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Abstract: Operational sea ice maps are usually generated manually using dual-polarization (DP)
synthetic aperture radar (SAR) satellite imagery, but there is strong interest in automating this
process. Recently launched satellites offer compact polarimetry (CP) imagery that provides more
comprehensive polarimetric information compared to DP, which compels the use of CP for automated
classification of SAR sea ice imagery. Existing sea ice scene classification algorithms using CP imagery
rely on handcrafted features, while neural networks offer the potential of features that are more
discriminating. We have developed a new and effective sea ice classification algorithm that leverages
the nature of CP data. First, a residual-based convolutional neural network (ResCNN) is implemented
to classify each pixel. In parallel, an unsupervised segmentation is performed to generate regions
based on CP statistical properties. Regions are assigned a single class label by majority voting using
the ResCNN output. For testing, quad-polarimetric (QP) SAR sea ice scenes from the RADARSAT
Constellation Mission (RCM) are used, and QP, DP, CP, and reconstructed QP modes are compared
for classification accuracy, while also comparing them to other classification approaches. Using
CP achieves an overall accuracy of 96.86%, which is comparable to QP (97.16%), and higher than
reconstructed QP and DP data by about 2% and 10%, respectively. The implemented algorithm using
CP imagery provides an improved option for automated sea ice mapping.

Keywords: RADARSAT Constellation Mission (RCM); synthetic aperture radar (SAR); compact
polarimetry; ice types; contextual information; feature learning; segmentation; deep learning

1. Introduction

Ice maps are essential for applications such as climate change interpretation and ocean
navigation [1]. Synthetic aperture radar (SAR) from satellites is the primary source of
imagery used to generate sea ice maps. National ice centers, such as the Canadian Ice
Service (CIS), rely on trained operators to manually generate sea ice maps primarily using
satellite synthetic aperture radar (SAR) imagery, a time-consuming process. Automated
sea ice classification methods using SAR imagery have been sought for decades [2].

The RADARSAT Constellation Mission (RCM), the latest generation of Earth observa-
tion SAR satellites in Canada, comprises three satellites that operate in different acquisition
modes, such as single-polarization, dual-polarization (DP), compact polarimetric (CP),
and quad-polarization (QP) [3]. The RCM CP operates in CTLR (right circular transmit
and linear receive) mode [4] and generates swaths (500 km) comparable to DP imagery
while preserving the phase information between channels, thereby providing more com-
prehensive scene information than DP [5]. QP swaths are much smaller (20 km) and are
not viable for operational ice mapping. Compared to the more extensive literature for sea
ice mapping using DP, there exist limited publications that assess CP SAR data for auto-
mated sea ice mapping [2,5–12]. Previous sea ice classification methods using CP utilize
handcrafted features such as intensity images, polarimetric features, and texture features.
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Some classification methods use the reconstructed QP (RQP) data derived from CP SAR
to leverage well-known QP parameters whose usage and interpretation are known [2,7].
Existing CP SAR sea ice classification methods, although successful, have limitations.

Using handcrafted features has limitations because these cannot be assured to be
a comprehensive representation of all classes and are sensitive to noise and changes in
conditions [13]. In addition, feature selection processes are time-consuming and may lead to
the loss of important information or strong correlations between features [14]. In contrast,
feature learning methods allow a system to automatically extract effective features for
specific data and conditions without human intervention [15]. Convolutional neural
networks (CNNs) have been used to learn features from SAR imagery in support of ice
concentration estimation [16], ice–water classification [17–21], sea ice change detection [22],
and ship–iceberg discrimination [23]. Residual-based CNN (ResCNN) methods are able
to learn effective feature representations and are highly adaptable to various tasks and
datasets [24]. We are not aware of published research that uses deep learning models
applied to CP imagery to support sea ice mapping.

The complex Wishart distribution is a known statistical property of the multilook CP
coherence matrix, arising from the complex Gaussian distribution of the backscattered
field in CP SAR data [25]. Given this knowledge, it would be advantageous to include
the Wishart distribution as part of the CP sea ice classification approach to account for the
nature of the data. Furthermore, the use of spatial context enhances both the classification
accuracy and the algorithmic efficiency [26]. Therefore, the integration of spatial context
should be considered in generating sea ice maps.

We propose a new region-based automated sea ice classification methodology that
incorporates learned features, spatial context, and statistical properties of various SAR
modes. Uniquely, we apply the deep learning algorithm directly to the RCM CTLR CP
data—henceforth, we refer to CTLR CP as CP—to generate a pixel-level classification.
As a novel contribution, CP is compared to DP, RQP, and QP with regard to generation of
accurate sea ice maps. Identifying the most effective mode for SAR sea ice classification
supports improved operational algorithmic capability.

A ResCNN model [24] is used to obtain pixel-level sea ice maps by learning sea
ice features from CP SAR data. An existing unsupervised semantic segmentation based
on statistical characteristics of the CP data [27] is applied to obtain homogeneous and
edge-preserved regions. Similar approaches, using appropriate statistical distributions, are
implemented for each of the SAR modes under consideration. To generate region-based sea
ice maps, as supported by previous studies [2,28], a majority voting process is employed to
combine pixel-level classified and segmented images.

Despite the launch of the RCM satellites, there are no RCM CP images available to the
public that contain labeled pixels for ice type classification. Consequently, this study relies
on RADARSAT-2 QP scenes that have already been labeled by experts from the Canadian
Ice Service (CIS) [2] to derive corresponding RCM CP scenes. The region-based sea ice
classification approach achieves accurate sea ice maps, demonstrating that CP can achieve
comparable sea ice classification performance relative to QP and outperform DP and RQP.

A literature review of the sea ice classification methods using CP SAR data is presented
in Section 2. The proposed methodology is explained in Section 3. The experiments and
the corresponding results are shown and analyzed in Section 4, and the conclusions are
presented in Section 5.

2. Background

In general, classification algorithms utilizing CP can be divided into two categories:
algorithms using features derived directly from CP data and algorithms employing recon-
structed full QP data derived from CP data. Each of these categories are discussed next.

In the first category, polarimetric features such as m− χ decomposition features [29]
are extracted from the Stokes vector of CP data. Perhaps the first evaluation of CP
imagery’s ability to differentiate open water from sea ice was visually conducted by
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Charbonneau et al. [30]. They used derived CP imagery data from QP aircraft-based SAR
images acquired over the Canadian Arctic. Subsequently, several studies then evaluated
the capability of CP polarimetric features extracted from the Stokes vector to distinguish
different ice types from open water [6,8,9,11,31]. Dabboor et al. [5] derived 23 features for
three RCM modes with different resolutions in order to classify first-year ice, multi-year
ice, and open water classes. Singha and Ressel [6] proposed a two-step method including
feature extraction followed by a supervised classifier to distinguish different ice types.
Geldstezer et al. [8] investigated the discrimination capability of 26 CP features in 3 differ-
ent modes of RCM across 4 different seasons. Additionally, they analyzed the values of the
CP features corresponding to each ice type.

In the second category, rather than using CP data directly, the QP covariance matrix
is reconstructed from CP data [32,33] and used with QP scene classification methods.
Zhang et al. [10] evaluated the ability of CP modes to reconstruct QP information and they
recommended using CTLR mode for studying sea ice classification. Ainsworth et al. [34]
demonstrated that RQP’s potential in classifying crop fields is comparable to that of CP.

In addition to using backscatter measures, handcrafted features can be used to aug-
ment the feature set for a sea ice classification task. However, using handcrafted features
requires domain expertise, and selecting the proper parameters to generate effective fea-
tures is time-consuming [35]. Deep learning methods, in contrast, are data-driven and do
not require prior knowledge or assumptions, and can automatically learn features from
data [35,36], removing the need for manual feature engineering [36]. Thus, it is highly
advantageous to evaluate the potential of CP imagery for generating sea ice maps using
deep learning techniques.

Combining sea ice maps generated by pixel-level classification with segmented images
improves classification accuracy [2,28]. Leigh et al. [28] utilized Iterative Region Growing
using Semantics (IRGS) [37] and a global+local (glocal) approach on RADARSAT-2 images
to identify homogeneous regions and an SVM classifier to generate pixel-level sea ice
maps using gray-level co-occurrence matrix (GLCM) texture and intensity features. The
basic IRGS algorithm [37–39] uses intensity images with Gaussian statistics in a spatial
context model. CP enhances the measurement potential of radar illumination by providing
the 2 × 2 coherence matrix of the backscattered field which follows the complex Wishart
distribution [25,27]. As a result, to fully utilize the information provided by CP data, CP-
IRGS [27] should be applied to segment it. Ghanbari et al. [2] employed Polarimetric IRGS
(PolarIRGS) [40] to segment RQP images with a support vector machine (SVM) pixel-level
classification [41] to label regions using CP polarimetric features.

Taking into account these motivations, we proposed a region-based ResCNN method-
ology that utilizes learned features, spatial context, and statistical characteristics of CP
imagery to classify SAR sea ice scenes. The study also evaluated and compared the poten-
tial of CP imagery for generating sea ice maps against comparable approaches for DP, RQP,
and QP modes. This comparison is necessary, as different SAR data modes have distinct
characteristics that can impact their ability to generate sea ice maps. By considering these
differences, the most appropriate data source can be assessed.

The methods proposed by Ghanbari et al. [2] and Leigh et al. [28] were used as base-
lines against which to compare the performance of the proposed methodology.

3. Methodology

In this section, the proposed methodology is described comprehensively. The proposed
region-based classification methodology consists of the following components, as shown in
Figure 1:

• The various SAR modes (Section 3.1) each used as source imagery are CP, DP, RQP,
and QP as input to the region-based segmentation and pixel-level classification methods;

• A ResCNN model is used to generate the pixel-level sea ice maps by using learned
features from each of the modes (Section 3.2);
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• Unsupervised segmentation algorithms, which are mode dependent, are used to gen-
erate homogeneous, contiguous regions with accurate class boundaries (Section 3.3);

• The segmented and pixel-level classified images are combined by a region-based
majority voting approach (Section 3.4).

Figure 1. Flowchart of the main steps of the proposed classification method.

To ensure consistency and enable comparisons with the baseline methods, we em-
ployed the polarimetric features listed in Table 1 in the same manner as Ghanbari et al. [2].
Smooth FYI, new ice, and open water at low wind speeds are anticipated to result in low
RH and RV values. Conversely, rough or ridged FYI, MYI, and open water at high wind
speeds are expected to yield higher RH and RV values [42]. The behavior of the conformity
coefficient is unknown for sea ice [8]; however, under moderate to high wind speeds, open
water is anticipated to have a high conformity coefficient, while wind slicks on open water
are expected to exhibit a low conformity coefficient [43,44]. Geldsetzer et al. [8] offered
comprehensive insights into the behavior of the CP features for different seasons and
incidence angles.

Table 1. List of CP polarimetric and amplitude features.

Name Description # a

RH, RV intensity values of RH and RV channels [45] 2
α scattering mechanism parameter [46] 1
µc circular polarization ratio [30] 1
u conformity coefficient [5] 1
ρ correlation coefficient of RH and RV [5] 1
m degree of polarization [29] 1
Hi Shannon entropy, intensity component [5] 1
Hp Shannon entropy, polarimetric component [5] 1

m− χ m-chi decomposition of CP data [29] 3
S0, . . . , S3 Stokes vector components [47] 4

# shows the number of features.
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Meanwhile, the same features as Leigh et al. [28] for the RH and RV CP scenes were
used. These features are intensity images as well as local average, maximum intensity,
and GLCM, including applied second moment, contrast, correlation, dissimilarity, entropy,
homogeneity, inverse moment, mean, and standard deviation extracted using three window
sizes of 3 × 3, 9 × 9, and 17 × 17. The texture features were then averaged across the four
dominant directions, known as isotropic GLCM step directions.

3.1. SAR Data

The mathematical basis of the four SAR modes (QP, CP, RQP, and DP) used in this
study are described here.

3.1.1. QP SAR Data

Each pixel in the observed QP imagery is represented by four elements in a 2 × 2
scattering matrix [48]:

S =

[
SHH SHV
SVH SVV

]
, (1)

where Sij is complex and ij indicate the transmitted and received polarizations [48], which
can be either horizontal (H) or vertical (V). Then, a 3 × 3 covariance matrix is calculated
assuming reciprocity of monostatic radar [48]:

CQP =


〈
|SHH |2

〉 √
2
〈
SHHS∗HV

〉 〈
SHHS∗VV

〉
√

2〈SHVS∗HH〉 2
〈
|SHV |2

〉 √
2
〈
SHVS∗VV

〉
〈SVVS∗HH〉

√
2
〈
SVVS∗HV

〉 〈
|SVV |2

〉
, (2)

where 〈. . .〉 and ∗ indicate spatial ensemble averaging and the conjugate transpose, respec-
tively. CQP follows a complex Wishart distribution [48].

3.1.2. Synthesized CP SAR Data

The coherence matrix of CP SAR data is a 2 × 2 semi-positive definite Hermitian
matrix. For a CTLR mode, the coherence matrix is given as follows [7]:

CCP =

[
〈| S2

RH |〉 〈SRHS∗RV〉
〈SRVS∗RH〉 〈| S2

RV |〉

]
, (3)

where R stands for transmitted right circular polarized wave. CCP follows a complex
Wishart distribution [49]. Based on the observed QP data, CP data can be derived. To derive
SRH and SRV , the equations SRH = (SHH − iSHV)/

√
2 and SRV = (SHV − iSVV)/

√
2 are

used [4].

3.1.3. Reconstructed QP SAR Data

Based on the CP data, the QP data can be reconstructed to be used as an alternative
representation of the CP data. To reconstruct the 3 × 3 covariance matrix of QP, reflec-
tion symmetry resulting in

〈
SHHS∗HV

〉
=
〈
S∗VVSHV

〉
= 0 and cross-pol ratio must be

used [32,50]. Therefore, the reconstructed covariance matrix derived from the CTLR CP
mode is expressed as follows [51,52]:

CRQP =

 C11 − |SHV |2 0 −iC12 + |SHV |2
0 2

〈
|SHV |2

〉
0

(−iC12 + |SHV |2)∗ 0 C22 − |SHV |2

, (4)

where Cij indicates the elements of CCP. There are several methods to reconstruct QP
SAR data using CP data [32,33,53,54]. In this paper, similar to the baseline method [2], an
iterative method proposed by Nord et al. [33] was used to calculate CRQP elements.
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3.1.4. DP SAR Data

In contrast to QP and CP, DP data do not include phase information between channels.
Therefore, the covariance matrix cannot be calculated. In this study, derived RCM HH and
HV intensity channels from QP SAR data were used.

3.2. Sea Ice Classification Using ResCNN Model

Due to the limited availability of annotated SAR data for sea ice classification tasks,
overfitting can occur using deep learning models such as ResNet [24] or VGG [55]. A
simpler deep learning model was used to alleviate this problem. In this study, a four-block
ResCNN model was used and trained by minimizing the multi-class cross-entropy loss
function [56]. As indicated in Table 2, each block consisted of two convolution operators,
and the number of feature maps in each block was set to 32, 48, 64, and 80. To provide
nonlinear expression ability to the ResCNN model, a standard ReLU (rectified linear
activation unit) activation function was used [35]. After applying a global average operator
on the output of the last block, a fully connected layer was used to map the features into
one of K classes.

Table 2. Structure of the CNN model along with the operators.

Layer Name Output Size Operators

Block 1 17× 17× 32
[

3× 3× 32
3× 3× 32

]
Block 2 9× 9× 48

[
3× 3× 48
3× 3× 48

]
Block 3 5× 5× 64

[
3× 3× 64
3× 3× 64

]
Block 4 3× 3× 80

[
3× 3× 80
3× 3× 80

]
Global Average 1× 1× 64 3× 3 average pool

Classification K 64× K fully connected

Softmax K

To minimize the loss function, the Adam optimizer [57] was employed. The distribu-
tion of layers is affected by changing the parameters of previous layers in a CNN model [58].
To overcome this limitation, the batch normalization method was used. To help reduce the
risk of overfitting, dropout was applied. After training the ResCNN model, all pixels in the
SAR image were classified to obtain pixel-level sea ice maps.

3.3. Obtaining Homogeneous Edge-Preserved Regions

The effective preservation of boundaries between different ice types when generating
sea ice maps is achieved through the use of unsupervised region-based segmentation. The
resulting regions must meet two criteria: (i) they should be homogeneous, containing only a
single class and (ii) they should preserve the boundaries between different classes accurately.
The successful IRGS algorithm was chosen because of its effectiveness in segmenting SAR
imagery and generating accurate class boundaries [2,28,38,59].

The original IRGS method [37], designed only for SAR amplitude images, was used
for the segmentation of sea ice scenes using DP scenes. Yu et al. [40] extended IRGS to
PolarIRGS and applied it to a land cover-type dataset. PolarIRGS leverages all available
information in QP by designing a feature model based on the complex Wishart distribution
and adapting the spatial context model to better capture the specific characteristics of QP.
The edge penalty term was measured using the amplitude images of HH, HV, and VV.
The PolarIRGS method was performed here to segment sea ice scenes using CQP and CRQP.
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Ghanbari et al. [27] introduced CP-IRGS by similarly modifying IRGS to accommodate
CP data. CP scenes were segmented using CP-IRGS, and the RH and RV images were used
to measure the required edge-penalty term.

3.4. Combining Pixel-Based Classification and Region-Based Segmentation

The pixel-level sea ice maps generated by ResCNN are generally accurate because
ResCNN learns discriminative features during the training process. However, pixel-level
sea ice maps have many errors due to the speckle noise causing individual pixels to
be assigned to incorrect classes. Combining the pixel-level classified image with edge-
preserving regions results in high-precision sea ice maps. To achieve that, a majority
voting process was applied to each region to determine the sea ice class labels of regions as
follows [2]:

lrs =
K

max
j=1

∑
i∈rs

Vote(li)j,
(5)

where lrs indicates the class label of region rs, K is the total number of ice classes, and i ∈ rs
represents the pixels that comprise rs. The term li indicates the label of the ith pixel, and
Vote(li)j is defined as shown:

Vote(li)j =

{
1, if li belongs to class j
0, otherwise

(6)

4. Experiments

This section presents the experiments of the ice-type classification and discusses the
performance of the classification in two general cases. In case 1, the potential of CP data in
generating sea ice maps using the proposed methodology is compared against that of DP,
RQP, and QP modes. In case 2, the proposed methodology’s performance is compared to
that of other baseline methods.

4.1. Study Area and Dataset

In this study, two QP RADARSAT-2 scenes were used to generate the RCM DP and CP
SAR data, and the corresponding RQP SAR data were generated as described in Section 3.1.
The two QP SAR scenes were acquired in the FQ11 imaging mode with two seconds time
difference, identified as Scene 56 and Scene 58 over Barrow Strait, located near Somerset
Island in the Canadian Arctic, collected on 5 May 2010. The range × azimuth resolutions of
the scenes were 5.2× 7.6 m. The incidence angle range for the scenes was between 30.20◦

and 32◦.
Figure 2a illustrates the location of the two scenes. The study area covered approx-

imately 23 km by 14 km, with five different classes: young ice (YI), first-year ice (FYI),
multi-year ice (MYI), new ice (NI), and open water (OW), identified by experts in CIS. Since
the backscatter signatures of OW and NI classes are very similar, they were assumed as the
same class (OW/NI) [2]. Figure 2b,c show the first element of CCP of the two derived CP
scenes along with the overlaid labeled pixels.

To derive CP SAR data from RADARSAT-2 QP scenes, an RCM simulator developed
at the Canada Centre for Mapping and Earth Observation (CCMEO) was used [30]. The
scenes were derived for the 30 m RCM medium resolution beam mode with −24 dB noise
floor (noise-equivalent sigma zero value). A 9 × 9 boxcar averaging filter was applied to
the SAR data to reduce speckle noise. The RCM HH and HV intensity images were also
extracted with the same RCM mode and averaging filter size.
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(a) Location (b) Scene56 (c) Scene58 (d) IRGS using DP

(e) Glocal using RV (f) CP-IRGS using CCP (g) PolarIRGS using CRQP (h) PolarIRGS using CQP

Figure 2. (a) The locations of the two RADARSAT-2 fine QP scenes in the Barrow Strait. The first
element of the covariance matrix of Scenes (b) 56 and (c) 58, along with the overlaid labeled pixels of
open water/new ice class (blue), young ice (violet), first-year ice (yellow), and multi-year ice (red).
(d–h) are the segmentation images obtained using IRGS-based methods.

4.2. Training and Testing Data

The number of labeled pixels specified by CIS experts is approximately 1000. However,
due to the large amount of training data required by deep learning methods, we augmented
the number of samples by incorporating the CIS’s provided samples to guide the collection
of additional labeled pixels. CIS experts used the MAGIC software to partition Scene 56
and 58 into a number of grids and assign a label to the central pixel of each grid [60]. Table 3
shows the number of training and test pixels in each class. Scene 56 was used for training,
while Scene 58 was used for testing. Since Scene 56 does not include sufficient numbers
of OW/NI samples, 2000 OW/NI samples were obtained from Scene 58 to train models.
The training samples were used to standardize Scenes 56 and 58. F × 17 × 17 patches were
extracted around each labeled pixel to train the ResCNN models. F stands for the number
of input feature maps. In case 1, it corresponded to the absolute values of coherency matrix
elements. Thus, F was 2, 3, 4, and 6 for DP, derived CP, RQP, and QP SAR data, respectively.
In case 2, F was 16 and 35 for polarimetric and GLCM feature-based baselines, respectively.
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The number of training patches in each class was not equal, which is known as an
imbalanced dataset problem. To overcome this problem, data augmentation techniques,
including horizontal and vertical flips as well as random rotation, were used to expand the
number of training patches to 7000 per class.

Table 3. The number of training and testing pixels for each class.

Name Description # of Train # of Test

OW/NI open water and new ice 2000 3367
YI young ice 5889 6383

FYI first-year ice 6395 6383
MYI multi-year ice 5750 5637

4.3. Model Settings

The learning rate, weight decay, and beta parameters in ADAM optimization [57]
were set to 1 × 10 −5, 0.05, 0.9, and 0.999 in the training phase. The batch size and training
epochs were 50 and 200, respectively.

SVM is a machine learning algorithm that was used previously in support of sea ice
mapping [2,28,59]. The hyperparameters C, Gamma, and Degree for SVM were explored
within the ranges [10−2, 102], utilizing increments of 10 for the kernel functions of linear,
polynomial, and radial basis functions. The values of hyperparameters associated with the
highest overall classification accuracy (OA) were chosen.

4.4. Comparing CP, DP, RQP, and QP Modes

Figure 3a–d shows pixel-level sea ice maps obtained only by the ResCNN models.
The images are resized to fit the page, which may have resulted in some loss of detail.
In general, the pixel-level sea ice maps appeared with many erroneous pixels, probably
caused by speckle noise. Many YI pixels in the upper part of the scene were erroneously
classified as MYI by all models, likely due to the similarity in intensity values between
these YI pixels and MYI pixels. The high intensity values observed could be attributed to
the presence of dry snowpack on YI [61].

The QP data generated the highest OA of 89.52%, while CP yielded a slightly lower
OA of 88.23%, demonstrating that CP data has a comparable ability to provide sea ice
maps to QP data. Meanwhile, using RQP achieved an accuracy of 87.24%, which was
comparable to CP but also slightly lower than QP. This indicates that RQP did not offer
richer information for classification than CP. The lowest OA was obtained by the DP
images (80.13%), demonstrating that the polarimetric information in the other three modes
are useful in support of accurate classification. As shown in Figure 3a, DP–ResCNN
misclassified several OW/NI and YI pixels as FYI.

Figure 3e–h shows the region-level sea ice maps after combining segmentation and
classification maps using majority voting. Overall, the region-level results exhibited well-
defined homogeneous regions and less noisy classifications when compared to the sea ice
maps at the pixel level.

Table 4 presents the performance of ice-type classification on the test sampled data. It
shows that the combination of QP–ResCNN and PolarIRGS (QP+PolarIRGS ) generated the
highest OA (97.16%), which was slightly greater than OA of CP–ResCNN combined with
CP–IRGS (CP+CP–IRGS), that achieved an accuracy of 96.86%. This demonstrates that CP
data can effectively approximate the QP capability for sea ice mapping. The combination
of RQP–ResCNN and PolarIRGS (RQP+PolarIRGS) produced an OA of 94.98%, which was
lower than CP+CP–IRGS, which does not motivate its use.
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(a) DP-ResCNN (80.13%) (b) CP-ResCNN (88.23%) (c) RQP-ResCNN (87.24%) (d) QP-ResCNN (89.52%)

(e) DP+IRGS (86.16%) (f) CP+CP-IRGS (96.86%) (g) RQP+PolarIRGS (94.98%) (h) QP+PolarIRGS (97.16%)

Figure 3. (a–d) Pixel-level sea ice maps generated by the ResCNN feature learning classifier using DP
(DP–ResCNN), derived CP (CP–ResCNN), RQP (RQP–ResCNN), and QP SAR data (QP–ResCNN).
(e–h) segmentation combined with ResCNN classification results along with their overall accu-
racy(OA). It should be noted that the QP results have been rescaled to match CP data size for
presentation purposes.

The RQP+PolarIRGS method achieved an MYI user’s accuracy of 89.02% by misidenti-
fying 10.86% of the YI test samples as MYI, which mainly included samples in the upper
portion of the scene. Both the QP+PolarIRGS and RQP+PolarIRGS methods misclassified
several FYI test samples as YI, leading to a decrease of approximately 6% in the YI user’s ac-
curacy. In contrast, the CP+CP–IRGS approach could more accurately differentiate between
YI and FYI classes.
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Table 4. Confusion matrices obtained by the region-based ResCNN models using the amplitude
scenes of DP, derived CP, RQP, and QP.

Method OW/NI YI FYI MYI User’s Accuracy (%)

D
P+

IR
G

S

OW/NI 2299 6 234 0 90.55
YI 1 5053 366 4 93.16

FYI 1067 164 5778 5 82.38
MYI 0 1160 5 5628 82.85

Overall Accuracy (%): 86.16
Kappa Coefficient: 0.8114

C
P+

C
P-

IR
G

S OW/NI 3327 32 1 0 99.19
YI 21 5874 119 5 97.60

FYI 19 23 6261 7 99.22
MYI 0 454 2 5625 92.50

Overall Accuracy (%): 96.86
Kappa Coefficient: 0.9575

R
Q

P+
Po

la
rI

R
G

S OW/NI 3307 8 4 0 99.064
YI 41 5655 287 6 94.42

FYI 19 27 6091 6 99.15
MYI 0 693 1 5625 89.02

Overall Accuracy (%): 94.98
Kappa Coefficient: 0.9320

Q
P+

Po
la

rI
R

G
S OW/NI 3342 14 4 0 99.46

YI 23 6155 324 2 94.63
FYI 2 26 6050 31 99.03
MYI 0 188 5 5604 96.67

Overall Accuracy (%): 97.16
Kappa Coefficient: 0.9614

4.5. Performance Comparison of the Proposed Methodology with the Baselines

Figure 4 shows the sea ice maps generated by the baseline methods by Ghanbari et al. [2]
and Leigh et al. [28]. As can be seen in Figure 4a,c, the baseline method by Ghanbari et al. [2]
yielded many YI samples misclassified as MYI, whereas the number of misclassified YI
samples using the approach by Leigh et al. [28] was lower. This indicates that using
GLCM features enables SVM to distinguish MYI samples from YI more effectively than
polarimetric features.

The corresponding confusion matrices are displayed in Table 5, which show that
the approach proposed by Leigh et al. [28], achieving an OA of 93.90%, performed better
than the method suggested by Ghanbari et al. [2], which obtained an OA of 90.52%. In
accordance with Figure 4b, the user accuracy of MYI obtained by Ghanbari et al. [2] was
76.94%, which is indicative of the misclassified YI pixels at the upper part of the scene,
while the user accuracy of FYI obtained by Leigh et al. [28] was 88.71%, mainly due to the
misclassification of YI samples as FYI at the upper part of the scene (Figure 4d).

The approach using ResCNN achieved an 88.23% OA, which was about 1.5% higher
than the OA attained by each baseline method. Notably, the ResCNN classifier utilized only
amplitude CP scenes, whereas the baseline methods incorporated GLCM and polarimetric
features as well. Based on the results presented in Tables 4 and 5, the region-based sea ice
classification approach proposed in this study achieved the highest OA of 96.86% compared
to the performance of the baseline methods.
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(a) OA = 87.02% (b) OA = 90.52% (c) OA = 87.60% (d) OA = 93.90%

Figure 4. Sea ice maps indicating OA for baseline approaches. (a) is pixel-based and (b) is region-
based, using method by Ghanbari et al. [2], while (c) is pixel-based and (d) is region-based, using
method by Leigh et al. [28].

Table 5. Confusion matrices obtained by the region-based baseline methods.

Method OW/NI YI FYI MYI User’s Accuracy (%)

G
ha

nb
ar

ie
ta

l.
[2

] OW/NI 3324 7 1 0 99.76
YI 41 4666 290 3 93.32

FYI 2 26 6089 5 99.46
MYI 0 1684 3 5629 76.94

Overall Accuracy (%): 90.52
Kappa Coefficient: 0.8719

Le
ig

h
et

al
.[

28
] OW/NI 3206 15 4 0 99.41

YI 2 5791 554 7 91.14
FYI 159 576 5821 6 88.71
MYI 0 1 4 5625 99.91

Overall Accuracy (%): 93.90
Kappa Coefficient: 0.9171

5. Conclusions

A ResCNN region-based automated sea ice classification algorithm which utilizes CP
SAR data is introduced. The proposed approach incorporates learned features with spatial
information and leverages the statistical characteristics of the multilook CP coherence
matrix to produce accurate sea ice maps. The experimental results revealed that the
proposed methodology yields sea ice maps with higher accuracy compared to DP and RQP
and performs comparably to QP. These findings suggest that CP data have greater potential
than DP for generating sea ice maps, and there is no need to reconstruct QP data from CP.
Additionally, the study showed that the potential of CP data in generating sea ice maps is
comparable to that of QP.

The ResCNN classifier proposed in this study achieved a higher overall classification
accuracy (88.23%) compared to the baseline methods, without the need for polarimetric
and GLCM features. These results confirm that feature learning classifiers can improve
the accuracy of sea ice maps over traditional machine learning methods such as SVM. By
achieving the highest overall accuracy of 96.86%, the proposed region-based sea ice classifi-
cation methodology outperformed the baseline methods. This highlights the significance
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of incorporating the statistical properties of CP data and learned features in the sea ice
classification process.

Although the region-based classification methodology is used for generating sea ice
maps, it also has potential for addressing other tasks such as land cover classification.
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