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Abstract: Over the last two decades, spaceborne polarimetric synthetic aperture radar (PolSAR) has
been widely used to penetrate sea ice surfaces to achieve fully polarimetric high-resolution imaging
at all times of day and in a range of weather conditions. Model-based polarimetric decomposition is a
powerful tool used to extract useful physical and geometric information about sea ice from the matrix
datasets acquired by PolSAR. The volume scattering of sea ice is usually modeled as the incoherent
average of scatterings of a large volume of oriented ellipsoid particles that are uniformly distributed
in 3D space. This uniform spatial distribution is often approximated as a uniform orientation
distribution (UOD), i.e., the particles are uniformly oriented in all directions. This is achieved in the
existing literature by ensuring the canting angle ϕ and tilt angle τ of particles uniformly distributed in
their respective ranges and introducing a factor cos τ in the ensemble average. However, we find this
implementation of UOD is not always effective, while a real UOD can be realized by distributing the
solid angles of particles uniformly in 3D space. By deriving the total solid angle of the canting-tilt cell
spanned by particles and combining the differential relationship between solid angle and Euler angles
ϕ and τ, a complete expression of the joint probability density function p(ϕ, τ) that can always ensure
the uniform orientation of particles of sea ice is realized. By ensemble integrating the coherency matrix
of (ϕ, τ)-oriented particle with p(ϕ, τ), a generalized modeling of the volume coherency matrix of
3D uniformly oriented spheroid particles is obtained, which covers factors such as radar observation
geometry, particle shape, canting geometry, tilt geometry and transmission effect in a multiplicative
way. The existing volume scattering models of sea ice constitute special cases. The performance of the
model in the characterization of the volume behaviors was investigated via simulations on a volume
of oblate and prolate particles with the differential reflectivity ZDR, polarimetric entropy H and
scattering α angle as descriptors. Based on the model, several interesting orientation geometries were
also studied, including the aligned orientation, complement tilt geometry and reflection symmetry,
among which the complement tilt geometry is specifically highlighted. It involves three volume
models that correspond to the horizontal tilt, vertical tilt and random tilt of particles within sea
ice, respectively. To match the models to PolSAR data for adaptive decomposition, two selection
strategies are provided. One is based on ZDR, and the other is based on the maximum power fitting.
The scattering power that reduces the rank of coherency matrix by exactly one without violating the
physical realizability condition is obtained to make full use of the polarimetric scattering information.
Both the models and decomposition were finally validated on the Gaofen-3 PolSAR data of a young
ice area in Prydz Bay, Antarctica. The adaptive decomposition result demonstrates not only the
dominant vertical tilt preference of brine inclusions within sea ice, but also the subordinate random
tilt preference and non-negligible horizontal tilt preference, which are consistent with the geometric
selection mechanism that the c-axes of polycrystallines within sea ice would gradually align with
depth. The experiment also indicates that, compared to the strategy based on ZDR, the maximum
power fitting is preferable because it is entirely driven by the model and data and is independent
of any empirical thresholds. Such soft thresholding enables this strategy to adaptively estimate the
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negative ZDR offset introduced by the transmission effect, which provides a novel inversion of the
refractive index of sea ice based on polarimetric model-based decomposition.

Keywords: polarimetric decomposition; radar polarimetry; synthetic aperture radar; sea ice; volume
scattering model

1. Introduction

Sea ice covers approximately 2.5 × 107 km2 of the Earth’s surface and accounts for
5~8% of the global ocean area. They are mainly distributed in the high latitudes of the North
and South Poles, such as the Sea of Okhotsk and the marginal sea area of the Antarctic.
Sea ice makes the Arctic and Antarctic cold sources, which impact the exchange of energy
between the ocean and the atmosphere and affect global water circulation and climate
change [1]. Moreover, the unfreezing, refreezing, and drifting of sea ice will be destructive
to human activities and cause serious losses for the marine economy [2,3]. Therefore, the
efficient and accurate monitoring of sea ice is critical.

The wide distribution of sea ice and the harsh environments at the Poles make in
situ observation of sea ice all but impossible [4]. As a result, remote sensing techniques
have been introduced [5,6], Microwave remote sensing has attracted particular interest
due to its all-day and all-weather capabilities [7–11]. Synthetic aperture radar (SAR), as
an active microwave remote sensing technique, can penetrate sea ice surfaces for high-
resolution microwave imaging [12]. Gaofen-3 (GF-3), launched in 2016 is China’s first
high-resolution SAR satellite at C-band, which can acquire the polarimetric SAR (PolSAR)
image of sea ice by alternatively transmitting and simultaneously receiving orthogonal
polarized electromagnetic waves (EMW). This makes the polarimetric decomposition of
sea ice possible, since the polarization of EMW is sensitive to the dielectric properties and
geometric structure of sea ice. Although GF-3 data have been used for sea ice detection and
classification [13,14], there has been almost no research using GF-3 PolSAR data for polar
sea ice scattering decomposition so far.

The polarimetric scattering information of sea ice acquired via PolSAR is often a 3 × 3
covariance matrix or coherency matrix, which cannot be directly applied for identification
and classification unless we resort to specific matrix analysis approaches. Polarimetric
target incoherent decomposition is just such an approach. It is dedicated to pursuing
the geophysical scattering mechanism of an unknown scatterer by extracting a dominant
single target (such as the phenomenological dichotomies [15–18] and the eigenvector-based
decompositions [19–21]) or expanding the scatterer on specific canonical models (such
as model-based decompositions [22–39]). Among these approaches, the model-based
decompositions can be efficiently implemented with clear physical significance. They have
previously been used for the classification and inversion of depth of sea ice, separating
different scattering components from the backscattering echoes [40–51]. Zhang et al. [42]
used a double-bounce scattering component to effectively distinguish gray ice from fast
ice. Shokr et al. [50] analyzed the scattering mechanisms of different kinds of sea ice
and used the ratio of volume scattering power to surface scattering power to distinguish
rough first year ice from smooth first-year ice. He et al. [51] extracted the polarimetric
features using four typical model-based decompositions and input them into the random
forest algorithm to classify open water and sea ice. Zhang et al. [45] used the volume
scattering power parameters to invert the depth of sea ice in the Bohai Sea. Shokr and
Dabboor [47] estimated the thickness of fast ice using four-component decomposition
parameters. Parrella et al. [48] analyzed the microstructure of glacial ice anisotropy based
on the constructed sea ice volume scattering model, and used the co-polarization phase
differences to invert the firn depth.

Volume scattering is an indispensable component of model-based decomposition. Sea
ice is a polycrystalline medium, in which each polycrystal is composed of many small



Remote Sens. 2023, 15, 3208 3 of 36

ice platelets [52]. The seawater trapped in pockets between these ice platelets become
brine inclusions as the ice grows and the temperature decreases [52]. Each brine inclu-
sion has a substantially ellipsoidal shape and a high permittivity [53]. The polarimetric
volume scattering of sea ice, especially that of the young ice, is mainly induced by these
differently oriented brine inclusions. Plenty of models have been developed for natural
terrains [22,23,54–57], but for now, we will put these aside. Regarding the diversification of
scattering modeling for sea ice, in 1995, Rignot et al. [58] suggested modeling the scattering
of Greenland ice sheet as randomly oriented cylinders embedded in transparent snow
medium. However, poor agreement between PolSAR observation and model was found at
the L- and P-band [59]. Sharma et al. [40] in 2010 stressed that the 2D orientation around
the radar line of sight (LOS) described by Rignot et al. [58], Freeman and Durden [22]
and Yamaguchi et al. [23] is insufficient to model the 3D orientation geometry of ice par-
ticles in the Earth-based Cartesian coordinate system. Hence, they introduced two Euler
angles, i.e., the canting angle ϕ and the tilt angle τ, to describe the 3D orientation of ice
particles. The volume covariance/coherency matrix is estimated by ensemble averaging the
covariance/coherency matrix of (ϕ, τ)-oriented particle under the joint probability density
function (PDF) p(ϕ, τ) of Euler angles ϕ and τ. A similar volume scattering modeling
technique was used by Zhang et al. [45] in 2014 to analyze the polarimetric scattering of ice
in the Bohai Sea, China. Nevertheless, the modeling of Sharma et al. did not adequately
explain the co-polarization phase difference often observed in PolSAR datasets because
Sharma et al. modeled the sea ice particle as a simple dipole [40]. To improve this, based on
the previous work of Cloude et al. [60], Parrella et al. (2015) [46,59] treated ice inclusions as
ellipsoid particles for volume modeling. In a more recent work, Parrella et al. [49] validated
that this model allows characterization of the main scattering mechanism in different glacier
zones and provides a clear link to the respective subsurface structures.

This article revisits the volume scattering modeling of sea ice from the perspective
of statistical distribution of particle orientation, i.e., p(ϕ, τ), which is related to the 3D
spatial distribution p(r, ϕ, τ) of particles. The contribution of distance r between radar
and particles is mainly reflected in the extinction effect, which is independent of the
orientation (ϕ, τ)-induced volume scattering modeling discussed in this paper. The sea ice
particles are usually assumed to follow a uniform spatial distribution (USD) [40,46,49,59].
In view of the independence between orientation and distance, the USD of p(r, ϕ, τ) also
implies the uniform orientation distribution (UOD) of p(ϕ, τ), i.e., the sea ice particles are
uniformly oriented in all directions. Sharma et al. [40] provided an implementation of
UOD for scattering modeling of sea ice by ensuring the canting angle ϕ and tilt angle τ of
particles uniformly distributed in their respective ranges and including a factor cos τ in the
ensemble average. This implementation has also been used in a series of works [46,49] by
Parrella et al. Nonetheless, we find this implementation of UOD is not always effective;
a real UOD can be only realized by distributing the solid angles of particles uniformly
in 3D space. By deriving the total solid angle of the canting-tilt cell spanned by particles
and combining the differential relationship between solid angle and Euler angles, a joint
PDF p(ϕ, τ) for UOD is realized, which can not only ensure the uniform orientation of
particles, but also completely covers all situations of orientation distributions of particles of
sea ice. By ensemble integrating the obtained p(ϕ, τ) into the coherency matrix of (ϕ, τ)-
oriented ellipsoid particle established on the small particle scattering and transformation
among radar polarization coordinate system, ellipsoid coordinate system and Earth-based
Cartesian coordinate system, a generalized modeling of the volume coherency matrix of
a cloud of 3D uniformly oriented spheroid particles is then attained. The model covers
factors such as radar imaging geometry, particle shape, particle canting geometry, tilt
geometry and transmission effect in a multiplicative way. It describes the polarimetric
volume scattering of the typical distributed targets such as vegetation covers, soil particles
and ice inclusions. Meanwhile, the existing volume models of sea ice are only applicable
to specific instances. The successful performance of the volume model is validated by
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simulations on a cloud of oblate and prolate particles using the differential reflectivity ZDR,
polarimetric entropy H and scattering α angle as descriptors.

One important application of scattering modeling is to better describe the underlying
components of sea ice scattering, while the related parameters such as scattering powers
are achieved by the polarimetric model-based decomposition. Sharma et al. [40] proposed
decomposing the scatterings of glacier ice into the incoherent sum of the surface, sastrugi
and volume components. A scattering balance equation system with thirteen unknowns
was constructed and solved numerically with a series of approximations and simplification
to match the nine degrees of freedoms (DoF) in the covariance/coherency matrix. Neverthe-
less, there is an additive residual component in the decomposition which can be minimized
to the L2 norm but cannot be eliminated. A similar residue also exists in the decomposition
of Parrella et al. [46], where the backscattering of glacier and ice sheets is simplified as the
incoherent addition of the X-Bragg surface scattering and volume scattering. This kind of
incomplete utilization of polarimetric DoF is often coupled with the problem of negative
scattering power in other decompositions, such as Freeman-Durden three-component de-
composition (FDD). To overcome the negative power, in 2011, van Zyl et al. [28] devised the
nonnegative eigenvalue decomposition (NNED), which was extended to the scattering of
non-reflection symmetry (NS) by Liu et al. [33] and Wang et al. [34]. Zhang et al. [45] used
NNED-NS in the model-based interpretation of ice scattering by additively decomposing
the backscattering into the surface, double-bounce and volume components. A remainder,
however, is still inevitable despite the nonnegative eigenvalues. In addition to NNED-NS,
the complete model-based decomposition (CMD) designed by Cui et al. [31] in 2013 is
also an extension of NNED for NS. However, unlike NNED-NS, CMD not only solves the
problem of negative power in model-based decomposition but also results in full use of
scattering DoFs. To demonstrate the application of the proposed models in the volume
decomposition of the sea ice scattering, following CMD, the scattering power that reduces
the rank of coherency matrix by one without breaking the physical realizability is obtained
to make full use of the polarimetric information. Moreover, to facilitate the calculations,
the existing sea ice decompositions only consider a model of fixed orientation, such as the
randomly oriented model described by Sharma et al. [40] or the vertically tilted model
discussed in the works of Zhang et al. [45] and Parrella et al. [46]. Vertical, random and
horizontal orientations are all possible for sea ice particles. To achieve this, based on the
generalized model, some interesting orientation geometries are also studied, including the
aligned orientation, complement tilt geometry, reflection symmetry and azimuth symmetry.
The complement tilt geometry is of particular interest, as it provides three models that corre-
spond to the horizontal tilt, vertical tilt and random tilt of sea ice particles, respectively. To
match the models to PolSAR data for adaptive decomposition, two strategies are provided.
One is based on ZDR and the other is based on the maximum power fitting. Both the strate-
gies and models are validated on the GF-3 PolSAR dataset of a young ice area in Prydz Bay,
Antarctica. The adaptive decomposition result displays not only the dominant vertical tilt
preference of sea ice brine inclusions, but also the subordinate random tilt preference and
non-negligible horizontal tilt preference, which are consistent with the geometric selection
mechanism in that the c-axes of polycrystalline formations within sea ice gradually align
with the depth. The experiment also shows that compared to the ZDR-based strategy, the
maximum power fitting is preferable, as it is fully driven by model and data, and indepen-
dent of any empirical threshold. Such soft thresholding enables it to adaptively retrieve the
ZDR offset introduced by the transmission effect, which provides a new inversion of the
refractive index of sea ice based on polarimetric model-based decomposition.

The remainder of this article is arranged as follows. Starting from the theory of
small particle scattering, the coherent scattering of a (ϕ, τ)-oriented ellipsoid particle is
modeled in Section 2 based on the transformation among the radar polarization coordinate
system, ellipsoid coordinate system and Earth-based Cartesian coordinate system. Section 3
determines the joint PDF p(ϕ, τ) of Euler angles ϕ and τ for UOD based on the solid angle
geometry. The multiplicative generalized modeling of the coherency matrix of a volume
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of 3D uniformly oriented spheroid particles is performed and simulated in Section 4 by
ensemble integrating p(ϕ, τ) with the coherency matrix of the (ϕ, τ)-oriented ellipsoid
particle. To exemplify the application of the proposed models, Section 5 presents the
adaptive polarimetric decompositions of the volume scattering component for sea ice.
Finally, both the adaptive decompositions and models are validated in Section 6 on the GF-
3 PolSAR data of a young ice area in Prydz Bay, Antarctica. Section 7 concludes the article.
The matrices [A]mn and [B]mn that comprise the essential matrix [ω]mn are formulated in
Appendix A.

2. Coherent Scattering Modeling for a 3D Oriented Ellipsoidal Particle

The volume scattering of sea ice is generally considered to be induced by the complex
brine inclusions within the subsurface layer [40,45], as shown in Figure 1. The modeling
of such volume effects is usually challenging due to the complicated interaction of EMW
and the complex composition and distribution of brine inclusions. To simplify the volume
modeling, a commonly-used solution is to treat each localized brine scattering center as an
ellipsoidal particle of identical shape, size and composition embedded in the homogenous
background [40,45]. The problem is then reduced to establishing the polarimetric coherent
scattering of a particle and combining a large volume of such independent elements to
obtain a second-order statistical description of the scattering medium. We begin by focusing
on the coherent scattering modeling of a 3D-oriented ellipsoid in this section.
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Figure 1. Volume scattering mechanism induced by the 3D-oriented brine inclusions within sea ice,
and the Cartesian, polarization, ellipsoidal and solid angle geometry in modeling of the polarimetric
backscattering and angular distribution of 3D-oriented particles.

2.1. Scattering Matrix for a 3D Oriented Ellipsoidal Particle

As illustrated in Figure 1, the volume scattering modeling starts by establishing
the polarimetric scattering field of the ellipsoidal ice particle P illuminated by the radar
transmitted wave T. To facilitate the description of the 3D geometry of the particle and radar,
three reference coordinate systems are constructed: the Earth-based Cartesian coordinate
system [x, y, z] located at O, where z is normal to the local surface and x and y are parallel
to the azimuth and ground-range directions of radar; the radar polarization coordinate
system [h, k, v], where k is the propagation direction of incident wave, i.e., the LOS of radar,
with incident angle θ ∈

[
0, π2

]
, and h and v are the horizontal and vertical polarization

directions of the incident electric field; and the ellipsoid coordinate system [a, b, c], where



Remote Sens. 2023, 15, 3208 6 of 36

a, b and c represent the three axes of the ellipsoidal particle. Furthermore, to simplify the
modeling, the LOS k of radar is assumed within the plane (y, z), and h is aligned with x.
As a result, [x, y, z] is then a

(
π
2 − θ

)
-rotation of [h, k, v] around h:x

y
z

 = [Rθ ]

h
k
v

, [Rθ ] =

1 0 0
0 cos

(
π
2 − θ

)
sin
(
π
2 − θ

)
0 −sin

(
π
2 − θ

)
cos
(
π
2 − θ

)
 (1)

Instead of the 2D orientation around k, the 3D target orientation is determined by the
two Euler angles ϕ and τ, where the canting angle ϕ ∈ [−π,π] is defined as the rotation
about z; the tilt angle τ ∈

[
−π

2 , π2
]

is the subsequent rotation about y. Since ϕ and τ
represent two different Euler geometries, without loss of generality, they are assumed to be
independent of each other in this article. The relationship between [x, y, z] and [a, b, c] can
be expressed in terms of the Euler transform, as follows:a

b
c

 = [Rτ ]
[
Rϕ

]x
y
z

, [Rτ ] =

 cos τ 0 sin τ
0 1 0

−sin τ 0 cos τ

,
[
Rϕ

]
=

 cos ϕ sin ϕ 0
−sin ϕ cos ϕ 0

0 0 1

 (2)

As a result, the transformation from radar geometry to particle geometry is as follows:a
b
c

 = [R]

h
k
v

, [R] = [Rτ ]
[
Rϕ

]
[Rθ ] (3)

Based on the rotation matrix [R], we can then model the polarizability tensor of the
non-chiral ellipsoidal particle in the radar coordinate system as:

[
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are the polarizability tensors in radar and particle coordinate systems,
respectively. The superscript T denotes the matrix transpose, ρa, ρb and ρc are the particle
polarizabilities in the ellipsoidal axes a, b and c, respectively, offering a wide variation in
particle shapes from plate (ρa = 0) to oblate (ρa < ρb = ρc), sphere (ρa = ρb = ρc), prolate
(ρa > ρb = ρc) and finally dipole (ρb = ρc = 0) [46,49]. Based on [
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small particle scattering [61], the electric dipole moment induced by the incident field in
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Einc
h
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Einc
v
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where ph, pk and pv are the components of the electric moment in the coordinate system
[h, k, v]; Einc

h and Einc
v are the horizontal and vertical entries of the incident electric field.

As a result, the backscatter field at the receiver position generated by the electric dipole
moment in the convention of BSA is explicitly given as follows [61]:Esct

h
0

Esct
v

 =
jkZ0e−jkr

4πr

ph
0
pv

 (6)

where k is the wave number; Z0 is the wave impedance of medium; r denotes the distance
between particle and receiver; Esct

h and Esct
v are the horizontal and vertical components of
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the backscatter electric field, which are related to the incident field by the scattering matrix
[SP] of the 3D oriented ellipsoidal particle P:[

Esct
h

Esct
v

]
=

e−jkr
√

4πr
[SP]

[
Einc

h
Einc

v

]
(7)

Then, based on Equations (4) to (7), we can easily determine that:

[SP(θ, ϕ, τ)] =

[
SHH SHV
SVH SVV

]
=

jkZ0√
4π

[Rc]
T[
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p
]
[Rc], [Rc] = [R]

1 0
0 0
0 1

 (8a)

If we neglect the target-independent factor jkZ0√
4π

, each entry of [SP] is then directly
achieved by combining Equations (1)–(4) into Equation (8a):

SHH = ρacos2τcos2 ϕ + ρbsin2 ϕ + ρcsin2τcos2 ϕ (8b)

SVV = ρa(cos τsin ϕcos θ + sin τsin θ)2

+ρbcos2 ϕcos2θ + ρc(sin τsin ϕcos θ − cos τsin θ)2 (8c)

SHV = SVH = ρacos τcos ϕ(cos τsin ϕcos θ + sin τsin θ)
−ρbcos ϕsin ϕcos θ + ρcsin τcos ϕ(sin τsin ϕcos θ − cos τsin θ)

(8d)

It is noted that, for the 3D geometry shown in Figure 1, Parrella et al. [46,49] have
obtained a similar result as that described by Equations (8b)–(8d), among which the ex-
pression of SHH and SHV is consistent with Equations (8b)–(8d).However, in contrast with
Equation (8c), a typo exists in [46,49], missing the square operation in the first and third
terms on the right-hand side of the expression of SVV . Equations (8b)–(8d) will become
Neumann et al.’s coherent modeling of an oriented spheroid [52] when θ = 0, ϕ = ψ,
τ = π

2 − ν, ρa = αa and ρb = ρc = αb.

2.2. Coherency Matrix for a 3D Oriented Spheroidal Particle

A widely-used approximation in the volume scattering modeling of vegetation cover,
as well as soil and ice inclusions, is to consider spheroidal particles with equal minor
axes [46,49], i.e., ρb = ρc. Then the Pauli vector kP of the 3D oriented spheroidal particle is
attained by reformulating Equations (8a)–(8d) as

kP =
1√
2

1 0 0
0 cos 2γ sin 2γ
0 −sin 2γ cos 2γ




ρ∆

(
1− (sin τcos θ − cos τsin ϕsin θ)2

)
+ 2ρb

ρ∆

(
1− (sin τcos θ − cos τsin ϕsin θ)2

)
0

 (9a)

where:

γ = tan−1
(

cos τsin ϕcos θ + sin τsin θ

cos τcos ϕ

)
, ρ∆ = ρa − ρb (9b)

γ denotes the orientation of the particle around the radar LOS, since Equation (9a) is
coherent with the scattering vector model eSV

T proposed by Touzi [21]. γ will be equal to the
canting angle ϕ if the contribution of incidence is neglected (i.e., θ = 0); then the expression
of kP in Equation (9a) will change to that of Equation (3.87) in Cloude [61]. Based on kP,
the second-order descriptor, i.e., the coherency matrix [TP] of the particle is achieved by:

[TP(θ, ϕ, τ)] = kpkH
p =

TP11 TP12 TP13
TP21 TP22 TP23
TP31 TP32 TP33

 (10a)
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where superscript H indicates the operator of the conjugate transpose, and TPmn is the
(m, n) element of [TP] (m, n = 1, 2, 3):

TP11 =
1
2

(
ρΣ − ρ∆(sin τcos θ − cos τsin ϕsin θ)2

)2
, ρΣ = ρa + ρb (10b)

TP12 = TP21 =
1
2

ρ∆

(
ρΣ − ρ∆(sin τcos θ − cos τsin ϕsin θ)2

)(
cos2 τcos2 ϕ− (cos τsin ϕcos θ + sin τsin θ)2

)
(10c)

TP13 = TP31 = ρ∆cos τcos ϕ
(

ρΣ − ρ∆(sin τcos θ − cos τsin ϕsin θ)2
)
(cos τsin ϕcos θ + sin τsin θ) (10d)

TP22 =
1
2

ρ2
∆

(
cos2 τcos2 ϕ− (cos τsin ϕcos θ + sin τsin θ)2

)2
(10e)

TP23 = TP32 = ρ2
∆cos τcos ϕ(cos τsin ϕcos θ + sin τsin θ)

(
cos2 τcos2 ϕ− (cos τsin ϕcos θ + sin τsin θ)2

)
(10f)

TP33 = 2ρ2
∆cos2 τcos2 ϕ(cos τsin ϕcos θ + sin τsin θ)2 (10g)

Like the elements of the scattering matrix [SP] in Equations (8b)–(8d), all the elements
of the coherency matrix [TP] in Equations (10b)–(10g) are real, because the ellipsoidal
particle in the modeling can be generally considered to be made from the non-chiral
materials [61]. Although the dimension of [TP] is higher than that of [SP], they possess
the same five DoF when describing the scattering of a spheroidal particle. Like [SP], [TP]
in Equations (10b)–(10g) is also determined by the 3D orientation (ϕ, τ) of the particle. A
change in (ϕ, τ) will lead to a different [TP], even though the particles present identical shape
and composition toward a constant-incidence radar. To model the incoherent scattering
behavior of a large volume of such differently oriented particles, a volume coherency matrix
[TV ] is often constructed by ensemble averaging the elemental (ϕ, τ)-related matrix [TP]
over the effective ranges of ϕ and τ [40,46,49], as presented in the following two sections.

3. PDFs Modeling for 3D Uniformly Oriented Ellipsoidal Particles

The ensemble averaging relative to variables ϕ and τ is closely related to the joint PDF
p(ϕ, τ). We have p(ϕ, τ) = p(ϕ)p(τ) in view of the independence of ϕ and τ. Theoretically,
any choice of p(τ) and p(ϕ) is feasible. In practice, however, the orientations of ice particles
tend to be uniformly distributed in 3D space [40,45,46,49]. i.e., the sea ice particles are
uniformly oriented in all directions. To obtain this UOD, Sharma et al. [40] assumed angles
ϕ and τ a uniform distribution over their respective ranges and introduced a factor cos τ in
the ensemble averaging. All these factors are equivalent to the use of the following PDFs if
we combine the factor cos τ and uniform p(τ): p(ϕ) = 1

2∆ϕ , ∆ϕ ∈ (0,π]

p(τ) = cos τ
2∆τ , ∆τ ∈

(
0, π2

] (11)

These PDFs have also been used in the volume modeling of Parrella et al. [46,49].
However, based on the following derivation, one can observe that the PDFs in Equation (11)
cannot always ensure the real UOD of particles. UOD is only obtained by distributing the
solid angles of particles uniformly in 3D space.

3.1. Solid Angle

As shown in Figure 1, Euler angles (ϕ, τ) define the 3D orientation of the ellipsoidal
particle P by determining its major axis a. From the viewpoint of O, the two minor axes
b and c of P form two angles dϕ and dτ with the common vertex O, respectively. The
values of dϕ and dτ, i.e., dϕ and dτ, are considered to be infinitesimal, since P is within
the far field of the radar. A minimal solid angle dΩ is then uniquely constructed by dϕ
and dτ, with O as the apex and a as the central axis. Obviously, dΩ presents the same 3D
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orientation as P. Therefore, the 3D uniform distribution of orientation can be established
directly from the solid angle. It is easy to obtain the value of dΩ from Figure 1:

dΩ = cos τdτdϕ (12)

Then, the total solid angle Ωt enclosed by all the 3D orientations of particles is
achieved by:

Ωt =
∫
RΩ

dΩ =
∫
Rϕ

∫
Rτ

cos τdτdϕ (13)

whereRΩ
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Rϕ(ϕ0, ∆ϕ)
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[ϕ0 − ∆ϕ, ϕ0 + ∆ϕ],Rτ(τ0, ∆τ)
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[τ0 − ∆τ, τ0 + ∆τ] (14a)

∆ϕ and ∆τ are the half widths ofRϕ andRτ , respectively:

∆ϕ ∈ [0,π], ∆τ ∈
[
0,
π

2

]
(14b)

with ϕ0 and τ0 being the interval centers:

ϕ0 ∈ Rm
ϕ
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[
−π

2
,
π

2

]
= Rτ

(
0,
π

2

)
(14c)

Rm
ϕ andRm

τ represent the maximum effective ranges of ϕ and τ, respectively.
The double definite integral for variables ϕ and τ in Equation (13) is not direct, as it

involves the relation betweenRϕ andRm
ϕ , as well as that betweenRτ andRm

τ . Here, we
first explore the relation between the effective rangeRτ and the maximum effective range
Rm

τ of tilt τ.We obtainRτ ⊆ Rm
τ when ∆τ ∈

[
0, π2 − |τ0|

]
. This relation, however, is broken

when ∆τ ∈
(
π
2 − |τ0|, π2

]
, because a portion ofRτ are out ofRm

τ in this case. Let us take
τ0 = π

3 , ∆τ = π
4 , for instance; here, we obtain Rτ =

[
π
12 , 7π

12
]
=
[
π
12 , π2

]
∪
[
π
2 , 7π

12
]
, while[

π
2 , 7π

12
]

is out of Rm
τ . Nevertheless, it can be observed from Figure 1 that all the angles

τ± kπ (k is any integer) correspond to the same tilt geometry; in other words, the period of
τ is π in geometry. As a result,

[
π
2 , 7π

12
]

is geometrically equivalent to
⌈
−π

2 ,− 5π
12
⌉
⊂ Rm

τ ,
then

[
π
12 , 7π

12
]
≡
⌈
−π

2 ,− 5π
12
⌉
∪
[
π
12 , π2

]
, i.e., Rτ is equivalently composed of two disjoint

subintervals within Rm
τ . This also equals subtracting the complementary interval of Rτ

from Rm
τ , i.e.,

[
π
12 , 7π

12
]
≡
[
−π

2 , π2
]
−
(
− 5π

12 , π
12
)
. We formulate these two cases of Rτ

as follows:

Rτ ≡
{
Rh

τ(τ0, ∆τ) = [τ0 − ∆τ, τ0 + ∆τ] , ∆τ ∈
[
0, π2 − |τ0|

]
Rv

τ(τ0, ∆τ) = Rm
τ −

(
τc

0 − ∆τc, τc
0 + ∆τc), ∆τ ∈

(
π
2 − |τ0|, π2

] , τ0 ∈ Rm
τ (15a)

The subscripts h and v are introduced to distinguish the two cases ofRτ for they roughly
correspond to the geometry of horizontal tilt and vertical tilt, where:

τc
0 = τ0 − sgn(τ0)

π

2
, ∆τc =

π

2
− ∆τ (15b)

sgn(·) denotes the sign function. As a result, if we define:

Sτ
2k−1 =

∫
Rτ

sin (2k− 1)τdτ∫
Rτ

cos τdτ
, Cτ

2k−1 =

∫
Rτ

cos (2k− 1)τdτ∫
Rτ

cos τdτ
, k = 1, 2, 3 · · · (16a)
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from Equation (15) we then have:
Sτh

2k−1 =

∫
Rh

τ
sin (2k−1)τdτ∫
Rh

τ
cos τdτ

= sin (2k−1)τ0sinc(2k−1)∆τ
cos τ0sinc∆τ

Cτh
2k−1 =

∫
Rh

τ
cos (2k−1)τdτ∫
Rh

τ
cos τdτ

= cos (2k−1)τ0sinc(2k−1)∆τ
cos τ0sinc∆τ

(16b)


Sτv

2k−1 =

∫
Rv

τ
sin (2k−1)τdτ∫
Rv

τ
cos τdτ

=
sgn(τ0)cos (2k−1)τ0cos (2k−1)∆τ

(2k−1)(1−sin|τ0|cos ∆τ)

Cτv
2k−1 =

∫
Rv

τ
cos (2k−1)τdτ∫
Rv

τ
cos τdτ

= (−1)k−1−sin((2k−1)|τ0|)cos (2k−1)∆τ
(2k−1)(1−sin|τ0|cos ∆τ)

(16c)

Likewise, the discontinuity onRϕ is presented as follows:

Rϕ ≡
{ Rs

ϕ = [ϕ0 − ∆ϕ, ϕ0 + ∆ϕ] , ∆ϕ ∈ [0,π− |ϕ0|]

Ra
ϕ = Rm

ϕ −
(

ϕc
0 − ∆ϕc, ϕc

0 + ∆ϕc), ∆ϕ ∈ (π− |ϕ0|,π]
, ϕ0 ∈ Rm

ϕ (17a)

where:
ϕc

0 = ϕ0 − sgn(ϕ0)π, ∆ϕc = π− ∆ϕ (17b)

Nevertheless, from Figure 1 we observe that the angles ϕ± 2kπ correspond to the same
canting geometry, which show the same period as the trigonometric functions. As a result,
the discontinuity in Equation (17a) does not affect the results of the following integrals:

Sϕ
k =

∫
Rϕ

sin kϕdϕ∫
Rϕ

dϕ
=

∫
Rs

ϕ
sin kϕdϕ∫
Rs

ϕ
dϕ

=

∫
Ra

ϕ
sin kϕdϕ∫
Ra

ϕ
dϕ

= cos kϕ0sinck∆ϕ

Cϕ
k =

∫
Rϕ

cos kϕdϕ∫
Rϕ

dϕ
=

∫
Rs

ϕ
cos kϕdϕ∫
Rs

ϕ
dϕ

=

∫
Ra

ϕ
cos kϕdϕ∫
Ra

ϕ
dϕ

= sin kϕ0sinck∆ϕ

(18)

Combine Equation (16), the integral in Equation (13) is then solved:

Ωt =


∫
Rϕ

∫
Rh

τ
cos τdτdϕ = 4∆ϕcos τ0sin ∆τ , ∆τ ∈

[
0, π2 − |τ0|

]
∫
Rϕ

∫
Rv

τ
cos τdτdϕ = 4∆ϕ(1− |sin τ0|cos ∆τ), ∆τ ∈

(
π
2 − |τ0|, π2

] , ∆ϕ ∈ [0,π] (19)

This provides a general formula for computing the solid angle over any canting-tilt
grid cell. The two branches in Equation (19) obtain the same result Ωt = 4π when ∆ϕ = π

and ∆τ = π
2 , which is the solid angle of a sphere.

3.2. PDFs

We define p(Ω) as the PDF of the solid angle withinRΩ. It is then evident that UOD
is achieved if p(Ω) satisfies:

p(Ω) =
1

Ωt
=

{
1

4∆ϕcos τ0sin ∆τ , ∆τ ∈
(

0, π2 − |τ0|
]

1
4∆ϕ(1−|sin τ0|cos ∆τ)

, ∆τ ∈
(
π
2 − |τ0|, π2

] , ∆ϕ ∈ (0,π] (20)

Let p(ϕ, τ) be the joint PDF of ϕ and τ. According to Equation (12) and the normaliza-
tion property of PDF we have:∫

RΩ

p(Ω)dΩ =
∫
Rϕ

∫
Rτ

p(Ω)cos τdτdϕ =
∫
Rϕ

∫
Rτ

p(ϕ, τ)dτdϕ = 1 (21)

An obvious solution to Equation (21) is:

p(Ω)cosτ = p(ϕ, τ) = p(ϕ)p(τ) (22)
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Based on Equation (22) and the uniform p(Ω) in Equation (20), the p(ϕ) and p(τ) for
UOD are finally obtained:

p(ϕ) = 1
2∆ϕ , ∆ϕ ∈ (0,π]

p(τ) =

 ph(τ) =
cos τ

2cos τ0sin ∆τ , ∆τ ∈
(

0, π2 − |τ0|
]

pv(τ) =
cos τ

2(1−|sin τ0|cos ∆τ)
, ∆τ ∈

(
π
2 − |τ0|, π2

] (23a)

Equation (23a) formulates the same p(ϕ) as Equation (11), but also the improved
p(τ) for 3D uniform modeling of ice particle orientation. The two branches of p(τ) in
Equation (23a) are complementary, which roughly relates to the tilt geometry of horizontal
preference and vertical preference, respectively. They are denoted as ph(τ) and pv(τ) for
convenience. The two branches intersect at ∆τ = π

2 , and we obtain ph(τ) = pv(τ) =
cos τ

2 .
This shows a randomly 3D uniform distribution without any orientation preference, and
we denote it as pr(τ). A similar PDF has been used by Nghiem et al. [52] to depict random
orientation of scatterers such as ice grains in snow. It was also used by Cloude [60] to
characterize the volume scattering and depolarization of particles with random distribution
of orientation. The PDF Yamaguchi et al. [23] used to model the orientation θ of dipole
clouds around radar LOS is also p(θ) = cos θ

2 .
Nevertheless, as an exception, p(τ) in Equation (23a) is invalid if all the particles bear

the single tilt τ0 with ∆τ = 0. This also happens to p(ϕ) if particles orient the same canting
ϕ0 with ∆ϕ = 0. To fix this, in view of the normalization property of PDF, we define:{

p(ϕ) = δ(ϕ− ϕ0), ∆ϕ = 0

p(τ) = δ(τ − τ0), ∆τ = 0
(23b)

where δ(·) is the Dirac function. In fact, a similar PDF p(ψ) = δ(ψ) has been proposed
by Nghiem et al. [52] to depict brine inclusions oriented in vertical direction. Like τ,
here ψ also denotes tilt angle, but ψ = π

2 − τ. As a result, p(ψ) = δ(ψ) is equivalent to
p(τ) = δ(τ − τ0) with τ0 = π

2 , which has also been used by Zhang et al. [45] in scattering
modeling of the vertically tilted brine inclusions. In their characterization for polarimetric
scattering from vegetation canopies, Arii et al. [55] also defined a similar PDF for cases
in which all the individual elements have the same orientation. Using Equation (23), a
complete expression of the joint PDF p(ϕ, τ) for UOD with six different cases is finally
achieved, as expressed in Equation (24). The six cases are a result of the combination of
the three forms of ∆τ and the two forms of ∆ϕ. We denote them as Case 1) to Case 6) for
convenience. The PDF in Equation (24) will be directly used in the following ensemble
modeling of the volume coherency matrix.

p(ϕ, τ) =



cos τ
4∆ϕcos τ0sin ∆τ ,

{
∆τ ∈

(
0, π2 − |τ0|

]
, ∆ϕ ∈ (0,π]

}
:= Case 1)

cos τ
4∆ϕ(1−|sin τ0|cos ∆τ)

,
{

∆τ ∈
(
π
2 − |τ0|, π2

]
, ∆ϕ ∈ (0,π]

}
:= Case 2)

δ(ϕ−ϕ0)cos τ
2cos τ0sin ∆τ ,

{
∆τ ∈

(
0, π2 − |τ0|

]
, ∆ϕ = 0

}
:= Case 3)

δ(ϕ−ϕ0)cos τ
2(1−|sin τ0|cos ∆τ)

,
{

∆τ ∈
(
π
2 − |τ0|, π2

]
, ∆ϕ = 0

}
:= Case 4)

δ(τ−τ0)
2∆ϕ , {∆τ = 0, ∆ϕ ∈ (0,π]} := Case 5)

δ(ϕ− ϕ0)δ(τ − τ0) , {∆τ = 0, ∆ϕ = 0} := Case 6)

(24)

4. Volume Scattering Modeling for 3D Uniformly Distributed Spheroidal Particles
4.1. Multiplicative Volume Scattering Model

After establishing the polarimetric coherent scattering and angular distribution of 3D
oriented spheroidal particles, we can then construct the volume coherency matrix [TV ] by
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ensemble averaging the elemental (ϕ, τ)-dependent coherency matrix [TP] over the ranges
Rϕ andRτ to describe the incoherent scattering behavior of a large volume of differently
orientated spheroidal particles:

[TV ] = 〈[TP]〉 =

TV11 TV12 TV13
TV21 TV22 TV23
TV31 TV32 TV33

 (25)

where 〈·〉 denotes the operator of ensemble average. Like [TP], [TV ] is also a symmetric matrix
if the particles are made from non-chiral material. TVmn is the (m, n) element of [TV ]:

TVmn = TVnm = 〈TPmn〉 =
∫
Rϕ

∫
Rτ

TPmn(ϕ, τ)p(ϕ, τ)dτdϕ, m, n = 1, 2, 3 (26a)

Bringing Equation (24) into Equation (26a), we then obtain the calculation of TVmn
with six different cases:

TVmn =



1
4∆ϕcos τ0sin ∆τ

∫
Rϕ

∫
Rh

τ
TPmn(ϕ, τ)cos τdτdϕ , Case 1)

1
4∆ϕ(1−|sin τ0|cos ∆τ)

∫
Rϕ

∫
Rv

τ
TPmn(ϕ, τ)cos τdτdϕ , Case 2)

1
2cos τ0sin ∆τ

∫
Rh

τ
TPmn(ϕ0, τ)cos τdτ , Case 3)

1
2(1−|sin τ0|cos ∆τ)

∫
Rv

τ
TPmn(ϕ0, τ)cos τdτ , Case 4)

1
2∆ϕ

∫
Rϕ

TPmn(ϕ, τ0)dϕ , Case 5)

TPmn(ϕ0, τ0) , Case 6)

(26b)

Nevertheless, the six expressions of TVmn can be perfectly unified into the following form

TVmn = τT[ω]mnϕ (27)

This enables a multiplicative modeling of the volume scattering of 3D uniformly
oriented spheroidal particles. The contributions of radar observation geometry and particle
shape are coupled into the matrix [ω]mn, which is a 6× 5 or 6× 4 matrix determined by
the radar incidence θ and particle shape parameters ρΣ and ρ∆:

[ω]mn = [A]mn

⊕
[B]mn =

[
[A]mn 0

0 [B]mn

]
, m, n = 1, 2, 3 (28)

where
⊕

indicates the operator of direct sum; [A]mn is a 3× 2 matrix, and [B]mn is a 3× 3
or 3× 2 matrix. The symmetry of [TV ] means that:

[ω]mn = [ω]nm ↔
{
[A]mn = [A]nm
[B]mn = [B]nm

, m, n = 1, 2, 3 (29)

Matrices [A]mn and [B]mn are specific to each upper/lower triangular entry of the
volume coherency matrix [TV ], as formulated in Appendix A. In addition to [ω]mn, the
3D orientation of particles contributes to the modeling of volume scattering through the
vectors τ and ϕ, as shown in Equation (27), where τ is a tilt-related vector:

τ =

τh
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Sτh

5 Sτh
3 Sτh

1 Cτh
5 Cτh

3 1
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(
0, π2 − |τ0|

]
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and ϕ is a canting-related vector:

ϕ =


ϕs

Remote Sens. 2023, 15, x FOR PEER REVIEW 8 of 36 
 

 

𝑇 = 𝑇 = 𝜌∆ cos 𝜏 cos 𝜑 (𝜌 − 𝜌∆(sin 𝜏 cos 𝜃 − cos 𝜏 sin 𝜑 sin 𝜃) )(cos 𝜏 sin 𝜑 cos 𝜃 + sin 𝜏 sin 𝜃)  (10d) 𝑇 = 𝜌∆(cos 𝜏 cos 𝜑 − (cos 𝜏 sin 𝜑 cos 𝜃 + sin 𝜏 sin 𝜃) )   (10e) 𝑇 = 𝑇 = 𝜌∆ cos 𝜏 cos 𝜑 (cos 𝜏 sin 𝜑 cos 𝜃 + sin 𝜏 sin 𝜃)(cos 𝜏 cos 𝜑 − (cos 𝜏 sin 𝜑 cos 𝜃 + sin 𝜏 sin 𝜃) )  (10f) 𝑇 = 2𝜌∆ cos 𝜏 cos 𝜑 (cos 𝜏 sin 𝜑 cos 𝜃 + sin 𝜏 sin 𝜃)  (10g) 
Like the elements of the scattering matrix 𝑆  in Equations (8b)–(8d), all the elements 

of the coherency matrix 𝑇  in Equations (10b)–(10g) are real, because the ellipsoidal par-
ticle in the modeling can be generally considered to be made from the non-chiral materials 
[61]. Although the dimension of 𝑇  is higher than that of 𝑆 , they possess the same five 
DoF when describing the scattering of a spheroidal particle. Like 𝑆 , 𝑇  in Equations 
(10b)–(10g) is also determined by the 3D orientation (𝜑, 𝜏) of the particle. A change in (𝜑, 𝜏) 
will lead to a different 𝑇 , even though the particles present identical shape and compo-
sition toward a constant-incidence radar. To model the incoherent scattering behavior of 
a large volume of such differently oriented particles, a volume coherency matrix 𝑇  is 
often constructed by ensemble averaging the elemental (𝜑, 𝜏)-related matrix 𝑇  over the 
effective ranges of 𝜑 and 𝜏 [40,46,49], as presented in the following two sections. 

3. PDFs Modeling for 3D Uniformly Oriented Ellipsoidal Particles 
The ensemble averaging relative to variables 𝜑 and 𝜏 is closely related to the joint 

PDF 𝑝(𝜑, 𝜏). We have 𝑝(𝜑, 𝜏) = 𝑝(𝜑)𝑝(𝜏) in view of the independence of 𝜑 and 𝜏. Theo-
retically, any choice of 𝑝(𝜏) and 𝑝(𝜑) is feasible. In practice, however, the orientations of 
ice particles tend to be uniformly distributed in 3D space [40,45,46,49]. i.e., the sea ice par-
ticles are uniformly oriented in all directions. To obtain this UOD, Sharma et al. [40] as-
sumed angles 𝜑 and 𝜏 a uniform distribution over their respective ranges and introduced 
a factor cos 𝜏 in the ensemble averaging. All these factors are equivalent to the use of the 
following PDFs if we combine the factor cos 𝜏 and uniform 𝑝(𝜏): 𝑝(𝜑) = ∆ , ∆𝜑 ∈ (0, π𝑝(𝜏) = ∆ , ∆𝜏 ∈ 0,   (11) 

These PDFs have also been used in the volume modeling of Parrella et al. [46,49]. 
However, based on the following derivation, one can observe that the PDFs in Equation 
(11) cannot always ensure the real UOD of particles. UOD is only obtained by distributing 
the solid angles of particles uniformly in 3D space. 

3.1. Solid Angle 
As shown in Figure 1, Euler angles (𝜑, 𝜏) define the 3D orientation of the ellipsoidal 

particle 𝐏 by determining its major axis 𝒂. From the viewpoint of 𝐎, the two minor axes 𝒃 
and 𝒄 of 𝐏 form two angles 𝒅𝝋 and 𝒅𝝉 with the common vertex 𝐎, respectively. The val-
ues of 𝒅𝝋 and 𝒅𝝉, i.e., 𝑑𝜑 and 𝑑𝜏, are considered to be infinitesimal, since 𝐏 is within the 
far field of the radar. A minimal solid angle 𝒅𝛀 is then uniquely constructed by 𝒅𝝋 and 𝒅𝝉, with 𝐎 as the apex and 𝒂 as the central axis. Obviously, 𝒅𝛀 presents the same 3D ori-
entation as 𝐏. Therefore, the 3D uniform distribution of orientation can be established di-
rectly from the solid angle. It is easy to obtain the value of 𝒅𝛀 from Figure 1: 𝑑Ω = cos 𝜏 𝑑𝜏𝑑𝜑 (12) 

Then, the total solid angle Ω  enclosed by all the 3D orientations of particles is 
achieved by: Ω = 𝑑Ω ℛ = cos 𝜏 𝑑𝜏𝑑𝜑 ℛ ℛ   (13) 

where ℛ ≝ 0, Ω  is the effective range of solid angle; ℛ  and ℛ  are the effective ranges 
of 𝜑 and 𝜏: ℛ (𝜑 , ∆𝜑) ≝ 𝜑 − ∆𝜑, 𝜑 + ∆𝜑 , ℛ (𝜏 , ∆𝜏) ≝ 𝜏 − ∆𝜏, 𝜏 + ∆𝜏  (14a)

[
Sϕ

3 Sϕ
1 Cϕ

4 Cϕ
2 1

]T
, m, n = 1, 2 or m = n = 3

ϕa

Remote Sens. 2023, 15, x FOR PEER REVIEW 8 of 36 
 

 

𝑇 = 𝑇 = 𝜌∆ cos 𝜏 cos 𝜑 (𝜌 − 𝜌∆(sin 𝜏 cos 𝜃 − cos 𝜏 sin 𝜑 sin 𝜃) )(cos 𝜏 sin 𝜑 cos 𝜃 + sin 𝜏 sin 𝜃)  (10d) 𝑇 = 𝜌∆(cos 𝜏 cos 𝜑 − (cos 𝜏 sin 𝜑 cos 𝜃 + sin 𝜏 sin 𝜃) )   (10e) 𝑇 = 𝑇 = 𝜌∆ cos 𝜏 cos 𝜑 (cos 𝜏 sin 𝜑 cos 𝜃 + sin 𝜏 sin 𝜃)(cos 𝜏 cos 𝜑 − (cos 𝜏 sin 𝜑 cos 𝜃 + sin 𝜏 sin 𝜃) )  (10f) 𝑇 = 2𝜌∆ cos 𝜏 cos 𝜑 (cos 𝜏 sin 𝜑 cos 𝜃 + sin 𝜏 sin 𝜃)  (10g) 
Like the elements of the scattering matrix 𝑆  in Equations (8b)–(8d), all the elements 

of the coherency matrix 𝑇  in Equations (10b)–(10g) are real, because the ellipsoidal par-
ticle in the modeling can be generally considered to be made from the non-chiral materials 
[61]. Although the dimension of 𝑇  is higher than that of 𝑆 , they possess the same five 
DoF when describing the scattering of a spheroidal particle. Like 𝑆 , 𝑇  in Equations 
(10b)–(10g) is also determined by the 3D orientation (𝜑, 𝜏) of the particle. A change in (𝜑, 𝜏) 
will lead to a different 𝑇 , even though the particles present identical shape and compo-
sition toward a constant-incidence radar. To model the incoherent scattering behavior of 
a large volume of such differently oriented particles, a volume coherency matrix 𝑇  is 
often constructed by ensemble averaging the elemental (𝜑, 𝜏)-related matrix 𝑇  over the 
effective ranges of 𝜑 and 𝜏 [40,46,49], as presented in the following two sections. 

3. PDFs Modeling for 3D Uniformly Oriented Ellipsoidal Particles 
The ensemble averaging relative to variables 𝜑 and 𝜏 is closely related to the joint 

PDF 𝑝(𝜑, 𝜏). We have 𝑝(𝜑, 𝜏) = 𝑝(𝜑)𝑝(𝜏) in view of the independence of 𝜑 and 𝜏. Theo-
retically, any choice of 𝑝(𝜏) and 𝑝(𝜑) is feasible. In practice, however, the orientations of 
ice particles tend to be uniformly distributed in 3D space [40,45,46,49]. i.e., the sea ice par-
ticles are uniformly oriented in all directions. To obtain this UOD, Sharma et al. [40] as-
sumed angles 𝜑 and 𝜏 a uniform distribution over their respective ranges and introduced 
a factor cos 𝜏 in the ensemble averaging. All these factors are equivalent to the use of the 
following PDFs if we combine the factor cos 𝜏 and uniform 𝑝(𝜏): 𝑝(𝜑) = ∆ , ∆𝜑 ∈ (0, π𝑝(𝜏) = ∆ , ∆𝜏 ∈ 0,   (11) 

These PDFs have also been used in the volume modeling of Parrella et al. [46,49]. 
However, based on the following derivation, one can observe that the PDFs in Equation 
(11) cannot always ensure the real UOD of particles. UOD is only obtained by distributing 
the solid angles of particles uniformly in 3D space. 

3.1. Solid Angle 
As shown in Figure 1, Euler angles (𝜑, 𝜏) define the 3D orientation of the ellipsoidal 

particle 𝐏 by determining its major axis 𝒂. From the viewpoint of 𝐎, the two minor axes 𝒃 
and 𝒄 of 𝐏 form two angles 𝒅𝝋 and 𝒅𝝉 with the common vertex 𝐎, respectively. The val-
ues of 𝒅𝝋 and 𝒅𝝉, i.e., 𝑑𝜑 and 𝑑𝜏, are considered to be infinitesimal, since 𝐏 is within the 
far field of the radar. A minimal solid angle 𝒅𝛀 is then uniquely constructed by 𝒅𝝋 and 𝒅𝝉, with 𝐎 as the apex and 𝒂 as the central axis. Obviously, 𝒅𝛀 presents the same 3D ori-
entation as 𝐏. Therefore, the 3D uniform distribution of orientation can be established di-
rectly from the solid angle. It is easy to obtain the value of 𝒅𝛀 from Figure 1: 𝑑Ω = cos 𝜏 𝑑𝜏𝑑𝜑 (12) 

Then, the total solid angle Ω  enclosed by all the 3D orientations of particles is 
achieved by: Ω = 𝑑Ω ℛ = cos 𝜏 𝑑𝜏𝑑𝜑 ℛ ℛ   (13) 

where ℛ ≝ 0, Ω  is the effective range of solid angle; ℛ  and ℛ  are the effective ranges 
of 𝜑 and 𝜏: ℛ (𝜑 , ∆𝜑) ≝ 𝜑 − ∆𝜑, 𝜑 + ∆𝜑 , ℛ (𝜏 , ∆𝜏) ≝ 𝜏 − ∆𝜏, 𝜏 + ∆𝜏  (14a)

[
Cϕ

3 Cϕ
1 Sϕ

4 Sϕ
2

]T
, else

(31)

As a result, the volume coherency matrix of particles can be generally expressed as:

[TV ] =

τT[ω]11ϕs τT[ω]12ϕs τT[ω]13ϕa
τT[ω]21ϕs τT[ω]22ϕs τT[ω]13ϕa
τT[ω]31ϕr τT[ω]32ϕr τT[ω]33ϕs

 = [Γ]T[Ω][Φ] (32)

where:

[Γ] =

{
[Γ]h
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Like the elements of the scattering matrix 𝑆  in Equations (8b)–(8d), all the elements 

of the coherency matrix 𝑇  in Equations (10b)–(10g) are real, because the ellipsoidal par-
ticle in the modeling can be generally considered to be made from the non-chiral materials 
[61]. Although the dimension of 𝑇  is higher than that of 𝑆 , they possess the same five 
DoF when describing the scattering of a spheroidal particle. Like 𝑆 , 𝑇  in Equations 
(10b)–(10g) is also determined by the 3D orientation (𝜑, 𝜏) of the particle. A change in (𝜑, 𝜏) 
will lead to a different 𝑇 , even though the particles present identical shape and compo-
sition toward a constant-incidence radar. To model the incoherent scattering behavior of 
a large volume of such differently oriented particles, a volume coherency matrix 𝑇  is 
often constructed by ensemble averaging the elemental (𝜑, 𝜏)-related matrix 𝑇  over the 
effective ranges of 𝜑 and 𝜏 [40,46,49], as presented in the following two sections. 

3. PDFs Modeling for 3D Uniformly Oriented Ellipsoidal Particles 
The ensemble averaging relative to variables 𝜑 and 𝜏 is closely related to the joint 

PDF 𝑝(𝜑, 𝜏). We have 𝑝(𝜑, 𝜏) = 𝑝(𝜑)𝑝(𝜏) in view of the independence of 𝜑 and 𝜏. Theo-
retically, any choice of 𝑝(𝜏) and 𝑝(𝜑) is feasible. In practice, however, the orientations of 
ice particles tend to be uniformly distributed in 3D space [40,45,46,49]. i.e., the sea ice par-
ticles are uniformly oriented in all directions. To obtain this UOD, Sharma et al. [40] as-
sumed angles 𝜑 and 𝜏 a uniform distribution over their respective ranges and introduced 
a factor cos 𝜏 in the ensemble averaging. All these factors are equivalent to the use of the 
following PDFs if we combine the factor cos 𝜏 and uniform 𝑝(𝜏): 𝑝(𝜑) = ∆ , ∆𝜑 ∈ (0, π𝑝(𝜏) = ∆ , ∆𝜏 ∈ 0,   (11) 

These PDFs have also been used in the volume modeling of Parrella et al. [46,49]. 
However, based on the following derivation, one can observe that the PDFs in Equation 
(11) cannot always ensure the real UOD of particles. UOD is only obtained by distributing 
the solid angles of particles uniformly in 3D space. 

3.1. Solid Angle 
As shown in Figure 1, Euler angles (𝜑, 𝜏) define the 3D orientation of the ellipsoidal 

particle 𝐏 by determining its major axis 𝒂. From the viewpoint of 𝐎, the two minor axes 𝒃 
and 𝒄 of 𝐏 form two angles 𝒅𝝋 and 𝒅𝝉 with the common vertex 𝐎, respectively. The val-
ues of 𝒅𝝋 and 𝒅𝝉, i.e., 𝑑𝜑 and 𝑑𝜏, are considered to be infinitesimal, since 𝐏 is within the 
far field of the radar. A minimal solid angle 𝒅𝛀 is then uniquely constructed by 𝒅𝝋 and 𝒅𝝉, with 𝐎 as the apex and 𝒂 as the central axis. Obviously, 𝒅𝛀 presents the same 3D ori-
entation as 𝐏. Therefore, the 3D uniform distribution of orientation can be established di-
rectly from the solid angle. It is easy to obtain the value of 𝒅𝛀 from Figure 1: 𝑑Ω = cos 𝜏 𝑑𝜏𝑑𝜑 (12) 

Then, the total solid angle Ω  enclosed by all the 3D orientations of particles is 
achieved by: Ω = 𝑑Ω ℛ = cos 𝜏 𝑑𝜏𝑑𝜑 ℛ ℛ   (13) 

where ℛ ≝ 0, Ω  is the effective range of solid angle; ℛ  and ℛ  are the effective ranges 
of 𝜑 and 𝜏: ℛ (𝜑 , ∆𝜑) ≝ 𝜑 − ∆𝜑, 𝜑 + ∆𝜑 , ℛ (𝜏 , ∆𝜏) ≝ 𝜏 − ∆𝜏, 𝜏 + ∆𝜏  (14a)

[I3]
⊗

τh, ∆τ ∈
(

0, π2 − |τ0|
]

[Γ]v
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PDF 𝑝(𝜑, 𝜏). We have 𝑝(𝜑, 𝜏) = 𝑝(𝜑)𝑝(𝜏) in view of the independence of 𝜑 and 𝜏. Theo-
retically, any choice of 𝑝(𝜏) and 𝑝(𝜑) is feasible. In practice, however, the orientations of 
ice particles tend to be uniformly distributed in 3D space [40,45,46,49]. i.e., the sea ice par-
ticles are uniformly oriented in all directions. To obtain this UOD, Sharma et al. [40] as-
sumed angles 𝜑 and 𝜏 a uniform distribution over their respective ranges and introduced 
a factor cos 𝜏 in the ensemble averaging. All these factors are equivalent to the use of the 
following PDFs if we combine the factor cos 𝜏 and uniform 𝑝(𝜏): 𝑝(𝜑) = ∆ , ∆𝜑 ∈ (0, π𝑝(𝜏) = ∆ , ∆𝜏 ∈ 0,   (11) 

These PDFs have also been used in the volume modeling of Parrella et al. [46,49]. 
However, based on the following derivation, one can observe that the PDFs in Equation 
(11) cannot always ensure the real UOD of particles. UOD is only obtained by distributing 
the solid angles of particles uniformly in 3D space. 

3.1. Solid Angle 
As shown in Figure 1, Euler angles (𝜑, 𝜏) define the 3D orientation of the ellipsoidal 

particle 𝐏 by determining its major axis 𝒂. From the viewpoint of 𝐎, the two minor axes 𝒃 
and 𝒄 of 𝐏 form two angles 𝒅𝝋 and 𝒅𝝉 with the common vertex 𝐎, respectively. The val-
ues of 𝒅𝝋 and 𝒅𝝉, i.e., 𝑑𝜑 and 𝑑𝜏, are considered to be infinitesimal, since 𝐏 is within the 
far field of the radar. A minimal solid angle 𝒅𝛀 is then uniquely constructed by 𝒅𝝋 and 𝒅𝝉, with 𝐎 as the apex and 𝒂 as the central axis. Obviously, 𝒅𝛀 presents the same 3D ori-
entation as 𝐏. Therefore, the 3D uniform distribution of orientation can be established di-
rectly from the solid angle. It is easy to obtain the value of 𝒅𝛀 from Figure 1: 𝑑Ω = cos 𝜏 𝑑𝜏𝑑𝜑 (12) 

Then, the total solid angle Ω  enclosed by all the 3D orientations of particles is 
achieved by: Ω = 𝑑Ω ℛ = cos 𝜏 𝑑𝜏𝑑𝜑 ℛ ℛ   (13) 

where ℛ ≝ 0, Ω  is the effective range of solid angle; ℛ  and ℛ  are the effective ranges 
of 𝜑 and 𝜏: ℛ (𝜑 , ∆𝜑) ≝ 𝜑 − ∆𝜑, 𝜑 + ∆𝜑 , ℛ (𝜏 , ∆𝜏) ≝ 𝜏 − ∆𝜏, 𝜏 + ∆𝜏  (14a)

[I3]
⊗

τv, ∆τ ∈
(
π
2 − |τ0|, π2

] , [Φ] =

[
[Φ]s
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Like the elements of the scattering matrix 𝑆  in Equations (8b)–(8d), all the elements 

of the coherency matrix 𝑇  in Equations (10b)–(10g) are real, because the ellipsoidal par-
ticle in the modeling can be generally considered to be made from the non-chiral materials 
[61]. Although the dimension of 𝑇  is higher than that of 𝑆 , they possess the same five 
DoF when describing the scattering of a spheroidal particle. Like 𝑆 , 𝑇  in Equations 
(10b)–(10g) is also determined by the 3D orientation (𝜑, 𝜏) of the particle. A change in (𝜑, 𝜏) 
will lead to a different 𝑇 , even though the particles present identical shape and compo-
sition toward a constant-incidence radar. To model the incoherent scattering behavior of 
a large volume of such differently oriented particles, a volume coherency matrix 𝑇  is 
often constructed by ensemble averaging the elemental (𝜑, 𝜏)-related matrix 𝑇  over the 
effective ranges of 𝜑 and 𝜏 [40,46,49], as presented in the following two sections. 

3. PDFs Modeling for 3D Uniformly Oriented Ellipsoidal Particles 
The ensemble averaging relative to variables 𝜑 and 𝜏 is closely related to the joint 

PDF 𝑝(𝜑, 𝜏). We have 𝑝(𝜑, 𝜏) = 𝑝(𝜑)𝑝(𝜏) in view of the independence of 𝜑 and 𝜏. Theo-
retically, any choice of 𝑝(𝜏) and 𝑝(𝜑) is feasible. In practice, however, the orientations of 
ice particles tend to be uniformly distributed in 3D space [40,45,46,49]. i.e., the sea ice par-
ticles are uniformly oriented in all directions. To obtain this UOD, Sharma et al. [40] as-
sumed angles 𝜑 and 𝜏 a uniform distribution over their respective ranges and introduced 
a factor cos 𝜏 in the ensemble averaging. All these factors are equivalent to the use of the 
following PDFs if we combine the factor cos 𝜏 and uniform 𝑝(𝜏): 𝑝(𝜑) = ∆ , ∆𝜑 ∈ (0, π𝑝(𝜏) = ∆ , ∆𝜏 ∈ 0,   (11) 

These PDFs have also been used in the volume modeling of Parrella et al. [46,49]. 
However, based on the following derivation, one can observe that the PDFs in Equation 
(11) cannot always ensure the real UOD of particles. UOD is only obtained by distributing 
the solid angles of particles uniformly in 3D space. 

3.1. Solid Angle 
As shown in Figure 1, Euler angles (𝜑, 𝜏) define the 3D orientation of the ellipsoidal 

particle 𝐏 by determining its major axis 𝒂. From the viewpoint of 𝐎, the two minor axes 𝒃 
and 𝒄 of 𝐏 form two angles 𝒅𝝋 and 𝒅𝝉 with the common vertex 𝐎, respectively. The val-
ues of 𝒅𝝋 and 𝒅𝝉, i.e., 𝑑𝜑 and 𝑑𝜏, are considered to be infinitesimal, since 𝐏 is within the 
far field of the radar. A minimal solid angle 𝒅𝛀 is then uniquely constructed by 𝒅𝝋 and 𝒅𝝉, with 𝐎 as the apex and 𝒂 as the central axis. Obviously, 𝒅𝛀 presents the same 3D ori-
entation as 𝐏. Therefore, the 3D uniform distribution of orientation can be established di-
rectly from the solid angle. It is easy to obtain the value of 𝒅𝛀 from Figure 1: 𝑑Ω = cos 𝜏 𝑑𝜏𝑑𝜑 (12) 

Then, the total solid angle Ω  enclosed by all the 3D orientations of particles is 
achieved by: Ω = 𝑑Ω ℛ = cos 𝜏 𝑑𝜏𝑑𝜑 ℛ ℛ   (13) 

where ℛ ≝ 0, Ω  is the effective range of solid angle; ℛ  and ℛ  are the effective ranges 
of 𝜑 and 𝜏: ℛ (𝜑 , ∆𝜑) ≝ 𝜑 − ∆𝜑, 𝜑 + ∆𝜑 , ℛ (𝜏 , ∆𝜏) ≝ 𝜏 − ∆𝜏, 𝜏 + ∆𝜏  (14a)

[I3]
⊗

ϕs
[Φ]a
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ues of 𝒅𝝋 and 𝒅𝝉, i.e., 𝑑𝜑 and 𝑑𝜏, are considered to be infinitesimal, since 𝐏 is within the 
far field of the radar. A minimal solid angle 𝒅𝛀 is then uniquely constructed by 𝒅𝝋 and 𝒅𝝉, with 𝐎 as the apex and 𝒂 as the central axis. Obviously, 𝒅𝛀 presents the same 3D ori-
entation as 𝐏. Therefore, the 3D uniform distribution of orientation can be established di-
rectly from the solid angle. It is easy to obtain the value of 𝒅𝛀 from Figure 1: 𝑑Ω = cos 𝜏 𝑑𝜏𝑑𝜑 (12) 

Then, the total solid angle Ω  enclosed by all the 3D orientations of particles is 
achieved by: Ω = 𝑑Ω ℛ = cos 𝜏 𝑑𝜏𝑑𝜑 ℛ ℛ   (13) 

where ℛ ≝ 0, Ω  is the effective range of solid angle; ℛ  and ℛ  are the effective ranges 
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[I3]
⊗

ϕa

]
(33)

[Ω] =
[
[Ω]s [Ω]r

]
, [Ω]s =

[ω]11 [ω]12 0
[ω]21 [ω]22 0

0 0 [ω]33

, [Ω]a =

 0 0 [ω]13
0 0 [ω]23

[ω]31 [ω]32 0

 (34)

[I3] is the 3× 3 identity matrix and
⊗

denotes the operator of the Kronecker product.
We call [Ω] the essential matrix, as it is only determined by the particle shape and the
observation geometry of the radar. The six volume scattering scenarios in Equation (26b)
differ from one another due to the 3D orientations of particles, which is accounted for by
the tilt matrix [Γ] and canting matrix [Φ]. To investigate these, we first focus on the limit
of [Γ]h, [Γ]v and [Φ], and that of τh, τv and ϕ when ∆τ and ∆ϕ approach zero. Based on
Equations (16b), (16c) and (18) we have:


lim

∆τ→0
Sτh

2k−1 = sin (2k−1)τ0
cos τ0

lim
∆τ→0

Cτh
2k−1 = cos (2k−1)τ0

cos τ0

,


lim

∆ϕ→0

(
lim
|τ0|→π

2

Sτv
2k−1

)
= 0

lim
∆ϕ→0

(
lim
|τ0|→π

2

Cτv
2k−1

)
= (−1)k−1(2k− 1)

,


lim

∆ϕ→0
Sϕ

k = cos kϕ0

lim
∆ϕ→0

Cϕ
k = sin kϕ0

(35)

The limits of tilt matrices [Γ]h and [Γ]v are then obtained as follows:
[Γ]h0
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following PDFs if we combine the factor cos 𝜏 and uniform 𝑝(𝜏): 𝑝(𝜑) = ∆ , ∆𝜑 ∈ (0, π𝑝(𝜏) = ∆ , ∆𝜏 ∈ 0,   (11) 
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However, based on the following derivation, one can observe that the PDFs in Equation 
(11) cannot always ensure the real UOD of particles. UOD is only obtained by distributing 
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[Γ]h = [I3]
⊗

τh0
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[Γ]v
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= [I3]

⊗
τv0

(36a)
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∆τ→0

(
lim
|τ0|→π

2

τv

)
=
[

0 0 0 5 −3 1
]T

(36b)

Likewise, the limit of tilt matrix [Φ] is obtained as follows:

[Φ]0 = lim
∆ϕ→0

[Φ] =

 [Φ]s0
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lim
∆ϕ→0

[Φ]s = [I3]
⊗

ϕs0

[Φ]a0
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lim
∆ϕ→0

[Φ]a = [I3]
⊗

ϕa0

 (37a)
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lim
∆ϕ→0

ϕs =
[

cos 3ϕ0 cos ϕ0 sin 4ϕ0 sin 2ϕ0 1
]T

, m, n = 1, 2 or m = n = 3

ϕa0
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lim
∆ϕ→0

ϕa =
[

sin 3ϕ0 sin ϕ0 cos 4ϕ0 cos 2ϕ0

]T
, else

(37b)

Based on all these equations, the volume coherency element TVmn and matrix [TV ] of
the six cases can be directly formulated as:

TVmn =



τT
h [ω]mnϕ ↔ Case 1) ↔ [Γ]Th [Ω][Φ]

τT
v [ω]mnϕ ↔ Case 2) ↔ [Γ]Tv [Ω][Φ]

τT
h [ω]mnϕ0 ↔ Case 3) ↔ [Γ]Th [Ω][Φ]0

τT
v [ω]mnϕ0 ↔ Case 4) ↔ [Γ]Tv [Ω][Φ]0

τT
h0[ω]mnϕ ↔ Case 5a) ↔ [Γ]Th0[Ω][Φ]

τT
v0[ω]mnϕ ↔ Case 5b) ↔ [Γ]Tv0[Ω][Φ]

τT
h0[ω]mnϕ0 ↔ Case 6a) ↔ [Γ]Th0[Ω][Φ]0

τT
v0[ω]mnϕ0 ↔ Case 6b) ↔ [Γ]Tv0[Ω][Φ]0


= [TV ] (38)

where a dichotomy is carried out for Case 5) and Case 6) according to whether |τ0| is π
2 :

Case 5) :=
{

Case 5a), |τ0| 6= π
2

Case 5b), |τ0| = π
2

}
, ∆τ = 0, ∆ϕ ∈ (0,π]

Case 6) :=
{

Case 6a), |τ0| 6= π
2

Case 6b), |τ0| = π
2

}
, ∆τ = 0, ∆ϕ = 0

(39)

4.2. Special Scenerios

Among the six cases listed in Equation (38), Case 6) represents an extreme situation in
which all particles are 3D aligned with the same Euler angles (ϕ0, τ0). The scatterings of
the particles are completely coherent; the volume coherency matrix [TV ] stays the same as
the rank-1 single coherency matrix [TP]:{

∆τ = 0

∆ϕ = 0
→ [TV ] = [TP]↔

[Γ]Th0[Ω][Φ]0 =
[
TP
(
θ, ϕ, τ = τ0 6= ±π

2
)]

[Γ]Tv0[Ω][Φ]0 =
[
TP
(
θ, ϕ, τ = τ0 = ±π

2
)] (40)

In other cases, the diverse 3D orientation will depolarize the scatterings of particles,
which raises the entropy of the volume coherence matrix [TV ] and makes it no longer con-
sistent with [TP]. Nevertheless, the degree of such geometric depolarization is tuned by the
shape of the particle and fails when the particles are spheres, i.e., ρ∆ = 0. Additionally, the
observation geometry of radar also loses its influence on [TV ] of spherical particles because
ρ∆ = 0 makes the sub-essential matrices [ω]mn independent of the radar incidence θ:

[ω]mn =


ρ2

Σ
2

[
05×4 05×1

01×4 1

]
, m = n = 1

0 , else

(41)

As a result, from Equation (38) we can easily determine that:

[TV ] = [TP] =
ρ2

Σ
2

1 0 0
0 0 0
0 0 0

 (42)

This is the canonical model of surface scattering.
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From the perspective of tilt geometry, the six cases of [TV ] in Equation (38) correspond
to the horizontal tilt and vertical tilt, respectively. For convenience of analysis, we define:

[
Th

V

]
= [Γ]Th [Ω][Φ], τ ∈ Rh

τ(τh0, ∆τh), τh0 ∈ Rm
τ , ∆τh ∈

(
0, π2 − |τh0|

]
[
Tv

V
]
= [Γ]Tv [Ω][Φ], τ ∈ Rv

τ(τv0, ∆τv), τv0 ∈ Rm
τ , ∆τv ∈

(
π
2 − |τv0|, π2

] (43)

The two tilt situations will intersect when ∆τh and ∆τv take the maximum π
2 , because

∆τ = π
2 will make the tilt parameters in Equation (16) independent of τ0:

∆τ =
π

2
→
{

Sτh
2k−1 = Sτv

2k−1 = Sτr
2k−1 = 0

Cτh
2k−1 = Cτv

2k−1 = Cτr
2k−1 = (−1)k−1

(2k−1)

(44)

As a result, we will have:

τh = τv = τr =
[
0 0 0 1

5 − 1
3 1

]T (45)

thus: [
Th

V

]
= [Tv

V ] = [Tr
V ] =

(
[I3]

⊗
τr

)T
[Ω][Φ] (46)

Obviously,
[
Tr

V
]

corresponds to a tilt geometry that prefers neither horizontal nor
vertical tilt; this is referred to as random tilt. In addition to this equality relationship, we
are also interested in the complement tilt (CT) relationship between the two tilt geometries.
As illustrated in Figure 2, ranges Rh

τ and Rv
τ will complement each other when τh0, τv0,

∆τh and ∆τv satisfy the following condition.
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CT↔ Rh
τ

⊕
Rv

τ = Rm
τ ↔

{
|τh0 − τv0| = π

2

∆τh + ∆τv = π
2

(47)

For convenience, let τ0 = τh0, ∆τ = ∆τh, then the complementary version of tilt
parameters in Equation (16) can be expressed as:

CT→


Sτh

2k−1 = sin (2k−1)τ0sin (2k−1)∆τ
(2k−1)cos τ0sin ∆τ

Cτh
2k−1 = cos (2k−1)τ0sin (2k−1)∆τ

(2k−1)cos τ0sin ∆τ

,


Sτv

2k−1 = −sin (2k−1)τ0sin (2k−1)∆τ
(2k−1)(1−cos τ0sin ∆τ)

Cτv
2k−1 = (−1)k−1−cos (2k−1)τ0sin (2k−1)∆τ

(2k−1)(1−cos τ0sin ∆τ)

(48)

The following CT relationship on tilt parameters can thus be easily obtained:

CT→
{

cos τ0sin ∆τSτh
2k−1 + (1− cos τ0sin ∆τ)Sτv

2k−1 = Sτr
2k−1

cos τ0sin ∆τCτh
2k−1 + (1− cos τ0sin ∆τ)Cτv

2k−1 = Cτr
2k−1

(49)

From the viewpoint of tilt vectors defined in Equation (30), Equation (49) indicates that:

CT→ cos τ0sin ∆ττh + (1− cos τ0sin ∆τ)τv = τr (50)

As a result, the similar CT relationship on coherency matrices is finally achieved:

CT→ cos τ0sin ∆τ
[

Th
V

]
+ (1− cos τ0sin ∆τ)[Tv

V ] = [Tr
V ] (51)

where
[

Th
V

]
,
[
Tv

V
]

and
[
Tr

V
]

correspond to the tilt ranges ofRh
τ ,Rv

τ andRm
τ , respectively,

which achieves a complete coverage of the tilt geometry from the horizontal, vertical, and
random aspects.

Equations (32)–(34) further imply the following dichotomy of matrix [TV ]:

[TV ] = [Ts
V ] + [Ta

V ],



[
Ts

V
]
= [Γ]T[Ω]s[Φ]s =

× × 0
× × 0
0 0 ×


[
Ta

V
]
= [Γ]T[Ω]a[Φ]a =

 0 0 ×
0 0 ×
× × 0

 (52)

where “×” denotes a non-zero element;
[
Ts

V
]

corresponds to a component of reflection
symmetry (RS), because it is in the same form as that of a reflection-symmetric media [62];[
Ta

V
]
, on the other hand, shows a residual asymmetric component which disappears when

∆ϕ takes its maximum π:

RS↔ ∆ϕ = π→
{

Sϕ
k = 0

Cϕ
k = 0

→

 ϕs =
[

01×4 1
]T

ϕa = 04×1 →
[
Ta

V
]
= [03×3]

→ [TV ] = [Ts
V ] (53)

[TV ] in this case is fully reflection-symmetric and independent of ϕ0. Hence, if RS
is further considered,

[
Th

V

]
and

[
Tv

V
]

will present a similar matrix pattern to
[
Ts

V
]

in

Equation (52), while
[
Tr

V
]

will become the following diagonal matrix of azimuth symmetry
(AS) which is independent of τ0, ϕ0 and θ:

AS↔
{

∆ϕ = π
∆τ = π

2
→ [TV ]r =


15ρ2

Σ−10ρ∆ρΣ+3ρ2
∆

30 0 0

0 2ρ2
∆

15 0

0 0 2ρ2
∆

15

 (54)
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Then the CT relationship in Equation (51) immediately shows that:

cos τ0sin ∆τTh
V12 + (1− cos τ0sin ∆τ)Tv

V12 = 0→ sgn
(

Th
V12

)
= −sgn(Tv

V12) (55)

For [TV ] of a volume of differently orientated spheroidal particles constructed in
Equation (25), we determine that, in all cases:

TV12 = Re(TV12) =
1
2

(〈
|SHH |2

〉
−
〈
|SVV |2

〉)
(56)

Therefore, sgn(TV12) is a nice feature to distinguish among
[

Th
V

]
,
[
Tv

V
]

and
[
Tr

V
]
.

4.3. Simulation

To investigate the performance of the models in characterization of volume behaviors
of particles with different shapes under different observation and orientation geometries,
following Cloude et al. [60] and Parrella et al. [46], simulations are conducted on a volume
of oblate (ρΣ = 11, ρ∆ = −9, i.e., ρa = 1, ρb = 10) and prolate (ρΣ = 11, ρ∆ = 9, i.e.,
ρa = 10, ρb = 1) particles with the differential reflectivity ZDR, polarimetric entropy H and
mean scattering alpha angle α as descriptors. ZDR is the logarithm ratio of the horizontally
polarized reflectivity to the vertically polarized reflectivity [63]:

ZDR = 10log10


〈
|SHH |2

〉
〈
|SVV |2

〉
 (57a)

It is a crucial weather radar measurement that helps to identify hail shafts, detect up-
drafts, determine rain drop size and identify aggregation of dry snow [64]. Additionally, an
equivalent definition of ZDR based on coherence matrix [T] is often used in branch condition
to select the volume model for four-component model-based compositions [23,39]:

ZDR([T]) = 10log10

(
T11 + T22 + 2Re(T12)

T11 + T22 − 2Re(T12)

)
(57b)

Polarization entropy H and mean scattering α angle are two important parameters
of the well-known H/α classifier [60]. Their definition on the coherence matrix [T] is
as follows:

H = −∑3
i=1 Pilog3(Pi), Pi =

λi

∑3
k=1 λk

(58)

α = ∑3
i=1 Picos−1|ui1| (59)

where λi is the eigenvalue of [T], ui1 denotes the first entry of the eigenvector ui, i = 1, 2, 3.
H depicts the degree of statistical disorder of particle ensemble; α measures the dominant
scattering mechanism [62].

Since the brine inclusions within sea ice are usually canted with no preference [45,52],
we set ∆ϕ = π in the simulation. Different mean tilt angles τ0, i.e., τ0 = 0, π

6 , π
4 , π

3 and
π
2 are considered, with ∆τ ranging from 0 to π

2 . The particles are perfectly aligned with
τ = τ0 when ∆τ = 0; ∆τ = π

2 , on the other hand, implies a completely random tilt. The
incidence θ varies from the nadir-looking (θ = 0) to grazing incidence geometry (θ = π

2 ) at
every π

18 . Figure 3 presents the simulation results of ZDR, H and α on oblate particles, and
the results of prolate particles are displayed in Figure 4. The leftmost side of both Figures
presents the particle orientation geometry under different mean tilt angles. The simulation
results of ZDR, H and α are shown in the first, second and third columns, respectively.
Different color curves correspond to different incidences; from red to violet, θ is taken as
0, π

18 , π
9 , π

6 , 2π
9 , 5π

18 , π
3 , 7π

18 , 4π
9 , π

2 . The mean tilt angle τ0 is 0 (first row), π
6 (second row),

π
4 (third row), π

3 (fourth row) and π
2 (fifth row), respectively.
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Figure 4. Polarimetric descriptors, including (a,d,g,j,m) the differential reflectivity ZDR, (b,e,h,k,n) the
polarimetric entropy H and (c,f,i,l,o) the mean alpha angle α simulated on a volume of reflection-
symmetric (i.e., the canting width ∆ϕ = π) prolate particles (ρΣ = 11, ρ∆ = 9) with incidence θ and tilt
width ∆τ ranging from 0 to π

2 , and mean tilt τ0 taking the values of (a–c) 0, (d–f) π
6 , (g–i) π

4 , (j–l) π
3 and

(m–o) π
2 , respectively.

Differential reflectivity ZDR is related to the orientation of particles. If the particles are
randomly oriented, the reflectivities of horizontal and vertical polarizations will be equal,
which leads ZDR to be approximately 0dB, according to Equation (57). ZDR is positive
for horizontally tilted particles with

〈
|SHH |2

〉
>
〈
|SVV |2

〉
, and negative for vertically

tilted ones with
〈
|SHH |2

〉
<
〈
|SVV |2

〉
. It is shown in Figures 3 and 4 that ZDR varies
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significantly with θ. The sign of ZDR, nevertheless, is independent of θ. For oblate particles,
ZDR is negative and decreases as θ if τ0 < π

4 or
{

τ0 = π
4 , ∆τ > π

4
}

. Meanwhile, if τ0 > π
4

or
{

τ0 = π
4 , ∆τ < π

4
}

, ZDR > 0 and increases with θ. The sign of ZDR and the trend of
variation with θ for prolate particles are opposite to those of oblate particles. Hence, the
sign of ZDR is affected by the orientation and shape of particles. Moreover, the simulations
show that the orientation of particles can be deduced via ZDR. When τ0 < π

4 , as shown in
Figure 3, the oblate particles are biased towards vertically oriented (ZDR < 0), and with
the increase in τ0, the particles gradually begin to show a horizontal orientation (ZDR > 0).
Compared with oblate particles, the orientation of prolates changes in the opposite trend
with τ0, so the sign of ZDR is reversed. Nevertheless, for a fully random tilt orientation
(∆τ = π

2 ), ZDR converges to 0dB in both cases, as the reflectivities of horizontal and vertical
polarizations are equal.

Polarimetric entropy H reflects the degree of confusion of the scattering mechanism.
The particle ensemble is weakly depolarized when H is low, and entirely depolarized if
H = 1. The simulations show that H is significantly influenced by θ, regardless of particle
shape, when τ0 = 0 or π

2 . For oblate particles, the variation of H with θ is also affected by
the particle orientation. If τ0 < π

4 or
{

τ0 = π
4 , ∆τ > π

4
}

, i.e., particles are vertically oriented,
H decreases with the increase in θ; concurrently, H increases with θ for horizontally tilted
particles if τ0 > π

4 or
{

τ0 = π
4 , ∆τ < π

4
}

. For prolate particles, however, the H-θ variation
is unrelated to the orientation, the degree of confusion of scattering mechanism decreases
with θ. In both cases, under any θ and τ0, as ∆τ increases, H converges to 0.5 for oblate
particles and to 0.9 for prolate particles. Meanwhile, under the same tilt geometry and
incidence, H of prolate particles is always higher than that of oblate particles.

Scattering α angle is related to the physical scattering mechanism. Low α occurs over
the smooth regions, which is indicative of dominant surface scattering, while medium
and high α occurs over the regions dominated by double-bounce scattering or volume
scattering [62]. Based on the simulation results, we find that in both cases, with the increase
in τ0, α is increasingly influenced by θ. Like H, for oblate particles, the α-θ variation is also
affected by the particle orientation. If particles are vertically oriented, α decreases with
the increase in θ, while it increases with θ for horizontally oriented particles. Meanwhile,
for the prolate particles, α increases with θ regardless of τ0. As ∆τ increases, all curves
converge at ∆τ = π

2 . Under the same tilt geometry and θ, α of prolate particles is higher
than that of oblate particles. Because α is controlled by particle shape, the disk-like oblates
have relatively lower α than the tapered prolates.

In summary, the simulations illustrate the excellent performance of the volume scat-
tering model to characterize the polarimetric behaviors of particles with different shapes
under different observation and orientation geometries. Thus, we determine that:

(1) Sign of ZDR is related to the shape and orientation of particles but independent of
incidence θ.

(2) Entropy H is influenced by particle shape and orientation; H of prolates is higher than
that of oblates.

(3) The scattering α angle is also determined by particle shape and orientation; α of
prolates is higher than that of oblates. α of prolates with vertical orientation is higher
than that of prolates with horizontal orientation. Moreover, α of oblates is more easily
affected by the incidence θ. The α-θ variation becomes more significant as the mean
tilt angle τ0 increases.

5. Adaptive Polarimetric Decomposition of Volume Scattering Component for Sea Ice

Scattering modeling is dedicated to better describing the underlying components
of sea ice scattering. However, the application of the model needs to be associated with
polarimetric decompositions to extract parameters used for target identification and classifi-
cation, such as the scattering powers. In the model-based sea ice decompositions developed
by Sharma et al. [40], Zhang et al. [45] and Parrella et al. [46,49], there exists a residual
component in the decomposition which can be minimized to the L2 norm but cannot be
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eliminated, leading to the incomplete utilization of polarimetric DoFs. Moreover, to facil-
itate the calculations, the existing sea ice decompositions only consider a model of fixed
orientation, such as the random orientation described by Sharma et al. [40] or the vertical
orientation detailed by Zhang et al. [45] and Parrella et al. [46]. In fact, vertical, horizontal
and random orientations are all possible for particles within sea ice. This requires the
decomposition algorithm to adaptively select the appropriate scattering model according
to the different orientations.

5.1. Scattering Models for Decomposition

To demonstrate the application of the proposed volume models in the decomposition
of the backscattering of sea ice, like Zhang et al. [45], we also express the coherency matrix
[T] as the incoherent sum of rough surface component [TS] from brash ice, double-bounce
component [TD] from deformed ice and volume component [TV ] from brine inclusions:

[T] = fS[TS] + fD[TD] + fV [TV ] (60)

where fs, fD and fV denote the contributions of the three components. The air-ice interface
is generally modeled as a rough surface in view of the fact that the radar return of sea ice
surface is significantly influenced by the surface roughness as well as the strong dielectric
discontinuities between air and ice [46]. Therefore, if the surface of sea ice is slightly rough
(such as brash ice and smooth floe), the surface scattering mechanism will occur. This is
characterized by a coherency matrix [TS] according to the Bragg model [22]:

[TS] =
1

1 + |β|2

1 β∗ 0
β |β|2 0
0 0 0

, β =
RH − RV
RH + RV

(61)

where RH and RV are the Bragg coefficients of horizontally and vertically polarized waves.
The moving floe ice will collide and converge under the influence of ocean currents, which
deforms the surfaces of sea ice into dihedral structures, such as the deformed floe ice and ice
ridge. When polarized EMW interacts with these structures, the double-bounce scattering
mechanism will occur. This is expressed by a coherency matrix [TD] according to FDD [22]:

[TD] =
1

1 + |α|2

|α|2 α∗ 0
α 1 0
0 0 0

, α =
ejγH RSH RDH + ejγV RSV RDV

ejγH RSH RDH − ejγV RSV RDV
(62)

where RSH and RSV denote the h-pol and v-pol Fresnel reflection coefficients of the surface
of sea ice; RDH and RDV indicate the corresponding coefficients of the deformed floe ice;
γH and γV are the respective phases of h-pol and v-pol channels.

To facilitate calculation and analysis, Sharma et al. [40], Nghiem et al. [52] and
Zhang et al. [45] simplified the volume scattering model from the aspects of the cant-
ing geometry, tilt geometry and shape of brine inclusions within sea ice:

(1) The brine inclusions are canted with no preference [45,52], i.e., ∆ϕ = π. This leads to
the canting vectors ϕs and ϕa in Equation (53), and a RS-version of [TV ] is obtained.

(2) The brine inclusions are tilted in the vertical direction, i.e., |τ0| = π
2 , ∆τ = 0 [45,52].

This leads to the tilt vector τv0 formulated in Equation (36b), and the special Case 5b)
in Equation (38) is achieved.

(3) The brine inclusions are approximated by dipoles, as the size of brine inclusions in sea
ice is usually at millimeter or even submillimeter level, smaller than the working wave-
length of the existing spaceborne PolSAR systems [65–67]. As a result, ρb = ρc = 0,
i.e., ρΣ = ρ∆ = ρa, and ρa is typically 1, without loss of generality.

For convenience of decomposition, we adopt the simplifications on canting geometry
and shape by characterizing the brine inclusions as a cloud of independent dipoles canted
with RS. Nevertheless, considering the reality that the brine inclusions within sea ice may
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not always be aligned and uniquely tilted in the vertical direction, we propose CT as a better
modeling of tilt geometry. Specifically, we choose the CT geometry shown in Figure 2c,
i.e., τh0 = τ0 = 0, |τv0| = π

2 , and assign
[

Th
V

]
and

[
Tv

V
]

the same width of tilt ranges,

i.e., ∆τh = ∆τv = ∆τ = π
4 . This provides three volume models of

[
Th

V

]
,
[
Tv

V
]

and
[
Tr

V
]
,

enabling complete coverage of the horizontal, vertical, and random tilt geometries of brine
inclusions, as illustrated in Figure 5. Thus, we obtain the following simplified expressions
of
[

Th
V

]
,
[
Tv

V
]

and
[
Tr

V
]
:

[
Th

V

]
=

 Th
11 Th

12 0
Th

21 Th
22 0

0 0 Th
33

 ,



Th
11 = − cos4θ

64 + 5cos2θ
32 + 209

960

Th
12 = TH

21 =
(
− cos2θ

64 + 7
64

)
sin2 θ

Th
22 = − cos4θ

64 + 3cos2θ
32 + 97

960

Th
33 = cos2θ

16 + 7
60

(63a)

[
Tv

V
]
=

 Tv
11 Tv

12 0
Tv

21 Tv
22 0

0 0 Tv
33

,



Tv
11 =

(√
2 + 1

)(
cos4θ

64 −
5cos2θ

32 + 47
960

)
+ 4

15

Tv
12 = Tv

21 =
(√

2 + 1
)(

cos2θ
64 −

7
64

)
sin2 θ

Tv
22 =

(√
2 + 1

)(
cos4θ

64 −
cos2θ

32 + 31
960

)
+ 2

15

Tv
33 = −

(√
2 + 1

)(
cos2θ

16 −
1

60

)
+ 2

15

(63b)

[Tr
V ] =

 4
15 0 0
0 2

15 0
0 0 2

15

 (63c)
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Hence, the complement relationship in Equation (51) becomes:[
Th

V

]
− [Tv

V ] =
√

2([Tr
V ]− [Tv

V ]) (64)

5.2. Decomposition Method

From Equations (61)–(63) we can easily determine that:

rank( fS[TS]) = rank( fD[TD]) = 1 < rank( fV [TV ]) = rank([T]) = 3 (65)
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where rank(·) denotes the rank of matrix. For a lossless use of the polarimetric information
in [T], it is obvious that fV [TV ] should reduce rank([T]) by exactly one so that:

rank([TN ]
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[T]− fV [TV ]) = 2 (66)

This is because we can never extract two rank-1 matrices fS[TS] and fD[TD] from a full
rank-3 matrix [TN ] without any remainder. Hence, there is always a null eigenvector q for
[TN ] such that:

[TN ]q = 0→ [T]q = fV [TV ]q→ [T]−1[TV ]q = f−1
V q (67)

According to the generalized eigendecomposition in CMD [31], we immediately have:

fV =
1

λ
(
[T]−1[TV ]

) (68)

where λ(·) denotes the eigenvalue of a matrix. From the rank reduction point of view, f−1
V

can take any of the three positive eigenvalues of the definite matrix [T]−1[TV ]. The physical
non-negativity of powers fS and fD, however, requires fV to be as small as possible so
that the remaining rank-2 component [TN ] is also positive semidefinite. As a result, fV is
uniquely determined as:

fV =
1

λmax

(
[T]−1[TV ]

) = λmin

(
[TV ]

−1[T]
)

(69)

The volume scattering power is then obtained as follows:

PV = trace([TV ]) fV (70)

where trace(·) shows the trace of a square matrix. For the three volume scattering models
in Equation (63), we can have Ph

V , Pv
V and Pr

V , respectively, but only one of them is selected
according to the adaptive selection strategy. Two selection strategies are provided here.

The first one is based on the maximum power fitting, i.e., to select the maximum of
Ph

V , Pv
V and Pr

V as the final volume scattering power PV :

PV = max
i

(
Pi

V
)

= max
i

 trace([Ti
V ])

max
j

(
λj

(
[T]−1[Ti

V ]
))


= max
i

(
trace

([
Ti

V
])

min
j

λj

([
Ti

V
]−1

[T]
)) , i = {h, v, r}, j = {1, 2, 3} (71)

This strategy is possible because it is easy to obtain from the CT relationship Equation (51)
as well as the property of singular value that [68]:(

trace
([

Tv
V
])

Pv
V

−
trace

([
Tr

V
])

Pr
V

)
+

(
cos τ0sin ∆τ

1− cos τ0sin ∆τ

) trace
([

Th
V

])
Ph

V
−

trace
([

Tr
V
])

Pr
V

 ≥ 0 (72)

which indicates that either Ph
V , Pv

V or Pr
V may be the maximum. Thus, among the volume

models
[

Th
V

]
,
[
Tv

V
]

and
[
Tr

V
]
, only the one that can fit the maximum power from [T] without

violating the physical rank-reduction principle is the best candidate for [TV ]:

[TV ] =


[

Th
V

]
, PV = Ph

V[
Tv

V
]
, PV = Pv

V[
Tr

V
]
, PV = Pr

V

(73)
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The second adaptive selection strategy origins from the opposite between sgn
(

Th
V12

)
and sgn

(
Tv

V12
)

in Equation (55), which is manifested on the dipole-induced volume models
in Equation (63) directly as the sign of Th

V12, Tv
V12 and Tr

V12:
Th

V12 > 0

Tv
V12 < 0

Tr
V12 = 0

, θ > 0 (74a)

This is consistent with the tilt geometry corresponding to
[

Th
V

]
,
[
Tv

V
]

and
[
Tr

V
]
. Ac-

cording to Equation (57), this is equivalent to the sign of ZDR

([
Th

V

])
, ZDR

([
Tv

V
])

and

ZDR
([

Tr
V
])

: 
ZDR

([
Th

V

])
> 0

ZDR
([

Tv
V
])

< 0

ZDR
([

Tr
V
])

= 0

, θ > 0 (74b)

Based on this finding, we then adopt a correspondence principle by decomposing [T]
only with a volume scattering model of the same sign of ZDR; miscorrespondence is not
allowed [69]. In reality, ZDR = 0 is difficult to obtain. Hence, to achieve a robust selection of
models, we use a short interval around 0, e.g., ZDR ∈

[
− 1

2 , 1
2

]
, as an alternative to ZDR = 0.

As a result, to decompose the sea ice coherency matrix [T], the ZDR-based selection of
volume model [TV ] from the candidates

[
Th

V

]
,
[
Tv

V
]

and
[
Tr

V
]

is carried out as follows:

[TV ] =



[
Th

V

]
, ZDR ∈

(
1
2 ,+∞

)
[
Tv

V
]
, ZDR ∈

(
−∞,− 1

2

)
[
Tr

V
]
, ZDR ∈

[
− 1

2 , 1
2

] (75)

where the ZDR in Equation (75) denotes that of [T].
It is noted that the above two strategies are in common use, and similar strategies

have been used in the existing decompositions. For instance, the maximum power fitting
has been adopted in CMD [31], NNED [28], and the unified Huynen dichotomy of radar
target [18], while the ZDR-based one has been conducted in four-component scattering
power decompositions [23,39].

After extracting fV [TV ] from [T], a dichotomy can be then conducted to the remaining
matrix [TN ] through eigendecomposition or model fitting [31,36] for two rank-1 matrices
that correspond to the surface component fS[TS] and/or double-bounce component fD[TD].
Taking model fitting for instance, a dichotomy of [TN ] can be expressed as:

[TN ] = [TNS] + [TNN ] (76a)

[TNS] is achieved by [18]:

[TNS] = kNSkH
NS, kNS =

[TN ]q√
qH[TN ]q

, q =

0
0
1

 (76b)

where q is the preferable vector. [TNS] and [TNN ] represent the surface component fS[TS]
or double-bounce component fD[TD]. Their scattering mechanisms can be identified by
the decision rule proposed by An and Xie [36]. Nevertheless, the decomposition results
for surface and double-bounce components will not be presented because the application
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section of this work concentrates on the volume decomposition of sea ice scattering using
the proposed volume models.

5.3. Transmission Effect

When using the proposed volume scattering models to achieve polarimetric decompo-
sition of sea ice, we should also consider the effect of transmission and refraction [40,45,46],
which is mainly reflected in the following transmission matrix [Y]:

[Y] = c2

 1 ab b2

ab b2 ab3

b2 ab3 b4

 (77a)

where:
a =

sin θ

sin θr
, b =

1
cos(θ − θr)

, c =
sin 2θsin 2θr

sin2(θ + θr)
(77b)

At the air-ice interface, the radar signal propagates towards the ice layers with a
refractive angle θr, which is related to the incidence θ by Snell’s law:

θr = sin−1
(

sin θ

nice

)
(78)

where nice is the refractive index of sea ice. The spaceborne multi-polarimetric microwave
remote sensing of sea ice reveals that the refractive indexes of sea ice in the Arctic and the
Antarctic range between 1.1 and 1.8 [70].

As a result, for a given coherency matrix [T], its counterpart
[
Tt] with transmission

effect is expressed as [62]:

[
Tt] = [U3]

{(
[U3]

H[T][U3]
)
◦ [Y]

}
[U3]

H, [U3] =
1√
2

1 0 1
1 0 −1
0
√

2 0

 (79)

where “◦” is the Hadamard product, i.e., the elementwise product. Combining Equation (77)
into Equation (79), we finally obtain the coherency matrix

[
Tt] with transmission effect as

[
Tt] = c2


(1+b2)

2
T11+(1−b2)

2
T22+2(1−b4)Re(T12)

4
(1−b4)(T11+T22)+2(1+b4)Re(T12)+4jb2Im(T12)

4
ab((1+b2)T13+(1−b2)T23)

2
(1−b4)(T11+T22)+2(1+b4)Re(T21)+4jb2Im(T21)

4
(1−b2)

2
T11+(1+b2)

2
T22+2(1−b4)Re(T12)

4
ab((1−b2)T13+(1+b2)T23)

2
ab((1+b2)T31+(1−b2)T32)

2
ab((1−b2)T31+(1+b2)T32)

2 b2T33

 (80)

Like [T],
[
Tt] is also Hermitian. It is as positive definite as [T] because the transmission

matrix [Y] in Equation (77a) can be decomposed via Huynen dichotomy [15,18] as:

[Y] = k1kH
1 + k2kH

2 , k1 = c

 1
ab
b2

, k2 =
√

1− a2bc

0
1
0

 (81)

[Y] is thus positive semidefinite, and the property of the Hadamard product [68]
ensures the positive definiteness of

[
Tt]. [Tt] becomes [T] with no transmission effect (i.e.,

θr = θ) when a = b = c = 1, and a reflection-symmetric [T] will also lead to a
[
Tt] with RS.

The Hermite and positive definiteness indicate that
[
Tt] is also a coherency matrix of

physical realizability [61]. Therefore, we can substitute
[
Tt

V
]

for [TV ] in Equations (69) and (70)
for the volume scattering power in consideration of transmission effect. By replacing
volume models

[
Th

V

]
,
[
Tv

V
]

and
[
Tr

V
]

with their transmissive counterparts
[

Tth
V

]
,
[
Ttv

V
]

and[
Ttr

V
]

in Equations (71)–(73), the maximum power fitting is also updated for this situation.
For the ZDR-based adaptive selection strategy, however, the transmission effect not only
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influences the volume models but also the parameter ZDR. According to the definition of
ZDR on coherency matrix [T], the ZDR for transmissive coherency matrix

[
Tt], (i.e., Zt

DR)
can be easily obtained from Equation (80) as:

Zt
DR = 10log10

(
Tt

11 + Tt
22 + 2Re

(
Tt

12
)

Tt
11 + Tt

22 − 2Re
(
Tt

12
)) = 10log10

((
T11 + T22 + 2Re(T12)

T11 + T22 − 2Re(T12)

)(
1
b4

))
= ZDR + Z∆

DR (82)

where Z∆
DR denotes a correction term introduced by the transmission effect:

Z∆
DR = 10log10

(
1
b4

)
= 40log10(cos(θ − θr)) (83)

As a result, the ZDR-based adaptive selection in Equation (75) is updated as:

[
Tt

V
]
=



[
Tth

V

]
, ZDR ∈

(
1
2 − Z∆

DR,+∞
)

[
Ttv

V
]
, ZDR ∈

(
−∞,− 1

2 − Z∆
DR

)
[
Ttr

V
]
, ZDR ∈

[
− 1

2 − Z∆
DR, 1

2 − Z∆
DR

] (84)

These strategies and models will be validated in the following experiment on decom-
position of GF-3 sea ice data of Antarctica.

6. Decomposition Experiment on GF-3 PolSAR Data of Antarctica
6.1. Dataset in Prydz Bay

The PolSAR dataset used in this decomposition experiment was acquired by GF-3 in
QPSI mode from the northeastern part of Prydz Bay in Antarctica on 29 April 2019. The
central geographic coordinate of the dataset is 73◦6′E, 68◦1′S, adjacent to China’s Antarctic
Zhongshan Station (76◦22′14.28′′E, 69◦22′24.76′′S). Prydz Bay is located in the Indian Ocean,
where the sea ice is deeply affected by the winds, upwelling and sea surface temperature,
and alternates between the freezing period (from March to September) and melting period
(from October to February of the next year). The high latitude makes the change in sea ice
in Prydz Bay play an important role in the study of the global climate state and variability.

The acquired GF-3 PolSAR data is a Level-1A single look complex product. Therefore,
multilook processing and refined Lee filtering (5× 5) are implemented to suppress the
speckle noise using the ESA software of PolSARpro [62]. Figure 6a displays the obtained
Pauli RGB composite image. Figure 6b exhibits the ice atlas chart of Antarctica produced by
the National Ice Center (NIC, http://ice.aari.aq/, accessed on 20 July 2022) on 2 May 2019,
which shows that the sea ice in the study area is mainly young ice. According to WMO sea
ice nomenclature [71], young ice signifies a transition stage between nilas and first-year
ice, with thickness ranging from 10 cm to 30 cm. It contains many brine inclusions [52],
and the horizontal thin section and vertical micrograph of sea ice indicate that an ellipsoid
is an idealized model of a brine inclusion [53]. The young ice in some seasons may be
covered by a thin layer of snow. The low salinity of snow generally makes this layer a
transparent medium with the dominant surface scattering [72], while the subdominant
volume scattering is mainly contributed by the brine inclusions within young ice.

http://ice.aari.aq/
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6.2. Results and Analysis

The PolSAR data were acquired during the Antarctic winter which begins in March and
lasts until October. According to [70], the average refractive index is roughly 1.25 (winter)
and 1.65 (summer) in the Antarctic. The incidence ranges from the near range 36.91◦ to the
far range 38.45◦ with the central value θ = 37.68◦. An average refractive angle θr = 29.28◦

is then estimated according to Snell’s law. Based on these factors, we obtain the models[
Tth

V

]
,
[
Ttv

V
]

and
[
Ttr

V
]

by bringing the transmission-free volume models
[

Th
V

]
,
[
Tv

V
]

and[
Tr

V
]

into Equation (80), and adaptively select the
[
Tt

V
]

that matches the coherency matrix
[T] at each pixel (i, j) of the image to obtain the power PVij. A power matrix [PV ] =

{
PVij

}
is finally produced, where i = 1, · · ·M, j = 1, · · ·N, and M = 1820, N = 1842 for this
dataset. From the perspective of power, the selection among

[
Tth

V

]
,
[
Ttv

V
]

and
[
Ttr

V
]

for
[
Tt

V
]

indicates the following three-component decomposition of [PV ]:

[PV ] =
[

Ph
V

]
+ [Pv

V ] + [Pr
V ] (85)

where
[

Pk
V

]
(k = h, v, r) is a volume matrix composed by Pk

Vij, i.e.,
[

Pk
V

]
=
{

Pk
Vij

}
. Pk

Vij equals

to PVij if model
[

Ttk
V

]
is identified as the matched volume model

[
Tt

V
]

for the (i, j) pixel:

Pk
Vij =

{
PVij ,

[
Tt

V
]
=
[

Ttk
V

]
0 , else

, i = 1, · · ·M, j = 1, · · ·N, k = h, v, r (86)

Both the maximum power fitting and ZDR-based strategies are adopted. To distinguish
between them, we denote the power matrix created by the maximum power fitting as[
Pmax

V
]
, which consists of the components

[
Pmax−h

V

]
,
[
Pmax−v

V
]

and
[
Pmax−r

V
]
; while that

achieved by the ZDR-based strategy is denoted as
[
Pzdr

V
]
, with the components

[
Pzdr−h

V

]
,[

Pzdr−v
V

]
and

[
Pzdr−r

V

]
. For this dataset, the correction term Z∆

DR used in the ZDR-based
strategy is −0.1876, which is estimated by combining the angles θ and θr into Equation (83).

Figure 7a,b isplay the obtained
[
Pmax

V
]

and
[
Pzdr

V
]
. Our first impression is of the good

consistency between them, as the two strategies achieve the same volume power, i.e.,
Pmax

Vij = Pzdr
Vij , on 64.25% of the image. Nevertheless, for the remaining 35.75%, Pmax

Vij is
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always larger than Pzdr
Vij , for the maximum power fitting identifies the model that maximizes

the volume scattering power, as displayed in Figure 7c in terms of
[
P∆

V
]
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[
Pmax

V
]
−
[
Pzdr

V
]
.

The inconsistency is allocated to the three power components as 9.56%, 14.98% and 11.21%,
respectively. To illustrate this further, we also exhibit the horizontal, vertical and random
components of

[
Pmax

V
]

and
[
Pzdr

V
]

in the second and third rows of Figure 7, respectively. The
majority of

[
Pmax

V
]

and
[
Pzdr

V
]

are decomposed by both strategies to the vertical components[
Pmax−v

V
]

and
[

Pzdr−v
V

]
illustrated in Figure 7e,h. This is also reflected quantitatively in

Figure 8, which shows that the vertically titled model
[
Ttv

V
]

is matched to about 70% of
the data by the two strategies, i.e., the majority of brine inclusions within the sea ice of
the study area are tilted in a vertical direction. This result is consistent with the existing
understanding of sea ice geometry. Sea ice beneath a thin transition layer becomes columnar
in structure, with the principal axis (i.e., c-axis) parallel to the horizontal plane within a
few degrees [52]. Such geometry makes the ice platelets vertical. As a result, the ellipsoidal
brine inclusions sandwiched between ice platelets are often preferentially tilted in a vertical
direction [52]. Nonetheless, the degree of alignment of c-axis to the horizontal plane is also
dependent on the depth. The directions of c-axes of polycrystalline formations within the
upper layer of sea ice are actually various [73], but they are gradually aligned horizontally
within the layer below, with depth. The mechanism of the transition process of c-axis
orientations from random to horizontal is known as the geometric selection [53]. The
subdominant random power components

[
Pmax−r

V
]

and
[

Pzdr−r
V

]
in Figure 7f,i display the

random orientations of c-axes. Besides the depth, the orientation of the c-axis may also
be affected by the underlying sea current [74], which can cause the brine inclusions that
were originally vertically tilted to become randomly or even horizontally tilted. Figure 7d,g
show an example of such horizontally tilted geometry of brine inclusions.

The adaptive polarimetric decompositions of GF-3 data of sea ice in Prydz Bay us-
ing two different strategies reveal that the orientations of brine inclusions within sea ice
prefer not only the dominant vertical tilt, but also the subordinate random tilt and non-
negligible horizontal tilt. Therefore, we propose that the sea ice be characterized using
the complementally tilted scattering models instead of a simple vertically tilted one be-
cause the former enables a complete coverage of the horizontal, vertical, and random tilt
geometries of brine inclusions. Nonetheless, comparing the two power images shown
in each column of the second and third rows in Figure 7, we can also see the difference
between the two decompositions on the same power component, mainly on the random
component and horizontal component. This difference is particularly obvious in Figure 8.
The random model and horizontal model account for 19.20% and 10.03% of the area in the
decomposition based on maximum power fitting, but the proportion of the two models
in ZDR-based decomposition becomes 28.78% and 1.13%, respectively. Comparatively, we
find the maximum power fitting result in Figure 8a more reasonable, this decomposition
selects the candidate model by maximizing the power, which is independent of the specific
threshold. In contrast, the ZDR-based decomposition relies heavily on the ZDR boundaries
determined by experience. For example, if we change the formulated boundary between[

Tth
V

]
and

[
Ttr

V
]

in (86) from ZDR = 1
2 − Z∆

DR to ZDR = 1
3 − Z∆

DR, a different decomposition
is achieved, with the proportion of horizontal and random models approaching that of the
maximum power fitting decomposition.
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[
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The above analysis reveals that the two adaptive strategies can not only be used in
the polarimetric decomposition of sea ice, but can also enable an effective classification of
the brine inclusions within sea ice from the viewpoint of tilt geometry. The classification is
realized in ZDR-based strategy by hard thresholding, as displayed in Figure 9b in terms of
the ZDR histogram, where the thresholds ZDR = − 1

2 − Z∆
DR and ZDR = 1

2 − Z∆
DR classify

the ice brine inclusions into the three categories of vertical tilt, random tilt and horizontal tilt,
respectively. Such classification, however, is implemented in maximum power fitting via
soft thresholding. To illustrate this, we calculate ZDR of each pixel based on Equation (57),
and match the achieved ZDR to the three tilt scattering models according to the maximum
power fitting result. Then, we create the histogram of ZDR of each model and display them
together in Figure 9a in red, green, and blue, respectively. The ZDR histograms resulting
from the ZDR-based strategy are achieved in the same manner, as illustrated in Figure 9b.
Unlike those given in Figure 9b, the histograms of the three categories in Figure 9a overlap
one another, showing greater consistency with the general statistical fact. Furthermore, the
histograms are also staggered along the ZDR direction in Figure 9a, which clearly illustrates
the difference in ZDR among the three models. This distinction is fully driven by the data
and model, and does not depend on any empirical thresholds. Here, we are interested
in the histogram of the random tilt category. It should distribute around ZDR = 0, but
is offset in the negative direction of ZDR in Figure 9a. This offset also appears in other
histograms of Figure 9. Meanwhile, the randomly tilted model

[
Tr

V
]

is achieved using
Equations (74b) and (82). When the horizontal and vertical polarization channels of radar
are well calibrated, the negative offset that occurs in the histogram of the random tilt
category is mainly a result of the transmission effect Z∆

DR. As expressed in Equation (83),
Z∆

DR is determined by the incidence θ and the refractive angle θr, and the latter is further
related to θ and the refractive index of sea ice nice by Snell’s law. As a result, given the
incidence θ, we may obtain an estimate of nice using the negative offset Z∆

DR extracted from
the random tilt histogram. As for the GF-3 data of Prydz Bay used in this article, we find
that Ẑ∆

DR = −0.38 and combine the central incidence θ = 37.68◦. The refractive index nice is
finally estimated as 1.4075, which is consistent with the refractive index of Antarctic winter
sea ice in previous studies [70,75].

Remote Sens. 2023, 15, x FOR PEER REVIEW 30 of 36 
 

 

 
Figure 9. 𝑍  histogram of pixels attributed to the three tilt geometries in (a) the maximum power 
fitting and (b) 𝑍 -based strategy. 

6.3. Discussion 
Considering the various orientation distribution of ice particles, we use three volume 

scattering models to decompose the volume scattering component of sea ice, which can 
provide complete coverage of the horizontal tilt, vertical tilt and random tilt of ice parti-
cles. We provide two adaptive model selection strategies to adaptively match the volume 
models according to the orientations of ice particles. One is based on the maximum power 
fitting and the other is based on 𝑍 . As shown in Figure 7e,h and Figure 8, the majority 
of the volume scattering powers are decomposed by the two strategies to the vertical com-
ponents, indicating the brine inclusions within young ice of the study area are preferen-
tially vertically tilted; this is consistent with the previous studies of young ice [52]. Nev-
ertheless, based on the second and third rows of Figure 7 and the quantitative statistics in 
Figure 8, it is found that when using the two strategies, besides the brine inclusions with 
vertical tilt, there are also some brine inclusions that show a preference for horizontal ran-
dom tilt, this is consistent with the geometric selection mechanism, in which the c-axes of 
polycrystalline formations within sea ice gradually align with depth [53,73]. Therefore, 
rather than using a simple vertically tilted volume scattering model, it is necessary to 
adaptively select volume models according to the orientation of ice particles. 

The main differences between the two adaptive strategies are the random and hori-
zontal components of volume scattering powers. Based on the quantitative statistics in 
Figure 8, there is a 9.58% increase in the proportion of the random model in 𝑍 -based 
decomposition compared with the result in the maximum power fitting-based decompo-
sition, while the proportion of the horizontal model is decreased by 8.9%. This is because 
the 𝑍 -based strategy relies on the 𝑍  boundaries, i.e., 𝑍 = − 𝑍∆ , while the maxi-
mum power fitting is independent of any specific thresholds and entirely driven by model 
and data. Thus, we recommend using the maximum power fitting for adaptive model 
selection. The adaptive decomposition of PolSAR data with the developed volume models 
may also provide a novel estimation of the refractive index of sea ice. This will be investi-
gated in future work. Moreover, based on the current study, the following two studies on 
polarimetric radar remote sensing of sea ice will be conducted: 
(1) Take the extinction effects into the developed volume models and decomposition to 

achieve an estimation of the thickness of sea ice. 
(2) Retrieve the surface and double-bounce scattering components after the volume de-

composition to distinguish different types of sea ice. 

Figure 9. ZDR histogram of pixels attributed to the three tilt geometries in (a) the maximum power
fitting and (b) ZDR-based strategy.

6.3. Discussion

Considering the various orientation distribution of ice particles, we use three volume
scattering models to decompose the volume scattering component of sea ice, which can
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provide complete coverage of the horizontal tilt, vertical tilt and random tilt of ice particles.
We provide two adaptive model selection strategies to adaptively match the volume models
according to the orientations of ice particles. One is based on the maximum power fitting
and the other is based on ZDR. As shown in Figures 7e,h and 8, the majority of the
volume scattering powers are decomposed by the two strategies to the vertical components,
indicating the brine inclusions within young ice of the study area are preferentially vertically
tilted; this is consistent with the previous studies of young ice [52]. Nevertheless, based
on the second and third rows of Figure 7 and the quantitative statistics in Figure 8, it is
found that when using the two strategies, besides the brine inclusions with vertical tilt,
there are also some brine inclusions that show a preference for horizontal random tilt, this
is consistent with the geometric selection mechanism, in which the c-axes of polycrystalline
formations within sea ice gradually align with depth [53,73]. Therefore, rather than using a
simple vertically tilted volume scattering model, it is necessary to adaptively select volume
models according to the orientation of ice particles.

The main differences between the two adaptive strategies are the random and hor-
izontal components of volume scattering powers. Based on the quantitative statistics in
Figure 8, there is a 9.58% increase in the proportion of the random model in ZDR-based
decomposition compared with the result in the maximum power fitting-based decomposi-
tion, while the proportion of the horizontal model is decreased by 8.9%. This is because
the ZDR-based strategy relies on the ZDR boundaries, i.e., ZDR = 1

2 − Z∆
DR, while the

maximum power fitting is independent of any specific thresholds and entirely driven by
model and data. Thus, we recommend using the maximum power fitting for adaptive
model selection. The adaptive decomposition of PolSAR data with the developed volume
models may also provide a novel estimation of the refractive index of sea ice. This will
be investigated in future work. Moreover, based on the current study, the following two
studies on polarimetric radar remote sensing of sea ice will be conducted:

(1) Take the extinction effects into the developed volume models and decomposition to
achieve an estimation of the thickness of sea ice.

(2) Retrieve the surface and double-bounce scattering components after the volume
decomposition to distinguish different types of sea ice.

Although the current work focuses only on the volume modeling and decomposition
of sea ice, the developed volume scattering model and the adaptive power decomposition
are of general use. The model is built on the 3D uniformly distributed spheroidal particles.
It integrates factors such as radar imaging geometry, particle shape, canting geometry, tilt
geometry and transmission effects, and it is able to model the polarimetric backscattering
of typical distributed volume targets, such as the ice inclusions, vegetation covers and soil
particles. The adaptive decomposition can not only enable the model-based interpretation
of the polarimetric scattering of sea ice but will also help to realize the successful modeling
and classification of complex terrains.

7. Conclusions

Model-based polarimetric decompositions have been successfully applied in the in-
terpretation of scattering of sea ice. Volume scattering is an indispensable component of
the model-based polarimetric decompositions. The volume scattering of sea ice, especially
that of the young ice, is mainly induced by the 3D differently oriented ice brine inclusions.
The statistical distribution of particle orientation plays a crucial role in volume scattering
modeling of sea ice. Sea ice particles are generally considered to follow the USD. In view
of the independence between orientation and distance, USD also implies UOD, i.e., sea
ice particles are uniformly oriented in all directions. Nevertheless, we found the existing
implementation of UOD was not always effective, while a real UOD could be only realized
by distributing the solid angle of particles uniformly in 3D space. We derived the total solid
angle of the canting-tilt cell spanned by particles and combined the differential relation
between solid angle and Euler angles; thus, the joint PDF p(ϕ, τ) for UOD was achieved.
Starting from the theory of small particle scattering and transformation among ellipsoid
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coordinate system, radar polarization coordinate system and Earth-based Cartesian coordi-
nate system, we established the coherency matrix of a (ϕ, τ)-oriented ellipsoid particle. A
generalized coherency matrix of a volume of uniformly oriented spheroid particles was
then attained by ensembly integrating p(ϕ, τ) into the (ϕ, τ)-oriented coherency matrix.
This covers factors such as radar imaging geometry, particle shape, canting geometry, tilt
geometry and transmission effect in a multiplicative way. It can also describe the polarimet-
ric volume scattering of typical distributed targets such as vegetation covers, soil particles
and ice inclusions. The existing volume models of sea ice is only applicable to specific cases.
The good performance of the model was validated by simulations on a cloud of oblate and
prolate particles with differential reflectivity ZDR, polarimetric entropy H and scattering α
angle as descriptors. To exemplify the generalized model in the adaptive decomposition
of the backscattering of sea ice, following CMD, the scattering power that reduces the
rank of coherency matrix without breaking the physical realizability was obtained to make
full use of the polarimetric information. To adaptively fit the orientation geometry of
particles, we studied some interesting orientation geometries, including aligned orientation,
complement tilt geometry, reflection symmetry and azimuth symmetry. We highlighted the
complement tilt geometry, which provides three models corresponding to the horizontal
tilt, vertical tilt and random tilt of sea ice particles, respectively. To match these models
to data for adaptive decomposition, we provided two strategies. One is based on ZDR,
while the other is based on the maximum power fitting. The models and decomposition
were finally validated on GF-3 PolSAR data of a young ice area in Prydz Bay, Antarctica.
The result demonstrates not only the dominant vertical tilt preference of sea ice brine
inclusions, but also the subordinate random tilt preference and non-negligible horizontal
tilt preference, which is consistent with the geometric selection mechanism of the c-axis
of polycrystalline within sea ice. Compared with the ZDR-based strategy, the maximum
power fitting is preferable, as it is entirely driven by the model and the data. Such soft
thresholding enables it to effectively estimate the ZDR offset introduced by transmission
effect, and a novel inversion of sea ice refractive index based on polarimetric model-based
decomposition is achieved.
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Appendix A

The matrices [A]mn and [B]mn (m, n = 1, 2, 3) that comprise the essential matrix [ω]mn
for each (m, n) element TVmn of the 3× 3 volume coherency matrix [TV ] are formulated in
this appendix.

https://osdds.nsoas.org.cn/
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