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Abstract: Radar reflectivity data snapshot fine-grained atmospheric variations that cannot be repre-
sented well by numerical weather prediction models or satellites, which poses a limit for nowcasts
based on model–data fusion techniques. Here, we reveal a multiscale representation (MSR) of the
atmosphere by reconstructing the radar echoes from the Weather Research and Forecasting (WRF)
model simulations and the Himawari-8 satellite products using U-Net deep networks. Our recon-
structions generated the echoes well in terms of patterns, locations, and intensities with a root mean
square error (RMSE) of 5.38 dBZ. We find stratified features in this MSR, with small-scale patterns
such as echo intensities sensitive to the WRF-simulated dynamic and thermodynamic variables and
with larger-scale information about shapes and locations mainly captured from satellite images. Such
MSRs with physical interpretations may inspire innovative model–data fusion methods that could
overcome the conventional limits of nowcasting.

Keywords: deep learning; multiscale representation; model–data fusion

1. Introduction

Meteorological forecasts at the convective scale are crucial to mitigate environmental
hazards such as storms and floods that cause huge socioeconomic damages, but face fun-
damental challenges in representing the convective weather regime in numerical weather
prediction (NWP) models, which is a less-known “gray zone” compared to the relatively
well-resolved synoptic-scale systems [1,2]. Radar is an invaluable instrument to scan the
convective atmosphere in nearly real time. The extrapolations of these sequential radar
echo data can provide state-of-the-art nowcasts of precipitation patterns and severe weather
events within a few hours based on the persistence principle [3–5]. However, these radar
echo data are snapshots of the complex atmosphere with fine-grained details but not read-
ily related to the dynamics of the atmosphere and the information from remote sensing
satellites. This lack of representation of the dynamical and global atmospheric information

Remote Sens. 2023, 15, 3466. https://doi.org/10.3390/rs15143466 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15143466
https://doi.org/10.3390/rs15143466
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-5978-4992
https://doi.org/10.3390/rs15143466
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15143466?type=check_update&version=2


Remote Sens. 2023, 15, 3466 2 of 15

poses a limit for convective nowcasting. For instance, when combining extrapolation-based
methods with the dynamical information from NWP model simulations [6,7], the forecast
skill in general decreases rapidly in the first forecast hour and remains low beyond a few
forecast hours [8,9], despite advances in convective-permitting modeling [10], radar and
satellite data assimilation [9,11,12] and high-resolution observations [13].

The representation gap, particularly when model–data fusion is to be conducted,
is difficult to bridge [14,15]. Representing processes related to turbulence, convection,
and topography is challenging for numerical models in gray zones [16]. Parameterizing
and resolving the atmospheric motions in grid spacing for deep convection (1–10 km)
and turbulence (0.1–1 km) requires ponderation and in-depth explorations [17–19]. The
precipitation and storms observed using radar and satellites are among the most difficult to
simulate, which is a consequence of the intertwined consecutive physical processes of NWPs
with multiplicative error propagations [20]. Convective-scale NWPs also have fundamental
theoretical challenges such as the mathematical characteristics of the underlying partial
differential equations as well as the predictability and probability issues related to the
nonlinear dynamics of the convective systems with effective dimensions much higher than
those of the balanced synoptic systems [1]. It has long been recognized that the convective
atmospheric motions are of multiscale interactions [19,21–23]. Currently, the first-principle
multiscale formulation is beyond the traditional NWP modeling paradigm. In addition, a
representation gap exists between satellite images and radar data. Geostationary satellites
observe cloud evolution from a global perspective [24], but they are limited to detecting
cloud tops and hardly probe the internal structure of clouds.

Deep learning (DL) has recently emerged as a general data-driven technology to rep-
resent the spatiotemporal features that cross multiple scales and are not captured well by
geophysical models [25]. DL techniques can explore the rich patterns in radar data with
deep networks of neurons and improve the precipitation nowcasting skill [26]. Numerous
DL applications for the convective atmosphere have been proposed, ranging from radar- or
satellite-based nowcasting [27–30] to reconstructions of radar data from satellites [31–33].
However, there are few applications aiming at bridging the representation gap for the fusion
between radar data, satellite images, and NWP simulations. Accordingly, it remains largely
unexplored how the deep networks represent the convective atmosphere. In addition, these
deep networks are usually considered black boxes with limited physical interpretations.
Here, we attempt to retrieve the deep network representations by reconstructing the radar
reflectivity data from NWP simulations and satellite observations and then probe the struc-
ture of the obtained representations by diagnosing their relations with physical quantities
such as NWP variables and satellite images. This attempt aims to reveal the potential of
data-driven DL models to bridge the representation gaps between multiscale multi-source
data. Hopefully, this potential of multiscale representation with investigations of phys-
ical interpretations could make the DL models more transparent and inspire innovative
model–data fusion methods that could overcome the conventional limits of nowcasting.

2. Data and Methods

The study area is the Beijing–Tianjin–Hebei (BTH) region ([36◦N, 113◦E] × [43◦N,
120◦E]), which is vulnerable to floods caused by heavy summer precipitation. The study
period is from June to September for the years 2015 and 2016, when precipitation is more
frequent over this region.

2.1. Radar Echo Data

Radar reflectivity data are collected from six Doppler radars that sufficiently cover
the BTH region from the Chinese new generation weather radar network (ChIna New
generation doppler weather RADar, CINRAD), with four radars of type CINRAD/SA lo-
cated in Beijing, Tanggu, Shijiazhuang, Qinhuangdao, and two radars of type CINRAD/CB
located in Zhangjiakou and Chengde, respectively (Figure S1a). The SA and CB Doppler
radars are S-band radars and C-band radars, respectively. The collected radar echo data are
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interpolated from plan position indicators (PPIs) to constant altitude PPIs (CAPPIs) with a
vertical linear interpolation method [34,35]. Then, the radar data in the polar coordinate
are mapped onto 0.01◦ × 0.01◦ Cartesian grids using the nearest neighbor interpolation
method. After that, the data from different radars around the same time (e.g., within 3 min)
are combined, and maximum values are preserved for overlapped grid cells. The resulting
radar echo data have a temporal resolution of 6 min. The combined radar data are then
smoothed and filtered using a convolution threshold method [36,37]. We calculate the
maximum radar data based on CAPPIs at 1500 m, 2000 m, 2500 m, 3000 m, and 3500 m
above sea level, a typical range of elevations around the level of free convection where
convection develops actively.

2.2. Numerical Model Simulations

The Weather Research and Forecasting (WRF) model [38] is used as a convection-
permitting modeling system over the BTH region with three nested domains at horizontal
resolutions of 9, 3, and 1 km, respectively (Figure S1b). By switching off the cumulus
parameterization of the inner two nested domains, convections are explicitly resolved
in this setting. Detailed configuration is listed in Table 1. We run a 36 h simulation at
a temporal resolution of 30 min, beginning at 12:00 UTC each day with the first 12 h of
simulations as spin-ups. The remaining 24 h of simulations of the innermost domain are
used to provide the meteorological input for deep networks. The initial and boundary
conditions for the simulations are provided by the NCAR/NCEP 1◦ × 1◦ reanalysis data.
We compare the simulations with weather station observations (Table S1) and verify that
the performance on most selected meteorological factors is close to those in other state-
of-the-art WRF studies [39,40]. We select 14 daily simulated variables commonly used
in convective nowcasting from three categories (i.e., dynamic variables, thermodynamic
variables, and moisture-related variables) to build the dataset for learning, such as the three
components of wind velocity (U, V, W), K index (K), water vapor mixing ratio (WVMR), and
relative humidity (RH). Five of the fourteen variables are three-dimensional and extracted
from the pressure levels of 850 hPa, 700 hPa, and 500 hPa, generally around the elevations
of the radar echo data. The other nine variables are two-dimensional. Therefore, the input
data from WRF simulations have 24 channels (5 × 3 + 9 = 24). Detailed information about
all the selected variables can be found in Table S2. These variables are mapped onto the
same grid of radar data using a linear interpolation method.

Table 1. Parameterization schemes used in WRF simulations.

Process Parameterization Scheme

Microphysics WSM3 [41]
Longwave radiation RRTM [42]
Shortwave radiation Dudhia [43]

Surface layer Revised MM5 Monin–Obukhov [44]
Surface physics Unified Noah land surface [45]

Planetary boundary layer YSU [46]
Cumulus Modified Tiedtke [47] (only for the outermost domain)

2.3. Geostationary Satellite Images

Five infrared bands (5th, 8th, 13th, 15th, and 16th) of data are collected from the
Himawari-8 geostationary satellite products. These satellite images can provide global
information on cloud properties such as phases and heights (Table 2) with high spa-
tiotemporal resolution (2 km and 10 min) [48]. We also extract the deep convective cloud
classification (CCC) data from the Himawari-8 cloud type products by assigning 1 to the
grids of the deep convective cloud and 0 to the grids of other cloud types. Therefore,
we obtain 6-channel input data from the Himawari-8 satellite products. All the satellite
products are remapped in a way similar to the mapping of the WRF variables.
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Table 2. Descriptions of the selected Himawari-8 satellite images.

Band Number Central Wavelength (µm) Concerned Physical Properties

5 1.6 Cloud phases

8 6.2 Middle and upper tropospheric
humidity

13 10.4 Clouds and cloud top
15 12.4 Clouds and total water
16 13.3 Cloud heights

Note. Himawari-8 satellite images listed above were supplied by the P-Tree System, Japan Aerospace Exploration
Agency (JAXA).

2.4. Data Preprocessing

We have obtained 30-channel input data from the WRF simulations and the Himawari-8
satellite products, and 1-channel labels from the radar echo data on the common grid of
0.01◦ × 0.01◦ over the BTH region (i.e., 700 × 700 horizontally). We first match the input
data with labels for the same time and form a dataset of 2647 samples. We then use the
min–max normalization to scale each channel of data in the dataset to be in the range of
[0, 1], where the maximum value for the radar echo data is set at 70 dBZ, so that the effect
of outliers can be suppressed. Moreover, we fill in missing or invalid values with 0 for the
normalized dataset.

2.5. Deep Network Model

We adopt a U-Net for the representation learning of the radar echo data (Figure 1).
The U-Net deep network is a convolutional neural network (CNN) variant originating
from biomedical image segmentation [49] and is here repurposed for a regression task as in
many previous studies [31,33,50,51]. It preserves the hierarchical convolutional structure of
a CNN in its left contracting path, and uses upsampling operations in successive layers to
form a right expansive path. Consequently, the network has a ‘U’ shape, hence its name.
The U-Net is an encoder–decoder network architecture that allows the end-to-end learning
of multiscale features and outputs with desired dimensions (i.e., 700 × 700 in this study).
In general, early layers in the contrasting path learn small-scale features such as textures
and edges, whereas deep layers learn large-scale features such as semantic information.
The U-Net is equipped with so-called skip connections that perform identity mappings
of low-level features from the contrasting path (encoder) to the expansive path (decoder)
at corresponding levels. The U-Net combines large-scale information with small-scale
information brought by the skip connections for reconstructing the data from the learnt
multiscale features. Such a network architecture and reconstruction process are appealing
for our study on how radar data are represented by deep networks.

Concretely, the U-Net depicted in Figure 1 has eight blocks (Block-As in gray) in the
encoder and eight blocks (Block-Bs in blue) in the decoder, followed by an individual
convolutional block (Block-C in orange). Each Block-A consists of a convolutional layer
followed by a batch normalization layer [52] and a LeakyReLU activation layer. The 1st,
2nd, 4th, 6th, and 7th Block-As convolve the data with 4 × 4 convolution filters with
2 × 2 strides to reduce resolutions, enabling the subsequent layers to detect patterns in
expanded areas. The 3rd Block-A employs 3 × 3 convolution filters with 2 × 2 strides
to produce the output of a certain dimension (i.e., 88 × 88 horizontally). The remaining
Block-As contain 3 × 3 convolution filters with 1 × 1 strides. All convolutional operations
are carried out with a zero padding of size 1. The respective numbers of convolution
filters in the eight Block-As are 36, 72, 144, 288, 288, 288, 288, and 288. Each Block-B in the
decoder section consists of a bilinear upsampling layer, a 3 × 3 convolutional layer, a batch
normalization layer, and a LeakyReLU activation layer, except for the 8th Block-B, which
does not have the LeakyReLU activation layer. The respective numbers of convolution
filters in eight Block-Bs are 288, 288, 288, 288, 144, 72, 36, and 1. Finally, an individual
Block-C is added, which is composed of a 1 × 1 convolutional layer, a 3 × 3 convolutional
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layer, a 1 × 1 convolutional layer, and a ReLU-6 activation layer, which is considered to
facilitate the learning of sparse features [53]. Therefore, the 30-channel input data are
mapped into one-channel radar echo data reconstructions.
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2.6. Training

Since we do not optimize the hyperparameters of the U-Net, we divide the dataset
(2647 samples) in time order only into a training set (the first ~90%, 2387 samples) and a test
set (the remaining 260 samples). We employ two types of loss functions for training (that
is, the objective function penalizing the discrepancy between the radar echo observations
and the reconstructions generated by the U-Net). The first type is the mean square error
(MSE), and we denote the resulting network of this type as UNet-MSE. The second type
of loss function is the echo-weighted mean square error (EWMSE), with larger weights
assigned to grid cells of higher echo intensity [28]. The resulting network of this type is
denoted as UNet-EW. The calculations of the MSE and the EWMSE can be found in Text
S1. The U-Net models are trained using the stochastic gradient descent (SGD) with the
momentum algorithm [54] (momentum = 0.9) with batch size 8. The initial learning rate
is set as 1 × 10−5. The U-Net model is trained until the loss function shows no reduction
on the test set for 100 subsequent epochs. We stop the trainings of the UNet-MSE and
the UNet-EW at the 96th and the 92nd epoch, respectively. Since we obtain satisfactory
trained models and the reconstruction accuracy is not our ultimate goal, we do not use
data augmentation for potential improvement.

2.7. Evaluations and Interpretations

The performance of the U-Net reconstructions is evaluated by five indices, namely the
root mean square error (RMSE), the mean error (ME), the critical success index (CSI), the
probability of detection (POD), and the false alarm rate (FAR). RMSE and ME account for
the difference between the reconstructed and observed echo data. CSI and POD measure
the precision of reconstructions, whereas FAR measures the degree of overestimation. All
indices range from 0% to 100%. Ideal CSI and POD values are supposed to approach
100%, whereas ideal FAR values are the opposite. Moreover, structural similarity (SSIM)
is calculated in the following analysis, which quantifies the similarity between the visible
structures of two images. SSIM is a value between −1 (perfect anti-correlation) and +1
(perfect similarity) and a value of 0 indicates no similarity. The calculations of these indices
are detailed in Text S2.

To investigate the physical interpretations of the learnt deep network models, we
propose a sensitivity analysis method inspired by Ankenbrand et al. [55]. We intentionally
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perturb the input data and then diagnose the relationships between the multiscale features
and the input physical quantities by checking the consequences of perturbations on the
reconstructions. Two types of perturbations are considered. First, we flip the input data
from left to right and scale them by multiplying a coefficient. We denote this sensitivity
analysis experiment as SA-a. Second, we evaluate the role of each input quantity by
nullifying it while keeping other input quantities unchanged. This sensitivity analysis
experiment is denoted as SA-b.

3. Results
3.1. Echo Reconstructions

Figure 2 shows the performance of reflectivity data reconstructions with the deep
networks. The UNet-MSE and UNet-EW networks reconstruct the echoes well, with
RMSEs of 4.76 and 5.38 dBZ, respectively. Because most radar echoes are of low intensity,
training with unweighted MSE loss functions will bias towards echoes of low intensity.
The UNet-MSE networks systematically underestimate the echoes, especially those with
high intensity. However, echoes of higher intensity are the most valuable radar signals
that directly observe the precipitation and convective processes. Adding more weights
on intense echoes for training is beneficial for reconstructing richer sparse high intensity
patterns. The reconstructions in this case thus either overestimate or underestimate the
intense echoes, which explains the slight increases in the RMSE and FAR values of the
UNet-EW networks over the UNet-MSE networks. The richer patterns reconstructed by
the UNet-EW networks have better CSI and POD scores, and we will further diagnose their
network structures.
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Figure 3 details a case of reconstruction at 09:30 UTC on 10 September 2016 from the test
set. The spatial distribution of clouds from satellite images (Figure 3a) outlines the overall
shape and location of echoes (Figure 3e). By contrast, the WRF-simulated reflectivity data
(Figure 3b) miss a majority of the observed echo distribution. Indeed, the precipitation and
convective processes are among the most difficult to simulate with NWPs. Nevertheless, our
simulations are qualified to represent the general atmospheric conditions (Table S1), so they
can provide dynamic and thermodynamic information for echo reconstruction. Note that
we do not include the WRF-simulated reflectivity data in the input data of the U-Net deep
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networks. Based on the multi-source information, the reconstructions by deep networks
well produce echo patterns, locations, and intensities (Figure 3c,d). Compared with the
UNet-MSE network, the UNet-EW network (Figure 3d) exhibits more precise details such as
clearer edges and high values. Data-driven deep learning techniques effectively reduce the
gap of representation from the NWP simulations and satellite images to the radar echoes and
tend to encode the missing physics in their network weights. Other cases of reconstructions
show similar performances (Figures S3–S9).
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satellite image of the 5th band. (b) The WRF-simulated reflectivity data calculated according to [56].
(c) The echo reconstruction by the UNet-MSE network. (d) The echo reconstruction by the UNet-EW
network. (e) The observed radar reflectivity data. The rest of the input data can be found in Figure S2.

3.2. Multiscale Representation

The multiple layers of features encoded in the contracting path of U-Net are visualized
in a naïve way [57]. In this way, a multiscale representation (MSR) of the radar data can be
revealed and analyzed. Figure 4 exemplifies such an MSR for the reconstruction case in
Figure 3. The multiscale features of the radar echo data appear to be automatically stratified
in the multi-layer hierarchical structure of the U-Net, and are especially manifested in the
deeper part, indicating the greater capacity of deep networks than shallow networks to
represent multiscale high-dimensional relationships among multi-source data (e.g., [58,59]).
Apart from the first layer with mostly texture-like information, the locations of echo
signals (upper left triangles in Figure 4) are recognized in all subsequent layers and largely
correspond to the cloud locations from satellite images. The location-aware ability of U-Net
is one of the key factors for its success in image segmentation. The small-scale features in
the shallow layers (first–third) still demonstrate no clear echo patterns. These small-scale
features such as the echo intensities (hexagons in Figure 4) as well as larger-scale features
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like the echo shapes (ellipses in Figure 4) emerge in the middle layers (fourth–sixth). The
shapes are more visibly related to the satellite images, whereas the sources of intensities
need further investigation (see Section 3.3). The features in the deepest layers (seventh and
eighth) are rather global descriptions of echoes and may have some semantic meanings.
MSRs for other reconstruction cases manifest similar stratifications (see Figures S10–S16 for
more examples).
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Figure 4. A multiscale representation of the radar echo data at 09:30 UTC on 10 September 2016. The
UNet-EW deep network is used for the reconstruction of echo data. Only parts of the input data
for this reconstruction are presented. Hidden features at each hidden layer are averaged along the
channel dimension.

3.3. Physical Interpretations of the MSR

We further investigate the physical interpretations of the MSR through sensitivity analy-
sis. The SA-a experiments assess the overall contributions of the WRF simulations and satellite
images to reconstructions by flipping or attenuating these different sets of input data. Figure 5
shows the resulting diverse reconstructions, where the CSI and SSIM of reconstructions of this
case and over the test set are calculated. When all input data are flipped, the reconstruction
flips accordingly (Figure 5a), but does not yield a perfect flipping of the original reconstruction
(Figure 5i). This indicates that factors other than the input data (e.g., the topographic condi-
tions) may also play a role in the spatial distribution of the reconstructions. The echo shapes
and locations are much more influenced by the satellite images (Figure 5b, SSIM = −0.07) than
by the WRF simulations (Figure 5c,g,h with higher SSIM). Moreover, this influence is mainly
related to the spatial distribution of the satellite images rather than changes in magnitude
(Figure 5e,f). Concerning the echo intensities, the representation is much more sensitive to
the WRF simulations (Figure 5g,h, especially in Figure 5h CSI = 0.26 and CSI-Test = 0.17)
than to the satellite images (Figure 5e,f). This sensitivity appears to depend more on
the value than on the spatial distribution of the simulations (Figure 5c). Other cases of
reconstructions have similar interpretations (Figures S17–S23).
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Figure 5. Reconstructions of the radar echo data at 09:30 UTC on 10 September 2016 by the UNet-EW
deep network for the SA-a experiments. The perturbations are conducted by (a) flipping all the input
data, (b) flipping only the satellite images, (c) flipping only the WRF simulations, (d) multiplying
all the input data (except for the binary CCC data) by 0.9, (e) multiplying only the satellite images
(except for the binary CCC data) by 0.9 and (f) 0.8, and (g) multiplying only the WRF simulations
by 0.9 and (h) 0.8. Also shown is the (i) original reconstruction without perturbation. CSI/SSIM
and CSI-/SSIM-Test are CSI/SSIM of reconstructions of this case and over the test set, respectively,
compared with radar echo observations.

Figure 6 shows the reconstructions with CSI for the SA-b experiment (see Figures
S24–S30 for more examples). The MSR here is predominantly sensitive to the satellite
images from the 8th and 13th bands of Himawari-8 as well as the WRF-simulated W,
K, and RH. These bands of satellite images provide information on middle and upper
tropospheric humidity and cloud-top properties, respectively. The three dominant WRF
variables describe the vertical motion of the air, the atmospheric instability, and the water
vapor content in the atmosphere. They correspond well with the three key ingredients
for deep convection initiation and evolution, namely lift, instability, and moisture [60].
Therefore, for the current study, the MSR may encapsulate these complex atmospheric
physics in their learnt multiscale features.
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EW deep network for the SA-b experiments. Each reconstruction is obtained by setting the listed
physical quantity to zero while keeping other quantities unchanged. CSI and CSI-Test are CSI of
reconstructions of this case and over the test set, respectively, compared with radar echo observations.

4. Summary and Discussions

We have addressed the difficulty of model–data fusion for convective nowcasting with
a representation problem. Deep learning techniques were applied to represent the fine-
grained radar reflectivity data by reconstructing them from the WRF model simulations and
the Himawari-8 satellite products. We learnt a multiscale representation (MSR) of the radar
data using the U-Net deep networks. The MSR manifested a stratification, and the richest
features were in the middle layers. Sensitivity analyses on the retrieved representation
showed that small-scale patterns like echo intensities were more sensitive to the magnitude
of numerical model simulations, whereas larger-scale information about the shapes and
locations was mainly from the spatial distribution of satellite images.

The retrieved multiscale representation takes advantage of the ability of deep learning
techniques [61] to find complex relationships in data, which are otherwise difficult to model
or formulate in traditional approaches, especially when the underlying physics is complex
and multiscale or even unknown. The deep network representation can organize the learnt
features at increasing levels of abstraction from local fine-grained details to global semantic
information [62–64]. Such multiscale representation could inspire innovative methods that
make use of the features in the mapping from numerical model simulations to radar data as
well as in convective nowcasting, where machine learning has been demonstrated to be a
useful tool [65]. Note that multiscale representations can also be obtained using traditional
methods such as wavelets in a more compact manner [64,66]. However, in general, these
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traditional methods require domain expertise for feature extraction and should be combined
with deep learning techniques for automatic end-to-end feature extractions [67,68].

This study has a number of limitations. First, although radar data provide routine
verifications for convection-permitting models [10,69], they are not perfect and can suffer
from various errors [70,71]. Hence, the retrieved multiscale representation may occasionally
fit noise rather than signals. Second, our WRF simulations were configured at a convection-
permitting resolution, but we did not tailor and optimize the WRF configurations and
examine in-depth model–radar comparisons (e.g., [69]), which is not the main objective of
this representation study. Third, we did not test other deep learning techniques such as
CNN variants other than U-Nets or generative deep networks. These deep networks, once
successfully trained, are known to have similar performances [72]. Finally, convective pro-
cesses can vary by regions, so the learnt multiscale representation needs evaluation across
regions, such as considering the role of terrain during training or applying the obtained
representation to different regions. Hence, there is still room for qualitative and quanti-
tative improvement in the accuracy of the reconstructed echo reflectivity. Despite these
limitations, our finding on the functioning and potential of the deep network representation
for convective atmosphere should not be affected.

For now, the proposed representation of radar echo data may not meet the require-
ments of practical convective nowcasting. We consider our attempt as a step towards a deep
network framework of multiscale representation with physical interpretations that relate
the features in hidden network layers with the convective atmosphere. Our sensitivity anal-
yses for physical interpretations have been experimental. It is possible to apply more formal
methods—notably explainable artificial intelligence techniques [62,73–75]—to analyze the
cause-and-effect relationships among radar data, satellite images, and convective dynamics.
The multiscale features with physical interpretations are seldom investigated in radar
data assimilation practices [9,12]. Data assimilation based on multiscale features should
merge with artificial intelligence techniques [76,77] and should be inevitably “deep” in
some sense, either in models [78,79], in data (this study), or in assimilation algorithms [80].
Such deep assimilating techniques may be essential to overcome the conventional limits of
convective nowcasting.
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