years 2008–2011 8
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2.4. Construction of the Spectral Index

Compared with band reflectance, spectral indices could be immune to some external
effects and are thus helpful for SOM retrieval [38]. In the literature [38–40], difference index
(DI), ratio index (RI), and normalized difference index (NDI) have successfully been used
to retrieve SOM. Hence, these indices were selected for modeling, and were calculated
as follows:

DInm = Bm − Bn (1)

RInm =
Bm

Bn
(2)

NDInm =
Bm − Bn

Bm + Bn
(3)

where Bm and Bn represent Band m and Band n, respectively (m > n); DInm, RInm, and
NDInm represent the difference (e.g., DI12 = B2 − B1), ratio (e.g., RI12 = B2

B1
), and nor-

malized difference (e.g., NDInm = B2−B1
B2+B1

) between Bm and Bn, respectively (m > n). The
number of pairwise combinations of six bands is 15, and thus there are 15 indices for DI, RI,
and NDI, respectively, and a total of 45 spectral indices were generated.

2.5. Variable Selection Algorithms

For each single-date image, six bands and 45 spectral indices could be used as in-
dependent variables. For the multi-temporal images, more independent variables were
available. For example, the 2009–2011 group contained five images with 255 variables. It
was necessary to select variables during model optimization. Therefore, in this study, three
variable selection algorithms (GA, RF, and CARS) were used to select variables beneficial
for SOM retrieval.

The GA is a type of adaptive heuristic search algorithm based on evolutionary biology.
By iteratively applying an operation analogous to a biologically inspired natural selection
process (e.g., selection, crossover, and mutation), the variable subsets that yield lower
model errors are selected [41].

The RF algorithm is a mathematically simple and computationally efficient technique
for variable selection that borrows from the reversible jump MCMC framework. It executes
a search in the model space through both fixed- and trans-dimensional moves between
different models, and a pseudo-MCMC chain is then computed and used to calculate the
selection probability for each variable. Important variables can be selected in terms of their
ranking based on the selection probability [42].

CARS algorithm selects an optimal combination of key variables from multiple input
variables based on the principle of “survival of the fittest”. Variables with relatively
small absolute coefficients were removed using an exponentially decreasing function and
adaptive reweighted sampling [43].

All three algorithms were executed in MATLAB R2020a. The code for GA [44] was
acquired from https://ucphchemometrics.com/186-2/algorithms/ (accessed on 10 Jan-
uary 2023). The codes for RF and CARS [45] were acquired from http://www.libpls.net/
download.php (accessed on 10 January 2023).

2.6. Calibration and Evaluation of the SOM Retrieval Model

To build an accurate SOM retrieval model, each single-date image (Table 1) and
multi-temporal image dataset (i.e., various year interval groups; Table 2) were respectively
calibrated with SOM by coupling PLSR and variable selection algorithms on all band
reflectance and spectral indices.

The PLSR is a multivariate regression approach based on the orthogonal characteristic
vectors of predicted values and observable variables [46]. It integrates the advantages
of multiple linear regression, principal components, and typical correlation analyses and

https://ucphchemometrics.com/186-2/algorithms/
http://www.libpls.net/download.php
http://www.libpls.net/download.php
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ensures the stability and excellent performance of models [47]. In this study, PLSR was
executed in MATLAB with the libPLS toolbox (version 1.95) [45].

A leave-one-out cross-validation procedure was applied to evaluate the SOM retrieval
models due to the limited number of samples in our study. This was based on two
indicators, namely, the coefficient of determination (R2) and root mean squared error
(RMSE). R2 assesses the model stability, wherein a higher value indicates a higher stability.
The RMSE was used to evaluate the consistency between the prediction values of the
models and the observed values. A smaller RMSE indicates higher accuracy. These values
were calculated as follows:

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (4)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (5)

where n is the number of samples, and yi and ŷi represent the measured and predicted
values of SOM at site i, respectively.

The performance of the three variable selection algorithms was first compared accord-
ing to their cross-validation results for single-date images, and only the optimal variable
selection algorithm was kept for multi-temporal images. The model with the highest
retrieval accuracy was used for SOM mapping on the ArcGIS 10.5 platform.

3. Results
3.1. Descriptive Statistics of SOM Contents

Among the 76 soil samples, three were excluded as outliers based on the Pauta
criterion and Monte Carlo cross-validation results [48]. The SOM content of the remaining
73 samples ranged from 14.05 to 122.15 g/kg, with a mean and standard deviation of 50.93
and 19.25 g/kg, respectively. The coefficient of variation of SOM was 38%, indicating strong
variability according to the categorized standard proposed by Wilding [49]. The average
SOM was higher in the study area than in croplands across Northeast China [50]. A wide
range of SOM values might be beneficial for accurate SOM retrieval [51].

3.2. Retrieval Performance of Single-Date Images

The SOM retrieval results obtained using a single-date image are shown in Figure 2.
When all the bands and spectral indices were used without variable selection, the retrieval
accuracy of SOM was low for nearly all single-date images. For each image, the retrieval
accuracy of SOM improved after variable selection, irrespective of the algorithm. Taking
the image acquired on 16 June 2008 as an example, the R2 was below 0.13 and RMSE was
as high as 17.98 g/kg when not selecting variables in advance, while the R2 increased to
0.31 and RMSE decreased to 15.95 g/kg when using the CARS algorithm. Among the three
algorithms, CARS performed better than GA and RF, except for the image acquired on
15 May 2008, where the SOM retrieval accuracies were slightly higher for GA and RF. The
optimal result of the single-date images was obtained from the image acquired on 13 April
2008 after variable selection using CARS, with an R2 of 0.34 and an RMSE of 15.66 g/kg.
GA and RF presented similar SOM retrieval results. The best results of GA and RF were
obtained from the image acquired on 6 June 2010, wherein the R2 and RMSE values were
0.25 and 16.77 g/kg, and 0.24 and 16.83 g/kg, respectively.

Although the variable selection algorithms improved the retrieval accuracy of SOM,
the retrieval accuracies (Figure 2) of different images showed substantial differences. For
example, when using CARS, the retrieval accuracy of the image acquired on 24 May 2011
was not as high as that of the image acquired on 13 April 2008, with R2 and RMSE values
of 0.12 and 16.80 g/kg, respectively. This indicates that using a single-date image may
result in an inaccurate SOM retrieval model, potentially due to the effects of soil moisture
or surface cover.
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3.3. Retrieval Performance of Multi-Temporal Images

Given that CARS performed better than GA and RF in improving SOM retrieval on
single-date images (Figure 2), and a similar result was found when they were used in
multi-temporal images, only the SOM retrieval results related to CARS were described
here for clarity. In general, the retrieval accuracy of SOM using multi-temporal images was
higher than that using single-date images (Table 3 vs. Figure 2). The SOM retrieval accuracy
of the images in one year was better than that of the single-date images (the optimal result:
R2 = 0.43 and RMSE = 14.60 g/kg vs. R2 = 0.34 and RMSE = 15.66 g/kg). When using the
images in two years, the accuracy further improved, and the R2 value was as high as 0.50.
When more images were included in the SOM retrieval models, the accuracy improved
further. The 2008–2011 group comprised the images in four years and presented the optimal
accuracy with R2 and RMSE values of 0.59 and 11.81 g/kg, respectively (Figure 3). The
reason for this might be that multi-temporal images provided more temporal information
that was helpful for acquiring soil spectra free from the effects of external factors.

The 2008–2011 group contained all the single-date images used in the study; therefore,
we used the variables selected by CARS to illustrate the important variable types and
image acquisition dates that greatly influenced the SOM retrieval. As shown in Figure 4, a
total of four bands (including three types of spectral bands: blue, red, and near-infrared
bands) and 21 spectral indices (including 10 types of spectral indices) were selected in the
SOM retrieval model from 408 variables derived from images in the 2008–2011 group. This
indicated that spectral indices may play a more important role than band reflectance in
SOM retrieval. However, not all the indices were retained in the model. A total of 17 DI
and four NDI (Figure 4) were included in the 21 spectral indices selected, whereas none
of the RI were kept in the model. Among all the selected DI, DI 57 was chosen most, with
five out of eight images, probably due to fundamental vibrational bonds related to SOM
emerging in the spectral regions of Band 5 and Band 7. Both Band 5 and Band 7 were not
chosen, which could be due to the fact that they were prone to external effects such as
soil moisture [15]; combining them into DI could alleviate these effects. In comparison,
visible and near-infrared bands (Band 1, Band 3 and Band 4) were less sensitive to soil
moisture [52]; thus, they were selected by CARS.
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Table 3. SOM retrieval results of multi-temporal images.

Year Interval Groups R2 RMSE (g/kg)

2008 (3) 0.43 14.60
2010 (2) 0.42 14.97
2011 (2) 0.25 15.57

2008–2009 (4) 0.50 13.91
2009–2010 (3) 0.50 14.29
2010–2011 (4) 0.43 13.66

2008–2010 (6) 0.52 14.08
2009–2011 (5) 0.50 12.99

2008–2011 (8) 0.59 11.81
Note: the number in the brackets represents the image number.
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Among the eight images in the 2008–2011 group, there were three, one, two, and
two images for 2008, 2009, 2010, and 2011, respectively. However, three, four, ten, and
eight variables were selected in 2008, 2009, 2010, and 2011, respectively. Six variables were
derived from the image acquired on 6 June 2010 and four were from the image acquired
on 21 May 2010, whereas only one variable was kept for each image acquired in 2008.
Considering that the soil samples were collected in 2010, this finding might suggest that
the images closer to the soil sampling date were more important for SOM retrieval.
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3.4. Mapping of SOM in the Study Area

In the above analysis, the optimal result of SOM retrieval was achieved by the multi-
temporal images in the 2008–2011 group, in which the variables useful for SOM retrieval
were identified by CARS as input in a PLSR model related to SOM. This model was used
for SOM mapping. As all the soil samples were collected in croplands in our study, the
non-cultivated land was masked. As shown in Figure 5, the SOM pattern was consistent
between the predicted and measured values due to the relatively high retrieval accuracy
of SOM (Table 3 and Figure 3). The results indicated that SOM exhibited apparent spatial
heterogeneity. The low values were primarily distributed in the central flat area. The high
values were mainly concentrated in the fields at the foot of the southwest hills and around
wetlands where the croplands were reclaimed in a short period because less SOM had
been decomposed after a short reclamation period [53]. Fine spatial SOM differences were
observed on a small scale because of differences in field management practices, such as
fertilizers [54]. Therefore, the SOM map based on multi-temporal images could be used to
support efficient field management.
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4. Discussion
4.1. Importance of Variable Selection in SOM Retrieval

In the study, to subdue the adverse effects of possible external factors such as soil
moisture, three types of spectral indices (i.e., RI, DI, and NDI) were employed and combined
with spectral bands into PLSR models. This resulted in 45 indices and six bands as input
variables for each single-date image model. Nevertheless, the performance of full-variable
models without variable selection was unsatisfactory for SOM retrieval based on single-date
images (R2 < 0.15, as shown in Figure 2). Sun et al. [55] used a single-date hyperspectral
image in the region of 390–1029 nm acquired by the Gaofen-5 satellite for SOM retrieval and
achieved slightly better accuracy than ours when the bands were not selected (R2 = 0.35).
The poor performance of the full-variable models could be caused by a multicollinearity
issue associated with spectral information redundancy. Indeed, some input variables
may be irrelevant to SOM, and may even be unfavorable for getting accurate results [56].
For example, Ma et al. [57] found that the SOM retrieval accuracy was lower for all 152
spectral variables that originated from Sentinel2 imagery, including 11 spectral bands
and 141 spectral indices, than for a selected subset of 55 spectral variables extracted by a
multi-layer perceptron algorithm.

To improve SOM retrieval, we adopted GA, RF, and CARS to select the spectral
variables. In the literature, these algorithms were usually used to select spectral bands
from hyperspectral data for retrieving soil properties of interest. For example, Kawamura
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et al. [58] applied GA to select variables for retrieving soil phosphorus and found that
important bands were located in regions related to Fe oxide. For retrieving soil total
nitrogen, Yao et al. [59] found that the bands in 1108, 1248, 1336, 1537, 1754, and 2314 nm
selected by the RF algorithm performed well with R2 > 0.9. Our research also demonstrated
that these algorithms were beneficial in SOM retrieval based on multispectral images. In
the study, the PLSR model achieved higher accuracy after selecting efficient variables for
SOM through variable selection. When using CARS to select spectral variables from the
multi-temporal images in the 2008–2011 group, the retrieval accuracy of SOM was high,
with R2 = 0.59 and RMSE = 11.81 g/kg. This result was similar to that of the SOC prediction
based on Sentinel2 multi-temporal images (R2 = 0.62) [60], and even better than that of a
Hyperion image (R2 = 0.51) [61]. In addition, a limited number of variables could decrease
the complexity of the model and thus improve computational efficiency. Therefore, variable
selection was necessary for high retrieval accuracy of soil properties, especially when using
multi-temporal images where many variables were available.

Among the three variable selection algorithms used in this study, CARS performed
best for both the single-date images (Figure 2) and the multi-temporal images (not shown).
This might be caused by the differences in their search mechanisms, leading to different
types and numbers of selected variables. In the study, the results showed that CARS was
more efficient in selecting variables related to SOM retrieval when using multispectral
satellite RS data. The algorithm also performed well in the airborne hyperspectral image
for SOC retrieval, as the R2 value increased to 0.76 [62]. However, the selected variables
related to SOM retrieval might be dependent on the area because differences in soil types
and field management practices have an impact on the resulting variables [63]. Therefore,
it is necessary to test various variable selection algorithms for optimal SOM retrieval.

4.2. Advantages of Multi-Temporal Images

Cultivated soils are easily influenced by surface cover, such as crops and crop residues
and soil conditions such as soil moisture. These factors could limit the availability of
high-quality RS data. Therefore, using a single-date image to retrieve soil properties might
result in inconsistent results. For example, when using a single-date Sentinel2 image to
retrieve SOC, Vaudour et al. [20] achieved a relatively high accuracy in the Versailles Plain
(marked by intensive crop cultivation) with an R2 value of 0.56, while a relatively low
accuracy was achieved in the Peyne catchment (marked by vineyard cultivation) with an R2

value of 0.02. Inconsistent results were also observed in our study, wherein the R2 values
ranged from 0.12 to 0.34 and the RMSE values ranged from 15.66 to 17.62 g/kg among
single-date images, indicating low accuracy and high variability for SOM retrieval. These
might be caused by the influence of some external factors on the images.

Selecting images acquired during the bare soil period could alleviate these effects.
However, it is often difficult for a single-date image to capture this short time window
because of the intensive field practices (e.g., irrigation) occurring within this period for
cultivated soils and the relatively low temporal resolution of RS satellites. In the study,
we proposed a framework for using multi-temporal images. First, we stacked the multi-
temporal images into various year interval groups and then employed variable selection
to identify beneficial variables for SOM retrieval. This strategy provided a relatively high
accuracy (R2 = 0.59 and RMSE = 11.81 g/kg) when using the images of four years from
2008 to 2011; this result was similar to that obtained using multi-temporal mosaicking
Sentinel2 imagery for SOC retrieval by Vaudour (R2 = 0.54) [64]. We found that more years
of images could provide higher accuracy. Luo et al. [65] also showed a similar trend when
using Landsat8 images on the Songnen Plain of Northeast China. In addition, the variation
of accuracy was small in the same-year intervals. For example, when using the images
of three years, the R2 values were 0.52 and 0.50 for the 2008–2010 and 2009–2011 groups,
respectively. This suggested that multi-temporal images could ensure the stability and
robustness of SOM retrieval.
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In the literature, a bare pixel composite method was proposed to use multi-temporal
images by calculating pixel composite values (e.g., mean) of the images during the bare soil
period. For example, Diek et al. [22] used the composite data from long time-series Landsat
images to retrieve the SOM in the Swiss Plateau. Compared to directly using a single-date
image, the main advantage of this method is that it could extend the available area for re-
mote sensing of soils by filling the gaps between different images. However, some temporal
information might be lost after transforming multiple images into a single composite image.
In our study, we directly stacked multi-temporal images without changing band reflectance,
followed by variable selection to improve retrieval accuracy. Therefore, valuable temporal
information (i.e., various soil spectra) could be kept for modeling. The SOM retrieval
accuracy was similar to that obtained using Landsat8 multi-temporal composite images
(average R2 of 0.608) in a region adjacent to the study area [65]. Therefore, the proposed
framework is competitive.

4.3. Influence of Time Intervals in Multi-Temporal Images on SOM Retrieval

The SOM retrieval accuracy was higher when more years of images were included
(Table 3). However, using more images could limit the spatial coverage because the
images were often affected by clouds and cloud shadows, and the resulting coverage
was determined by the intersection of pixels free of clouds and cloud shadows for each
image. In the study, we selected all images acquired during the bare soil period (April,
May, and June), from 2008 to 2011. The average cloud cover of the 15 images was 30.93%
(Table 1), resulting in not all collected samples being covered. To ensure a certain number
of samples for modeling, we removed images that covered fewer than 60 samples. After
stacking all the remaining images for modeling, the number of remaining samples was
further decreased to 51. However, when using two or three years of images, the spatial
coverage was relatively large, and more samples were kept for modeling, with, for example,
66 and 55 samples remaining for the 2008–2009 and the 2008–2010 groups, respectively.
The SOM retrieval accuracies for the 2008–2009 and 2008–2010 groups were acceptable,
with R2 values of 0.50 and 0.52, respectively (Table 3). Therefore, although more years of
imaging could provide higher accuracy, it is important to balance the retrieval accuracy
and the spatial coverage based on real requirements. Various year intervals are suggested
to be experimented with for decision making.

It should be noted that the images acquired on different dates played different roles
in SOM retrieval when using multi-temporal data, as shown by the selected variables in
Figure 4. In the study, the images closer to the soil sampling date were more important.
Among the 25 variables selected in the four years from 2008 to 2011, 10 of them (40%) were
derived from the images acquired in the year of soil sampling in 2010. Four and eight
variables were derived from the images acquired in 2009 and 2011, respectively, while only
three variables were derived from the images acquired in 2008. Therefore, designing the
year intervals centered on the sample date and then extending them forward and backward
according to the availability of images would be helpful for highly accurate SOM retrieval.

4.4. Implications, Limitations and Future Research

The proposed framework using multi-temporal images provides a good approach for
remote sensing of SOM. The resulting SOM map could be used to guide the utilization
and management of soil resources. For example, it could aid to divide different fertility
areas based on different SOM levels. The proposed framework might be applicable for
retrieving other soil properties (e.g., soil total nitrogen). Additionally, it might have better
performance in the regions with a longer bare soil period and less influence of clouds and
cloud shadows than the Sanjiang Plain. In these types of regions, higher accuracy of SOM
retrieval could be expected.

Although the proposed framework improved SOM retrieval accuracy, we only selected
four years of images centered on the sampling year to ensure high spatial coverage of
the image cube stacked with multi-temporal images. For soil properties that change
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slowly, such as SOM, images with longer time spans could be used. For example, Dou
et al. [63] used RS images captured 12 years before the sampling time for SOM retrieval.
In the future, multi-source RS data including Landsat 8 and 9, and Sentinel2 should be
combined into multi-source and multi-temporal image datasets to improve SOM retrieval
due to their high signal-to-noise ratio and spatial resolution compared with the Landsat
5 imagery used in the study. The proposed framework could also be compared with the
bare soil composite method in areas where many high-quality multi-temporal images are
available. Moreover, in the study area, drylands and paddy fields were mixed. Different
spectral characteristics among them might influence the SOM retrieval accuracy due to
their different field management practices. Whether retrieving SOM separately in drylands
and paddy fields is helpful for improving retrieval accuracy remains to be verified. In
addition, a limited number of soil samples were used in the study. Although a leave-one-
out cross-validation method was employed to evaluate the performance of SOM retrieval,
the findings might be affected by the number of soil samples. Therefore, in the future, more
samples should be collected, and an independent validation sample set should be used to
further investigate the proposed framework.

5. Conclusions

The study proposed a framework for using multi-temporal images to improve SOM
retrieval accuracy. In this framework, the spectral bands and indices derived from the
multi-temporal images were directly stacked, followed by variable selection algorithms in
modeling for the SOM retrieval. Based on this framework, PLSR models that coupled the
various year intervals of multi-temporal images and three algorithms were built for SOM
retrieval in a typical county of the Sanjing Plain in Northeast China. The results indicated
that the proposed framework could improve the accuracy of SOM retrieval, compared
with that of single-date images, with the highest R2 value of 0.59 and the lowest RMSE
value of 11.81 g/kg. By comparing the performance of multi-temporal images among
various year intervals, we found that more years of images could provide higher retrieval
accuracy. The 2008–2011 year interval group showed the best performance, and the images
closer to the soil sampling date were more important for SOM retrieval. In addition, the
combination of variable selection algorithms and PLSR outperformed using PLSR alone,
and CARS performed better than GA and RF, indicating the necessity of variable selection
when using multi-temporal images for SOM retrieval in the framework. Therefore, we
suggest that multi-temporal images centered on the sampling date and various variable
selection algorithms should be coupled for SOM retrieval when using the framework for
remote sensing of soils in practice. In the future, multi-temporal and multi-source RS data,
such as Landsat8 and Sentinel2, could be combined to further improve SOM retrieval.
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