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Abstract: Ship detection in low-quality Synthetic Aperture Radar (SAR) images poses a persistent
challenge. Noise signals in complex environments disrupt imaging conditions, hindering SAR sys-
tems from acquiring precise target information, thereby significantly compromising the performance
of detectors. Some methods mitigate interference via denoising techniques, while others introduce
noise using classical methods to learn target features in the presence of noise. This conundrum is
regarded as a cross-domain problem in this paper; a ship detection method in low-quality images
is proposed to learn features of targets and shrink serious deterioration of detection performance
by utilizing Generative Adversarial Networks (GANs). First, an image-to-image translation task is
implemented using CycleGAN to generate low-quality SAR images with complex interference from
the source domain to the target domain. Second, with the annotation inheritance, these generated
SAR images participate in a training process to improve the detection accuracy and model robustness.
Multiple experiments indicate that the proposed method conspicuously improves the detection
performance and efficaciously reduces the missed detection rate in the SAR ship detection task.
This cross-domain approach achieved outstanding improvements in the form of 11.0% mAP and
3.22% mAP on the GaoFen-3 ship dataset and SRSSD-V1.0, respectively. In addition, the characteris-
tics and potentials of near-shore and off-shore SAR image reconstruction with style transfer based on
Generative Adversarial Networks were explored and analyzed in this work.

Keywords: deep learning; domain adaption; synthetic aperture radar; oriented object detection;
Generative Adversarial Networks

1. Introduction

Synthetic Aperture Radar (SAR) has an all-weather, all-time, cloud-free imaging mech-
anism and has been explored prosperously in both academic and application affairs. The
development of high-resolution satellite technology stimulates considerable research on
ship target detection in SAR images. Some traditional methods focus on ship target recog-
nition via image processing techniques. The rapid development of artificial intelligence
has triggered a great amount of research on deep-learning algorithms for ship detection
tasks using SAR images. Furthermore, objects in aerial images have the characteristic of
arbitrary orientations, which stimulate the progression of academic research in oriented
object detection. Therefore, an increasing amount of SAR ship detection research has
gradually employed oriented-object-detection algorithms based on deep learning because
of their credible and accurate detection performance.

Even though the number of studies of object detection in SAR images has grown
extensively in recent years, some obvious drawbacks still exist compared with the detection
performance of optical aerial images on account of the SAR special imaging mechanism
and image characteristics. In strong interference and high sea environments of a specific
space–time range, there are a large number of high-frequency, strong-power, multiple, and
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complex noise interferences from radio equipment, which lead to difficult communication
conditions, signal blocking, and poor SAR image quality. Objects in low-quality SAR
images are fuzzy and hidden from view by multiple interferences and are thus laborious
to recognize using deep-learning models and human perception. Several examples of
comparisons between high-quality SAR images and low-quality SAR images are presented
in Figure 1, including random background noise, strip noise, and azimuth defocus.
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Figure 1. Examples of high-quality SAR images and low-quality SAR images. (a) High-quality SAR
images; (b) Low-quality SAR images with various interferences.

Considering the relatively rare quantity of low-quality SAR images and the difficulties
of labeling objects manually, training an object detection model of a fully supervised deep
neural network using only low-quality SAR images is inefficient and inauthentic in practical
applications. Therefore, most SAR ship detection tasks are implemented on public SAR ship
datasets that contain adequate high-quality images with annotations when adopting deep
neural networks, a method that has achieved tremendous success. Nevertheless, coming
up with complicated imaging conditions and environments, the detectors will struggle
with the noteworthy disparity of feature distributions between normal SAR images and
low-quality SAR images in strong interference environments, given that the objects in
low-quality SAR images with low contrast and random noise are indistinct and blur at
the boundary. Training with high-quality SAR images, deep-learning models will have
difficulty identifying these ambiguous targets in low-quality SAR images, and a high
proportion of objects will be omitted by detectors and hurt the model performance.

To tackle the dilemma of strong interference during the SAR object detection task,
two opposite solutions are deeply explored and confirmed to be reasonable via extensive
research. One approach is SAR image denoising and despeckling based on both traditional
methods and deep-learning methods as data-preprocessing techniques. As traditional
methods, SAR denoising and despeckling focus on frequency filtering and geometric
transformation, such as Lee filtering [1], Kuan Filtering [2], PPB [3], and SAR-BM3D [4] al-
gorithms. In addition, numerous strategies based on deep learning have achieved excellent
performance in image denoising. Jain [5] utilizes a CNN as well as SDA [6] and a Sparse
de-noising self-encoder [7] to realize natural image denoising. Much research [8–10] has
achieved SAR image despeckling via the CNN. However, these preprocessing methods
are still risky for the downstream task since they change the object’s appearance, and
they are also time-consuming during inference processes. On the contrary, an alternative
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approach is to generate artificial SAR images with a corresponding noise style as a data aug-
mentation strategy to improve the model’s robustness and performance. In analyzing the
imaging mechanism and environment characteristics, diverse traditional noise simulation
and image-processing methods are involved, including image saliency enhancement [11],
saturation adjustment [12], and gamma noise simulation [13]. However, these mentioned
methods are only suitable for single and specific interference and tend to be ineffective in
the typical low-quality SAR object detection task considering the complicated interferences
and ineffective background.

Training with high-quality SAR images with annotations and encountering low-quality
SAR images with strong interferences in the inference process can be regarded as a specific
domain shift problem, so exploring the domain adaption method is a reasonable and
promising solution. Therefore, an unsupervised domain adaption method is proposed in
this paper to surmount the detection performance deterioration during the low-quality SAR
ship detection task. First, an image-to-image translation algorithm based on Generative
Adversarial Networks (GANs) is explored to convert high-quality SAR images from the
source domain to low-quality SAR images in the target domain. The cycle-consistency loss
in CycleGAN [14] keeps the localization and appearance of ship targets invariant, which
makes the annotation inheritance possible for the downstream task when attempting object
detection. Second, the generated artificial low-quality SAR images with original labels from
high-quality images are added to the training dataset, enriching the samples in the model
training process and enhancing the capacity of detectors. Treating the proposed method
as an efficacious data augmentation strategy, artificial large-scale nearshore SAR images
are generated rigorously and accurately as training images for object detection models,
encouraging significant progress in detecting recall and recognition precision. The main
contributions of this paper can be summarized as follows:

1. A low-quality SAR image generation module is designed for generating SAR images
with typical interference by utilizing unpaired image-to-image translation via Cycle-
GAN, which is employed as a data augmentation strategy for the ship target detection
task to enrich the training samples of detectors;

2. A framework for ship detection using SAR images is proposed to effectively learn tar-
get features in low-quality SAR images, thereby enhancing the detection performance
of ship targets under the condition of strong interference;

3. Extensive experiments on public SAR datasets show that our method can generate
effective SAR images for ship detection tasks while improving the recall and precision
of ship targets in low-quality SAR images under strong interference and decreasing
classification errors and missing detection.

The subsequent description of this paper is organized in the following order: in
Section 2.1, we present some previous works related to the proposed method for object
detection and the image generation task; in Section 2.2, the implementation details of
our method are demonstrated via theorization; Section 3 introduces comprehensive ex-
periments to evaluate the validity of this unsupervised domain adaption approach for
ship target detection in SAR images; in Section 4, the discussion of this work and its
future research are presented; the final section, Section 5, presents the conclusion of the
whole paper.

2. Materials and Methods
2.1. Related Works
2.1.1. SAR Ship Detection

Ship target detection has been a fundamental and momentous task in SAR percep-
tional interpretation for many years. Situated at the initial stage, most traditional detection
methods mainly consist of three parts: preprocessing, detection, and discrimination. The
CFAR [15] detector has triggered a considerable amount of research on the SAR target detec-
tion task. The constant false alarm rate detection algorithm leverages the adaptive threshold
according to the given false alarm rate and background data distribution to determine
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the target region at the pixel level. Furthermore, multiple optimizing strategies [16–19]
improve the statistical model and threshold determination based on the original CFAR
algorithm for the ship target detection task.

On the other hand, with the rapid development of satellite technologies and artificial
intelligence, readily available aerial image resources stimulate the wide utilization and
applications of deep-learning algorithms for remote sensing as well as SAR ship detection.
Girshick proposes several productive and landmark methods, such as the R-CNN [20], Fast
R-CNN [21], and Faster R-CNN [22], all focusing on the object detection task. Feature ex-
traction, region proposal strategies, classification, and regression benchmarks establish the
foundations of detection network architectures. The Region Proposal Network (RPN) pro-
vides flexible bounding boxes with multiple aspect ratios. The Feature Pyramid Network
(FPN) [23] maintains multi-scale, high-level features to enhance the feature extraction effi-
ciency. The You Only Look One (YOLO) [24] series has developed into the most influential
set of one-stage detectors in recent years. YOLOv3 [25] adopts the Darknet53 backbone and
other higher-version networks to introduce more effective modules to improve the model
performance, including Cross-Stage Partial connections (CSP), SPP-Block, and PANet.

Turning now to interdisciplinary approaches using the Synthetic Aperture Radar, typi-
cal feature extraction and a fusion module are proposed to optimize the model performance
for SAR images. An attention mechanism has been deeply explored in SAR target detection
via elaborate networks. The Convolutional Block Attention Module (CBAM) in the feature
map has been proven to be beneficial by Cui while using the Dense Attention Pyramid Net-
work (DAPN) [26]. Fu [27] balances the feature pyramid under the guidance of attention to
detect small ship targets better in complicated backgrounds. Several data augmentation
strategies are proposed to improve the model performance and achieve a significantly
reduced annotation cost for classification [28] and semantic segmentation [29] tasks of
SAR images. Since the ship object always appears with large aspect ratios and arbitrary
orientations, traditional object detection methods, which are only capable of providing
horizontal bounding boxes, still exhibit obvious shortcomings. Oriented-object-detection
algorithms flourish under the condition of sufficient aerial images and annotations with
oriented bounding boxes in remote sensing.

2.1.2. Oriented Object Detection

As a popular topic in computer vision, oriented object detection has been compre-
hensively researched for both algorithms and applications. Considering the characteristic
of dense distribution and arbitrary orientations of objects in remote sensing, an increas-
ing number of algorithms are explored to locate the rotated bounding boxes that strictly
embrace the edges of objects on the public datasets of aerial images from satellites, in-
cluding DOTA [30], HRSC2016 [31], DIOR-R [32], ICDAR2015 [33], and so on. The RoI
Transformer [34] equips the RRoI learner and Rotated Position-Sensitive RoI Align, with
the former learning the transformation from Horizontal RoIs to Rotated RoIs, and the latter
being capable of extracting the rotation-invariant feature from RRoI to fulfill the oriented-
object-detection task. Subsequently, a Rotation-equivariant Detector (ReDet) [35] is able to
incorporate rotation-equivariant networks into the backbone and use Rotation-invariant
RoI Align (RiRoI Align) to extract rotation-invariant features which facilitate the outstand-
ing improvement of detection performance for aerial images with oriented bounding boxes.
A gliding vertex [36] presents an effective representation of oriented bounding boxes to
alleviate detection error and confusion problems. The Oriented R-CNN [37] leverages an
oriented Region Proposal Network (oriented RPN) and Oriented R-CNN head to achieve
state-of-the-art detection accuracy on two public datasets with the potential to obtain high-
quality oriented proposals and refine the oriented Regions of Interest. Attempting to tackle
three challenges of object detection in remote sensing, small objects, cluttered arrangement,
and arbitrary orientations, the SCRNet [38] offers a feature fusion framework, a supervised
multi-dimensional attention method, and an improved smooth L1 loss.
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An efficient and fast single-stage detector named R3Det [39] first overcomes the feature
misalignment problem for large aspect ratio object detection and realizes the SkewIoU
loss to estimate object orientations more accurately. Circular Smooth Label (CSL) [40]
regards the angle estimation of oriented bounding boxes as a classification task instead of
regression. Densely Coded Labels (DCLs) [41] utilize a novel coding mechanism to speed
up the training process of CSL-based methods and also bring up Angle Distance and Aspect
Ratio-Sensitive Weighting (ADARSW) in an effort to enhance square-like object detection.
GWD [42] tackles boundary discontinuity and inconsistency using an innovative regression
loss derived from the Gaussian Wasserstein distance that converts the rotated bounding
boxes to a 2D Gaussian distribution. Similarly, KLD [43] approximates the SkewIoU loss
with the specified distribution distance based on Gaussian modeling, and KFIoU [44] is
an easy-to-implement Gaussian-based loss helped by the Kalman filter to realize its full
differentiability when mimicking the SkewIoU’s computing mechanism. In our work, the
Oriented R-CNN was explored as the baseline for its distinguished detection performance
based on a public SAR dataset, as reported, and our experiences.

2.1.3. Unsupervised Domain Adaptation Based on GANs

Multiple studies have investigated the potential of Generative Adversarial Networks
(GANs) when it comes to domain adaption problems. GANs have strong capability for
modeling and approximating data distributions of images and manufacturing artificial
image samples for specific data distribution. The image-to-image translation task is widely
employed in domain transfer for generating images of the target domain. Requiring
strictly paired data, Pix2Pix [45] illustrates a conditional generative adversarial network
for mapping input to output images at the pixel level and plays a significant role in many
classic tasks, such as style transfer. CycleGAN [14] releases the restrictions of expensive cost-
paired data and expands the applications on image-to-image translation dramatically by
introducing a cycle consistency loss and two mapping frameworks and realizing an image-
to-image translation task between two domains with unpaired samples. Consequently,
CycleGAN stimulates multitudinous derivation in extensive research areas. Arruda [46]
adopts CycleGAN for the cross-domain car detection task by transferring images from light
to dark. Pasqualino [47] explores an unsupervised domain adaptation scheme, including
CycleGAN, for cultural artwork recognition. A data augmentation method based on
CycleGAN is involved in multi-organ detection in CT images by Hammami [48]. Liu [49]
also introduces CycleGAN to transfer simulated samples for SAR target classification. More
in-depth works upgrade the architecture of CycleGAN according to the characteristics of
their downstream tasks. FteGanOd [50] contains a feature translate-enhancement module
based on CycleGAN and achieves multi-scale feature fusion for night-time vehicle detection.
DE-CycleGAN [51] enhances the color information and sharpness of whole satellite images
and also enhances features of the target at the object level when involving weak vehicle
detection in aerial images. A physical-model-based CycleGAN [52] combines the physical
model of a signal from the satellite sensor with CycleGAN and removes the thin cloud on
remote sensing datasets by synthesizing a cloud-free image, thin cloud thickness map, and
its thickness coefficient. In our work, CycleGAN is responsible for learning the mapping
of typical interference in SAR images and generating SAR images as training samples for
downstream tasks.

2.2. The Proposed Method

This section illustrates the proposed method of a data augmentation strategy in an
object detection task based on unsupervised domain adaption in the following order:
unpaired image-to-image translation, low-quality SAR image generation with annotations,
and oriented object detection. At the initial stage, the background characteristic of low-
quality SAR images is imitated using generators of CycleGAN via unpaired image-to-image
translation. The cycle-consistency loss is adopted to achieve cycle mappings between two
data distributions of two domains as follows: the high-quality SAR as the source domain
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and the low-quality SAR with strong interferences as the target domain. Therefore, during
the second step, the translator keeps the geographic and semantic information of scenes
invariant and only simulates the appearances of strong interferences when converting the
high-quality SAR images to low-quality SAR images so that the inheritance of original
annotations (rotated bounding boxes) from the source domain to target domain is feasible
and sensible. During the last process, a state-of-the-art oriented-object-detection algorithm
based on deep learning, named the Oriented R-CNN, is explored for low-quality SAR ship
detection with multiple traditional data augmentation strategies and the proposed method
of generating artificial low-quality SAR images as training samples, which is verified to
be beneficial and meaningful for detector performance improvement. Figure 2 shows the
whole structure of the proposed method.
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2.2.1. Unpaired Image-to-Image translation

The unpaired image-to-image translation realized via CycleGAN with a cycle-consistent
loss based on Generative Adversarial Networks expands the potential of image generation
for both academic and industrial applications since it releases the restriction of a paired data
requirement. In particular, low-quality SAR images in strong interference environments
are relatively unavailable and sparse, not to mention the fact that access to the paired
high-quality SAR and low-quality SAR images at the identical geography scene is almost
impossible to achieve. Relying on the capability of cycle-consistency mappings between two
data distributions of CycleGAN, it becomes feasible to achieve the interference emulation
of low-quality SAR images and artificial low-quality SAR training samples generation with
their corresponding annotations for downstream tasks.

The proposed method attempts to simulate the complicated noises in low-quality SAR
images and inject them into high-quality SAR images. Consequently, these SAR images
are divided into two domains according to the imaging conditions. We treat high-quality
SAR images as source domain X, and low-quality SAR images as target domain Y. A data
distribution mapping G : X → Y is learned by CycleGAN, with G(X) = Y. Furthermore,
iterating for the final objective, which combines with a cycle-consistency loss, the generator
of CycleGAN enforces the inverse mapping F : Y → X to F(G(X)) ≈ X so that this image-
to-image translation process is capable of maintaining the semantic information of SAR
images at the object level.
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The CycleGAN framework, depicted in Figure 2, receives two unpaired datasets from
separate domains: low-quality SAR and high-quality SAR. Two generators, Gl and Gh,
and two discriminators, Dl and Dh, are involved in the training process simultaneously.
The generator Gl produces artificial low-quality SAR images with strong interference from
high-quality SAR images, and the discriminator Dl distinguishes whether this image is a
real sample or a fake one. By the same token, the generator Gh and discriminator Dh are
responsible for filtering complex noise in low-quality SAR images and determining the
facticity of input samples.

The whole training objective consists of three parts: adversarial losses of mapping
G : X → Y and its discriminator Dl , adversarial losses of inverse mapping F : Y → X and
its discriminator Dh, and a cycle-consistency loss between these two mappings.

L(G, F, DX , DY) = LGAN(G, DY, X, Y) + LGAN(F, DX , Y, X) + λLcyc(G, F) (1)

The adversarial losses of the low-quality SAR generation process can be described
as follows:

LGAN(G, DY, X, Y) = Ey∼pdata(y)[log DY(y)] + Ex∼pdata(x)[log(1− DY(G(x)))] (2)

When G tries to minimize this objective against an adversary, D prefers to maximize
it as follows: min

G
max

DY
LGAN(G, DY, X, Y). Similarly, the adversarial losses of the inverse

mapping follow the same formulation.
Except for the adversarial loss from two pairs of generators and discriminators,

as mentioned before, a cycle-consistency loss plays an extremely essential role in the
generation framework to guarantee the learned mappings of the domain shift are cycle-
consistent. More specifically, the cycle-consistency condition contains forward cycle con-
sistency and backward cycle consistency, which means that these two image translation
architectures should ensure bringing every image x or y from its own domain X or Y
back to the original image from the intermediate artificial image in the opposite domain
Y or X, as x → G(x)→ F(G(x)) ≈ x and y→ F(y)→ G(F(y)) ≈ y demonstrate. The
cycle-consistency loss is expressed as follows:

Lcyc(G, F) = Ex∼pdata(x)[‖ F(G(x))− x ‖1] + Ey∼pdata(y)[‖ G(F(y))− y ‖1] (3)

The property of cycle consistency enables CycleGAN to realize the style transfer for
images so that some important semantic details of objects remain unchanged, such as the
object positions, categories, and terrestrial background. For SAR image generation, the
trained CycleGAN distinguishes the main difference between two domains and learns to
imitate the strong interferences for high-quality SAR images. The invariant geographical
scenes and the ship targets make the bounding boxes inheritance from the high-quality
SAR to the low-quality SAR practicable.

2.2.2. Oriented Object Detection

Oriented-object-detection algorithms have been extensively explored in SAR object
detection tasks, especially for SAR ship target detection, considering the arbitrary orien-
tations and extreme aspect ratios of densely distributed ship targets in SAR images. The
Oriented R-CNN [37], chosen as the baseline of our proposed method, is a state-of-the-art
two-stage rotated object detection algorithm that is widely implemented in aerial images
for its promising accuracy and efficiency. Equipped with the oriented Region Proposal Net-
work (oriented RPN), the first stage of the Oriented R-CNN produces accurately oriented
proposals simply and efficiently. Architected via lightweight fully convolutional networks,
the oriented RPN extracts multi-scale features using the five-stage FPN. Three types of
horizontal anchors with various aspect ratios are devoted to delivering oriented proposals
with a novel representation scheme of oriented bounding boxes O = (x, y, w, h, ∆α, ∆β) for
objects named as a midpoint offset (representation shown in the top of Figure 3) so that the
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coordinates v = (v1, v2, v3, v4) of the four vertices of the oriented bounding boxes can be
calculated as follows: 

v1 = (x, y− h/2) + (∆α, 0)
v2 = (x + w/2, y) + (0, ∆β)
v3 = (x, y + h/2) + (−∆α, 0)
v4 = (x− w/2, y) + (0,−∆β)

(4)
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In the second stage, an oriented R-CNN head is responsible for refinement and recog-
nition of oriented Regions of Interest (oriented RoI). Fixed-size feature vectors are derived
using rotated RoI alignment and sent into two fully connected layers, followed by two
parallel fully connected layers for classification and regression tasks, respectively. Figure 3
illustrates the pipeline of Oriented R-CNN.

For SAR ship detection, the phenomena of dense distribution and near-shore scenes in-
crease the difficulties in detecting objects precisely. Although the Oriented R-CNN achieves
promising results in oriented object detection because of its capability of extracting image
features and sketching the contours of objects with oriented bounding boxes, when encoun-
tering a domain shift problem as distinguished data distributions of training and testing
images, it will come up against a brick wall, just as with other standard oriented-object-
detection algorithms. For instance, missing detection and category confusion problems will
occur frequently and damage model performance. Manifold data augmentation strategies
have been proposed to improve the accuracy of detectors, but such domain shift problems
continue to exist if only adopting simple data augmentation methods such as random crop,
random flip, and some unsophisticated noise simulations, leading to limited performance
improvements in our experiments for low-quality SAR ship detection. As a result, the
proposed method is designed elaborately as a typical data augmentation strategy for the
object detection task to improve the robustness of detectors in strong SAR interference
environments based on CycleGAN by simulating global interference and imaging character-
istics for generated low-quality SAR images and expanding training samples for detection
models. Exhaustive experiments demonstrate that the proposed methods are efficient and
credible, considering the detecting performance significantly increases and the missing rate
decreases simultaneously in the SAR ship detection task.

3. Results

This section illustrates the methodology and datasets involved in the experiments of
our proposed method. Comprehensive experiments are included in this section to analyze
the model’s efficiency and potential. Both the generation model and object detection algo-
rithm are evaluated using standard metrics [53,54], such as Inception Score (IS), Frechet
Inception Distance (FID), recall, precision, and mean Average Precision (mAP). Various
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data conditions for image-to-image translation model training and multiple data augmen-
tation strategies are investigated in our experiments and demonstrate the necessity and
significance of the proposed method.

3.1. Datasets
3.1.1. GaoFen-3 Ship Dataset

Thirty scenes of estuaries and rivers from the GaoFen-3 (GF-3) satellite are involved in
this dataset, demonstrating an azimuth resolution of 1.124 m and slant range resolution of
1.700–1.754 m. The original SAR images are preprocessed to uniform slices with a size of
1024 × 1024, a size which includes ship targets. The training set contains a total of 2555 im-
ages and 7747 ship targets from 20 scenes, and the remaining 10 scenes are sliced to form
the test dataset of 1037 images with 2680 ship targets. Both near-shore and off-shore scenes
are explored in the experiments of SAR image generation and oriented object detection. In
addition, the low-quality SAR images in the test dataset appear with strong interference,
while the training dataset is derived from a normal high-quality imaging environment.

3.1.2. SRSDD-V1.0

SRSDD-V1.0 [55] is a high-resolution SAR rotation ship detection dataset. All data in
this dataset are from the GF-3 Spotlight (SL) mode with a 1 m resolution, with each image
having 1024 × 1024 pixels. The data of inshore scenes occupy a proportion of 63.1%, with
complex backgrounds and much interference, making detection more challenging. The
dataset contains multiple categories: a total of six categories of 2884 ships that are all anno-
tated by rotatable bounding boxes. It contains a total of 666 images, including 532 training
images and 134 test images. Similarly, we introduce typical noise and interference into
the testing samples to explore the efficiency of the proposed method when it comes to the
domain adaption problem shown in Figure 4.
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3.2. Evaluation Criteria
3.2.1. Evaluation Metrics for GANs

• Inception Score (IS)

An Inception model is employed to evaluate the generated images’ conditional label
distribution p(y|x), and a higher Inception Score (IS) indicates the better quality and diver-
sity of the samples. Assuming images with reasonable semantic information bring about a
conditional label distribution p(y|x) with low entropy and rich diversity is accompanied
by high entropy on the data distribution marginal, then it is expressed as follows:∫

p(y|x = G(z))dz (5)

The IS for estimating the generation quality and diversity is set as follows:

exp(ExKL(p(y|x) ‖ p(y))) (6)
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However, the IS demonstrates some disadvantages when meeting model collapse,
overfitting, and the specific generation task. For instance, in our method of generating
low-quality SAR images with strong interference, the ideal samples tend to have a lower IS
with a complicated imaging background. As a result, another standard evaluation metric,
the Frechet Inception Distance (FID), is adopted as the main evaluation criterion for GANs
in this paper.

• Frechet Inception Distance (FID)

The FID represents the similarity between the real data and generated data distribu-
tions using the Frechet distance between the two Gaussian distributions and is computed
by the following equation:

FID
(

pdata, pg
)
=‖ µr − µg ‖ +tr

(
Cr + Cg − 2

(
CrCg

) 1
2

)
(7)

Here, ϕ is the Inception network’s convolutional feature functions, and ϕ (pdata) and
ϕ (pg) are the Gaussian random variables with empirical means µr; µg and empirical
covariance Cr; Cg.

3.2.2. Evaluation Metrics for Oriented Object Detection

• Precision P and Recall R

The precision P and recall R are defined by the following equations:

P =
TP

TP + FP
(8)

R =
TP

TP + FN
(9)

These are the basic metrics in the object detection model, with TP, FP, and FN referring
to True Positive (TP), False Positive (FP), and False Negative (FN), respectively, and they
measure the accuracy of the detectors. As a supplement, the oriented Intersection Over
Union (IOU) measures the overlapping area between the predicted bounding box Bp and
the ground-truth bounding box Bgt divided by the area of union between them, as shown
by the following equation:

IOU =
Bp
⋂

Bgt

Bp
⋃

Bgt
(10)

When the IOU is larger than the given threshold t, the predicted bounding box is
treated as a correct detection result.

• Average precision AP and mean AP (mAP)

As the most common evaluation metric in object detection, the measurement method
of the average precision AP and the mean AP (mAP) is provided by the PASCAL VOC
challenge over all object classes. AP represents the comprehensive performance of the
detector since a trade-off exists between precision and recall under different IOU thresholds
and can be visualized via the precision–recall curve P(R) and is calculated as follows:

AP =
∫ 1

0
P(R)dR (11)

Hence, mAP is the overall average AP of total N object classes, as shown in the
following equation:

mAP =
1
N

N

∑
i=1

APi (12)
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3.3. Image Generation Experiments

In the first stage of our experiments, the image-to-image translation task aims to
imitate the characteristics of SAR interferences and only trains the generators with images
from two different domains so that no annotations are required. Selecting from the whole
original dataset, we build two domain datasets for CycleGAN: the high-quality SAR as
the source domain and the low-quality SAR with strong interference as the target domain.
For more elaborate analyses, near-shore SAR images that contain lands and off-shore SAR
images with only ship targets in the ocean are separated for subsequent experiments to
determine the data distribution modeling ability of CycleGAN on SAR images under
different scenes.

Due to the high computing resource consumption of Generative Adversarial Networks,
the SAR images are resized to 800 × 800 when training, while the size is maintained at
1024 × 1024 in the test phases in order to retain the original semantic information as much
as possible for the downstream object detection task.

Inference on the architecture of CycleGAN and artificial low-quality SAR images
are produced and inherit the bounding boxes annotations, respectively, from the high-
quality SAR dataset. The quality of the image generation model is evaluated using GAN
metrics such as FID and IS. From observations and trials, SAR images containing both
land and ocean have more rich geographic semantic information, and the SAR images
only displaying several ship objects with only ocean background information lack enough
interference information for CycleGAN networks. Training with both near-shore and off-
shore SAR images tends to be more effortless in developing a cycle-consistent generation
model of CycleGAN, which leads to competitive generation performance. As a supplement,
the unpaired SAR datasets consist of approximately 342, 522, and 864 SAR images for the
near-shore, off-shore, and both scenes, for each domain, respectively.

As the copy and crop strategies are discarded in order to study the global features of
the SAR images, CycleGAN is trained for a total of 80,000 iterations with batch size 1 on
an NVIDIA GeForce RTX 3090 GPU. Adam optimizers are set for both generations and
discriminators, and the learning rate is 0.0002. The evaluation of the FID and IS metrics
takes place every 2000th iteration, with the best IS (highest) being 3.4309 at the 8000th
iteration for near-shore scenes, and the best FID (lowest) being 49.7250 at the 40,000th
iteration when training with both near-shore and off-shore SAR images. Table 1 shows all
the quantified evaluation results of our experiments in separate subdatasets. Consequently,
the generation model with the best FID is chosen to be responsible for producing low-
quality SAR images as extended training samples from the high-quality SAR dataset,
considering the IS metric is comparatively inappropriate for evaluating the quality of a
generated low-quality SAR image in this task. Table 1 shows the evaluation results of the
SAR image generation task.

Table 1. Evaluation results of the SAR image generation task. ‘↓’ means the lower the result value,
the better; ‘↑’ means the higher the result value, the better. Bold results represent the optimal values.

Dataset FID ↓ IS ↑
Off-shore 63.9560 2.4928

Near-shore 57.0183 3.4309
All 49.7250 3.1451

The training process of all near-shore and off-shore SAR image generation tasks is visu-
alized in Figure 5 every 12,000 iterations, from the 4000th iteration to the 40,000th iteration,
and the samples at the end of the iterations for visualization are random.
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3.4. Oriented-Object-Detection Experiments

All these experiments were conducted on two NVIDIA GeForce RTX 3090 GPUs for a
total of 36 epochs on the GaoFen-3 ship dataset and 120 epochs on the SRSDD-V1.0 dataset
with a batch size of 4. The learning rate was 0.005, and the momentum was 0.9 with a
weight decay of 0.0001 on an SGD optimizer. The Oriented R-CNN worked as the baseline
for our experiments on SAR ship detection with rotated bounding boxes. In addition,
random flipping and random cropping were regarded as standard data augmentation
strategies. More training epochs were applied on the SRSDD-V1.0 dataset for enough
iterations with fewer training samples when keeping the batch size constant.

3.4.1. Experiments on GaoFen-3 Ship Dataset

In training on the original SAR dataset, the high-quality SAR images dominate the
direction of convergence in the model training process, and most of the ship targets in low-
quality SAR images will be ignored by detectors in the inference phase. To determine the
efficiency and significance of our proposed method, multiple data augmentation strategies
and noise simulation methods based on both normal distribution and GANs were explored
in comprehensive experiments.

On the one hand, several traditional data augmentation methods, including random
flipping, random rotation, and Hue Saturation Value (HSV) augmentation, were utilized to
improve the detection performance and robustness of the model. The results reveal that
common data augmentation strategies are capable of improving detection accuracy to some
extent but tend to be ineffective when it comes to the domain shift problem. However,
after adding the artificial low-quality SAR image samples obtained from CycleGAN into
the detector training process, the detection performance improves significantly due to
the shrinking gap between the two domains. On the other hand, a common noise sim-
ulation method of gamma distribution noise was compared with the proposed method,
and the evaluation results demonstrate that our method has distinguished performance
considering the comprehensive interference generation abilities relying on CycleGAN.
Furthermore, multiple-oriented-object-detection algorithms were investigated in the ex-
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panded experiments to confirm the practicality and robustness of the proposed method as
an unsupervised domain adaption method for the ship target detection task in SAR images.
The Oriented R-CNN was selected as the final detection algorithm in this downstream task,
establishing a trade-off between the model performance, time and memory consumption of
the detector training process, and model stability. The evaluation results using recall, preci-
sion, and mAP metrics illustrate that other general augmentation strategies achieve feeble
improvements in low-quality SAR ship detection, while our proposed method emerges
as an effective approach that is specially designed for such typical imaging characteristics.
Figure 6 presents some cases of the reductions in missing detection, and Table 2 shows the
detection results of our experiments.
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Figure 6. Reduction in missing detection in GaoFen-3 ship dataset at the (a) baseline, (b) proposed
method, and (c) ground truth.

Considering there is a trade-off between precision and recall, especially for detection
tasks with only one category, the quantitative evaluation results in Table 2 are not reliable
enough to evaluate the detection performance of the proposed method, as a higher recall
may bring lower precision spontaneously. Therefore, the visualized curve of precision
and recall is displayed in Figure 7, which reveals that our methods (R + F + H + C and
R + F + H + G + C) outperform baseline and other data augmentation strategies.
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Table 2. Evaluation results of recall, precision, and mAP on GaoFen-3 ship dataset. ‘R’, ‘F’, ‘H’, ‘G’,
and ‘C’ indicate random rotation, random flipping, HSV augmentation, gamma noise simulation, and
the proposed method based on CycleGAN, respectively. Bold results represent the optimal values in
each method.

Method Data Aug Recall Precision mAP

Retinanet [56]

- 0.804 0.698 0.782
R + F 0.851 0.568 0.808

R + F + H 0.855 0.53 0.809
R + F + H + G 0.874 0.596 0.838

R + F + H + C (ours) 0.905 0.419 0.869
R + F + H + G + C (ours) 0.896 0.388 0.850

Roi transformer

- 0.741 0.932 0.728
R + F 0.762 0.845 0.739

R + F + H 0.790 0.846 0.765
R + F + H + G 0.819 0.873 0.802

R + F + H + C (ours) 0.896 0.732 0.874
R + F + H + G + C (ours) 0.896 0.703 0.871

Gliding vertex

- 0.737 0.922 0.721
R + F 0.744 0.668 0.716

R + F + H 0.784 0.698 0.758
R + F + H + G 0.787 0.855 0.768

R + F + H + C (ours) 0.876 0.727 0.851
R + F + H + G + C (ours) 0.886 0.713 0.864

R3det

- 0.822 0.754 0.784
R + F 0.868 0.499 0.821

R + F + H 0.879 0.460 0.834
R + F + H + G 0.866 0.571 0.827

R + F + H + C (ours) 0.906 0.445 0.866
R + F + H + G + C (ours) 0.906 0.424 0.864

Oriented reppoints [57]

- 0.868 0.422 0.805
R + F 0.906 0.196 0.795

R + F + H 0.919 0.268 0.829
R + F + H + G 0.921 0.351 0.837

R + F + H + C (ours) 0.956 0.282 0.895
R + F + H + G + C (ours) 0.955 0.223 0.892

Redet

- 0.840 0.846 0.819
R + F 0.881 0.80 0.859

R + F + H 0.87 0.82 0.852
R + F + H + G 0.854 0.873 0.837

R + F + H + C (ours) 0.922 0.797 0.907
R + F + H + G + C (ours) 0.933 0.753 0.915

Oriented R-CNN

- 0.785 0.893 0.766
R + F 0.818 0.798 0.791

R + F + H 0.825 0.829 0.799
R + F + H + G 0.849 0.835 0.825

R + F + H + C (ours) 0.932 0.716 0.909
R + F + H + G + C (ours) 0.925 0.698 0.900

To ascertain the extensive applicability of our proposed approach, we perform supple-
mentary experiments utilizing horizontal object detection algorithms to assess the efficacy
of our approach as an efficacious data augmentation strategy, including YOLO series as
one-stage networks and Mask R-CNN as two-stage networks. The details of the evaluation
are displayed in Table 3.
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Table 3. Evaluation results of horizontal object detection algorithms on the GaoFen-3 ship dataset.
‘R’, ‘F’, ‘H’, and ‘C’ indicate random rotation, random flipping, HSV augmentation, and the proposed
method based on CycleGAN, respectively. Bold results represent the optimal values in each method.

Horizontal Object Detection Algorithms Data Aug Recall Precision mAP

Mask R-CNN [58]
F 0.726 0.881 0.695

F + C (ours) 0.847 0.842 0.817

Mask R-CNN + ASPP + Attention
F 0.732 0.889 0.704

F + C (ours) 0.854 0.863 0.826

Yolov5 [59]
R + F + H 0.792 0.393 0.697

R + F + H + C (ours) 0.899 0.405 0.830

Yolov8 [60]
R + F + H 0.775 0.408 0.662

R + F + H + C (ours) 0.903 0.431 0.836

Additionally, to avoid any possible bias caused by the individuality of the training and
test dataset, the cross-validation experiments were conducted on the GaoFen-3 ship dataset,
adopting the Oriented R-CNN baseline. The evaluation results shown in Table 4 verified
that the proposed method improves the model performance in all data divisions, and also
outperforms the traditional data augmentation strategies, driving us to reach conclusions
that are consistent with those made in Table 2.

Table 4. Evaluation results of the cross-validation experiments with the Oriented R-CNN baseline
on the GaoFen-3 ship dataset. ‘R’, ‘F’, ‘H’, and ‘C’ indicate random rotation, random flipping, HSV
augmentation, and the proposed method based on CycleGAN, respectively. Division 1 adopts the
same training and test dataset as Table 2. Bold results represent the optimal values in each division.

Cross-Validation Data Division Data Aug Recall Precision mAP

Division 1
- 0.785 0.893 0.766

R + F + H 0.825 0.829 0.799
R + F + H + C (ours) 0.932 0.716 0.909

Division 2
- 0.681 0.900 0.663

R + F + H 0.754 0.844 0.729
R + F + H + C (ours) 0.875 0.750 0.841

Division 3
- 0.774 0.843 0.747

R + F + H 0.805 0.797 0.766
R + F + H + C (ours) 0.913 0.749 0.875

3.4.2. Experiments on SRSDD-V1.0 Dataset

To authenticate the validity of our proposed method for a cross-domain problem
encountered with SAR images, we generated strong interference for a public SAR dataset
named SRSDD-V1.0, which contains six categories. It was assumed that the well-trained
detector trained on normal SAR images would significantly struggle with the testing images
with strong interference, and artificial low-quality SAR training samples are beneficial
for mitigating such detector deterioration and improving the model’s robustness. The
evaluation results for each category based on mAP, recall, and precision are shown in
Table 5 and exhaustively prove our speculations. During multiple experiments, random
flip and random rotate data augmentation strategies were abandoned due to their negative
effects on the SRSDDV1.0 dataset. In addition, we present some visual examples of the
classification and detection improvements with the proposed method in Figure 8.
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Table 5. The evaluation results of AP, recall, and precision on the SRSDD-V1.0 dataset. ‘R’, ‘F’, ‘H’, ‘G’,
and ‘C’ indicate random rotation, random flipping, HSV augmentation, gamma noise simulation, and
the proposed method based on CycleGAN, respectively. Bold results represent the optimal values in
each sub-table. (a) AP for each category and mean average AP (mAP) on the SRSDD-V1.0 dataset;
(b) recall for each category and total recall on the SRSDD-V1.0 dataset; (c) precision for each category
and total precision on the SRSDD-V1.0 dataset.

(a)

Method Data Aug Ore-Oil Cell-Container Fishing LawEnforce Dredger Container mAP

Oriented
R-CNN

- 0.315 0.507 0.238 0.273 0.668 0.364 0.394
R + F 0.265 0.453 0.149 0 0.707 0.247 0.304

H 0.445 0.697 0.334 0.273 0.737 0.474 0.493
H + G 0.480 0.680 0.241 0.136 0.760 0.533 0.472

H + C (ours) 0.516 0.725 0.315 0.273 0.772 0.552 0.525
H + G + C (ours) 0.498 0.698 0.34 0.273 0.717 0.578 0.517

(b)

Method Data Aug Ore-Oil Cell-Container Fishing LawEnforce Dredger Container Recall

Oriented
R-CNN

- 0.412 0.773 0.268 0.200 0.783 0.464 0.466
R + F 0.441 0.818 0.183 0 0.826 0.4 0.416

H 0.559 0.818 0.329 0.200 0.804 0.596 0.579
H + G 0.618 0.818 0.268 0.200 0.826 0.636 0.604

H + C (ours) 0.647 0.818 0.341 0.200 0.804 0.667 0.635
H + G + C (ours) 0.588 0.727 0.317 0.200 0.783 0.66 0.620

(c)

Method Data Aug Ore-Oil Cell-Container Fishing LawEnforce Dredger Container Precision

Oriented
R-CNN

- 0.304 0.175 0.5 0.333 0.581 0.495 0.442
R + F 0.174 0.136 0.221 0 0.319 0.193 0.395

H 0.358 0.231 0.659 0.200 0.435 0.589 0.516
H + G 0.420 0.198 0.629 0.250 0.521 0.567 0.510

H + C (ours) 0.379 0.346 0.571 0.143 0.493 0.542 0.511
H + G + C (ours) 0.513 0.41 0.542 0.167 0.493 0.657 0.603
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4. Discussion

Ship target detection in low-quality SAR images is continuously challenging due to
their complicated imaging conditions with strong interference and fewer quantities. To
improve the detection performance for this typical condition, it is regarded as a domain
shift problem, and unsupervised domain adaption is adopted to shrink the gap between
different data domains. Generative Adversarial Networks are capable of simulating the
image style of low-quality SAR images using deep-learning networks and generating
artificial SAR images with special characteristics for expanding the training samples of
detection models. Extensive experiments demonstrate that our proposed method is an
efficient data augmentation strategy to improve the model performance and robustness
of ship target detection in SAR images. We will further discuss how our work compares
with other research in the field of computer vision and explore the influence of the unique
characteristics of SAR images on our research.

• Compared with Traditional Methods

Different from the traditional methods of injecting the noise of simple statistical distri-
bution into SAR images, our approach demonstrated superior performance in experiments
for several reasons. Firstly, in traditional approaches to image processing, a limited variety
of noises will be utilized without rigorous consideration of the statistical distributions of
the noises in the real world and specific applications, so these data augmentation strate-
gies relying on the traditional noise simulation make feeble improvements upon our task.
However, the proposed method, leveraging style transferring on image generation, can
more authentically simulate the sophisticated characteristics of interferences on low-quality
SAR images. This not only provides our model with greater robustness when faced with
low-quality SAR images, but it also bestows it with a more potent generalization ability.
Secondly, compared to other studies that attempt to improve model performance using
popular data augmentation methods in computer vision, our method delves deeper into
the characteristics of SAR images. SAR possesses a unique imaging mechanism, resulting
in typical noise and low quality. Our method not only takes these characteristics into
account but also strives to enhance model performance through them. For instance, we
harness the features of complex noise in low-quality SAR images and generate low-quality
SAR images via CycleGAN, which has a strong ability to learn latent data distribution
comprehensively. This allows the model to adapt to special conditions during training,
improving its applicability to actual scenarios.

• Generalization Capability

In our discussion, we would also like to follow through with the analysis of the
generalization ability of our model. The factors influencing a model’s generalization ability
include the volume of data and target morphology, among other factors.

On the one hand, the proposed method uses image translation techniques to create
a greater volume of samples, improving the model’s generalization ability, particularly
within low-quality SAR images with complicated interference. The introduction of more
data and samples typically implies an increase in the volume of data annotation, while
the proposed method achieves image style transfer, keeping the target position consistent,
enabling instance-level unsupervised training to generate augmented samples without
necessitating additional annotation costs. This factor is vital as annotation, especially
for SAR images, can be a tedious and time-consuming task, often requiring specialized
knowledge about the target and environment. By adopting our method, more training data
are generated without incurring the costs of increased manual labor.

On the other hand, our approach also takes into consideration the various target
morphologies that may exist within SAR images. The use of an unsupervised domain
adaption method based on image-to-image translation helps to simulate different levels of
quality and noise within the images, providing a more comprehensive set of training data
that covers a broader range of target appearances. This further enhances the robustness of
our model, enabling it to better generalize and detect targets under varying circumstances.
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In summary, our approach considers both the generalization ability of the model and
the label cost in the practical application process, providing an efficient solution for target
detection and identification in low-quality SAR images.

• Future Work

In the first stage of this work, CycleGAN is responsible for modeling a cycle map
between two SAR image dataset domains. Both near-shore SAR images and off-shore
images are involved in the experiments, and we discover that rich semantic information in
various scenes in terms of both near-shore and off-shore data are beneficial for improving
SAR image generation performance and training stabilities. Afterward, multiple training
processes for the low-quality SAR image generation task were analyzed and explored, and
the shortcomings of the Generative Adversarial Networks emerged, such as the model
training stability, overfitting, and mode collapse. Especially for the SAR image generation
task, the special physical imaging mechanism, diverse target characteristics, and multiple
interferences increase the difficulty of the generator training based on the GANs. It is
assumed that some well-designed modules based on the combinations of physical imag-
ing theories and deep learning, which are not deeply involved and investigated in our
works, will achieve outstanding improvements in the SAR image generation task under
designated scenes.

According to the final stage of the object detection modules, our method was treated
as a data augmentation strategy to simulate a typical image style and interference charac-
teristics and enrich the training samples for narrowing the domain gap. Comprehensive
experiments verify that the proposed method outperforms other traditional data augmen-
tation strategies and works effectively in multiple-oriented-object-detection algorithms.
On the other hand, an SAR image generation model based on CycleGAN is also available
to convert a low-quality SAR image to a high-quality SAR image with denoising and
despeckling abilities, so it is possible for it to be implemented as another data preprocessing
method for detection tasks in the future. Considering the inference time consumption of the
detection processes, we decided not to undergo the expansion of research and experiments
for such preprocessing tricks in this study.

5. Conclusions

The proposed method improves the robustness and detection performance of the SAR
ship detection model by implementing an unsupervised domain adaption image-to-image
translation task based on Generative Adversarial Networks with cycle-consistency loss
regarding the ship target detection task in low-quality SAR images with strong interference
as a domain shift problem. Artificial low-quality SAR training samples that have a compat-
ible imaging style with a strongly interfering environment are produced via CycleGAN,
which is capable of modeling the data distributions on different domains. The mAP per-
formance of the oriented-object-detection models significantly improved for the GaoFen-3
ship dataset, from 79.9% to 90.9% and from 49.3% to 52.5% for the SRSDD-V1.0 dataset;
other evaluation metrics, such as recall and precision, also demonstrate the efficiency of the
proposed method via the results of comprehensive experiments with multiple-oriented-
and horizontal-object-detection algorithms using one-stage and two-stage detectors. On
the other hand, the obvious problems of a high missing rate and classification error for the
domain shift problem were dramatically ameliorated, given the artificial training samples
provide meaningful semantic information for the detection algorithm. In addition, this
work investigated the capacity and potential of SAR image generation and style transferring
tasks based on Generative Adversarial Networks for near-shore and off-shore scenes.
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