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Abstract: Multi-channel airborne full-waveform LiDAR is widely used for high-precision underwater
depth measurement. However, the signal quality of full-waveform data is unstable due to the
influence of background light, dark current noise, and the complex transmission process. Therefore,
we propose a nonlocal encoder block (NLEB) based on spatial dilated convolution to optimize the
feature extraction of adjacent frames. On this basis, a coupled denoising encoder–decoder network is
proposed that takes advantage of the echo correlation in deep-water and shallow-water channels.
Firstly, full waveforms from different channels are stacked together to form a two-dimensional tensor
and input into the proposed network. Then, NLEB is used to extract local and nonlocal features
from the 2D tensor. After fusing the features of the two channels, the reconstructed denoised data
can be obtained by upsampling with a fully connected layer and deconvolution layer. Based on the
measured data set, we constructed a noise–noisier data set, on which several denoising algorithms
were compared. The results show that the proposed method improves the stability of denoising by
using the inter-channel and multi-frame data correlation.

Keywords: full-waveform denoising; deep learning; airborne LiDAR; bathymetry

1. Introduction

Airborne full-waveform LiDAR is a type of laser ranging system that can store and
record the complete reflected echo signal of the target in a very short sampling interval
and with a large capacity, so it can obtain a high-range resolution [1]. The scanning modes
of airborne LiDAR detection systems mainly include linear scanning and oval scanning.
The advantage of linear scanning is that the system can maximize the acquisition of the
light energy of the normal incident and nearby angles of the target, but the disadvantage is
that the structure is complex and requires high synchronization accuracy. The Airborne
LiDAR Bathymetry (ALB) system described in this paper adopts an ovoid scanning mode
with a light structure; the incidence angle of the scanning mode is relatively stable, which
is conducive to avoiding the direct reflection of the surface mirror and reducing differences
in echo energy [2,3].

Airborne LiDAR is widely used in land cover classification [4], marine resource
detection [5,6], and vegetation detection [7] because of its high measuring efficiency, wide
working range, high measuring accuracy, and ability to obtain the physical characteristics
of the target. Because 532 nm blue-green light has good water permeability, laser radar at
this wavelength is used to measure the depth of the seafloor. Since the laser beam from
the atmosphere enters through the sea surface and travels through the water, the energy
returned to the detector will be reduced, which will reduce the peak signal-to-noise ratio of
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the seafloor signal and increase the uncertainty of the distance measurement [8]. The full
waveform collected by the ALB system can be regarded as composed of the sea-surface,
water scattering, and seabed signals. Sea-surface signals are easily lost due to the influence
of waves, the scattered part of the water scattering signal is relatively stable, and weak
seafloor echoes are affected by the terrain, water quality, and other factors, so the integrity
of the signal needs to be repaired through multi-frame correlation.

The maximum measured depth and accuracy are also affected by the water quality,
target reflectance, background noise, and flight altitude [9]. As shown in Figure 1, the
multi-field-of-view detection structure is widely used in airborne full-waveform sounding
systems, and the multi-channel data in the field of view can be used to improve the dynamic
range and accuracy of detection [5]. The small field in the middle is used as a shallow-
water channel to obtain the energy-concentrated shallow-water echo, while the remaining
external field of view is used as a deep channel to receive weak submarine echo signals in
deep water owing to a stronger gain and a larger field of view.

Different field-of-view echoes have similar structures, so the target characteristics re-
flected by multi-channel signals can be used to optimize the target peak signal-to-noise ratio.

Figure 1. Introduction of multi-channel full-waveform airborne LiDAR.

Although the hardware architecture of airborne LiDAR has been improved, the process
of the laser light returning to the detector after traveling through the atmosphere, the air–sea
interface, and the water is extremely complex.

Random background light can produce Gaussian noise, and sudden changes in the
seafloor topography or the scattering of water can produce sparse noise. Therefore, the
mixed noise contained in the full waveform of ALB has a great influence on the seabed
signal. Traditional algorithms, such as wavelet filtering [10], EMD filtering [11], waveform
decomposition [12], and deconvolution [13], are widely used in this field. However,
the effect of such algorithms is often limited by manually adjusted parameters. Full-
waveform data can be regarded as a one-dimensional time series, so deep learning is
widely used in LiDAR data processing [14,15]. Super-resolution technology can restore
the echo with a higher sampling rate without upgrading the hardware [16,17]. Although
multi-channel information has been proven to be effective for echo classification, denoising
and signal enhancement have not been used [5,6]. Due to the structural similarity between
consecutive waveforms and the physical correlation between different channels of the
same frame [18], they can be used to further improve the signal sampling rate and reduce
noise [19]. However, with the increase in the detection distance, the intensity of the LiDAR
echo signal steadily decreases. To solve the above problems, this paper will further explore
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the influence of the signal correlation between channels on full-waveform denoising. The
main contributions of this paper are as follows:

• Based on a multi-task deep learning architecture and a centroid alignment algorithm,
we propose a novel LiDAR denoising technique for multi-channel ALB systems that
can improve the stability of denoising.

• The NLEB module is proposed, and the loss function is optimized to explore the
impact of intra-channel autocorrelation and inter-channel structural similarity on
LiDAR signal enhancement.

• We analyzed the characteristics of multi-channel ALB data and the limitations of the
denoising algorithm by using measured data.

2. Related Work

In order to improve the accuracy of the ALB system, traditional algorithms and
methods based on deep learning are proposed for filtering, echo classification, and
resolution enhancement.

2.1. Model-Based Methods

The detection accuracy depends on the position error when the full waveform is
decomposed into sub-echo components, and the transmitted waveform is generally con-
sidered to be Gaussian-like [20]. Due to the influence of cross-medium transmission, the
echo may be affected by trailing, ringing, and other phenomena, resulting in a reduction
in ranging accuracy in the subsequent waveform decomposition [21]. Researchers often
use the trigonometric function, quadrilateral function, and exponential function to decom-
pose the echo into water surface, water backscatter, and underwater signals [22,23]. For a
seabed signal with certain distortion, a model with a generalized Gaussian distribution or
lognormal distribution can be used to fit the signal. The multi-Gaussian decomposition
method based on initial parameters is not suitable for the peak detection of distorted
pulses in extremely shallow water with high overlap [24]. The combination of dynamic
threshold and wavelet filtering [8,10] can improve the ability to recognize weak signals,
but the selection of the wavelet basis function and decomposition scale need to be adjusted
for different water depths. The Richardson–Lucy deconvolution [13,25] algorithm can be
used to extract the interface response function to separate multiple targets with a short
distance, but the algorithm relies on multiple iterations, which tend to produce noise and
sound effects. Therefore, superimposing structurally similar subsequences in multiple
frames [19] can significantly improve the peak signal-to-noise ratio of submarine signals.
B-spline [26] and Wiener deconvolution algorithms [27] require no prior knowledge and
avoid short-distance stacking losses, but they are too sensitive to noise. Neighborhood and
multidimensional space–time information [28] can be used to improve the peak signal-to-
noise ratio of seafloor signals, and waveform superposition can improve the detection rate
of weak seafloor signals. However, parameter debugging in traditional algorithms still
limits the processing performance of ALB echoes [29]. The existing waveform processing
methods do not make full use of the correlation between multi-frame data, and stacking
the average results of adjacent frames lacks stability in the ALB system [30].

2.2. Learning-Based Methods

With the development of deep learning in the field of time-series data processing, re-
searchers have become inclined to use deep learning to automatically extract full-waveform
features [15,17] from data. Unsupervised denoising based on an encoder–decoder has
achieved good results [14,31]. The deconvolution layer is used for upsampling, and high-
quality echo signals can be obtained at a low sampling rate [16,32]. By combining the
prior knowledge provided by echo classification with the denoising algorithm [33], the
parameter selection strategy can be optimized for different scenes, which can optimize
the peak signal-to-noise ratio of the target. Artificial features such as the echo width,
skewness, and kurtosis, combined with machine learning methods such as support vector
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machines [7] and random forest models [34], can be used to distinguish between deep-water,
shallow-water, and land echoes. However, hand-extracted features require specialized
knowledge and extensive preprocessing. The feature weights of key positions can be opti-
mized by converting the airborne waveform into a time-series diagram and extracting the
high-dimensional temporal and spatial features of the Gramian angular field time-series
diagram using the mature network architecture in the image field [35,36]. Based on the
LSTM module and one-dimensional convolution module, the time sequence dependence
and local spatial features of signals can be extracted [37,38]. Since sea-surface and seabed
signals are not fixed in each frame signal, the denoising effect of ALB signals is limited. The
seabed topography is complicated and easily affected by impulse noise, so it is necessary
to introduce a nonlocal [39] processing module or use multi-frame features to alleviate the
problem of the model falling into the local optimal solution.

3. Materials
3.1. Analysis of ALB Data

ALB data mainly include the sea-surface echo, water backscatter, and seabed echo.
With the increase in the laser transmission distance in the sea, the backscatter will be
broadened, which will affect the shape and position of the sea-bottom echo. Multi-channel
airborne LiDAR uses a high-sensitivity photomultiplier tube to improve the detection of
weak sea-bottom signals, but this also leads to greater echo noise. The received power of a
sea-surface echo can generally be expressed as follows:

Ps =
P0 · ρ · exp[−2σH] · A · E

2πH2 (1)

where Ps is the sea-surface-reflected power, P0 is laser emission peak power, ρ is the
air attenuation coefficient, A is the receiving optical aperture, E is the receiving system
efficiency, H is the aircraft flight altitude, and σ is the sea-surface reflectivity. The received
power of the seabed can generally be expressed as follows:

Pb =
P0 · R · (1− ρ)2 · exp[−2(σH + τD)] · A · E

2π(H + D/n)2 (2)

where Pb is the seabed-reflected power, R is the bottom reflectivity, τ is the effective
attenuation coefficient, and n is the refractive index of seawater.

In order to further analyze the correlation between multi-channel echoes, we used
Monte Carlo models to simulate deep- and shallow-water echoes in different states. We
monitored a million photons at once that move randomly through the water and disperse
using the Henyey–Greenstein function. By varying the scattering attenuation coefficient of
seawater to simulate various water conditions, we changed the longest distance of photon
propagation as well as the forward distance of photons at each step.

As shown in Figure 2, the x- and y-axes are the time and normalized amplitude,
respectively. The red curve is the waveform of the shallow-water channel, and the blue
curve is the waveform of the deep-water channel. The main differences between the deep-
and shallow-water channels are the field angle and gain. As shown in Figure 2a,b, when
the water depth is relatively shallow, obvious sea-surface echoes can be observed in both
channels, but shallow-water channels are more sensitive to underwater signals. As shown
in Figure 2c,d, the seabed signals of deep channels become more obvious with the increase
in water depth, and the data between channels also show a stronger correlation. The echos
of deep and shallow channels can be decomposed into the surface, seabed, and backscatter,
and the seabed signal gradually weakens and slides to the right until it disappears.
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(a) (b)

(c) (d)

Figure 2. Visual comparison of simulation data in deep-water channel and shallow-water channel
denoising. (a) Extreme shallow-water waveform; (b) shallow-water waveform with a strong bottom
return; (c) deep-water waveform; (d) shallow-water waveform with a weak bottom return.

3.2. Measured Data Set

As shown in Figure 3, the data in this flight experiment were collected near the west
side of Weizhou Island at a flight altitude of 500 m. The echoes of a LiDAR sea survey
performed in the evening with good weather were used as the original data set. The flight
area was bounded by a longitude of 109°00′ to 109°05′ east and a latitude of 21°01′ to 21°03′

north. The total area of the test area was about 41 km2, and the flight width corresponding
to the route was 350 m. At the junction of the sea area and the land area, the aircraft
flew along 12 north–south navigation belts, each of which was 1.5 km long, and the side
overlap rate of the navigation belt was higher than 0.3. In the figure, the navigation belt
in red (east–west) was used for system parameter checking and calibration, and the belt
in green was used for accuracy checking. To avoid inertial measurement unit (IMU) error
accumulation, a figure-of-eight flight was performed before entering the test area. The
LiDAR device was mounted on a single-engine turboprop lightweight general-purpose
aircraft and is equipped with a positioning and orientation system. The pitch angle and
roll angle of the route were generally not more than 2°. The slope of the aircraft did not
exceed 22° when turning.

Figure 3. Measured scene.
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The measured signal cannot provide a pure echo for testing, so we extracted the first
200 points and the last 200 points of the echo to estimate the noise and added them to the
original echoes according to different scales to obtain noise and noisier pairs of echoes.
We selected continuous echoes to generate a 2D tensor and ensured that the maximum
depth change of the echo in each 2D tensor did not exceed 2 m. Considering the speed
and angle of view of the aircraft, we stacked 100 frames as a tensor. Therefore, redundant
information in multiple frames could be used to eliminate noise. The system parameters
of full-waveform LiDAR are shown in Table 1. The water depth in the tested sea area is
between 0.3 m and 25 m. The beam divergence angle of the prototype is 0.2 mrad, the
scanning angle is 10°, the measurement accuracy of the scanning angle is better than 0.003,
the repetition rate is 5.5 kHz, the laser linewidth is 0.05 nm, and the pulse width is 3.3 ns;
the aircraft speed was 200 km/h.

Table 1. The system parameters of full-waveform LiDAR.

Parameters Parameter Indexes

Beam divergence angle 0.2 mrad
Laser emission frequency 5.5 kHz

Laser emission power 17.4 W/532 nm,18 W/1064 nm
Pulse energy 3.05 mJ/532 nm, 3.5 mJ/1064 nm
Pulse width 3.3 ns

Detection range 500–1000 m
Scanning mode Constant-angle conical scan
Scanning angle ±10°
Scanning speed 10 revolutions per second

Receiving aperture 0.2 m
Detection minimum energy 8 × 10−9 W

Maximum receiving frequency 2 GHz

4. Proposed Method

In this section, we provide the details of preprocessing, the nonlocal encoder block
(NLEB), and the architecture of proposed model.

4.1. Preprocessing of Full Waveform

Laser transmission on the sea surface and in the water results in random noise in the
full waveform, but the position of the seabed echo is relatively stable in adjacent frames.
As shown in Figure 4, by aligning and stacking multiple frames, the similarity of adjacent
frames can be highlighted without modifying key information, such as the sea surface,
backscatter, and underwater.

To alleviate the impact of abnormal echoes on multi-frame denoising, the echo of the
lost sea surface is filtered through the hard threshold of the pulse width and amplitude.
Then, the amplitude of the signal is normalized according to the maximum and minimum
values of the echoes in each channel. Although the transmitted waveform is a Gaussian
pulse with concentrated energy, the sea-surface echo will deform due to the random jitter
of the sea surface. The idea of eliminating the echo noise from the ALB system by stacking
signals and using related information from multiple echoes has long been proposed to
improve the accuracy of seawater depth calculations. Because the water depth does not
change much between adjacent frames, echoes in the same field of view have structural
similarity [9,40]. Before stacking multi-frame data, we highlight the relative position of
the sea surface and seabed through the centroid alignment of the sea surface. The centroid
calculation formula is as follows:
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tc =
u1t1 + u2t2 + · · ·+ untn

u1 + u2 + · · ·+ un
=

∑n
i=1uiti

∑n
i=1ui

(3)

where tc represents the corrected centroid time, ti represents the corresponding time of
each sampling point of the pulse, and ui corresponds to the amplitude of each sampling
point. Then, we convert 100 waveforms to the same position according to the centroid
position of the sea surface to form a two-dimensional tensor.

Figure 4. The basic principle of full-waveform stacking.

4.2. Nonlocal Encoder Block

Due to the impact of background noise, sea-surface jitter, underwater transmission,
and other factors on ALB, the received full-waveform signal-to-noise ratio is unstable.
However, the sampling rate of the receiving circuit is very high, and the submarine signals
covered by the laser in the same field of view are very close, so there is also a correlation
between non-adjacent echoes. Using the traditional nonlocal module to extract the distance
dependence of non-adjacent echoes will greatly increase the calculation cost [41]. To reduce
the consumption of resources and make full use of the spatial correlation between features,
we propose an NLEB module with a wide acceptance domain in the spatial domain.

Due to the strong correlation with the close position of the echo in the field of view,
context feature extraction can be improved by multi-layer stacked convolution. Including
LSTM or using a large-scale convolution kernel will not only enhance the long-distance
dependence extraction effect but also add more parameters and decrease computational
efficiency. Multiple small-scale dilated convolution stacks are widely used in image denois-
ing, which depends on fewer parameters and increases the nonlinear extraction ability of
the model. So, we rely on a convolution kernel size of 3 for stacking, focusing on expanding
the spatial-scale sensitivity field. The details of NLEB are shown in Figure 5. It consists
of three two-dimensional convolution layers with the kernel size (3,3), and the dilation
rate is set to (1,1), (2,1), and (4,1). The kernels are not dilated in the input’s time-domain
direction. By expanding the convolution of the spatial direction, the receptive field of NLEB
can extract features from similar positions between frames without increasing the amount
of computation. A batch normalization layer is introduced to accelerate convergence and
prevent over-fitting.
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Figure 5. The details of nonlocal encoder block.

4.3. CNLD-Net Architecture

As previously stated, structural similarity exists between echoes collected in the same
area with different gains and fields of view. The idea of eliminating ALB system echo
noise by stacking signals and using related information from multiple echoes has long
been proposed. To improve the denoising effect, we built a multi-branch network to
improve its robustness to weak signals. As shown in Figure 6, our proposed architecture
combines NLEB and the idea of multi-task learning. Following the preprocessing process
described above, adjacent frames are roughly aligned and stacked according to the sea-
surface position before being input into the network.

Figure 6. The architecture of CNLD-Net.

CNLD-Net first extracts multi-frame features through two identical branches com-
prising a convolution module, two NLEB modules, and two max-pooling layers. The two
encoders are used to extract local and nonlocal information from deep- and shallow-water
channels, respectively. The two branches’ features are then flattened and concatenated
as the input of two fully connected layers. We use the reconstruction layer to restore the
denoised two-dimensional tensor for each channel from the shared representation. After
obtaining the denoised tenors, we can obtain the denoised waveforms by detaching them.
The decoding part of the CNLD network also includes two identical branches, which are
composed of two NLEB modules, two deconvolution operations, and one convolutional
layer. The deconvolution layer is the inverse operation of descending sampling, also known
as transposed convolution, which can be used to improve the time resolution of the full
waveform and restore stacked signals from the upsampling of compressed features. The
dimension values after each layer in CNLD are presented in Table 2.
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Table 2. Details for each CNLD layer.

Module Layer Kernel
(Size, Stride)

Dimension or Neurons
(Bs, C, L) α

Stacked image input \ \ (64,1,2000 × 100)
shallow encoder
/deep encoder Conv-2d (3 × 3,2) (64,16,1000 × 50)

Conv-2d (3 × 3,2) (64,32,500 × 25)
NLEB (64,64,500 × 25)
NLEB (64,128,500 × 25)
Dense 1000

Merged layer Concatenated 2000
Reconstruction layer Dense 1,600,000

NLEB (64,64,500 × 25)
NLEB (64,32,500 × 25)

Conv-2d-Transpose (3 × 3,2) (64,32,1000 × 50)
Conv-2d-Transpose (3 × 3,2) (64,16,2000 × 100)

Conv2d (1 × 1,1) (64,1,2000 × 100)
Stacked image output \ \ (64,1,2000 × 100 )

α Bs, batch size; L, data length of the waveform; C, number of channels.

The training optimization’s loss function is set as follows:

loss =
1
K ∑K

i=1(||Ŝi − Si||2 + ||D̂i − Di||2) (4)

where Si is the original data from the shallow channel, Di is the original data from the deep
channel, Ŝi is the reconstructed tensors from the shallow channel, D̂i is the reconstructed
tensors from the deep channel, and K is the number of training samples of each channel.
The reconstruction layer improves the time resolution by introducing a deconvolution
kernel, which is also called transposed convolution. Transposed convolution fills the input
features with s− 1 zeros between every two elements. The strides s here can be understood
as the magnification of the resolution, and the convolution operation with a stride of 1
is performed on the input features after filling. The width of the output features of the
transposed convolution layer can be expressed as:

o = (w− 1)× s− 2p + k (5)

where w represents the size of the input feature, s represents the stride, p represents the
padding size, and k represents the size of the transposed convolution kernel.

4.4. Performance Metrics

To evaluate the denoising ability of the proposed method, we added specified noise
to measured data sets at different water depths. Then, the signals that contained noise
were processed by using the proposed method, AWT [42], EMD-STRP [10], CAENN [14],
1D-Nonlocal [43], and MS-CNN [6]. Finally, the effects of the six methods were compared;
the methods were evaluated by determining the following two parameters:

Root mean square error (RMSE):

RMSE =

√√√√ N

∑
i=1

(xi − x̃i)2/N (6)



Remote Sens. 2023, 15, 3293 10 of 19

Signal-to-noise ratio (SNR):

SNR = 10log(
∑N

i=1 x2
i

∑N
i=1(xi − x̃i)

2 ) (7)

Since the input and output of the network are stacked images, the parameters are
calculated based on the detached waveform, where xi represents an original waveform, x̃i
is an output, N is the number of waveforms, and x̄ represents the mean signal amplitude.

5. Experiments
5.1. Comparison of Signal Denoising Method

As mentioned above, the measured data were collected by the ALB system on a
evening flight and at an altitude of 500 m. A total of 50,000 pieces of data with different
water depths were selected, and the noise–noisier data set was constructed. We adopted
the strategy of five-fold cross-validation to carry out the experiment, in which four units
were selected for training and the remaining one unit was used for testing.

We chose the first 200 and the last 200 points of the signal to calculate the average
power. Then, we generated random noise based on the noise coefficient and added it to the
original signal to build a noise data set.

The rightmost column in the table shows the time taken to process a single signal.
There is no difference in signal denoising time between the deep-water channel and shallow-
water channel. The denoising time of the traditional algorithm is significantly higher than
that of the deep-learning-based method. Although we extracted multi-channel and non-
neighborhood features, our proposed method can still achieve high performance. With the
increase in the noise coefficient, the signal-to-noise ratio decreases. Tables 3 and 4 present
the RMSE and SNR of shallow-water channels and deep-water channels, respectively,
with different noise coefficients. The signal-to-noise ratio of the deep-water channel after
denoising is slightly higher, mainly due to the significant improvement in the seabed
signal caused by high gain. The denoising algorithm based on the adaptive wavelet or soft
threshold can preserve the details of the signal when processing shallow-water channel data.
However, with the decrease in the signal-to-noise ratio, the problem of noise misjudgment
is difficult to alleviate. Combining correlation analysis and empirical mode decomposition
methods can preserve IMF components with high correlations; thus, reconstructing signals
can improve the ability to retain weak signals. The signal-to-noise ratios of the CAENN
and non-neighborhood architectures are significantly improved, but their RMSE values are
also higher than that of the EMD-STRP algorithm due to the low stability of seabed signals
in shallow-water channels and the single-frame-based network architecture. Although it is
better at removing Gaussian noise, its ability to retain the target signal is not strong. The
MS-CNN architecture introduces a channel attention mechanism, resulting in a significant
decrease in RMSE. The proposed CNLD structure further improves the signal-to-noise
ratio by considering the structural similarity of multi-frame data and the data correlation
between channels.

Table 3. MSE and SNR values of different Gaussian noise variances in shallow channel.

Methods
5 10 15 20

Time
RMSE SNR RMSE SNR RMSE SNR RMSE SNR

AWT [10] 0.012 20.55 0.015 18.62 0.023 14.95 0.039 11.51 0.007 s
EMD-STRP [42] 0.012 21.03 0.016 18.55 0.023 14.96 0.042 10.59 0.019 s

CAENN [14] 0.036 24.08 0.042 20.76 0.062 18.37 0.087 16.61 0.003 s
1D-Nonlocal [43] 0.057 23.94 0.064 19.84 0.054 18.42 0.063 16.91 0.008 s

MS-CNN [6] 0.028 30.54 0.034 26.17 0.048 22.41 0.036 18.17 0.006 s
CNLD 0.019 38.58 0.026 33.48 0.031 26.92 0.036 22.94 0.005 s
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Table 4. MSE and SNR values of different Gaussian noise variances in deep channel.

Methods
5 10 15 20

Time
RMSE SNR RMSE SNR RMSE SNR RMSE SNR

AWT [10] 0.025 20.91 0.028 19.88 0.032 18.62 0.046 15.49 0.007 s
EMD-STRP [42] 0.024 21.28 0.027 20.12 0.033 18.47 0.047 15.14 0.019 s

CAENN [14] 0.052 32.81 0.054 30.53 0.057 28.04 0.064 22.62 0.003 s
1D-Nonlocal [43] 0.059 33.91 0.065 31.66 0.064 28.81 0.073 23.03 0.008 s

MS-CNN [6] 0.049 36.82 0.057 33.48 0.055 31.62 0.068 28.18 0.006 s
CNLD 0.027 40.16 0.045 37.25 0.052 33.48 0.062 29.25 0.005 s

The SNR and RMSE after denoising in deep-water channels are higher than those in
shallow-water channels, because a high gain simultaneously improves the signal-to-noise
ratio of the target signal and noise, resulting in a decrease in denoising stability. The wavelet
denoising effect of the soft threshold gradually outperforms the EMD algorithm as the
noise coefficient increases, indicating that the extraction of correlation feature components
in single-frame data is susceptible to Gaussian noise. The method based on deep learning is
also superior to traditional algorithms in deep-water channel data denoising, with CAENN
having a signal-to-noise ratio lower than 1D-nonlocal, indicating that optimizing the non-
neighborhood feature extraction of time-domain signals can improve the signal-to-noise
ratio of weak echoes submerged in noise. As the noise coefficient increases, the RMSE of
1D nonlocal gradually decreases compared to CAENN, indicating that non-neighborhood
features exhibit high stability at low signal-to-noise ratios. The MS-CNN architecture
combines multi-channel correlations to optimize the signal-to-noise ratio for denoising.
Although the attention mechanism is introduced, the lack of adjacent frame features makes
it unstable in preserving weak signals. Our proposed CNLD architecture not only considers
the local similarity characteristics of similar positions in multiple frames of data within
the channel but also considers the high-dimensional correlation of data between channels.
Therefore, it can display a better denoising level with a lower root mean square error
and the lowest signal-to-noise ratio. Below, we further compare the denoising effects by
visualizing stacked echoes and single-frame echoes, with the shallow-water channel results
at the top and deep-water channel results at the bottom of each grouping.

Figure 7a,b show the stacked noise echoes and pure echoes, respectively. The two
white vertical lines, representing the sea-surface and sea-bottom signals, indicate that
the preprocessed stacked echo has relevance. The darker the color in the stacked image,
the lower the noise, and it is obvious that the superimposed noise echoes are generally
gray. Compared to Figure 7b,c, it can be seen that the color of EMD-STRP after denoising
is darker, indicating a more significant effect on Gaussian noise. By comparison with
Figure 7e,f, it can be seen that the convolutional neural network based on the encoder–
decoder can remove Gaussian noise by relying on multi-layer convolution to extract the
high-dimensional features of echoes, but the white part of CAENN presents obvious
distortion. However, 1D nonlocal networks retain more noise while preserving the target
signal without deformation. MS-CNN in Figure 7g significantly improves the ability to
remove Gaussian noise and retains effective signals by introducing attention modules for
deep- and shallow-water channels. However, due to the high randomness of laser sea
survey data, the channel correlation characteristics will also lead to denoising distortion.
As shown in Figure 7h, the denoising result of the proposed method is most similar to the
ground truth. By extending the receptive field in the spatial direction, the correlation of
stacked signals of the deep-water channel and shallow-water channel can be fully exploited.
Therefore, our proposed method can distinguish low-reflectivity targets from noise, reduce
noise near the right white line, and preserve the seafloor signal.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7. Visual comparison of measured stacked images. (a) Noise signal; (b) ground truth; (c) AWT;
(d) EMD-STRP; (e) CAENN; (f) 1D-Nonlocal; (g) Ms-CNN; (h) CNLD.

We selected a frame of signals with obvious sea-surface and sea-bottom echoes in deep-
and shallow-water channels for visual comparison to verify the ability of the proposed
algorithm to retain the sea-bottom signal. As shown in Figure 8, the interference noise of
LiDAR echo signals mainly includes system noise generated by internal hardware, as well
as non-system noise generated by external environmental factors, such as the atmosphere
and water. We selected one frame of echoes for visualization; the backscatter between the
sea-surface and seabed signals was received by deep-water channels with a larger field of
view. Figure 8a,b are, respectively, the original signal after adding a noise factor of 25 and
the pure signal. Figure 8c,d demonstrate the denoising result of dynamic frequency-domain
filtering and EMD-STRP. Although Gaussian noise can be removed by local refinement, the
weak signal on the seabed is still confused with noise. As shown in Figure 8e,f, data-driven
denoising methods can learn high-dimensional temporal features in echoes and thus can
better remove Gaussian noise. However, the scattering of seawater and the low reflectivity
of the seafloor will lead to the distortion of the weak seafloor signal during denoising. By
introducing one-dimensional nonlocal features, the aliasing of Gaussian noise and of the
target signal can be further alleviated. Figure 8g has a lower noise signal-to-noise ratio,
mainly reflected in the smoother bottom noise of the signal and the better fit to the ground
truth after denoising near the peak of the dual-channel seabed signals. It can improve
the ability to retain weak echoes but also retains more jitter. As shown in Figure 8h, our
proposed method makes use of the multi-frame correlation to improve the signal-to-noise
ratio of seafloor signals. By taking into account the characteristics of multi-channel signals,
CNLD retains more details and improves the stability of denoising. In general, the proposed
method has a higher signal-to-noise ratio and a lower MSE than other methods, achieving
the best denoising effect.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 8. Visual comparison of measured waveforms. (a) Noise signal; (b) ground truth; (c) AWT;
(d) EMD-STRP; (e) CAENN; (f) 1D-NONLOCAL; (g) Ms-CNN; (h) CNLD.

5.2. Comparison of Different Dilation Rates

The deep-water channel and shallow-water channel of multi-channel airborne LiDAR
share the same optical system, but the field-of-view angle and detector gain are different.
Therefore, there is a correlation between echoes from different channels and between adja-
cent frames. We designed various parameters to compare the effects of perceptual spatial
fields. When multiple layers of dilated convolution are introduced, local information may
be lost due to the gridding effect. Therefore, an HDC (hybrid dilated convolution) architec-
ture [44] is referred to in the design of dilation rates for multi-layer dilated convolution.
The expansion rate of stack unwrapping convolution cannot have a common divisor greater
than 1, so the characteristics of local and nonlocal echoes can be comprehensively consid-
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ered. We adopted three-layer stacked convolution as the basic architecture of the NLEB
module. As shown in Figure 9a, the receptive fields of three conventional convolution
stacks with a dilation rate of 1 can be regarded as traditional convolution stacks. As shown
in Figure 9b,c, dilation rates of 1,2,3 and 1,2,5, respectively, in the spatial direction can
expand the receptive field. In order to explore the ability of the proposed network to extract
spatial features, we used dilated convolution in both spatiotemporal directions and only in
the spatial direction.

(a) (b) (c)

Figure 9. Comparison of different dilation rates in spatial direction. (a) Dilation rates = (1,1,1);
(b) dilation rates = (1,2,3); (c) dilation rates = (1,2,5).

As shown in Table 5, with the increase in the dilation rate in the convolution layer,
the signal-to-noise ratio of (1,2,2) is significantly higher than that of (1,1,1). Using dilated
convolution can enlarge the local receptive field, so the signal-to-noise ratio is more reli-
able. When dilated convolution is used in both directions, the signal-to-noise ratio does
not improve significantly and even becomes lower. This is because introducing dilated
convolution in the time dimension can increase the receptive field, but it will destroy the
dependency of the time series. More adjacent echoes can be covered by setting the dilation
rates of the three stacked convolution layers to 1, 2, and 5. However, the improvement
effect is not obvious when compared with setting the dilation rates to 1, 2, and 3. This is
because the correlation or similarity of full-waveform data also decreases with the increase
in the spatial distance. Using a large-scale convolution kernel to extract time-series features
can improve the extraction ability of local features, but it will reduce the efficiency of
network convergence. Therefore, the NLEB module proposed in this paper can enhance the
efficiency of extracting the similarity of multi-frame echoes by using stacked small-kernel
dilated convolution.

Table 5. Denoising effect of different dilation rates in measured experiment.

SNR Evaluation Non Dilation Rates
in Spatial Direction

Dilation Rates
in Both Directions

(1,1,1) (1,2,2) (1,2,3) (1,2,5) (1,2,2) (1,2,3) (1,2,5)

5 RMSE 0.041 0.035 0.023 0.022 0.033 0.029 0.031
SNR 37.22 38.68 39.37 39.32 38.74 39.28 39.33

10 RMSE 0.047 0.042 0.036 0.035 0.043 0.047 0.049
SNR 33.66 34.51 35.36 35.33 34.92 35.27 35.32

15 RMSE 0.038 0.040 0.041 0.043 0.041 0.046 0.044
SNR 28.81 29.76 30.18 29.86 29.95 30.19 30.20

20 RMSE 0.043 0.045 0.048 0.050 0.046 0.051 0.049
SNR 25.47 25.63 26.09 25.87 25.94 26.01 26.02
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5.3. Ablation Experiment

To verify the contribution of the multi-channel correlation and the proposed NLEB
module to noise reduction, we designed Baseline-Net. As shown in Figure 10, this architec-
ture uses our proposed NLEB module to extract features and uses a deconvolution module
to recover signals.

Figure 10. The architecture of Baseline-Net.

As shown in Table 6, under the condition of the same noise coefficient, the multi-frame
deep-water echo after stacking has a stronger detector gain and a higher signal-to-noise
ratio, but the RMSE of the shallow-water channel is lower and the denoising stability is
better. Due to the adjustment of the gain and field-of-view angles in deep- and shallow-
water channels, there are some blind spots in seabed exploration. Therefore, the signal-to-
noise ratio of CNLD-Local is significantly higher than the baseline single-channel denoising
effect. After the introduction of the proposed NLEB module, the RMSE of the CNLD model
is significantly lower than that of the CNLD-Local model, indicating that the enhancement
of the receptive field makes the denoising model more robust.

Table 6. Ablation experiment using measured data.

Signal SNR_Noise
Baseline Baseline CNLD-Local CNLD

RMSE SNR RMSE SNR RMSE SNR RMSE SNR

Shallow channel

5 0.038 34.91 - - 0.031 36.25 0.021 38.58
10 0.029 28.29 - - 0.041 31.63 0.026 33.48
15 0.051 22.71 - - 0.038 24.65 0.031 26.92
20 0.069 20.29 - - 0.043 22.27 0.036 22.94

Deep channel

5 - - 0.053 37.65 0.049 38.19 0.027 40.16
10 - - 0.075 34.69 0.054 35.69 0.045 37.25
15 - - 0.082 30.32 0.057 32.95 0.052 33.48
20 - - 0.088 28.37 0.072 28.56 0.062 29.25

5.4. Analysis of Limitations

Because of rapid changes in the environment, not all data between scene channels
have a strong correlation. By further analyzing the limitations of the laser sea denoising
algorithm through stacked echo diagrams, it can be seen that sea-surface and seabed signals
have strong randomness. As shown in Figure 11a, the positions of the sea surface and
seafloor change between multiple frames, but their relative positions remain unchanged,
showing a good correlation. As shown in Figure 11b, due to the fast flight of the aircraft
or sea-surface jitter, the fast transformation of the target signal will cause the correlation
to weaken after multi-frame stacking. Although the method proposed in this paper uses
the centroid of the sea surface to detect the signal, no alignment method can optimize
the denoising effect by using the echo similarity after the sea surface is lost. As shown in
Figure 11c, the sea-surface signal has strong randomness, and the field-of-view angle of the
deep-water channel is larger, resulting in a higher probability of receiving the target signal.
However, shallow-water channels are limited by the field-of-view angle scale and gain,
which reduces the probability of receiving effective signals. As shown in Figure 11d, when
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the laser hits trees, multiple targets will be generated. However, the gain and sensitivity
of deep- and shallow-water channels to targets are different, so when the echoes appear
saturated or there are multiple targets, the correlation of data between channels will also
decrease.

(a) (b) (c) (d)

Figure 11. Visual comparison of stacked images. (a) Strong correlation; (b) weak correlation; (c) chan-
nel anomaly; (d) multiple echoes.

As shown in Figure 12, limiting denoising factors are analyzed through the visual-
ization of a single waveform. As shown in Figure 12a, the correlation of echoes is mainly
reflected in sea-surface and seabed signals. After normalization, seabed signals are sig-
nificantly different due to the different gains of deep- and shallow-water channels. The
field of view of the deep-water channel is large, so more water body backscattering can be
received, resulting in the deformation of seabed signals. As shown in Figure 12b, hardware
circuit overheating, random background light, and other factors may lead to the availability
of data in a single channel in some cases, so the data correlation between channels may
fail in some cases. As shown in Figure 12c, due to the difference in gains of deep- and
shallow-water channels, the target signal of the shallow-water channel is normal when
the deep-water channel is saturated, and the deep-water channel will receive more target
signals due to a stronger gain.

(a) (b) (c)

Figure 12. Visual comparison of single waveform. (a) Weak correlation; (b) channel anomaly;
(c) multiple echoes.
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6. Conclusions

In this paper, a denoising method for a multi-channel ALB full waveform is proposed.
Firstly, an alignment method based on surface centroids was used to highlight the structural
similarity between consecutive frames. Then, we introduced the NLEB module to enhance
the spatial receptive field, and the correlation extraction efficiency of the sea-surface and
seabed echoes was optimized. Finally, we designed a CNLD network based on a multitask-
ing learning architecture to mine signal correlations between channels and simultaneously
reconstruct denoised deep and shallow channel echoes in an end-to-end manner.

Through ablation experiments, we found that the correlation between multiple wave-
forms in the same channel exhibits high stability, and the correlation between channels is
constrained by channel gain differences, field-of-view angle differences, and the signal’s
dynamic range. However, the signal correlation between channels can still improve the
retention of weak seafloor signals. The proposed method can obtain the highest SNR with
the lowest RMSE under different noise variances. In the future, we will further optimize
the method of extracting channel correlations and improve the robustness of the model
through data enhancement and the introduction of prior physical knowledge.

Author Contributions: Conceptualization, Y.Z.; Methodology, B.H.; Validation, J.H. and Q.L.; Inves-
tigation, C.L.; Resources, M.Y. and Y.L.; Funding acquisition, G.Z. All authors have read and agreed
to the published version of the manuscript.

Funding: This work is supported by the Guangxi Innovative Development Grand Grant (No.
2018AA13005).

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to project confidentiality agreement.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ke, J.; Lam, E.Y. Temporal Super-resolution Full Waveform LiDAR. In Proceedings of the Imaging and Applied Optics 2018

(3D, AO, AIO, COSI, DH, IS, LACSEA, LS&C, MATH, pcAOP), Orlando, FL, USA, 25–28 June 2018; Optica Publishing Group:
Washington, DC, USA, 2018; p. CTh3C.1. [CrossRef]

2. Balsa-Barreiro, J.; Avariento, J.; Lerma, J. Airborne light detection and ranging (LiDAR) point density analysis. Sci. Res. Essays
2012, 7, 3010–3019. [CrossRef]

3. Baltsavias, E. Airborne laser scanning: Basic relations and formulas. ISPRS J. Photogramm. Remote Sens. 1999, 54, 199–214.
[CrossRef]

4. Hermosilla, T.; Ruiz, L.A.; Recio, J.A.; Balsa-Barreiro, J. Land-use Mapping of Valencia City Area from Aerial Images and LiDAR
Data. In Proceedings of the GEOProcessing 2012: The Fourth International Conference in Advanced Geographic Information
Systems, Applications and Services, Valencia, Spain, 30 January–4 February 2012.

5. Huang, T.; Tao, B.; He, Y.; Hu, S.; Xu, G.; Yu, J.; Wang, C.; Chen, P. Utilization of multi-channel ocean LiDAR data to classify the
types of waveform. In Proceedings of the SPIE Remote Sensing 2017, Warsaw, Poland, 11–14 September 2017; p. 61. [CrossRef]

6. Zhao, Y.; Yu, X.; Hu, B.; Chen, R. A Multi-Source Convolutional Neural Network for Lidar Bathymetry Data Classification. Mar.
Geod. 2022, 45, 232–250. [CrossRef]

7. Chen, D.; Peethambaran, J.; Zhang, Z. A supervoxel-based vegetation classification via decomposition and modelling of
full-waveform airborne laser scanning data. Int. J. Remote Sens. 2018, 39, 2937–2968. [CrossRef]

8. Zhao, X.; Xia, H.; Zhao, J.; Zhou, F. Adaptive Wavelet Threshold Denoising for Bathymetric Laser Full-Waveforms With Weak
Bottom Returns. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1503505. [CrossRef]

9. Mader, D.; Richter, K.; Westfeld, P.; Maas, H.G. Correction to: Potential of a Non-linear Full-Waveform Stacking Technique in
Airborne LiDAR Bathymetry. PFG—J. Photogramm. Remote Sens. Geoinf. Sci. 2022, 90, 495–496. [CrossRef]

10. Long, S.; Zhou, G.; Wang, H.; Zhou, X.; Chen, J.; Gao, J. Denoising of Lidar Echo Signal Based on Wavelet Adaptive Threshold
Method. ISPRS—Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, XLII-3/W10, 215–220. [CrossRef]

11. Cheng, X.; Mao, J.; Li, J.; Zhao, H.; Zhou, C.; Gong, X.; Rao, Z. An EEMD-SVD-LWT algorithm for denoising a lidar signal.
Measurement 2021, 168, 108405. [CrossRef]

12. Zhou, G.; Long, S.; Xu, J.; Zhou, X.; Wang, C. Comparison analysis of five waveform decomposition algorithms for the airborne
LiDAR echo signal. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 7869–7880. [CrossRef]

13. Song, Y.; Li, H.; Zhai, G.; He, Y.; Bian, S.; Zhou, W. Comparison of multichannel signal deconvolution algorithms in airborne
LiDAR bathymetry based on wavelet transform. Sci. Rep. 2021, 11, 16988. [CrossRef]

http://doi.org/10.1364/COSI.2018.CTh3C.1
http://dx.doi.org/10.5897/SRE12.278
http://dx.doi.org/10.1016/S0924-2716(99)00015-5
http://dx.doi.org/10.1117/12.2278700
http://dx.doi.org/10.1080/01490419.2022.2032498
http://dx.doi.org/10.1080/01431161.2018.1437293
http://dx.doi.org/10.1109/LGRS.2022.3141057
http://dx.doi.org/10.1007/s41064-022-00212-0
http://dx.doi.org/10.5194/isprs-archives-XLII-3-W10-215-2020
http://dx.doi.org/10.1016/j.measurement.2020.108405
http://dx.doi.org/10.1109/JSTARS.2021.3096197
http://dx.doi.org/10.1038/s41598-021-96551-w


Remote Sens. 2023, 15, 3293 18 of 19

14. Zhang, Y. A Novel Lidar Signal Denoising Method Based on Convolutional Autoencoding Deep Learning Neural Network.
Atmosphere 2021, 12, 1403.

15. Gangping, L.; Ke, J. Dense and Residual Neural Networks for Full-waveform LiDAR Echo Decomposition. In Proceedings of the
Imaging Systems and Applications 2021, Washington, DC, USA, 19–23 July 2021; p. IF4D.3. [CrossRef]

16. Liu, G.; Ke, J.; Lam, E.Y. CNN-based Super-resolution Full-waveform LiDAR. In Proceedings of the Imaging and Applied
Optics Congress, Washington, DC, USA, 22–26 June 2020; Optica Publishing Group: Washington, DC, USA, 2020; p. JW2A.29.
[CrossRef]

17. Bhadani, R. AutoEncoder for Interpolation. arXiv 2021, arXiv:2101.00853
18. Chen, X.; Yang, H. Full Waveform Inversion Based on Wavefield Correlation. IOP Conf. Ser. Mater. Sci. Eng. 2019, 472, 012069.

[CrossRef]
19. Hu, B.; Zhao, Y.; Chen, R.; Liu, Q.; Wang, P.; Zhang, Q. Denoising method for a lidar bathymetry system based on a low-rank

recovery of non-local data structures. Appl. Opt. 2022, 61, 69–76. [CrossRef]
20. Ma, H.; Zhou, W.; Zhang, L.; Wang, S. Decomposition of small-footprint full waveform LiDAR data based on generalized

Gaussian model and grouping LM optimization. Meas. Sci. Technol. 2017, 28, 045203. [CrossRef]
21. Pan, Z.; Glennie, C.; Hartzell, P.; Fernandez-Diaz, J.C.; Legleiter, C.; Overstreet, B. Performance Assessment of High Resolution

Airborne Full Waveform LiDAR for Shallow River Bathymetry. Remote Sens. 2015, 7, 5133–5159. [CrossRef]
22. Ding, K.; Li, Q.; Zhu, J.; Wang, C.; Guan, M.; Chen, Z.; Yang, C.; Cui, Y.; Liao, J. An Improved Quadrilateral Fitting Algorithm for

the Water Column Contribution in Airborne Bathymetric Lidar Waveforms. Sensors 2018, 18, 552. [CrossRef]
23. Abady, L.; Bailly, J.S.; Baghdadi, N.; Pastol, Y.; Abdallah, H. Assessment of Quadrilateral Fitting of the Water Column Contribution

in Lidar Waveforms on Bathymetry Estimates. IEEE Geosci. Remote Sens. Lett. 2014, 11, 813–817. [CrossRef]
24. Ma, Y.; Zhang, J.; Zhang, Z.; Zhang, J.Y. Bathymetry Retrieval Method of LiDAR Waveform Based on Multi-Gaussian Functions.

J. Coast. Res. 2019, 90, 324–331. [CrossRef]
25. Qi, C.; Ma, Y.; Su, D.; Yang, F.; Liu, J.; Wang, X.H. A Method to Decompose Airborne LiDAR Bathymetric Waveform in Very

Shallow Waters Combining Deconvolution With Curve Fitting. IEEE Geosci. Remote Sens. Lett. 2022, 19, 7004905. [CrossRef]
26. Shen, X.; Li, Q.Q.; Wu, G.; Zhu, J. Decomposition of LiDAR waveforms by B-spline-based modeling. ISPRS J. Photogramm. Remote

Sens. 2017, 128, 182–191. [CrossRef]
27. Wang, C.; Li, Q.; Liu, Y.; Wu, G.; Liu, P.; Ding, X. A comparison of waveform processing algorithms for single-wavelength LiDAR

bathymetry. ISPRS J. Photogramm. Remote Sens. 2015, 101, 22–35. [CrossRef]
28. Kogut, T.; Bakuła, K. Improvement of Full Waveform Airborne Laser Bathymetry Data Processing based on Waves of Neighbor-

hood Points. Remote Sens. 2019, 11, 1255. [CrossRef]
29. Guo, K.; Li, Q.; Wang, C.; Mao, Q.; Liu, Y.; Ouyang, Y.; Feng, Y.; Zhu, J.; Wu, A. Target Echo Detection Based on the Signal

Conditional Random Field Model for Full-Waveform Airborne Laser Bathymetry. IEEE Trans. Geosci. Remote Sens. 2022,
60, 5705421. [CrossRef]

30. Xing, S.; Wang, D.; Xu, Q.; Lin, Y.; Li, P.; Jiao, L.; Zhang, X.; Liu, C. A Depth-Adaptive Waveform Decomposition Method for
Airborne LiDAR Bathymetry. Sensors 2019, 19, 5065. [CrossRef] [PubMed]

31. Liu, Y.; Yue, J.; Shi, P.; Wang, Y.; Gao, H.; Feng, B.; Liu, Z.; Li, H. A deep learning method for LiDAR bathymetry waveforms
processing. In Proceedings of the 2021 International Conference on Neural Networks, Information and Communication
Engineering, Qingdao, China, 27–29 August 2021; Zhang, Z., Ed.; International Society for Optics and Photonics, SPIE: Bellingham,
WA, USA, 2021; Volume 11933, p. 119331S. [CrossRef]

32. Asmann, A.; Stewart, B.; Wallace, A.M. Deep Learning for LiDAR Waveforms with Multiple Returns. In Proceedings of the 2020
28th European Signal Processing Conference (EUSIPCO), Amsterdam, The Netherlands, 18–21 January 2021.

33. Shanjiang, H.; Yan, H.; Bangyi, T.; Jiayong, Y.; Weibiao, C. Classification of sea and land waveforms based on deep learning for
airborne laser bathymetry. Infrared Laser Eng. 2019, 48, 1113004. [CrossRef]

34. Liu, X.; Liu, X.; Wang, Z.; Huang, G.; Shu, R. Classification of Laser Footprint Based on Random Forest in Mountainous Area
Using GLAS Full-Waveform Features. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 2284–2297. [CrossRef]

35. Yang, C.L.; Chen, Z.X.; Yang, C.Y. Sensor Classification Using Convolutional Neural Network by Encoding Multivariate Time
Series as Two-Dimensional Colored Images. Sensors 2020, 20, 168. [CrossRef]

36. Hu, B.; Zhao, Y.; He, J.; Liu, Q.; Chen, R. A Classification Method for Airborne Full-Waveform LiDAR Systems Based on a
Gramian Angular Field and Convolution Neural Networks. Electronics 2022, 11, 4114. [CrossRef]

37. Geng, Z.; Yan, H.; Zhang, J.; Zhu, D. Deep-Learning for Radar: A Survey. IEEE Access 2021, 9, 141800–141818. [CrossRef]
38. Leng, Z.; Zhang, J.; Ma, Y.; Zhang, J. ICESat-2 Bathymetric Signal Reconstruction Method Based on a Deep Learning Model with

Active dash Passive Data Fusion. Remote Sens. 2023, 15, 460. [CrossRef]
39. Wang, H.; Liu, Z.; Ai, T. Long-range Dependencies Learning Based on Non-Local 1D-Convolutional Neural Network for Rolling

Bearing Fault Diagnosis. J. Dyn. Monit. Diagn. 2022, 1, 148–159. [CrossRef]
40. Magruder, L.A.; Neuenschwander, A.L.; Marmillion, S.P. Lidar waveform stacking techniques for faint ground return extraction.

J. Appl. Remote Sens. 2010, 4, 043501. [CrossRef]
41. Wang, X.; Girshick, R.; Gupta, A.; He, K. Non-local Neural Networks. In Proceedings of the 2018 IEEE/CVF Conference on

Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7794–7803. [CrossRef]

http://dx.doi.org/10.1364/ISA.2021.IF4D.3
http://dx.doi.org/10.1364/3D.2020.JW2A.29
http://dx.doi.org/10.1088/1757-899X/472/1/012069
http://dx.doi.org/10.1364/AO.438809
http://dx.doi.org/10.1088/1361-6501/aa59f3
http://dx.doi.org/10.3390/rs70505133
http://dx.doi.org/10.3390/s18020552
http://dx.doi.org/10.1109/LGRS.2013.2279271
http://dx.doi.org/10.2112/SI90-041.1
http://dx.doi.org/10.1109/LGRS.2022.3212110
http://dx.doi.org/10.1016/j.isprsjprs.2017.03.006
http://dx.doi.org/10.1016/j.isprsjprs.2014.11.005
http://dx.doi.org/10.3390/rs11101255
http://dx.doi.org/10.1109/TGRS.2022.3223401
http://dx.doi.org/10.3390/s19235065
http://www.ncbi.nlm.nih.gov/pubmed/31757030
http://dx.doi.org/10.1117/12.2615112
http://dx.doi.org/10.3788/IRLA201948.1113004
http://dx.doi.org/10.1109/JSTARS.2022.3151332
http://dx.doi.org/10.3390/s20010168
http://dx.doi.org/10.3390/electronics11244114
http://dx.doi.org/10.1109/ACCESS.2021.3119561
http://dx.doi.org/10.3390/rs15020460
http://dx.doi.org/10.37965/jdmd.2022.53
http://dx.doi.org/10.1117/1.3299657
http://dx.doi.org/10.1109/CVPR.2018.00813


Remote Sens. 2023, 15, 3293 19 of 19

42. Chang, J.; Zhu, L.; Li, H.; Fan, X.; Yang, Z. Noise reduction in Lidar signal using correlation-based EMD combined with soft
thresholding and roughness penalty. Opt. Commun. 2018, 407, 290–295. [CrossRef]

43. Han, H.; Wang, H.; Liu, Z.; Wang, J. Intelligent vibration signal denoising method based on non-local fully convolutional neural
network for rolling bearings. ISA Trans. 2022, 122, 13–23. [CrossRef] [PubMed]

44. Wang, P.; Chen, P.; Yuan, Y.; Liu, D.; Huang, Z.; Hou, X.; Cottrell, G. Understanding Convolution for Semantic Segmentation. In
Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Tahoe, NV, USA, 12–15
March 2018.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.optcom.2017.09.063
http://dx.doi.org/10.1016/j.isatra.2021.04.022
http://www.ncbi.nlm.nih.gov/pubmed/33965200

	Introduction
	Related Work
	Model-Based Methods
	Learning-Based Methods

	Materials
	Analysis of ALB Data
	Measured Data Set

	Proposed Method
	Preprocessing of Full Waveform
	Nonlocal Encoder Block
	CNLD-Net Architecture
	Performance Metrics

	Experiments
	Comparison of Signal Denoising Method
	Comparison of Different Dilation Rates
	Ablation Experiment
	Analysis of Limitations

	Conclusions
	References

