
Citation: Khabiri, S.; Crawford, M.M.;

Koch, H.J.; Haneberg, W.C.; Zhu, Y.

An Assessment of Negative Samples

and Model Structures in Landslide

Susceptibility Characterization Based

on Bayesian Network Models. Remote

Sens. 2023, 15, 3200. https://doi.org/

10.3390/rs15123200

Academic Editors: Federico Raspini,

Simon Plank, Matteo Del Soldato,

Pierluigi Confuorto, Chiara

Cappadonia and Mariano Di Napoli

Received: 4 May 2023

Revised: 13 June 2023

Accepted: 15 June 2023

Published: 20 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

An Assessment of Negative Samples and Model Structures in
Landslide Susceptibility Characterization Based on Bayesian
Network Models
Sahand Khabiri 1, Matthew M. Crawford 2 , Hudson J. Koch 2 , William C. Haneberg 2 and Yichuan Zhu 1,*

1 Department of Civil & Environmental Engineering, Temple University, Philadelphia, PA 19122, USA;
sahandkhabiri@temple.edu

2 Kentucky Geological Survey, University of Kentucky, Lexington, KY 40506, USA;
mcrawford@uky.edu (M.M.C.); hkoch@uky.edu (H.J.K.); bill.haneberg@uky.edu (W.C.H.)

* Correspondence: yichuan.zhu@temple.edu

Abstract: Landslide susceptibility mapping (LSM) characterizes landslide potential, which is essential
for assessing landslide risk and developing mitigation strategies. Despite the significant progress in
LSM research over the past two decades, several long-standing issues, such as uncertainties related
to training samples and model selection, remain inadequately addressed in the literature. In this
study, we employed a physically based susceptibility model, PISA-m, to generate four different
non-landslide data scenarios and combine them with mapped landslides from Magoffin County,
Kentucky, for model training. We utilized two Bayesian network model structures, Naïve Bayes
(NB) and Tree-Augmented Naïve Bayes (TAN), to produce LSMs based on regional geomorphic
conditions. After internal validation, we evaluated the robustness and reliability of the models
using an independent landslide inventory from Owsley County, Kentucky. The results revealed
considerable differences between the most effective model in internal validation (AUC = 0.969), which
used non-landslide samples extracted exclusively from low susceptibility areas predicted by PISA-m,
and the models’ unsatisfactory performance in external validation, as manifested by the identification
of only 79.1% of landslide initiation points as high susceptibility areas. The obtained results from
both internal and external validation highlighted the potential overfitting problem, which has largely
been overlooked by previous studies. Additionally, our findings also indicate that TAN models
consistently outperformed NB models when training datasets were the same due to the ability to
account for variables’ dependencies by the former.

Keywords: Bayesian network; negative samples; landslide susceptibility mapping (LSM); uncertainty;
PISA-m; robustness; machine learning; Tree-Augmented Naïve Bayes (TAN)

1. Introduction

Landslides are caused by the instability of slopes due to human (ground modification
and construction) or natural (topography, geology, geophysics, and hydrology) distur-
bances [1,2]. When the shear strength of a slope cannot withstand the shear stress, the
slope stability collapses. In eastern Kentucky, USA, landslides frequently occur, costing
the state approximately $10 to $20 million, excluding indirect costs such as road closures,
decreased property values, and utility interruptions, along with other social, economic, and
environmental consequences [3,4]. Understanding landslide failure mechanisms, potential
impact areas, and elements at risk is essential to propose knowledge-based risk mitigation
strategies for land-use planning, improving the public recognition of landslide risk, and
emergency plans.

Defining the landslide risk baseline first requires identifying the landslide prone areas,
a process that is often conducted using landslide susceptibility mapping (LSM) to assess
the spatial probability of landslide occurrence within a given area of interest [5]. In the last
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two decades, there has been a rapid proliferation of LSM methods proposed, which can be
broadly classified into physically based and statistically based approaches. Physically based
approaches require an in-depth understanding of geotechnical properties at a regional
scale [6,7]. These properties, including soil strength, pore water pressures, and bulk
density, among others, are used to establish the limit equilibrium models to assess a slope’s
stability [8,9]. Physically based models are effective for susceptibility assessment at the
site scale; applying these models at regional or larger scales is challenging. First, collecting
and processing the required geotechnical properties at a large scale is time and resource
consuming. Moreover, constitutive models are commonly unable to account for complex
non-linear relationships among non-engineering elements, such as atmospheric, biologic,
hydrological, biota, and human factors, on the occurrence of landslide events [6,10].

The statistically based methods, on the other hand, do not depend on constitutive
laws but instead oftentimes rely on landslide inventory to identify areas prone to land-
slides. The methodology assumes that similar geo-environmental conditions that led to
landslides in the past are also likely to cause landslides in the future [7]. Therefore, the
methodology is proposed to establish the susceptibility model by associating the known
landslide events with the relevant geo-environmental variables via statistical correlation or
machine-learning-based techniques. This method has become increasingly popular in the
landslide research community, particularly with the aid of geographic information systems
(GIS) and data mining techniques. Based on the review paper by Reichenbach, P. et al. [11],
the number of relevant articles exponentially increased from January 1983 to June 2016.
Various methods have been used, including logistic regression analysis (18.5 percent of
all occurrences), data overlay (10.7 percent), artificial neural networks (8.3 percent), and
index-based models (8.2 percent), among others. Additionally, Merghadi et al. [12] per-
formed a comparative analysis of different ML techniques using a case study in Algeria.
The results presented that a random forest algorithm provided robust LSM. In more recent
studies, Zhou, X. et al. [13] combined a novel interpretable model based on Shapley additive
explanation (SHAP) and extreme gradient boosting (XGBoost) to reduce the overfitting
of machine learning and explicitly identify the dominant factors. Sahana, M. et al. [14]
developed a hybrid model that combined a multi-layer perceptron neural network classifier
(MLPC) and a bagging technique to generate LSM with higher accuracy compared to a
single landslide classifier.

Despite this increasing trend of data-driven landslide susceptibility assessment, few
studies have assessed the uncertainty associated with statistically based model predic-
tions [15–17], including the aleatoric uncertainty inherent in the susceptibility models
or the epistemic uncertainty introduced by sampling datasets. To partially address this
knowledge gap, this work focuses on the uncertainty associated with non-landslide areas
in the landslide susceptibility models, that is, the negative sample points used for training
the binary landslide classifiers. In most supervised classifications, negative samples are
non-negligible and of equivalent importance to positive samples for model training. If not
sufficiently representative, the negative samples can weaken the model performance in
terms of accuracy, validity, and reliability [11]. For some classification tasks, the negative
samples are distinct and articulated (e.g., image classification between cat and bike or
text classification between “give” and “receive”). However, obtaining explicit negative
examples for natural geomorphic processes such as landslides is difficult. Indeed, most pre-
vious works sampled non-landslide points randomly from the complement set of mapped
landslide areas. This heuristic random negative sampling (RNS) can over-simplify the
labeling process based on two facts: (1) no landslide inventory can exhaustively label all
landslide events, and, thus, there is a possible contamination of data in the RNS results;
(2) the non-landslide point/areas could be accurate only in a temporary sense where a
potential landslide constantly undergoes change and development.

To constrain the sampling range and improve the quality of negative samples, several
studies have proposed different sampling strategies. For example, Peng, L. et al. [18] sam-
pled negative points from buffer zones at the peripheral boundary of occurred landslides.
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Kavzoglu, T. et al. [19] sampled the points in the river channel areas with low slopes. The
specific zones used for negative sampling in these works are less likely to be associated with
the occurrence of landslides. However, such sampling methods may introduce bias to the
model performance. For example, negative predictions could be concentrated in the areas
that have geologic characteristics similar to the specific zones, while other non-landslide
scenarios are disregarded. In a recent work by Hu, Q. et al. [20], the authors evaluated
the model performance with respect to three non-landslide samples populated based on
three different criteria: low slope area, landslide-free area, and very low susceptibility area
based on fractal theory. The results show that the model training was sensitive to different
sample scenarios, and the best model prediction was achieved when negative samples
were generated from the last data scenario. Huang et al. [21] proposed a semi-supervised
multi-layer perceptron to select the non-landslide samples from very low susceptibility
areas from the model’s initial LSM result.

Given that numerous machine-learning-based landslide characterizations have been
proposed in the past, many of which achieved model prediction accuracies exceeding
90% [12,22], the primary objective of the current work is not to provide a superior model or
introduce a novel approach for generating more accurate and precise landslide susceptibility
maps. Instead, our aim is to investigate the uncertainties related to negative sample
scenarios, model structures, and the robustness of model performance when exposed
to independent landslide inventory datasets. This research perspective, although not
thoroughly investigated in the past, is crucial for both researchers and practitioners in the
natural hazard community as it pertains directly to the following relevant questions: What
are the variations in model performance under different geo-environmental contexts? Can
we improve our understanding of physical processes of interest from modeling results?
How can we achieve a balanced representation of data scenarios for both landslide and
non-landslide cases?

To address these scientific questions, we propose new research to quantify the un-
certainty associated with the negative samples by systematically assimilating knowledge
derived from physically and statistically modeled predictions. Our working hypothesis is
that the physical, constitutive models can generate more robust estimations of non-landslide
areas compared to subjective judgements or simple slope-based sampling methods, which
allows for a reliable approach to populate different negative sampling scenarios for the
model training. Moreover, we also suggest that non-landslide areas cannot be sufficiently
represented by simple flat surfaces or very low susceptibility areas but should also in-
clude moderate slopes or other seemingly landslide-prone scenarios that did not result
in landslides. This requires sensitivity testing on the contrasting of negative samples and
validation of both internal (e.g., cross-validation) and external (e.g., tests on independent
data inventories) types. To address these hypotheses, we used PISA-m, a probabilistic
program that evaluates landslide probability based on infinite slope assumption, to gen-
erate a physically based landslide probability map from which four different contrastive
negative samples were populated. These samples, together with a landslide inventory
of 990 mapped landslides in Magoffin County, Kentucky, are used to train two Bayesian
network models—the Naïve Bayes (NB) and Tree Augmented Naïve (TAN) Bayes models.
The trained models are evaluated using both cross-validation (internally) and an indepen-
dent landslide dataset (externally) in Owsley County to examine their robustness. The
effectiveness of Bayesian network models and the sensitivity of negative samples on LSM
were consequently investigated in this study.

2. Study Area

Kentucky is located in the southeast USA and contains several physiographic regions
that are closely connected to bedrock geology. The landscape is influenced by the effects
of weathering and the erosion of the bedrock in all regions. The easternmost region is
the Eastern Kentucky Coalfield, part of the larger Appalachian Plateau, which extends
from Alabama northwest to Pennsylvania. The coal field is approximately 25,000 km2,
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with a relief of approximately 1094 m. This landscape is highly dissected by dendritic
stream networks with narrow ridges and sinuous V-shaped valleys of variable width.
Smaller order stream drainages and associated hillslope morphologies range from long and
narrow to bowl-shaped tributary valleys. Bedrock geology is mostly flat-lying sedimentary
rocks including sandstones, siltstones, shales, coals, and underclays of Carboniferous
(Pennsylvanian) age [23]. Overlying the bedrock are variable depths of hillslope colluvium,
mine spoil, or artificial fill. Shale, coals, and underclays weather easily and are known to
be associated with high landslide occurrence [3,24]. Historically, severe storms with high-
intensity and/or long duration rainfall have triggered shallow, rapidly moving landslides
or remobilized existing slow-moving landslides, resulting in property damage in many
parts of eastern Kentucky [25].

The landslide inventories in Magoffin and Owsley counties used in this study lie within
the Eastern Kentucky Coalfield (Figure 1). The mean slope angles are 24.5 and 20.7 degrees
for Magoffin and Owsley, respectively. The inventory mapping protocol follows a modified
version of Burns, W. and Madin, I. [26]. Landslide extents were primarily mapped by
the visual inspection of a multidirectional hillshade derived from a 1.5 m LiDAR DEM.
Secondary maps of slope, roughness, curvature, plan curvature, and contour, as well as
aerial photography, were used to help identify landslide features and constrain confidence
in mapping landslide extents (polygons). Documented landslide types in the region include
translational landslides, slumps, creep, earthflows, debris flows, rockslides, and rockfalls
(the landslide type is currently not available in the online map services).
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Magoffin and Owsley Counties.

3. Methodology
3.1. Methodological Framework

The methodology consists of two main steps: data preprocessing and model training
and validation (Figure 2). In the data preprocessing step, we initially generated the training
database by combining mapped landslides as positive samples and sampled four non-
landslide acquisition scenarios (i.e., negative samples) from the PISA-m calculation results
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to evaluate the effect of negative samples on the training results. PISA-m is a physically
based program that assesses slope stability by utilizing the first-order second-moment
(FOSM) method based on the infinite slope assumption [27,28]. We provide a mathematical
introduction of PISA-m in Section 3.3. For the selection of geomorphological variables as
model features, we employed the Pearson correlation coefficient to assess the multicollinear-
ity of the initially proposed variables. Ten model feature inputs, including elevation, slope,
plan curvature, profile curvature, relief, distance to river, geological texture, percentage of
clay, distance to road, and annual rainfall, were selected and categorized using the Jenks
natural break partitioning method.
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In the model training and validation step (Figure 2), we used two Bayesian network
structures, namely, Naïve Bayes and Tree-augmented Naïve Bayes, to train the model
based on four curated data scenarios as described in the data preprocessing step. In
the assessment of model performance, we performed both internal validations based
on historical landslide data in Magoffin County and external validation based on an
independent inventory dataset in Owsley County. We assessed model performance using
five selected statistical metrics: mean squared error (MSE), accuracy, precision, recall, and
area under the receiver operating characteristic (ROC) curve. We generated LSM based
on predictions from different model–data combinations and provided conclusions and
discussions based on the results of model evaluation.

3.2. Landslide Mapping and Initiation Points

Landslide extents were primarily mapped by visual analysis of a multidirectional
hillshade derived from a 1.5 m lidar DEM. Secondary maps, such as those showing slope,
roughness, curvature, plan curvature, contour, and traditional hillshade, along with aerial
photography, were employed to assist in recognizing landslide features and confirming the
outlining of the extent of the deposits. The GIS polygons we digitized captured landslide
extents including headscarps, flanks, toe slopes, and hummocky topography. In order to
consistently capture each landslide, the polygons included headscarps, flanks, and toe
slopes. For instance, the upper limit of a landslide polygon followed the slide’s crest, slightly
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exceeding the vertical displacement of the headscarp. While the size and shapes of smaller
to moderate-sized landslides could suggest landslide types, we did not determine their age
or possible behavior. Considering that over 1000 landslides were identified, conducting
additional investigations that incorporate factors such as age, landslide behavior, and
runout potential would be time-consuming.

We used a confidence rating system developed by the Oregon Department of Ge-
ology and Mineral Industries to interpret landslide occurrence based on the clarity of
features visible in remote sensing data. A total of 1054 landslides were initially mapped in
Magoffin County; this data is publicly available at https://kgs.uky.edu/kgsmap/helpfiles/
landslide_help.shtm (accessed on 3 May 2023). Of these, 1.3% were deemed low confidence
(≤10), 44.2% as moderate confidence (11–29), and 54.4% as high confidence (≥30). The
selected landslides mean area is c. 6397 m2, with most of the landslides covering less than
25,000 m2. We removed 64 entries related to small slope slides (area ≤ 3000 m2), leaving us
with 990 mapped landslides for this study.

We used PISA-m, a physically based landslide slope stability program, to assist in
the identification of the initiation point (Figure 3), from which the terrain attributes were
extracted for the model training. The results from PISA-m typically show that slopes have
higher susceptibility values near the bottoms and then alternate between lower values and
higher values as the elevation increases and the slope angle fluctuates. Landslide deposits
generally did not fall into the higher probabilities of failure, which is demonstrated by
the fact that the mean susceptibility by PISA-m characterization for all mapped landslide
deposits is 0.05. This is because PISA-m does not attempt to discern failed slopes, which
are generally less steep. On slides where steep headscarps remain, a higher probability
is assigned; however, some existing slide extents are often classified as low susceptibility.
In these cases, we selected the initiation points considering additional slope, roughness,
curvature, and plan curvature conditions.
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3.3. PISA-m Classification

PISA-m is a physically based program that assesses slope stability by utilizing the
first-order second-moment (FOSM) method based on the infinite slope assumption [27,28].
The program uses the constitutive relationship, described by Equation (1), to calculate the
factor of safety for a forested infinite slope against sliding [29]:

FS =
cr + cs + [qt + γmD + (γsat − γw − γm)HwD] cos2 β tan φ

[qt + γmD + (γsat − γm)HwD] sin β cos β
(1)

where cr is cohesive strength from tree roots (kPa), cs is cohesive strength of soil (kPa), qt is
uniform surcharge due to vegetation (kPa), γm is unit weight of moist soil above phreatic
surface (N/m3), γsat is unite weight of saturated soil below phreatic surface (N/m3), γw
is unit weight of water (9.810 N/m3), D is thickness of soil above slip surface (m), Hw
is relative height of phreatic surface above slip surface (dimensionless), β is slope angle
(degrees), and φ is angle of internal friction (degrees).

The PISA-m program requires three geospatial ASCII files that specify soil units,
land cover, and digital elevation models (DEMs), along with a parameter file defining
geotechnical parameters, as input. DEM, forest, and soil/geology data were generated
separately for PISA-m preparation. To identify geotechnical parameters, we obtained the
results of geotechnical investigations conducted by the Kentucky Transportation Cabinet
and the Kentucky Geological Survey. A total of 121 geotechnical reports were collected
from 1970 to 2019 for Magoffin County. As a probabilistic approach, PISA-m calculates the
reliability index or probability of failure of the factor of safety being less than 1 (P[FS ≤ 1])
for the evaluation of landslide susceptibility. We used Jenks natural break method, which
minimizes within-group variance and maximizes between-group variance to produce
distinct clusters, to classify PISA-m results into four classes: low (0–13.5%), low-moderate
(13.5–32.4%), moderate-high (32.4–58.8%), and high (58.8–100%). The PISA-m susceptibility
map and its probability density function are shown in Figure 4.
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One of the objectives of the present study is to investigate the impact of negative
samples on the landslide susceptibility model training. To evaluate this, we sampled four
different non-landslide data scenarios from PISA-m classification results, including 100%
sampled from low susceptibility areas (Data-1); 50% sampled from low susceptibility areas
and 50% sampled from low-moderate susceptibility areas (Data-2); 100% sampled from low-
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moderate susceptibility area (Data-3); and random sampling from all susceptibility classes
(Data-4). These negative samples were combined with mapped landside initiation points,
as described in Section 3.2, to form the database for model training and validation (Figure 5).
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Figure 5. Landslide inventory dataset combined with different negative sample scenarios for Magoffin
County: (a) Data-1; (b) Data-2; (c) Data-3; (d) Data-4.

3.4. Geomorphic Variables

In Van Westen et al., (2008) [30], the authors provided an overview of environmental
factors and their relevance for landslide susceptibility and hazard assessment across vari-
ous scales of analysis. At the regional scale, the topographic, geologic, hydrological, and
land-use variables were generally considered highly applicable for landslide susceptibility
assessment. Taking these review results into consideration, along with feature impor-
tance analyses from several previous studies [7,31–33], we initially considered 11 variables
as inputs for the landslide susceptibility model, including elevation, slope, relief, curva-
ture, profile curvature, plan curvature, annual rainfall, distance to river, distance to road,
bedrock geology, and percentage of clay in unit soil profile. The 1.5 m resolution DEM,
which was derived from airborne lidar dataset available at the KyFromAbove website
(https://kyfromabove.ky.gov/, accessed on 3 May 2023), was used as the elevation factor
and to derive six additional factors, including slope, curvature, plan curvature, profile curva-
ture, relief, and distance to river. Annual rainfall data were collected from Climatic Research
Unit (CRU) TS version 4.06, while distance to road data were obtained using the Open-
Streetmap add-on in ArcGIS Pro. The geology data was collected from Kentucky Geological
Map Service (https://kgs.uky.edu/kygeode/geomap/, accessed on 3 May 2023), and per-
centage of clay in unit soil profile was obtained from (https://kygeonet.ky.gov/kysoils/,
accessed on 3 May 2023). The variables and their corresponding categorizations using
Jenks natural break method are presented in Figure 6. It is important to note that not all
geo-morphological variables have an equal impact on the model performance, and some
variables, such as curvature, plan curvature, and profile curvature, are correlated with each

https://kyfromabove.ky.gov/
https://kgs.uky.edu/kygeode/geomap/
https://kygeonet.ky.gov/kysoils/
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other. Consequently, we performed multicollinearity analysis using Pearson correlation
coefficient to assess correlation among independent variables and the potential overfitting
problems. We did not conduct the conventional feature selection analysis by mutual in-
formation, information gain methods, etc., as the feature dimension is relatively small in
this study. Moreover, structure learning in Bayesian network analysis implicitly considers
the dependencies among features by searching for a maximum weighted spanning tree
that maximizes the likelihood of the training data. Further details of feature analysis are
presented in the Results (Section 4.1).
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3.5. Bayesian Network Models

A Bayesian network (BN), also known as a belief network, is a graphical model that rep-
resents a probabilistic relationship between a set of random variables X = {X1, X2, . . . . . . , Xn}.
It consists of a directed acyclic graph (DAG) in which every node in a Bayesian network repre-
sents a random variable Xi. The edges in the network represent the probabilistic dependencies
between the random variables, indicating that the child node is conditionally dependent on
the parent node(s) Xπ(i). The conditional dependencies between the random variables are
specified using conditional probability tables (CPTs), which specify the probability of each
possible value of the child node given the values of its parent node(s) P(Xi

∣∣∣Xπ(i)) . The CPTs
are used to calculate the joint probability distribution over all of the random variables in the
network, which can be used to make predictions or to perform inferences about the model
output(s). By explicitly modeling the dependencies among variables, Bayesian networks can
provide a better understanding of the underlying causal relationships and the uncertainty
associated with the model predictions. This makes them a powerful tool for natural hazard
research and risk management.

We used two Bayesian network classifiers, Naïve Bayes (NB) and Tree Augmented
Naïve (TAN), to produce the LSM based on the database as described in Figure 1. The
construction of Bayesian networks typically involves two stages: structure learning and
parameter learning. For the NB structure, no structure learning is required as it assumes
all nodes are independent of each other and have landslide occurrence as their parent
node. For the TAN structure, we used a score-based method based on Bayesian Dirichlet
equivalent uniform (BDeu) [34]. The BDeu score computes the goodness-of-fit of a given
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network structure by considering the likelihood of the data given the network structure and
the chosen prior distribution. It prefers network structures that provide a good trade-off
between the complexity of the network (i.e., the number of edges or dependencies) and its
ability to fit the data [35].

For the parameter learning that evaluates the values of the CPTs, we used Bayesian
estimation, which updates the prior knowledge using observed data within the Bayesian
statistical framework. The key idea behind Bayesian estimation is to combine prior beliefs
about the parameters with the observed data to obtain a posterior distribution, which
represents the updated beliefs about the parameters after taking the data into account. In
this study, we used Dirichlet prior, which is the conjugate prior for multinomial likelihood,
resulting in Dirichlet posteriors for mathematical convenience. The details of parameter
learning are presented in the following section, Section 3.5.1.

3.5.1. Naïve Bayes

Naïve Bayes (NB) is a simple and efficient classifier that assumes that the input
variables are conditionally independent given the class label. This means that no structure
learning is required and that the presence or absence of one input variable does not
affect the probability of the other input variables. Despite its simple model structure and
the independent assumption, NB can still perform well in many landslide susceptibility
modeling studies [36–38].

The NB structure yields a unique joint probability [34], as shown in Equation (2):

PNB(C, X1, . . . , Xn) = P(C)
n

∏
i=1

P(Xi|C ) (2)

where C is the class node, and {X1, . . . , Xn} are attribute nodes.
To compute the CPTs, we need to determine the prior and likelihood function to

perform Bayesian estimation. In this study, we used Dirichlet prior, which is the conju-
gate prior for multinomial likelihood. The prior and the likelihood function is shown
in Equations (3) and (5), respectively. The posterior distribution can be calculated as
Equation (6) [39]:

P(X) = Dir(X|α1, . . . , αr ) =
Γ(α)

r
∏

k=1
Γ(αk)

r

∏
k=1

Xk
αk−1 (3)

where Γ(n) = (n− 1)!, {α1, . . . , αr} are the Dirichlet hyperparameters. A higher αk shows
a Dirichlet distribution with higher density. Dirichlet hyperparameters are often called
pseudo-counts, which can be understood as the number of occurrences of different out-
comes before counting from the present experiment. In multinomial sampling, the observed
variable Xi is discrete, having r possible states, and i = 1, . . . , r. Xk is a distribution describ-
ing the mean prediction of our prior and can be defined as Equation (4):

Xk =
αk
α

(4)

where α = ∑ αk

P(D|X ) =
n

∏
i=1

qi

∏
j=1

Γ
(
αij
)

Γ
(
αij + Nij

) ri

∏
k=1

Γ
(

αijk + Nijk

)
Γ
(

αijk

) (5)

where D = {X1 = x1, . . . , XN = xN}. Nijk denotes the number of samples in which the
variable Xi adopts the value k and the parent nodes πi adopt the configuration state j.
Nij is the sum of Nijk for the whole dataset. αijk = δ

(riqi)
is BDeu score where δ is the
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user-determined equivalent sample size, ri is the number of Xi possible values and qi is the
number of πi configuration. αij is the sum of αijk for the whole dataset.

P(X|D ) = Dir
(
X
∣∣αij1 + Nij1, . . . , αijr + Nijr

)
=

n

∏
i=1

αijk + Nijk

αij + Nij
(6)

3.5.2. Tree Augmented Naïve Bayes

The Tree Augmented Naive Bayes (TAN) model is a variant of the Naive Bayes
algorithm, which allows for dependencies between input variables [40]. Each variable
node can have at most one parent node from other variables with the exception of the class
variable (Equation (7)):

P(C, X1, . . . , Xn) = P(C)P(Xroot|C )∏
i

P(Xi|C, πi ) (7)

For TAN structure, the search algorithm is based on Tree search and, in this study,
uses mutual information score to find the most significant dependency between each pair
of attributes. The conditional mutual information is defined as follows [40] (Equation (8)):

IP(Xi; Xj |C ) = ∑
Xi ,Xj ,C

P
(
Xi, Xj, C

)
log

P
(
Xi, Xj|C

)
P(Xi|C )P

(
Xj|C

) (8)

Assuming a set of {i, j, m, n} as four attribute nodes, if I
(
Xi; Xj|C

)
corresponds to

maximum mutual information, the arc between i and j is added to the structure of TAN.
This process is followed by finding the second most significant dependence I(Xm; πi|C )
where πi is the parent and Xm is the child of πi. At this stage, the parent and child nodes
are restricted in a way that πi ∈ {i, j} and Xm /∈ {i, j}. The process is iterated until all the
variables have one dependence relationship between any variables. At the end, a root node
is selected, and all the edges go outward from it, and the class node is going toward all the
attribute variables as the parent of all nodes.

3.6. Internal and External Validation

For model validation, each of the four datasets generated in this study, as illustrated
in Figure 1, was split into training (80%) and testing (20%) subsets. K-fold cross-validation
was used to partition each dataset into K folds, with K-1 folds used to create estimators
and the remaining fold used for testing [41]. The model used a different fold as the test set
each time and was tested K times to reduce the possibility of overfitting and sampling bias.

We used five evaluation metrics, including mean squared error (MSE), accuracy,
precision, recall, and area under the curve (AUC), to assess the performance of each
model–data combination as shown in Figure 1. Equations (9)–(13) present the expressions
for each metric. In Equations (10)–(12), function terms are derived from conventional
confusion matrix and are as follows: TP represents true positives, TN represents true
negatives, FP represents false positives, and FN represents false negatives. The AUC
value is associated with the receiver operating characteristic (ROC) curve, where the latter
is a graphical representation that plots the true positive (sensitivity) against the false
positive (1-specificity) for different threshold values. An AUC score of 1 indicates perfect
classification, while a score of 0.5 represents random performance. According to [42],
the AUC value can be classified into four levels: poor (0.5–0.6), moderate (0.6–0.7), good
(0.7–0.8), and excellent (0.9–1).

MSE =
1
n

n

∑
1
(yi − ŷi)

2

(9)

Accuracy =
TP + TN

TP + TN + FP + FN
(10)
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Precision =
TP

TP + FP
(11)

Recall =
TP

TP + FN
(12)

AUC =

1∫
0

f (FPR)dFPR = 1−
1∫

0

f (TPR)dTPR (13)

4. Results and Analysis
4.1. Multicollinearity Analysis

In this study, we performed the multicollinearity analysis by computing the Pearson
correlation coefficient on the initial 11 variables and their correlations to the landslide
occurrence to acquire an understanding of the correlation nature of the variables. The
results shown in Figure 7 present the correlation matrices for four datasets, with matrix
values ranging from −1 to +1 where zero indicates no correlation and ±1 indicates perfect
positive or negative linear correlation. The plot shows that the variables curvature, plan
curvature, and profile curvature are highly correlated with each other in all data scenarios,
which is as anticipated due to their close physical definitions. Moreover, the curvature
has the lowest correlation with landslide occurrence among all variables; therefore. we
removed it in the model training process.
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4.2. Model Performance and Validation

We used five different validation metrics (i.e., AUC, ACC, precision, recall, and MSE)
to evaluate the model performance for eight different model–dataset combinations (i.e.,
NB-Data-1, NB-Data-2, NB-Data-3, NB-Data-4, TAN-Data-1, TAN-Data-2, TAN-Data-3,
and TAN-Data-4). A ten-fold cross validation as introduced in Section 3.6 was conducted
to assess the model performance based on the selected metrics. Table 1 summarizes the
range and median values of the validation metrics computed from the cross-validations
results, demonstrating acceptable model performance for all model–dataset scenarios,
with metric ranges of 0.79 < Accuracy < 0.94, 0.78 < Precision < 0.97, 0.82 < Recall < 0.94,
0.06 < MSE < 0.20, and 0.88 < AUC < 0.98.

Table 1. Range and median values of validation metrics computed from cross-validation results of
eight different model–dataset combinations.

Model-
Dataset

Accuracy AUC MSE Precision Recall

Range Median Range Median Range Median Range Median Range Median

TAN-Data-1 (0.91–0.94) 0.93 (0.96–0.98) 0.969 (0.06–0.08) 0.069 (0.91–0.97) 0.940 (0.89–0.94) 0.916
TAN-Data-2 (0.86–0.90) 0.878 (0.92–0.96) 0.935 (0.10–0.14) 0.120 (0.84–0.89) 0.871 (0.85–0.92) 0.904
TAN-Data-3 (0.83–0.87) 0.846 (0.90–0.93) 0.920 (0.13–0.17) 0.152 (0.82–0.87) 0.835 (0.82–0.88) 0.860
TAN-Data-4 (0.83–0.88) 0.855 (0.90–0.93) 0.915 (0.12–0.16) 0.143 (0.82–0.87) 0.843 (0.86–0.90) 0.880
NB-Data-1 (0.88–0.93) 0.911 (0.95–0.97) 0.960 (0.07–0.12) 0.088 (0.89–0.94) 0.912 (0.87–0.93) 0.911
NB-Data-2 (0.82–0.88) 0.844 (0.89–0.94) 0.916 (0.12–0.18) 0.155 (0.80–0.88) 0.833 (0.85–0.88) 0.873
NB-Data-3 (0.79–0.85) 0.808 (0.88–0.91) 0.897 (0.15–0.20) 0.191 (0.78–0.83) 0.790 (0.82–0.87) 0.835
NB-Data-4 (0.81–0.84) 0.820 (0.88–0.92) 0.893 (0.16–0.19) 0.179 (0.79–0.84) 0.801 (0.83–0.88) 0.848

Figure 8 presents the violin plots for five evaluation metrics, which includes the box
plots, along with rotated kernel density plots on each side. The probability distributions
indicate that the trained TAN-Data-1 model exhibited the best performance, as evidenced
by the lower MSE and higher AUC, accuracy, recall, and precision values. For the Bayesian
network structure comparison, TAN outperformed the NB structure in both means and
variations for all data scenarios. Conversely, when the model structure is the same, dataset-
1, which sampled all non-landslides from PISA-m low susceptibility areas, demonstrated
the best modeling result for internal validation. With the inclusion of more negative samples
extracted from PISA-m low-moderate susceptibility areas, corresponding to data scenarios
moved from Data-1 to Data-3, the training outcomes declined in all metric evaluations,
for both TAN or NB model structures. This suggests that high contrast training data
would result in better landslide classification for internal validation. However, we further
examined this conclusion by conducting external validation using an independent landslide
repository for Owsley counties, Kentucky, as introduced in Section 4.4.

Figure 8 presents the mean ROC curves, calculated by averaging the ten-fold cross-
validation results, based on eight different model–dataset combinations. Each of the ROC
curves was constructed using false positive rates versus true positive rates at ten different
thresholds (i.e., 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, and 100%). According
to Figure 8, both models and datasets influence the classification outcomes. The use of
Data-1, which sampled negative samples exclusively from PISA-m low susceptibility areas,
produced the best model performance for both the TAN or NB structures. This corroborates
our hypothesis that landslide classification is greatly sensitive to the selection of negative
samples. From Figure 9, we also observed that the TAN model consistently outperformed
the NB model when the dataset was the same, and model performance declined from
Data-1 to Data-4. This trend aligns with the violin plots of validation metrics presented
in Figure 8. The modeling differences between TAN and NB models are consistent with
findings from Lee, S. et al. [43] and Pham, B. et al. [32], which show that considering feature
dependencies by the Bayesian network assumption can lead to better model performance
compared to the independent assumption among model features by the NB structure.



Remote Sens. 2023, 15, 3200 15 of 27

Remote Sens. 2023, 15, x FOR PEER REVIEW 17 of 30 
 

 

 

Figure 8. Results of validation metrics for eight model–dataset combinations: (a) mean squared error 

(MSE); (b) area under ROC curve (AUC); (c) accuracy score; (d) precision; (e) recall. 

Figure 8 presents the mean ROC curves, calculated by averaging the ten-fold cross-

validation results, based on eight different model–dataset combinations. Each of the ROC 

curves was constructed using false positive rates versus true positive rates at ten different 

thresholds (i.e., 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, and 100%). According to 

Figure 8, both models and datasets influence the classification outcomes. The use of Data-

1, which sampled negative samples exclusively from PISA-m low susceptibility areas, pro-

duced the best model performance for both the TAN or NB structures. This corroborates 

our hypothesis that landslide classification is greatly sensitive to the selection of negative 

Figure 8. Results of validation metrics for eight model–dataset combinations: (a) mean squared error
(MSE); (b) area under ROC curve (AUC); (c) accuracy score; (d) precision; (e) recall.



Remote Sens. 2023, 15, 3200 16 of 27

Remote Sens. 2023, 15, x FOR PEER REVIEW 18 of 30 
 

 

samples. From Figure 9, we also observed that the TAN model consistently outperformed 

the NB model when the dataset was the same, and model performance declined from 

Data-1 to Data-4. This trend aligns with the violin plots of validation metrics presented in 

Figure 8. The modeling differences between TAN and NB models are consistent with find-

ings from Lee, S. et al. [43] and Pham, B. et al. [32], which show that considering feature 

dependencies by the Bayesian network assumption can lead to better model performance 

compared to the independent assumption among model features by the NB structure. 

 

Figure 9. Mean of ROC curves for eight model–dataset combinations. 

4.3. Landslide Susceptibility Maps 

After internal validation, we produced the LSM based on each trained model’s pre-

dictions. Figure 10 presents the LSM generated by four trained models—NB-data-1, NB-

data-3, TAN-data-1, and TAN-data-3—along with local zoomed-in susceptibility maps 

showing the estimations of landslide occurrence as exposed to different topographic con-

ditions, including mountain tops, steep slopes, valley bottoms, etc. The results show that, 

for flat mountain tops, predictions based on the NB model classify the majority of areas 

as high susceptibility (Figure 10a,e), whereas the same areas are mainly classified as mod-

erate by the TAN model classification. This suggests that elevation may play an important 

role in NB model predictions, regardless of slope conditions. Figure 10b,f,j,n show land-

forms characterized by steep ridgetops and concave slopes. In NB classifications (Figure 

10b,f), steep slopes just below ridgetops are characterized as high or moderate-high sus-

ceptibility, while flank, toe, and flow channels are mostly characterized as low suscepti-

bility. On the other hand, the TAN models characterize a significant number of concave 

slopes as moderate-high or high susceptibility areas (Figure 10j,n), particularly slopes be-

low main headscarps. Figure 10d,h,l,p show areas with steep ridgetops and planar or con-

vex slopes. According to BN model predictions, ridgetops and steep slopes close to moun-

tain ridges and heads of catchments are related to high landslide susceptibility. This clas-

sification aligns well with the results reported by He et al., (2019) [44] and Lee et al., (2020) 

[43], in which the NB models identified many ridgetops and the corresponding flanks as 

high susceptibility areas. The TAN model classification is similar to that of the NB model 

in this case as indicated by the comparison between Figure 10d,l, except that the ridgetop 

is largely excluded by the TAN model classifications. This fits the empirical understanding 

Figure 9. Mean of ROC curves for eight model–dataset combinations.

4.3. Landslide Susceptibility Maps

After internal validation, we produced the LSM based on each trained model’s predic-
tions. Figure 10 presents the LSM generated by four trained models—NB-data-1, NB-data-3,
TAN-data-1, and TAN-data-3—along with local zoomed-in susceptibility maps showing
the estimations of landslide occurrence as exposed to different topographic conditions,
including mountain tops, steep slopes, valley bottoms, etc. The results show that, for flat
mountain tops, predictions based on the NB model classify the majority of areas as high
susceptibility (Figure 10a,e), whereas the same areas are mainly classified as moderate by
the TAN model classification. This suggests that elevation may play an important role
in NB model predictions, regardless of slope conditions. Figure 10b,f,j,n show landforms
characterized by steep ridgetops and concave slopes. In NB classifications (Figure 10b,f),
steep slopes just below ridgetops are characterized as high or moderate-high susceptibility,
while flank, toe, and flow channels are mostly characterized as low susceptibility. On
the other hand, the TAN models characterize a significant number of concave slopes as
moderate-high or high susceptibility areas (Figure 10j,n), particularly slopes below main
headscarps. Figure 10d,h,l,p show areas with steep ridgetops and planar or convex slopes.
According to BN model predictions, ridgetops and steep slopes close to mountain ridges
and heads of catchments are related to high landslide susceptibility. This classification
aligns well with the results reported by He et al., (2019) [44] and Lee et al., (2020) [43],
in which the NB models identified many ridgetops and the corresponding flanks as high
susceptibility areas. The TAN model classification is similar to that of the NB model in
this case as indicated by the comparison between Figure 10d,l, except that the ridgetop is
largely excluded by the TAN model classifications. This fits the empirical understanding of
landslide occurrences starting below the crown of the slope. The overall results comparison
suggests that the predictions by the TAN models produced more realistic LSMs compared
to those of NB models, with the former highlighting the high susceptibility areas associated
with varying slopes and hummocky topography.
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local areas. (g) shows the LSM based on trained model NB-Data-3, with (e,f,h) as zoomed-in views of
local areas. (k) shows the LSM based on trained model TAN-Data-1, with (i,j,l) as zoomed-in views
of local areas. (o) shows the LSM based on trained model TAN-Data-3, with (m,n,p) as zoomed-in
views of local areas.

Figure 11 presents the probability density function (PDF) calculated from eight sus-
ceptibility maps, along with the classification obtained by averaging Jenks natural break
partitioning for each produced LSM. All PDFs follow a decaying trend with high proba-
bility associated with low susceptibility areas and low probability associated with high
susceptibility areas, suggesting that most districts in Magoffin County are not considered
as landslide-prone areas. Figure 11 also demonstrates the impact of training datasets on
overall susceptibility classification—more areas are classified as moderate susceptibility
rather than low susceptibility if there is less restriction on negative samples being selected
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from the low susceptibility class in PISA-m classification, as reflected from dataset scenarios
moved from Data-1 to Data-3. Note that the positive samples derived from the landslide
inventory are the same for all training models; therefore, the results indicate that less
contrastive training datasets yield less polarized predictions.

Remote Sens. 2023, 15, x FOR PEER REVIEW 20 of 30 
 

 

probability associated with low susceptibility areas and low probability associated with 

high susceptibility areas, suggesting that most districts in Magoffin County are not con-

sidered as landslide-prone areas. Figure 11 also demonstrates the impact of training da-

tasets on overall susceptibility classification—more areas are classified as moderate sus-

ceptibility rather than low susceptibility if there is less restriction on negative samples 

being selected from the low susceptibility class in PISA-m classification, as reflected from 

dataset scenarios moved from Data-1 to Data-3. Note that the positive samples derived 

from the landslide inventory are the same for all training models; therefore, the results 

indicate that less contrastive training datasets yield less polarized predictions. 

 

Figure 11. Probability density function of Magoffin LSM calculated from (a) NB-Data-1; (b) TAN-

Data-1; (c) NB-Data-2; (d) TAN-Data-2; (e) NB-Data-3; (f) TAN-Data-3; (g) NB-Data-4; (h) TAN-

Data-4. 

Figure 11. Probability density function of Magoffin LSM calculated from (a) NB-Data-1; (b) TAN-Data-
1; (c) NB-Data-2; (d) TAN-Data-2; (e) NB-Data-3; (f) TAN-Data-3; (g) NB-Data-4; (h) TAN-Data-4.

Figure 12 presents the summarized probability of each susceptibility class for the eight
trained models. The results corroborate the similar trend shown in Figure 11, indicating that
more contrastive positive–negative training samples produce more polarized predictions,
as evidenced by the data comparison from Data-1 to Data-3 for both NB and TAN cases.
Figure 12 also demonstrates the impacts of model structures, with the NB model estimating
more areas as moderate-high or high susceptibility compared to the TAN model. This
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may be due to elevation being considered as a significant influencing factor in NB model
predictions, as illustrated in the susceptibility maps (Figure 10).
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4.4. External Validation

To evaluate the reliability of the eight trained models mentioned earlier, we conducted
further external validation using an independent landslide inventory covering Owsley
County, which does not share a common border but is situated in close vicinity to Magoffin
County (Figure 1). The original inventory contains 1344 mapped landslides, from which
we adopted 636 landslides (Figure 13). Each adopted landslide has at least an overall
moderate confidence ranking (≥11), as introduced in Section 3.2. The same types of
geomorphic variables (elevation, slope, relief, profile curvature, plan curvature, distance
to river, distance to road, annual rainfall, geology texture, and percentage of clay) were
pre-processed and used as model input for the eight trained models for the Owsley case
study (Figure 14).

Remote Sens. 2023, 15, x FOR PEER REVIEW 22 of 30 
 

 

 

Figure 13. Landslide inventory dataset of Owsley County, KY, USA. Figure 13. Landslide inventory dataset of Owsley County, KY, USA.



Remote Sens. 2023, 15, 3200 20 of 27Remote Sens. 2023, 15, x FOR PEER REVIEW 23 of 30 
 

 

 

Figure 14. Cont.



Remote Sens. 2023, 15, 3200 21 of 27Remote Sens. 2023, 15, x FOR PEER REVIEW 24 of 30 
 

 

 

Figure 14. The geomorphic variables used in model training for Owsley County, KY, USA: (a) ele-

vation, (b) slope, (c) relief, (d) profile curvature, (e) plan curvature, (f) distance to river, (g) distance 

to road, (h) annual rainfall, (i) geology, and (j) percentage of clay in unit soil profile. 

After calculating LSMs, we determined the classification thresholds by averaging the 

eight computed thresholds from participating LSMs. The resulting susceptibility classes 

are as follows: low (0–14.8%), low-moderate (14.8–30.4%), moderate-high (30.4–50.7%), 

and high (50.7–100%). Figure 15 presents the classification outcomes for mapped landslide 

initiation points and the total area of Owsley County, based on each model’s predictions. 

The model comparison again corroborated that the TAN model always outperformed the 

NB model when the training dataset was the same, as shown by the high percentage of 

landslide points characterized in moderate-high and high classes by the former. It was 

observed that NB models produced an approximately uniform estimation across four 

landslide susceptibility classes for landslide initiation points (between 20% and 30%), 

which was demonstrated as not practically useful for LSM analysis. In contrast, TAN mod-

els generally produced satisfying results, with combined moderate-high and high suscep-

tibility equal to 71.22%, 95.91%, 86.01%, and 74.06% for models TAN-Data-1 to TAN-Data-

4. 

However, the former most effective model, TAN-Data-1, yielded the least effective 

modeling results in external validation, while the TAN-Data-2 model, which comprised 

its negative training sample with a mixture of 50% low and 50% low-moderate suscepti-

bilities from PISA-m predictions, represented the top-performing model in current analy-

sis. This implies that the conventional method of sampling non-landslide areas exclusively 

from very flat surfaces or low susceptibility areas can result in overfitting models, which 

Figure 14. The geomorphic variables used in model training for Owsley County, KY, USA: (a) eleva-
tion, (b) slope, (c) relief, (d) profile curvature, (e) plan curvature, (f) distance to river, (g) distance to
road, (h) annual rainfall, (i) geology, and (j) percentage of clay in unit soil profile.

After calculating LSMs, we determined the classification thresholds by averaging the
eight computed thresholds from participating LSMs. The resulting susceptibility classes
are as follows: low (0–14.8%), low-moderate (14.8–30.4%), moderate-high (30.4–50.7%),
and high (50.7–100%). Figure 15 presents the classification outcomes for mapped landslide
initiation points and the total area of Owsley County, based on each model’s predictions.
The model comparison again corroborated that the TAN model always outperformed the
NB model when the training dataset was the same, as shown by the high percentage of
landslide points characterized in moderate-high and high classes by the former. It was
observed that NB models produced an approximately uniform estimation across four
landslide susceptibility classes for landslide initiation points (between 20% and 30%),
which was demonstrated as not practically useful for LSM analysis. In contrast, TAN
models generally produced satisfying results, with combined moderate-high and high
susceptibility equal to 71.22%, 95.91%, 86.01%, and 74.06% for models TAN-Data-1 to
TAN-Data-4.
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Figure 15. Susceptibility classifications for Owsley County computed using eight trained models:
(a) percentages of mapped landslide initiation points and total county area classified as low sus-
ceptibility; (b) percentages of mapped landslide initiation points and total county area classified as
low-moderate susceptibility; (c) percentages of mapped landslide initiation points and total county
area classified as moderate-high susceptibility; (d) percentages of mapped landslide initiation points
and total county area classified as high susceptibility.

However, the former most effective model, TAN-Data-1, yielded the least effective
modeling results in external validation, while the TAN-Data-2 model, which comprised its
negative training sample with a mixture of 50% low and 50% low-moderate susceptibilities
from PISA-m predictions, represented the top-performing model in current analysis. This
implies that the conventional method of sampling non-landslide areas exclusively from very
flat surfaces or low susceptibility areas can result in overfitting models, which performed
no better than a random selection of negative samples (TAN-Data-4), as shown in the
present study. The results of the present study suggest that employing a prior physical
model estimation and selecting a balanced negative sample to represent non-landslide
scenarios can improve the robustness of model performance and should be considered for
future similar studies.

Figure 16 shows the local susceptibility maps generated by TAN-Data-1 and TAN-Data-
2 models. By comparing the subplots shown in Figure 16a,b, it is evident that TAN-Data-1
produced more binary predictions of either high or low susceptibilities. In contrast, TAN-
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Data-2 generated more gradual results following the strike of the slope. This trend is also
visible when comparing the subplots shown in Figure 16c,d, where TAN-Data-1 classifies
flat mountain tops as high susceptibility areas, while TAN-Data-2 assigns them moderate-
high susceptibility, with a more gradual transition between high and low susceptibility
zones. These observations indicate that the more balanced samples used for training
the TAN-Data-2 model result in a more nuanced and realistic representation of landslide
susceptibility observed across Owsley County.
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Figure 16. Local susceptibility classifications for Owsley County computed using TAN-Data1 and
TAN-Data2 models. Subplots (a,b) represent the same area with different susceptibility characteri-
zations based on predictions from the TAN-Data-1 and TAN-Data-2 models, respectively. Similarly,
subplots (c,d) display another comparative analysis of the same area, showing susceptibility predic-
tions from the TAN-Data-1 and TAN-Data-2 models.

5. Discussion

The application of machine learning coupled with remote sensing data in landslide
susceptibility assessment has rapidly proliferated over the past two decades. Remote sens-
ing data, which are typically high-resolution and cover wide areas, can provide valuable
geospatial information that is crucial for identifying and delineating landslide-prone areas.
Meanwhile, the machine learning technique can effectively manage the large volume and
diverse datasets, incorporating topological, hydrological, geological, vegetation, and even
human factors into modeling considerations. This integration would be challenging in a
constitutive model, in which describing and maintaining such relationships can be difficult.

Given this increasing trend of machine-learning-based landslide characterization,
however, there are some long-standing issues, which directly impact the reliability and
robustness of previously proposed models and remain unresolved or inadequately con-
sidered in the literature, including uncertainties associated with training samples, model
structures, and mode validations. To the best of the authors’ knowledge, few studies have
considered the impact of negative samples in natural hazard model training. This could
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be due to the complexity of defining non-hazard scenarios during the sampling process.
As discussed in the previous sections, a “non-landslide” point can only be accurate tem-
porarily, as potential landslides are subject to constant change and development. Relying
on the assumption that “the past and the present are keys to the future” [45] in landslide
characterization may prove insufficient for both positive and negative aspects of training
samples. Furthermore, the practice of selecting negative samples from very flat surfaces or
low susceptibility areas, as adopted in some previous research [20,21], has been shown to
be ineffective in external validation in the present study.

The impact of model types and structures is also relevant in landslide characterization.
Various machine learning methods, including logistic regression, support vector machines,
random forest, and artificial neural networks, among others, have been applied in related
research. In this study, we used BN models and assessed two model structures to estimate
landslide susceptibility. As a probabilistic graphical approach, BN models offer several
advantages that are crucial for predicting natural hazards like landslides. First, BN models
provide a visual representation of the relationships between variables, making it easier
for decision-makers and stakeholders to understand the underlying assumptions and
dependencies in the model. This transparency can improve communication and trust
in predictions, which is not available in black-box models. Additionally, BN models
can represent and quantify uncertainties in the relationships between variables, which is
particularly useful in predicting natural hazards like landslides, where complete knowledge
of the underlying processes is often lacking. This essential data-mining process is valuable
for identifying the most critical factors influencing landslide risk and supporting targeted
interventions or data collection efforts, which are of future research interest for the authors.

In regard to the model comparison between the NB and TAN structures, the results
consistently showed that the latter produced better predictions in terms of evaluation
metrics including MSE, accuracy, precision, recall, and AUC. This finding aligns well with
several previous studies that compared NB and Bayesian network modeling outcomes
using different landslide inventory datasets [32,43,44]. We noticed that the susceptibility
predictions generated by NB models tend to be polarized, as illustrated by the classification
of most areas into either very high or very low landslide susceptibility categories in LSM.
This classification pattern, also reported by Lee et al. [43], may be due to the assumption of
independence between model features inherent to the NB model structure, which in turn
could reduce the flexibility of model predictions leading to dramatic but potentially less
realistic susceptibility classifications.

Lastly, we also emphasized the importance of robustness validation for machine
learning models in natural hazard characterizations, such as landslides. We observed
considerable differences between the most effective models in internal validation and those
that performed unsatisfactorily in external validation, which demonstrated the potential
overfitting problem. This issue has been long-standing, yet it has not been seriously consid-
ered in many previous studies. However, we do not intend to provide an optimal solution
to this problem in the present study as that would require a comprehensive database that
includes more morphological illustrations of landslides under various scenarios and a
rigorous grid search for balanced training datasets. We recognize that the present study
may raise more questions than solutions, but this can ultimately lead to improved landslide
hazard characterization and more effective risk mitigation strategies.

6. Conclusions

In this study, we assessed the impact of negative samples and Bayesian network
structures on landslide susceptibility characterization using two landslide inventories from
Kentucky, USA. By utilizing a physically based susceptibility evaluation, we generated
four non-landslide data scenarios that were combined with mapped landslides to produce
landslide susceptibility maps using two Bayesian network model structures.

In model training and internal validation, we used five different validation metrics
(i.e., AUC, ACC, precision, recall, and MSE) to evaluate the model performance for eight



Remote Sens. 2023, 15, 3200 25 of 27

different model–dataset combinations (i.e., NB-Data-1, NB-Data-2, NB-Data-3, NB-Data-
4, TAN-Data-1, TAN-Data-2, TAN-Data-3, and TAN-Data-4). For the Bayesian network
structure comparison, TAN outperformed the NB structure in both means and variations of
validation metrics for all data scenarios. Conversely, when the model structure remained
consistent, dataset-1, which selected all non-landslides from PISA-m low susceptibility
areas, yielded the best results for internal validation. Furthermore, we produced the LSMs
based on each trained model’s predictions. For NB classifications, the steep slopes located
just below the ridgetops were largely classified as high or moderate-high susceptibility,
while the flanks, toes, and flow channels were mainly characterized as low susceptibility. In
contrast, the TAN model classified a significant number of concave slopes as moderate-high
or high susceptibility areas, which fits the empirical understanding of landslide occurrence
typically initiating below the slope’s crown.

To evaluate the reliability of the eight trained models, we conducted further external
validation using an independent landslide inventory covering Owsley County, Kentucky,
USA. The model comparison again suggested that the TAN model always outperformed the
NB model when the training dataset was the same, as indicated by the high percentage of
landslide points characterized in moderate-high and high classes by the former. However,
the previously leading model TAN-Data-1 yielded the least effective modeling results in
external validation, while the TAN-Data-2 model, which comprised its negative training
sample with a mixture of 50% low and 50% low-moderate susceptibilities from PISA-m
predictions, represented the top-performing model in external validation. This implies
that the conventional method of sampling non-landslide areas exclusively from very flat
surfaces or low susceptibility areas can result in overfitting models, which performed
no better than the random selection of negative samples (TAN-Data-4), as shown in the
present work.

Our results suggest employing a prior physical model estimation and selecting a
balanced negative sample to represent non-landslide scenarios and enhance the model’s
robustness. Building on these insights, our future research aims to explore more effective
probabilistic modeling structures and optimize the integration of physical knowledge into
landslide susceptibility modeling.
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