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Abstract: The monitoring and analysis of the spatiotemporal distribution of anthropogenic carbon
emissions is an important part of realizing China’s regional “dual carbon” goals; that is, the aim is for
carbon emissions to peak in 2030 an to achieve carbon neutrality by 2060, as well as achieving sustain-
able development of the ecological environment. The column-averaged CO; dry air mole fraction
(XCOy) of greenhouse gas remote sensing satellites has been widely used to monitor anthropogenic
carbon emissions. However, selecting a reasonable background region to eliminate the influence
of uncertainty factors is still an important challenge to monitor anthropogenic carbon emissions by
using XCO,. Aiming at the problems of the imprecise selection of background regions, this study
proposes to enhance the anthropogenic carbon emission signal in the XCO, by using the regional
comparison method based on the idea of zoning. First, this study determines the background region
based on the Open-Data Inventory for Anthropogenic Carbon dioxide (ODIAC) dataset and potential
temperature data. Second, the average value of the XCO, in the background area was extracted and
taken as the XCO, background. On this basis, the XCO, anomaly (XCO»,,,) Was obtained by regional
comparison method. Finally, the spatiotemporal variation characteristics and trends of XCOy,no Were
analyzed, and the correlations between the number of residential areas and fossil fuel emissions
were calculated. The results of the satellite observation data experiments over China from 2010 to
2020 show that the XCO»,p, and anthropogenic carbon emissions have similar spatial distribution
patterns. The XCOy,p,, in China changed significantly and was in a positive growth trend as a whole.
The XCOyyp, values have a certain positive correlation with the number of residential areas and
observations of fossil fuel emissions. The purpose of this research is to enhance the anthropogenic
carbon emission signals in satellite observation XCO, data by combining ODIAC data and potential
temperature data, achieve the remote sensing monitoring and analysis of spatiotemporal changes in
anthropogenic carbon emissions over China, and provide technical support for the policies and paths
of regional carbon emission reductions and ecological environmental protection.

Keywords: regional comparison method; XCO, anomalies; anthropogenic carbon emissions;
spatiotemporal variation characteristics; uncertainty factor analysis

1. Introduction

Carbon dioxide (CO,) can remain in the air for hundreds to thousands of years and
is a major greenhouse gas [1]. The continuous increase in atmospheric CO; caused by
human activities since the Industrial Revolution is one of the main reasons for global warm-
ing [2—4]. With the rapid development of the global social economy, especially industry,
a large amount of CO, produced by energy consumption is absorbed by terrestrial and

Remote Sens. 2023, 15, 3207. https:/ /doi.org/10.3390/1s15123207

https://www.mdpi.com/journal /remotesensing


https://doi.org/10.3390/rs15123207
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-3317-6518
https://doi.org/10.3390/rs15123207
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15123207?type=check_update&version=2

Remote Sens. 2023, 15, 3207

2 of 25

marine ecosystems, but there is still a large amount of carbon in the air, which increases
the atmospheric CO; [5,6]. The global atmospheric CO, increased from 280 pmm before
the industrial revolution to 413 pmm in 2020 [7]. The Intergovernmental Panel on Climate
Change (IPCC) pointed out that from 1970 to 2010, CO, emissions caused by human activi-
ties accounted for approximately 78% of the total increase in greenhouse gas emissions [8].
Countries around the world such as East Asian countries have been committed to imple-
menting carbon emission reduction measures [9,10]. The Paris Agreement, which came
into effect in 2016, clarified global carbon reduction targets [11]. China’s rapid economic
development also resulted in an increase in energy consumption carbon emissions, which
seriously restricts China’s regional sustainable development [12]. In addition, China has
the courage to take responsibility for reducing carbon emissions and has put forward the
“dual carbon” strategic goal [13-15]. Therefore, in this context, the ability to accurately and
quantitatively monitor anthropogenic carbon emissions is a particularly critical issue.

Nevertheless, the traditional statistical methods of anthropogenic carbon emissions
based on emission inventory data can more accurately reflect regional anthropogenic carbon
emissions. However, the emission inventory data cannot be accurately expressed at small
spatial scales [16]. In addition, there is a certain lag in the emission inventory data, and
there may be differences in energy standards between different regions, which reduce the
reference value of anthropogenic carbon emissions data for calculation and statistics [17].
The spatial scale of energy consumption statistics is relatively large, mostly at the national,
provincial, or prefecture-level scales. It is impossible to finely monitor the spatiotemporal
distribution characteristics of anthropogenic carbon emissions in the region [18-20].

Ground-based observation stations can provide high-precision global atmospheric
CO,, enabling accurate monitoring of spatiotemporal changes in atmospheric CO, [21].
However, there are too few ground observation sites, and their distribution is uneven,
which makes it difficult to monitor atmospheric CO, over a long time and in a large
area [22]. Moreover, the network of ground observation stations, such as TCCON (Total
Carbon Column Observation Network) is mostly distributed in areas less affected by
human activities. In this way, it is difficult to accurately monitor the CO, from large-scale
human carbon emission sources, and it is impossible to achieve real-time monitoring of
regional anthropogenic carbon emissions to maintain a carbon balance [23]. Therefore,
there is an urgent need for efficient and accurate atmospheric CO, detection technology,
which can monitor the spatiotemporal changes in regional anthropogenic carbon emissions
and the carbon balance in real time, and provide long-term data support for countries or
regions, so that they may develop carbon emission reduction measures.

IPCC explicitly added new emission inventory verification methods in 2019, that
is, to verify emission inventories through the “top-down” inversion of greenhouse gas
fluxes from observational atmospheric carbon data [24]. To accurately assess the success
of regional carbon emission reduction targets, we need more technical means to monitor
anthropogenic carbon emissions. Satellite remote sensing technology can truly observe the
spatiotemporal changes and surface phenomena over a large spatial scale and develop long-
term time series and has become one of the important observation methods of greenhouse
gases [25-27]. The distinctive absorption spectrum of atmospheric CO; in the near-infrared
band is obtained by using onboard sensors, and the XCO, can be quantitatively determined
using radiation transfer theory. This can be used for surface anthropogenic carbon emission
monitoring to provide data support [25]. The fluctuation of CO; in the air caused by carbon
emissions from human activities is small relative to the background. Therefore, satellites
need high observation accuracy to meet the accuracy requirements of remote sensing
satellites for monitoring anthropogenic carbon emissions. In the past ten years, many
countries have successfully launched greenhouse gas remote sensing satellites carrying
near-infrared sensors, which has promoted the development of atmospheric CO; remote
sensing observations and improved the monitoring accuracy of anthropogenic carbon
emissions [28]. Most research uses Orbiting Carbon Observatory-2 (OCO-2) satellite data
and Greenhouse Gases Observing Satellite (GOSAT) satellite data.
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Related studies have widely used satellite XCO, data products to monitor and evaluate
anthropogenic carbon emissions. Some of these studies select the median or average value
of the XCO; in the study area as the background to enhance the anthropogenic carbon
emission signal and achieve the monitoring of anthropogenic carbon emissions [29-32]. In
other studies, the median XCO, in the less anthropogenically affected area around the study
area was selected as the background [33-36]. In addition, there are related studies that
will build an anthropogenic carbon emission model based on the estimation of anomalous
XCO;, (XCOgzane) obtained from satellite observations in order to estimate and monitor
anthropogenic carbon emissions [30,37]. The above research results show the feasibility
of remote sensing monitoring of anthropogenic carbon emissions, but the selection of
background needs to be further discussed. Although most of the relevant studies have
shown that the anthropogenic carbon emission signal in the atmosphere is susceptible to
interference, less consideration is given to selecting a background area in combination with
atmospheric transmission and other factors to eliminate background interference.

In the current study, the determination of background region of XCO, is the key
content of extracting anthropogenic carbon emission signal from XCO,. However, few pre-
vious studies combined multisource data to eliminate the influence of XCO, background.
In addition, the fine analysis of the spatiotemporal characteristics of the XCOzap, was in-
sufficient, and the relevant influencing factors affecting the anthropogenic carbon emission
signal were not explored. Therefore, there are three main objectives of the study: (1) to
combine multisource data to reasonably select the background area to obtain the XCO»4n¢
that can enhance the anthropogenic carbon emission signal; (2) to finely analyze the spatial
and temporal distribution characteristics of XCOp,n0; and (3) to investigate the influencing
factors that affect the extraction of anthropogenic carbon emission signal.

In view of the above problems and deficiencies, this study combined multisource
data to select the background region, obtained the monthly XCO,,p, results in China from
2010 to 2020 by the selected region comparison method, and analyzed the spatiotemporal
characteristics and trends of the XCOy,p,. The feasibility of using satellite observation data
to monitor and evaluate anthropogenic carbon emissions was explored, and it provided
technical support for the subsequent monitoring and evaluation of carbon emission re-
duction and regional sustainable development. This study can provide methodological
support for targeted spatially differentiated carbon reduction measures.

2. Materials and Methods
2.1. Data Sources

The experimental data in this study include the monthly Mapping-XCO, dataset,
annual ODIAC dataset and potential temperature data from 2010 to 2020.

(1) Mapping-XCO, dataset

This study used the monthly Global Land Mapping-XCO, (Mapping-XCO,) dataset
from January 2010 to December 2020 which has a spatial resolution of 1° latitude x 1°
longitude. The Mapping-XCO, dataset was generated by applying weighted spatiotem-
poral kriging interpolation methods to XCO, obtained from the GOSAT satellite (January
2010 to August 2014) and the OCO-2 satellite (September 2014 to December 2020) [38,39].
The XCO; products include the ACOS Level 2 Lite data product (v9r) from the GOSAT
satellite and the OCO-2 Level 2 Lite data product (v10r) from the OCO-2 satellite. The
generation of the Mapping-XCO; dataset consists of three steps: (1) Adjusting the a priori
CO; profiles of satellite XCO; retrievals. The prior CO; profile affects the inversion of XCO,
data. (2) Adjusting the observing time of satellite XCO, data. Observation time is the local
overpass times of the satellite. (3) Unifying spatiotemporal scales of satellite observations.
Spatiotemporal scale is the data time interval and spatial resolution. He et al. [38] showed
that the estimation uncertainty for the Mapping-XCO, dataset is small, cross-validation
shows that the exact weighted spatiotemporal kriging interpolation method used has good
reliability, and the Mapping-XCO, dataset has high accuracy.
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(2) ODIAC dataset

The ODIAC dataset is a global anthropogenic carbon emissions product that estimates
carbon emissions from fossil fuel combustion based on national-level fossil fuel carbon emis-
sions estimates, fossil fuel consumption statistics, satellite-observed night-time light data, and
fossil fuel point source information [40,41]. This dataset can effectively reflect the spatiotempo-
ral distribution of anthropogenic carbon emissions. The latest dataset, version ODIAC2020b,
provides the monthly spatial distribution of anthropogenic carbon emissions from 2000 to
2019. This study selects a dataset with a spatial resolution of 1° latitude x 1° longitude. In
this study, monthly ODIAC datasets from 2000 to 2019 were downloaded from the National
Institute of Environmental Research Center for Global Environmental Studies.

(3) Potential temperature data

The potential temperature data used in this study came from the National Center for
Environmental Prediction/National Center for Atmospheric Research. Using the monthly
potential temperature data at an atmospheric pressure level of 1000 mb for reanalysis, the
average potential temperature data from January 2010 to December 2020 were obtained,
and the average potential temperature contours were regenerated. Potential temperature is
a dynamic tracer of stable air mass transport [42] and is not affected by the physical lifting
or sinking associated with flow over obstacles or large-scale atmospheric turbulence [43].
The latitudinal and zonal spatial distribution patterns of XCO, have a high degree of
similarity with the distribution of potential temperature contours. Using the potential
temperature contours to divide the study area into different potential temperature zones
can eliminate the influence of atmospheric transport on the extraction of anthropogenic
carbon emission signals to a certain extent. This study divides the study area into five
zones with 10K intervals, area I, area II, area I, area IV, and area V. The specific regions are
shown in Figure 1.
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Figure 1. Partitioning based on potential temperature data. Beijing-Tianjin—-Hebei (BTH); Pearl River
Delta (PRD); Yangtze River Delta (YRD).
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(4) China vector map data

The China vector map data used in this research comes from the National Geo-
graphic Information Resource Catalog Service System, which belongs to the data of
China’s 1:1 million national basic geographic databases. This China vector map has been
reviewed by the Ministry of Natural Resources of China, and the research area of this study
is the range of the China vector map.

(5) Land use data

The land use data are obtained from the European Space Agency (ESA) Climate
Change Initiative (CCI) project. The land use data include data on 22 types of land,
including urban land, water bodies and grassland, with a resolution of 300 m. We integrated
land cover types into six categories: urban, cropland, vegetation, bare areas, Permanent
snow, and ice and water (Table 1).

Table 1. Integrated category of 22 land use categories.

Integrated Categories

Primitive Categories

Cropland areas

Cropland, rainfed
Cropland, irrigated or post-flooding
Mosaic cropland (>50%)/natural vegetation (Tree, shrub, herbaceous cover) (<50%)

Vegetation areas

Mosaic natural vegetation (Tree, shrub, herbaceous cover) (>50%)/cropland (<50%)
Tree cover, broadleaved, evergreen, closed to open (>15%)
Tree cover, broadleaved, deciduous, closed to open (>15%)
Tree cover, needleleaved, evergreen, closed to open (>15%)

Tree cover, needleleaved, deciduous, closed to open (>15%)
Tree cover, mixed leaf type (broadleaved and needleleaved)

Mosaic tree and shrub (>50%)/herbaceous cover (<50%)
Mosaic herbaceous cover (>50%)/tree and shrub (<50%)
Shrubland
Grassland
Lichens and mosses
Sparse vegetation (tree, shrub, herbaceous cover) (<15%)
Sparse vegetation (tree, shrub, herbaceous cover) (<15%)
Tree cover, flooded, fresh or brakish water
Tree cover, flooded, saline water

Shrub or herbaceous cover, flooded, fresh/saline /brakish water

Urban areas

Urban areas

Bare areas

Bare areas

Water bodies

Water bodies

Permanent snow and ice

Permanent snow and ice

(6) Residential area data

The residential area data used in this research comes from the National Geographic In-
formation Resource Catalog Service System, which belongs to the data of China’s 1:1 million
public basic geographic information data (2021). Residential areas are places where people
gather and settle down. The main elements of residential areas in this study include houses,
sheds, cave dwellings, yurts, grazing spots, and other residential buildings.
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2.2. Research Methods

In this study, based on Mapping-XCO,, potential temperature data and ODIAC data,
a calculation method of XCOy,p, was designed and constructed, and the spatiotemporal
variation characteristics and trends of XCOy,n results were analyzed. To analyze the
potential of the XCOp,po to monitor anthropogenic carbon emissions, a correlation analysis
of the XCOyap, with fossil fuel emissions and residential area is finally carried out. Cor-
relation analysis was used to quantitatively analyze the ability of the XCOg,p, to monitor
anthropogenic carbon emissions. The research process is shown in Figure 2.

. Potential
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Figure 2. Research flow chart.

(1)  XCOgane calculation

In this study, the time series of average XCO; in emission zones and background
zones in China was analyzed from 2010 to 2020 (Figure 3). The atmospheric CO; has strong
seasonal variation. The linear fitting degree of atmospheric CO, and time variables in
the emission area and background area is relatively high, and the goodness of fit R? is
greater than 0.9, indicating that atmospheric CO; increased during the study period. From
Figure 3, it can be found that the atmospheric CO; has a stable periodic seasonal variation
pattern. This seasonal variation represents a strong background signal of atmospheric CO,,
which seriously affects the ability of satellites to observe anthropogenic carbon emissions.
In summer, XCO; in the background area is more than that in the emission area. This is
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because the background region contains the Tibetan Plateau, where XCO; mainly comes
from the upper troposphere, whose seasonal signal is weaker than that of the lower terrain
troposphere. As can be seen from Figure 3b, XCO, in the background area in summer is
similar to or lower than the emission area after removing the area with an altitude higher
than 3000 m over the Tibetan Plateau.

To weaken the background signal of CO; and enhance the anthropogenic carbon
emission signal, this study selects the regional comparison method to obtain the XCOy4n0
in the anthropogenic carbon emission area. Most current studies use regional comparison
method to remove the influence of XCO, background and enhance anthropogenic emission
signals [35]. The regional comparison method uses the difference in XCO, between the
anthropogenic carbon emission area and the background area as the XCO»4p,,. The key step
of the regional comparison method is to select the background area.

420 420
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Figure 3. Time series of the XCO;. (a) is the time series of XCO; in the background area and emission
area of China, and (b) is the time series of XCO; in the background area and emission area of China
excluding the Tibetan Plateau with an altitude higher than 3000 m. X-axis: January 2010 represents 1,
increasing by 1 for every month of growth, and finally December 2020 represents 132.

This study combines potential temperature data and ODIAC data to determine the
background area. First, the ODIAC data is used to identify the background areas by
screening out the areas without anthropogenic carbon emissions, and the remaining area
is the anthropogenic carbon emission area. According to the monthly ODIAC data, the
areas without anthropogenic carbon emissions are consistent in each month from 2010
to 2019, which are mainly distributed in the less-traveled areas of Tibet, Xinjiang, Inner
Mongolia, and Northeast China. Second, China is divided into 5 regions by using potential
temperature data. In this study, the XCOy,p, in different potential temperature regions
was calculated according to the background regions of different potential temperature
regions. In simulations with zonally uniform surface fluxes, XCO; is tightly correlated
with potential temperature [43]. However, the influence of topographic and climatic factors
may lead to differences in atmospheric transport modes in some regions within the same
potential temperature isoline. Therefore, it is difficult to completely eliminate the influence
of atmospheric transport. The average potential temperature data of atmospheric altitude
of 1000 mb was selected for analysis in this study. However, there are differences in
atmospheric altitude in different latitudes and seasons, so the partitioning result cannot
completely eliminate the influence of atmospheric transmission.

Monthly XCOqap, is calculated for each partition based on their respective monthly
background region average XCO, for 2010-2020. The formula of the area comparison
method is as follows:

XCO2 ano = XCO2 emi — XCO; pek (1)

where XCO3 ¢y is the XCO, in the anthropogenic carbon emission area and XCO; 1, is the
XCOy in the background area.
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(2) Analysis of the change trend of the XCO»4n0

In this study, the coefficient of variation (CV) was chosen to reflect the variation range
of the XCOyano. The coefficient of variation was the absolute value reflecting the degree
of dispersion of the data, which eliminated the influence of the data measurement scale
and could more objectively reflect the variation in the XCOy,p,, at different locations. The
formula for the coefficient of variation is as follows:

ag
CV=— 2
i @)

where ¢ is the standard deviation, and y is the mean.

To address the deficiency that the CV in reflecting the changing trend, this study
chooses the skewness coefficient (SKEW) to represent the changing trend of the XCO»4po.
The SKEW describes the asymmetry of the distribution in terms of a characteristic number
of the degree of deviation. In this study, if the SKEW is greater than 0, the high value of the
XCOqqn, is distributed in the first row of the time series. If it is less than 0, the high value of
the XCOy4p, is distributed at the end of the time series. The smaller the value is, the closer
the distribution of the high XCOg,n, value is to the end of the time series, which reflects
the growth trend. The SKEW formula is as follows:

SKEW =

H _UMO 3)

where y is the mean, ¢ is the standard deviation and My is the mode.

3. Results
3.1. Characteristics of Spatiotemporal Distribution in XCO24p,

In this study, the spatial distribution of monthly average XCOy,n, values from 2010 to
2020 was calculated (Figure 4), and the results showed that the overall spatial distribution
pattern of XCOgp,no values in China was similar to the spatial distribution pattern of
fossil fuel emissions from ODIAC data. The high-value areas of China’s XCOzap, are
mainly distributed in the Yangtze River Delta, the Pearl River Delta, and the Beijing—
Tianjin—-Hebei urban agglomeration. The areas around these three urban agglomerations
also have high XCOy,no values. The low-value areas of China’s XCOyypno are mainly
distributed in western China. However, there is a high XCOy,p, in the economically
underdeveloped Xinjiang. Some studies believe that Xinjiang’s anthropogenic carbon
emissions should be less, and the results are more uncertain due to the small number of
satellite observations [31,37]. In fact, statistics show that energy consumption in Xinjiang
is at a relatively high level [44,45]. Therefore, XCOs, high in Xinjiang is consistent
with actual anthropogenic carbon emissions. The spatial distribution of monthly average
XCOgane values from 2010 to 2020 was calculated with the background without the high
altitudes is shown in Appendix A Figure Al.

The results show that there are obvious differences between XCO,,,, and ODIAC
data in the Yangtze River Delta. Combined with land use data, it can be found that
the differences are located in the southern area near urban land, mainly because local
atmospheric transport may cause anthropogenic carbon emissions in the Yangtze River
Delta region to be transported to the south, resulting in differences. There are also obvious
differences between XCOs4p, and ODIAC data in the Pearl River Delta region and Northeast
China. In addition to the diffusion of anthropogenic carbon emissions due to atmospheric
transport, the rich vegetation resources around the Pearl River Delta and northeastern China
will absorb a large amount of anthropogenic carbon emissions, resulting in differences.

To analyze the inter-annual variability of XCOs4p, in China, this study selected the
XCOzano in 2010, 2015, and 2020 for spatial variability analysis (Figure 5). The results
show that the XCOpap, in 2020 is significantly higher than that of the other two years.
Although there were spatial differences in the XCOp,p, in the three years, the high values
of XCOyano in the three years were mainly distributed in the southeast coastal areas, and
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the low values of XCO»,no Were mainly distributed in the west and northeast regions. The
spatial distribution results of XCOy,p, for the remaining years in China from 2010 to 2020
are shown in Appendix A Figure A2. Although there are obvious changes in XCOp,p, in
China from 2010 to 2020, XCOxap, in coastal areas of China has always maintained a high
level. The spatial distribution results of XCOy,no were calculated with the background
without the high altitudes from 2010 to 2020 are shown in Appendix A Figure A3.

80°E 9°E 100°E 1H0°E 120°E 130°E 80°E 90°F 100°E 110°F 120°F 130°F
N N
z £ & £
z 7 k| z
z P4 Z Z
£ 4 £ g £
: F & F
g " g 7] £
= 3 12 = 12
2 o 2 E 2
I
XCOzn0(ppm) L M| ‘G’./ CO; (Mt)
z ) . z Z z
) B 55057 0.73 - 1.08 4 / 15 & I 0.00-0.10 1,70 - 2,68 ; 1&
B 056016 1.09 - 1.46 b N o031 2.69 - 4.01 O
B 015014 147185 I 0320065 402 -5.67
— ) _
z 0.15-041 [ 1.86-2.28 |z Z 0.66 - 1.10 [ 5.68 - 10.10 1z
=1 =1 = =
= 042-072 [ 220-324 - = 7 11 -1.69 I 1011 -17.70 s -
[ INational boundaries 77 Background area 0 750 1500 km [ I National boundaries 750 1500 km
— )
80°E 90°E 100°E 10°E 120°E 130°E S0°F 90°F 100°E 10°E 120°F 130°F
(a) (b)
80°E 90°E 100°E 10°E 120°E 130°E
N
£ £
7 7
A Z
E 2
A Z
= E
B Cropland areas . z
= I Vegetation areas £ 4 / a
I Urban arcas 5\ oo |
Bare areas
| B Water bodies / Z
E Permanent snow and ice o =
! k
0 750 1500km !
| -
80°E 90°E 100°E 110°E 120°E 130°E

(c)

Figure 4. XCOyyp,, and ODIAC data fossil fuel emissions spatial distribution and land use data. (a) is
the average value of the XCOp,p from 2010 to 2020, (b) is the average value of ODIAC fossil fuel
emissions from 2010 to 2019, and (c) is the 300 m spatial resolution land use data.

In addition, to analyze the seasonality of the XCOy,p, in China, this study plotted the
spatial distribution of the average XCOyap, of four seasons (Spring: March-May; Summer:
June to August; Autumn: September-November; Winter: December to February) from 2010
to 2020 (Figure 6). The results show that the XCOy,p, in China has obvious seasonality. The
XCOzano in winter is higher than that in the other three seasons, plant photosynthesis is
the weakest in winter, and heating in winter increases the use of fossil fuels so that there
is a higher XCOqyp, in winter. In summer, plant photosynthesis is the strongest, and the
terrestrial ecosystem absorbs a large amount of the anthropogenic carbon emissions, so
the XCOy4no in summer is lower than that in the other three seasons, and the XCO»,, in
spring and autumn is between summer and winter. Although there were differences in the
spatial distribution of XCOy,p, in the four seasons, they all had similar spatial distribution
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patterns. Due to the influence of vegetation photosynthesis and other factors, the seasonal
variation of XCOgap, cannot show the same seasonal variation of anthropogenic carbon
emissions. If carbon sink information is subsequently added, XCO»4n can be better linked
to anthropogenic carbon emissions. The spatial distribution of the average XCOy,n, of four
seasons was calculated with the background without the high altitudes from 2010 to 2020
are shown in Appendix A Figure A4.
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XCOx4ne in China in 2010, 2015 and 2020, respectively.

are the spatial distribution of average

To better analyze the seasonal variation in the XCOy,p, in China, this study calculated
the monthly average monthly value of the XCO,p, in different potential temperature
zones (Figure 7). The results showed that the XCOy,p, in different potential temperature
zones showed obvious seasonal changes, with the highest XCO,,,, in winter and the
lowest XCOyano in summer (which even contained negative values). The negative value
exists more in summer because vegetation photosynthesis strongly absorbs anthropogenic
carbon emissions in summer. According to formula 1, the CO; absorbed by vegetation
photosynthesis in the emission area is higher than that in the background area, which may
lead to negative XCOaypo. If carbon sink information can be added later, we can better
eliminate the effect of vegetation photosynthesis. However, XCOy,p,, in some years of area
I showed an opposite time trend, such as 2012, 2013, and 2019, which showed negative
peaks in winter.
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3.2. Spatiotemporal Variation of the XCO 740

To analyze the spatiotemporal trends of the XCOy4p,, in China, this study calculated
the coefficient of variation of the XCOg,po in China from 2010 to 2020 (Figure 8). The CV
can reflect the magnitude of the change in XCOq4p,. The results showed that the of XCOg4ne
in China changed greatly from 2010 to 2020, with an average CV of 36.16%. The average
CV of area Ill and area IV was larger, 37.74% and 38.85%, respectively, while the average
CV of area I was smaller, only 30.10%, and the average coefficients of variation of area II
and area V were 35.06% and 34.48%, respectively. The average CV of the five regions was

2019
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all higher than 30%, indicating that China’s XCO»,, changed greatly during 2010-2020.
The areas with large changes in XCOy,p, in China are mainly distributed in the Yangtze
River Delta urban agglomeration and western China located in area IIl and area IV, and the
XCOgyano in northeastern China located in area I and Yunnan Province in area V has small
changes. XCOyan, contains anthropogenic carbon emission signals, which are generated
by human production and life. Therefore, the change degree of XCOp,n, has a certain
relationship with social and economic development. We can find that regions III and IV
with high average CV include the Pearl River Delta and the Yangtze River Delta, which
are the most economically active regions in China, while region I with low average CV is
mainly located in northeast China, which has slow economic development. The coefficient
of variation of the XCOy,p, from 2010 to 2020 was calculated with the background without
the high altitudes are shown in Appendix A Figure A5.
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Figure 8. Spatial distribution of the CV of the XCO»,p, in China from 2010 to 2020.

In addition, this study calculated the SKEW of the XCOyap, in China from 2010 to
2020 (Figure 9). SKEW can reflect the change direction of the XCOzp,. The results show
that the SKEW of the XCOy4,, in most areas of China from 2010 to 2020 is less than 0,
and the average SKEW is —0.26, indicating that the high value of the XCOp,p, in most
areas of China is biased toward the end of the time series, and the overall XCO;4,, in
China is increasing. The average SKEWs of area I and area II are smaller, —0.53 and
—0.52, respectively. The average SKEWs of area IlI, area IV, and area V are similar, —0.12,
—0.11, and —0.19, respectively. The variation coefficient of the XCOj,n, in Northeast
China located in area I is relatively small, indicating that although the variation in the
XCOgano in Northeast China is small, it is in a significant increasing trend. In addition,
there are many cases of positive SKEWs in China, indicating that in 2010-2020, the high
value of the XCOy,p,o in China is more inclined towards the start of the time series. For
the region with significant growth of XCOy,po, it is necessary to consider improving the
regional low-carbon production capacity, adjusting the energy structure and improving
energy utilization efficiency to control carbon emissions. The SKEW of the XCOsqp, from
2010 to 2020 was calculated with the background without the high altitudes are shown in
Appendix A Figure A6.

In addition, the CV and SKEW of XCOsap, in China also have seasonality. In this
study, the average CV and average SKEW of the XCOy,y, in China in the four seasons
were calculated (Table 2). The results show that the CV in winter is the smallest, and
the CV in summer is significantly larger than that in the other three seasons. Summer is
the season where photosynthesis in plants is most obvious, and it is also a season with
large changes in meteorological conditions. Therefore, there will be obvious differences
in the meteorological conditions in the three months of summer, so that not only the
internal summer XCO»,,, is different but also different months in summer in the same
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year, resulting in an excessively large CV in summer. Compared with summer, the effect of
photosynthesis in winter is weaker, and the meteorological conditions are relatively more
stable, s0 XCOp,no in winter can better reflect anthropogenic carbon emissions. The SKEWs
of the four seasons are all less than 0, among which the SKEW is the smallest in summer,
indicating that the XCO»,no does not only change greatly in summer, but also exhibits an
increasing trend. Among them, the anthropogenic carbon emissions increased the fastest in
summer and the slowest in spring. The average CV and average SKEW of the XCOp,p, in
China in the four seasons were calculated with the background without the high altitudes
and are shown in Appendix A Table A1.
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Figure 9. Spatial distribution of the SKEW of XCO»,, in China from 2010 to 2020.
Table 2. Seasonal difference in CV and SKEW.

Coefficient Annual Spring Summer Autumn Winter
Ccv 36.16 27.94 4491 29.08 25.64
SKEW —0.26 —0.01 —0.14 —0.04 —0.06

3.3. Correlation Analysis of XCOz4p0

In this study, the regional comparison method was used to calculate the XCOpan,
in the emission area. The anthropogenic carbon emissions in the emission area have a
cumulative effect on the XCOy, so XCOyano has a positive correlation with the number of
residential areas (Figure 10). The results show that there is a certain positive correlation
between the XCO»,,,, in China and the number of residential areas but the correlation is
low. In addition, this study analyzes the correlation between the XCO,,,, and the number
of residential areas in different potential temperature zones. Among them, in Area III,
the two have the strongest positive correlation. Area III includes not only economically
developed Yangtze River Delta and Beijing-Tianjin—-Hebei urban agglomerations but also
economically underdeveloped western China. The correlation analysis of average XCOzano
and the number of residential areas for the other four areas is in Appendix A Figure A7.

The purpose of calculating the XCOsap,, through satellite observations is to monitor and
track anthropogenic carbon emissions. In this study, the correlation between the average
XCOg4ane and fossil fuel emissions was analyzed. The results show that there is only a weak
positive correlation between the two (Figure 11). In Area V, the two have the strongest positive
correlation, but the correlation coefficient r is only 0.51, mainly because there is a nonlinear
relationship between the XCOy,n, and fossil fuel emissions, and the XCOg,p, is also affected
by terrestrial ecosystems and atmospheric transport [35]. Therefore, the XCOy,n, does not
only reflect anthropogenic carbon emissions, but is also affected by plant photosynthesis and
wind transport. There are many cases where the XCO,,y,, overestimates fossil fuel emissions.
Atmospheric transport will transport some of the fossil fuel emissions to the surrounding areas,
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enhancing the XCO, observed by satellites in the surrounding areas. The underestimation is
mainly due to the absorption of some anthropogenic carbon emissions by plant photosynthesis.
The correlation analysis of average XCOy,no and fossil fuel emissions for the other four areas
is in Appendix A Figure AS8.
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Figure 10. The correlation analysis between the average XCO»,, and the number of residential areas,
in which (a) is the correlation analysis result of all study areas and (b) is the correlation analysis result
of Area IIL
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Figure 11. Correlation analysis between the average XCO,qp,, and fossil fuel emissions, in which (a) is
the correlation analysis result of all study areas and (b) is the correlation analysis result of Area V.

4. Discussion
4.1. Selection of Background Area

The XCO; in the background area of different potential temperature partitions has some
differences. According to the XCOyqp,, calculation method of Formula (1), the XCO; in the
background area will directly affect the XCOpano result. The average XCOq,p, in different
regions is shown in Table 3. The results show that the average XCO,yy,, in Area I and Area II
is lower, and the XCOy,n, in the other three regions is significantly higher. Among them, Area
IV has the highest XCOy4p,. Area IV includes the Pearl River Delta urban agglomeration and
the Yangtze River Delta urban agglomeration with active economic activities in China. Urban
development needs to be driven by energy consumption, which produces anthropogenic
carbon emissions that lead to an increase in atmospheric CO,. Relevant studies have shown
that cities are the promoters of the increase in atmospheric CO,, and their anthropogenic
carbon emissions also promote the growth of XCOzqap, [35].

Partitioning according to potential temperature can reduce the influence of atmo-
spheric transport, and there are obvious differences in the background XCO, different
partitions, so it is necessary to calculate the XCOy,p, by partition. Some related studies have
used the idea of zoning and selected the median or average value of XCO; in different zones
as the background [31,35], while this study chose the average value as the background.
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Table 3. The average XCOy,y, in different partitions.

Area Areal Areall Area III Area IV AreaV

Background (ppm) 399.82 399.97 400.62 399.97 399.66

Anthropogenic emission area (ppm) 399.86 400.30 401.91 401.93 401.47
XCOgano average (ppm) 0.04 0.33 1.29 1.96 1.81

To quantitatively analyze the impact of different background area selection methods
on the capturing of anthropogenic carbon emission signals, this study selected the median
XCO; in China as the background to calculate the XCO»,p, in the anthropogenic carbon
emission area (Figure 12a). The results show that the XCOy,p,, result cannot better reflect
the spatial distribution pattern of China’s anthropogenic carbon emissions. In addition,
the median XCO; value in five zones was extracted according to the background area
determined in this study and the XCO»,n, was calculated (Figure 12b). The results show
that the XCOp,n, results are similar to the spatial distribution pattern of this study.

To quantify the potential of selecting median and average XCO, as background value
to monitor anthropogenic carbon emissions, this study also performed a correlation analysis
between the above XCOgap,, results and fossil fuel emissions (Figure 13). The results show
that the correlations between the XCO»,no and fossil fuel emissions using the Chinese
median XCO, and the regional median XCOy,p, as the background are 0.40 and 0.42,
respectively. This is lower than the correlation coefficient between the XCO,,p,, and fossil
fuel emissions as determined in this study (Figure 11a). Therefore, choosing the average
XCO; can improve the monitoring of anthropogenic carbon emissions. Most previous
studies chose the median XCO, for subsequent XCOy,,, calculation. The selection of
median can remove the influence of outliers, but for the small area of this study, it may
cause information omission.

4.2. Uncertainty Factor Analysis of the XCO24p0

Compared to bottom-up anthropogenic emissions inventory data, satellite observations
are susceptible to meteorological, biological, and atmospheric conditions. The area explored
in this study is large, and the wind field in a small area still interferes with the anthropogenic
carbon emission signal in the XCOx,p,. Wind farms can diffuse CO, from anthropogenic
sources to surrounding areas. XCO, over high altitude points has a less pronounced seasonal
cycle. As shown in Figure 3b, the problem of higher XCO, values in the background area
than in the emission area in summer largely disappears after removing the high altitude
background points. (except for years 2010 and 2012). At present, WRF modelled wind
field/wind measurements from LiDAR equipment has been widely used, among which
Doppler wind LiDAR is a relatively new technology to acquire wind measurement [46]. In
the future, relevant technologies can be considered to eliminate the influence of wind field.
In addition, the XCOsap, also includes the effect of biological sinks. Using only deserts or
bare land as background to compare with vegetated emission areas causes a strong low
bias in the emission effect because of removal of CO; by photosynthesis. We will work on
this in a subsequent study. This is especially true in summer when the photosynthesis of
plants absorbs a large amount of CO, and makes the correlation between XCOy,no and fossil
fuel emissions weaker. Subsequent auxiliary data related to CO, absorption and emissions
should be added to enhance anthropogenic carbon emissions signals, such as net primary
productivity and nighttime light images, to enhance the ability of satellite observations to
assess and monitor anthropogenic carbon emissions. At the same time, satellites are sensitive
to clouds and aerosols, resulting in relatively little available data in some areas [47]. Thus,
satellite observations will have greater uncertainty [48].

4.3. Discussion on the Accurate Monitoring of Anthropogenic Carbon Emission

This study calculated the XCOy,p, in China based on satellite observation data, but
there are some remaining shortcomings. The goal of the study is to monitor and evaluate
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anthropogenic carbon emissions. The results show that the XCO»,p,, in this study has only
a weak correlation with the fossil fuel emissions of the ODIAC data. The issue of how to
solve the influence of biological and atmospheric factors is the main focus of subsequent
research. Future research will consider adding data related to carbon absorption and carbon
emissions such as vegetation index and solar-induced chlorophyll fluorescence. In addition,
regional carbon neutrality is also an ecological issue of social concern, and subsequent
studies will analyze the current status of regional carbon neutrality.
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Figure 13. Correlation analysis of XCOp,n, and fossil fuel emissions. (a,b) are the correlations
between the XCOy4p and fossil fuel emissions using the Chinese median XCO; and the regional
median XCOqyy, as the background value, respectively.

5. Conclusions

This study aims to eliminate the influence of uncertainty factors in XCO, as far as
possible to enhance the anthropogenic carbon emission signal. Based on the regional
comparison method based on the idea of zoning, this study uses the potential temperature
data and the ODIAC data set to effectively enhance the anthropogenic carbon emission
signal in XCO;, and strengthen the remote sensing monitoring ability of anthropogenic
carbon emission spatiotemporal changes. In this study, 2010-2020 monthly Mapping-XCO,
data were used to calculate the spatiotemporal distributions of XCOy,p, in China, and the
spatiotemporal changes in the results were analyzed. The XCO,p, in China has obvious
spatiotemporal differences. In addition, there are obvious seasonal variations, with the
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highest XCOy,p, in winter and the lowest in summer. The variation range of XCOp,po in
China is large, and showed an increasing trend, and the variation of XCOy,p, also has
seasonality. The XCOgap, has a high similarity with the spatial distribution of fossil fuel
carbon emissions, which provides remote sensing observation means for anthropogenic
carbon emissions monitoring. Compared with previous studies, the regional comparison
method based on the idea of zoning can better enhance the anthropogenic carbon emission
signal in XCO,, and using the average background regional as the background can better
monitor anthropogenic carbon emission.

In order to explore the feasibility of satellite observation for assessing and monitoring
anthropogenic carbon emissions, this study combined ODIAC data and potential temperature
data to select a regionalized background region, and designed a regional comparison method
based on the idea of zoning to eliminate background CO, and enhance anthropogenic carbon
emission signals in XCO,. Relevant research results can provide a policy reference for China’s
“dual carbon” strategy. The anthropogenic carbon emission in the atmospheric carbon is very
low, and the fluctuation caused by it is difficult to accurately measure. With the development
of remote sensing technology, it is hoped that carbon monitoring satellites can provide higher-
precision XCO, data. In the future, we will add CO,-related data for background region
selection and supplement carbon neutrality research.
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Figure A2. Spatial distribution of XCOp,, in China from 2011 to 2019 (a-h). The results showed that
the spatial distribution pattern of XCOqp, in China in 2011 and 2012 was similar to that in 2010, and the
high-value area was mainly distributed in southern and northwestern China. Since 2013, the high-value
area of China XCOy,p, is mainly located in eastern China. At the same time, there are inter-annual
differences. The high value of XCO,,p,, in 2012 and 2014 is significantly less than that in other years.
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Figure A3. Spatial distribution of XCOy,y, in China from 2010 to 2020 (a—k) with the background
without the high altitudes. The spatial distribution pattern of XCOy,p, in China from 2010 to 2020 is
generally similar, showing a distribution pattern of high in the east and low in the west.
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Figure A4. Spatial distribution of the average XCOy,p, in four seasons with the background without
the high altitudes. The XCOy,y,, distribution patterns were similar in spring (a) and autumn (c), with
XCOgqp, significantly lower in summer (b) than in the remaining three seasons, and higher in winter (d).
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80°F 90°E 100°E 110°E 120°E 130°E
£ £
2[ B 12
Pomes
S } -
T
Z % ” £
=3l = 12
|
, 7
o
e, 2
[ag] Lan]
SKEW :”&;"’ﬁi o g
z Py : Z
64114 ~020--0.04 (7 , 1€
5] - I3
B3 034 -0.03-0.15 NP
[ -083--057 I 0.16 - 0.38
z| —0.56—-0.37 [l 039-1.10 |z
=) s =
= ~0.36 - —0.21 (e =
4
[ INational boundaries Background area . 0_7'5;00 km
80°E 90°E 100°E 10°E 120°E 130°E

Figure A6. Spatial distribution of the SKEW of XCOy,p, in China from 2010 to 2020 with the
background without the high altitudes.

Table Al. Seasonal difference in CV and SKEW of XCOy,,, with the background without the

high altitudes.
Coefficient Annual Spring Summer Autumn Winter
cv 36.34 29.58 41.04 29.46 30.14

SKEW —0.28 —0.02 —0.12 —0.11 —-0.17
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Figure A7. The correlation analysis between average XCOy,n, and the number of residential areas in
different areas. There is a high correlation between the number of residential area and the average XCOpqap,
in areas I (a), I (b), and IV (c), while the lowest correlation between the two is found in area V (d).
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Figure A8. The correlation analysis between XCOy,p, and fossil fuel emissions in different area.
There is a high correlation between the FFCO, emissions and the average XCOy,y, in areas II (b),
III (c), and IV (d), while the lowest correlation between the two is found in area I (a).
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