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Abstract: This study provides a comprehensive review of the efforts utilized in the measurement of
water quality parameters (WQPs) with a focus on total dissolved solids (TDS) and total suspended
solids (TSS). The current method used in the measurement of TDS and TSS includes conventional
field and gravimetric approaches. These methods are limited due to the associated cost and labor,
and limited spatial coverages. Remote Sensing (RS) applications have, however, been used over
the past few decades as an alternative to overcome these limitations. Although they also present
underlying atmospheric interferences in images, radiometric and spectral resolution issues. Studies
of these WQPs with RS, therefore, require the knowledge and utilization of the best mechanisms.
The use of RS for retrieval of TDS, TSS, and their forms has been explored in many studies using
images from airborne sensors onboard unmanned aerial vehicles (UAVs) and satellite sensors such
as those onboard the Landsat, Sentinel-2, Aqua, and Terra platforms. The images and their spectral
properties serve as inputs for deep learning analysis and statistical, and machine learning models.
Methods used to retrieve these WQP measurements are dependent on the optical properties of the
inland water bodies. While TSS is an optically active parameter, TDS is optically inactive with a
low signal–noise ratio. The detection of TDS in the visible, near-infrared, and infrared bands is due
to some process that (usually) co-occurs with changes in the TDS that is affecting a WQP that is
optically active. This study revealed significant improvements in incorporating RS and conventional
approaches in estimating WQPs. The findings reveal that improved spatiotemporal resolution has the
potential to effectively detect changes in the WQPs. For effective monitoring of TDS and TSS using
RS, we recommend employing atmospheric correction mechanisms to reduce image atmospheric
interference, exploration of the fusion of optical and microwave bands, high-resolution hyperspectral
images, utilization of ML and deep learning models, calibration and validation using observed data
measured from conventional methods. Further studies could focus on the development of new
technology and sensors using UAVs and satellite images to produce real-time in situ monitoring
of TDS and TSS. The findings presented in this review aid in consolidating understanding and
advancement of TDS and TSS measurements in a single repository thereby offering stakeholders,
researchers, decision-makers, and regulatory bodies a go-to information resource to enhance their
monitoring efforts and mitigation of water quality impairments.

Keywords: airborne sensors; hyperspectral; multispectral; optically active; remote sensing (RS);
satellite sensors; total dissolved solids (TDS); total suspended solids (TSS)

1. Introduction

Total dissolved solids (TDS) and total suspended solids (TSS) are two physical water
quality parameters (WQPs) that impair the quality of water resources such as rivers and
lakes [1–3]. Both TDS and TSS are fractional constituents of “total solids” of the same sample
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separated by filtration [4]. Total solids refers to “the material residue left in the vessel after
evaporation of a sample and its subsequent drying in an oven at a defined temperature” [5].

The 23rd edition of the American Public Health Association Standard Methods for the
Examination of Water and Wastewater, Section 2540 defines TDS as constituents of total
solids in a water sample, which passes through 2.0 µm or less nominal pore size under
specific conditions. Constituents of TSS in any given sample of water are retained by a filter
with a 2 µm or less pore size measured by weighing the dried residue left on the filter [4,5].
Constituents of TSS encompass particulate matter including sediment, silts, and algae
among other solid suspended particles. TSS, however, does not include colored dissolved
organic matter (CDOM). The presence of these CDOM, phytoplankton, and non-algal
particles (NAP) at various compositions often poses a challenge to the determination of
WQPs such as TSS [2,6].

Increased concentrations of TDS and TSS in water bodies limit them from serving
their purpose for drinking, power generation, industrial cooling, supporting biodiversity,
ecosystem services, recreation, transportation routes, waste disposal, agriculture produc-
tion, irrigation, energy production, regional planning, and fish farming [7–17]. Impairment
of water bodies by parameters such as TDS and TSS is caused by climate change, develop-
ment, and urbanization associated with surface imperviousness resulting from increased
population, and contamination caused by rapid and uncontrolled environmental changes
including drought, wastewater discharges, nutrient pollution, sediments, and changes in
land use and land cover which results in negative impacts such as the proliferation of harm-
ful blue-green algae, accelerated eutrophication, and extreme turbidity among others which
have negative implications on the sustainability of the limited water resources [3,6,18–29].

Changes in the quality of water resources by these parameters can cause changes in the
quality of recreational and commercial activities. There is a decline in boating, fishing, and
swimming in these water bodies when they are impaired, which brings about significant
economic losses. Swimming and boating in impaired water may also result in respiratory
and gastrointestinal diseases [30,31]. A study performed through the use of biophysical
modeling established that Virginia households are ready to pay as much as USD 184 million
yearly to ensure there is an improvement in the quality of their water [31].

To protect and restore the quality of water resources, monitoring efforts and man-
agement strategies are key and need to be successful to achieve the desired results of
a healthy water body in the ecosystem economy [32,33]. Monitoring and assessment of
WQPs such as TDS and TSS are crucial to fully comprehending how changes in the natural
environment and human activity affect water bodies [34]. TDS and TSS have been widely
monitored using conventional or traditional methods such as laboratory analysis or grab
sampling [2,19,35], these methods are, however, time-consuming, expensive, and need a
lot of labor. As a prospective alternative to traditional methods for measuring TDS and
TSS, remote sensing (RS) techniques have gained popularity in recent years and have
proven to be cost-effective in monitoring these WQPs on local to global spatiotemporal
scales non-intrusively [2,36,37].

Although TDS is not regarded as a principal water pollutant, it is an indicator of water
quality. High concentrations of dissolved solids may significantly affect the palatability of
drinking water. In addition, high TDS levels can cause scaling and corrosion in cooling
water and boilers. TDS in water originates from irrigation returns, urban runoff, natural
sources, municipal, road deicing, industrial waste, chemicals used in water treatment, and
the actual plumbing infrastructure [38,39]. Drinking water with high concentrations of
dissolved solids may affect the taste of the water. In addition, high TDS levels can cause
scaling and corrosion in any application, particularly in cooling water and boilers, and
therefore need to be monitored in water systems [38]. TSS also needs to be measured,
monitored and managed because the performance of filtration systems, plumbing systems,
and capital equipment can all be impacted by high amounts of suspended particles in
water. Quantification of TSS is needed to design dredging plans for navigational channels
and estimate the fluvial solid discharges to water bodies [40]. Additionally, high levels of
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suspended particles in rivers, streams, lakes, and reservoirs can disrupt the natural ecology
of these water systems. Monitoring of TSS in the water is therefore essential to preserve the
general well-being of the water bodies [38].

This paper, therefore, provides an overview of different methods used in the measure-
ment of TDS and TSS or sediment concentration from the perspective of conventional and
RS approaches. In this paper, we examine the advantages and limitations of each technique
along with how RS multispectral and hyperspectral images can enhance remotely sensed
estimations of TSS and TDS. In addition to highlighting the potential of RS techniques
for enhancing our knowledge of water quality, the purpose of this study is to present a
thorough and concise state-of-the-art summary of the approaches used in TDS and TSS
assessment. The findings of this study can aid in the development of novel TDS and TSS
monitoring techniques as well as increase the effectiveness and precision of water quality
monitoring efforts.

While conventional methods have been used to monitor WQPs such as TDS and TSS,
the use of RS has recently emerged as an alternative force in the monitoring of particularly
optically active TSS largely because it can be optically sensed by sensors. Measurements of
optically inactive TDS are due to their association with other colored WQPs with which
they may co-vary [2,36,37,41]. Despite the significance of monitoring TDS and TSS levels
in water bodies, there hasn’t been much research published that has compared traditional
and RS methods in great depth. Analysis of these previous reports presents an opportunity
to provide an overview of a published journal that highlights the advanced RS applications
in monitoring these specific WQPs.

The novelty of this research consists of providing an integrated review of both conven-
tional and RS applications in the monitoring of TDS and TSS. This study offers a thorough
analysis that integrates the benefits and drawbacks of both methodologies, in contrast to
earlier review studies that frequently concentrated mainly on RS techniques. This study,
therefore, provides a broad and exhaustive understanding of the dynamics and impact of
these WQPs in water bodies.

This study also provides insights into microwave sensors utilized in the monitoring of
these WQPs. Additionally, most review studies on WQPs focus on a general application of
RS techniques on WQPs without specifically highlighting the advanced RS platforms and
sensors, and the pros, and cons of multi and hyperspectral images in estimating these key
WQPs. Furthermore, there are hardly any previous literature reviews that have offered a
comprehensive assessment of traditional techniques for determining TDS and TSS levels
and the impacts of increased levels of these WQPs on the sustenance of aquatic and human
lives. Most of the information on conventional methods for determining TDS and TSS
levels is instead found in reports and other unreviewed sources.

This study, therefore, focuses on providing a comprehensive review of monitoring these
WQPs in water bodies by synthesizing the available data from both journal papers and non-
peer-reviewed sources. We seek to give a thorough review for monitoring TDS and TSS levels
in water bodies. We do this to bridge the information gap between the body of published
literature and the quantity of information contained in reports and to offer academics and
practitioners interested in monitoring these parameters a comprehensive repository.

2. Search Engines and Overview of Parameters

The literature review encompasses searching and navigating through several databases
in the English Language including the Web of Science™, Google Scholar™, Scopus™,
ResearchGate (RG), Semantic Scholar™, and Multidisciplinary Digital Publishing Institute
(MDPI) using keywords such as remote sensing, satellite, total dissolved solids, total
suspended solids, sediments, salinity, water quality, machine learning, and or different
combinations of these keywords [27]. Additionally, we searched and included other
related journals of importance. Searches were also performed for reports and important
information relating to the subject from Government web pages including the Bureau
of Reclamation, National Aeronautics and Space Administration, and the United States
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Environmental Protection Agency among others. We also searched the American Society
of Civil Engineers Libraries for related works published in the Environmental and Water
Resources Institute conference proceedings. Additionally, we searched through Google
for related reports and web pages of brands and companies containing information on
the measurement of TDS and TSS. Searches of articles and reports generated a total of
over 1000 published works across the globe. These articles, proceedings, reports, and
web information were screened to only return articles, reports, and web information of
relevance to the TDS and TSS estimations with conventional and remote sensing methods
and other related materials of significant importance all totaling close to 280 works from the
1980s to 2023 as used in this study. The approach used in the literature search is depicted
in Figure 1.
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The findings and the overview of the studied parameters are presented in the
following subsections.

2.1. Overview of TDS and TSS

TDS and TSS concentrations are issues of great concern as they impact the quality of
water. Finding ways to reduce the devastating effects of salinity and sediment concentra-
tions in water bodies is necessary to protect water resources and biodiversity.

2.1.1. Overview of TDS

TDS includes materials that due to their small size, pass through filters during water
analysis [4,5], including dissolved ionic constituents such as Mg2+, Ca2+, Na+, and Cl−.
These ions pose challenges in drinking water and wastewater treatment systems since they
are not removed through various mechanical treatment methods [3,42]. TDS and salinity
are defined differently [43]. TDS is a measurement of the mass of filterable dissolved organic
and inorganic substances per unit volume remaining from the evaporation of water [43].
Salinity measures the mass of dissolved salts in a known mass of solution [4,43–46]. TDS
can be about the same as salinity in clean water [47]. Higher TDS concentrations in water
mean increased conductivity and may also mean decreased dissolved oxygen [48]. TDS is
composed of salts, metalloids, metals, and dissolved organic matter. Organically derived
TDS is generated by the release of organic molecules during the growth and decay of
biological matter, such as roots and microbes in streams. Other contributing factors to
TDS in streams include soil or sediment minerals’ dissolution, desorption of ions linked
to solids, and atmospheric precipitation. Chemical and biological processes including
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temperature, dissolved oxygen concentration, pH, organic carbon, and rock decomposition
impact these contributing factors [49]. Temperature increases intensify stream drying and
cause a rise in TDS concentration [50]. The types of mineral and their abundance in water
strongly impacts the quality of the water [51]. The United States Environmental Protection
Agency (US EPA) has listed TDS in its secondary drinking water regulations (SDWR) with
the allowable TDS limit in water set to 500 mg/L. SDWRs are non-enforceable federal
guidelines that cause aesthetic or cosmetic effects. Examples of cosmetic effects include
taste, color, or odor while cosmetic effects include skin or tooth discoloration [52–54].

According to [55], TDS above 1200 mg/L is inappropriate for potable consumption.
Depending on the amount of TDS in water bodies, they may be classified as brackish water or
saline water. brackish water has a TDS varying from 400 to 1000 to about 10,000 mg/L [56,57].
Saline or salt water has a TDS concentration of more than 10,000 ppm. Oceanic salinities
typically vary from about 31 to 36 ppt [58,59]. Brines are defined as waters with salinity
greater than 35,000 mg/L [60,61].

Studies conducted to assess the effects of TDS on the performance of lactating dairy
cattle show varying results on water and feed intake and milk production. An increase
in TDS concentration is associated with a more likely decline in milk production in cattle
during the summer season. While some researchers found a decline in milk production
during heat stress in cows given water with TDS concentrations of 4300 ppm others found
no effect on milk production of cows given water with 3500 ppm TDS concentrations. Inter-
estingly, other researchers suggested that desalination of water reduced TDS from 14,000 to
400 ppm and thus increased the milk production of high-yield dairy cattle experiencing
heat stress [62].

2.1.2. Overview of TSS

TSS may include a large fraction of mineral seston derived directly from terrigenous
sources or indirectly by resuspension of already deposited materials. It is an optically
active parameter often referred to as suspended sediment concentration (SSC) and plays
a critical role in the management of water resources as they are linked with the fluxes of
water contaminants, namely micro-pollutants and heavy metals [7,46,49,63,64], and is a
key variable used to describe and control sedimentation dynamics in water bodies [65].
Mineral extraction and energy resources are contributing factors to the increase in TSS in
water bodies. Mining activities reported to increase the TSS in a particular water body
include mine site preparation, crushing, and storage of materials that are often exposed or
aggravated by precipitation or rainfall events [49].

TSS and its many forms of occurrence such as suspended particulate matter (SPM),
total suspended matter (TSM), suspended solids/sediments (SS), and SSC are an integral
part of the geochemical, global geological, and biological cycles in the aquatic environment
due to their ubiquitous nature, mobility, and underlying physiochemical properties [66].

TSS or SSC is the most common water pollutant by weight and volume in inland
surface waters [67]. TSS and SSC are often used interchangeably. The only difference
between TSS and SSC is the laboratory analyses used for their assessment [44]. Sediment
transport in the water bodies is a source of pollutants such as nitrate, metals, carbon,
and many others in the water [68]. TSS may be composed of sand, mineral precipitates,
biological materials, silt, and clay and its formation is influenced by physical processes
largely controlled by hydrology. Some of these physical processes include the aggregation
of dissolved organic materials, erosion of stream banks, and surface soils [49,50]. There
is a range of sediment criteria in the US depending on the state. While some states
use numerical criteria, others use narrative criteria, some also utilize the numerical and
narrative approach, and some have no criteria at all for suspended and bedded sediments
(SABS). SSC concentration is limited to 30 to 158 mg/L for the few states that use suspended
sediment as a criterion [69].
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3. TDS and TSS Related Issues
3.1. TDS Issues and Implications

TDS concentrations in water bodies are an important parameter for consideration
as it contributes to the cost involved in the desalination treatment of water. Researchers
in [70] classified desalination methods for the treatment of water into two, namely phase
change processes or thermal methods and single phase or membrane processes. Examples
of thermal methods include multi-effect distillation (MED), vapor compression (VC), and
multistage flash (MSF). An example of the membrane process method is reverse osmosis
(RO). The thermal methods are, however, said to be more effective approaches than the
membrane methods in terms of efficiency in the desalination of seawater with much higher
salt contents. The higher the amount of TDS concentration in the water, the greater amount
of pressure required for the pumps to push water through the membranes in RO systems
which consequently increases the cost of energy [71]. The unit cost of RO systems ranged
from USD 0.32 to USD 0.44 per m3 for brackish water while that of seawater ranged
from USD 1.57 to USD 3.55 per m3 in 1988 as reported by the US Congress. The cost of
desalinating 2300 ppm of Jordan brackish water is reported as USD 0.26 per m3, while
brackish water in Florida of 5000 ppm costs USD 0.27 per m3, an indication of the different
costs associated with desalination systems of different concentrations, locations, and energy
sources or technologies used [70].

Salinity exists in the concentration of mineral salts in soils or water, and it occurs
through natural processes including storm surges, floods, and poor management practices.
Salinity intrusion is an issue of great concern, particularly in coastal regions worldwide.
Salinity intrusion impacts agricultural activities. Issues of salinity affect the natural environ-
ment and are a major cause of economic loss due to their devastating effect on agricultural
productivity and food safety. These issues are likely to be aggravated due to climate change
coupled with the rise in sea level and human activities such as agricultural runoff, un-
treated sewage discharges, vegetation clearance, irrigation, regulation of river hydrology,
application of road deicing salts, and mining [7,49,72,73]. The World Bank Group 2018
estimated that about 6–12 million people are likely to be impacted by coastal flooding by
2070–2100 with climate change also expected to cause a reduction in national income by
approximately 3.5% by the year 2050 [73]. Salinity reduces the osmotic potential, making
it strenuous for plants to extract water causing toxicity of specific ions, nutritional imbal-
ance, and affecting the permeability and tilth of the soil. This subsequently resulted in the
reduction of crop yields [74].

Salinization of a freshwater ecosystem is a common environmental issue of global
concern. It is predicted to impact more than 7000 lakes in the Midwest and Northeast
US [72,75]. One of the fast-growing causes of salinity in freshwater systems in Europe is the
use of road deicing salts. Salt concentration in Lake Constance, the second largest freshwater
lake by volume in Europe, is said to have more than doubled, with salt concentration
accounting for 52% of the elevated salinization. Road deicing salts are largely used on
the road during dangerous winter conditions to increase the safety of humans traveling
on the roads. Road deicing salts have been found to reduce on average 87% and 78% of
accidents on two-lane and multi-lane highways, an indication of their immerse contribution
to reducing road crashes. These salts, however, dissolve and find their way into the
freshwater ecosystems through saline overland flows produced by snowmelt, rain, and
groundwater sources [72].

Salinity intrusion in water bodies occurs when salts get dissolved and accumulated in
the water bodies at a rate that impacts agricultural production, the environment, and the
economy. Salinity has the potential to affect the metabolism processes of aquatic organisms,
threatening the lives of these organisms [73]. Salinity affects the biological process in
ecosystems causing deterioration in the quality and the health of soil and water resources.
Issues relating to salinity are severe in arid and semi-arid regions [76]. Salinization is
primarily caused by natural processes such as a flood, or storm surge. These processes
are aided by climate change which afflicts more than 20% of the world’s agricultural
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regions. Secondary causes of salinization are largely due to anthropogenic activities [77,78].
Anthropogenic activities including agricultural runoff, the use of fertilizers, wastewater
treatment discharge, and road salt application greatly alter the natural concentrations of salt
in inland waters contributing to freshwater salinization, a phenomenon faced by thousands
of water bodies worldwide in the last few decades [75,77,78]. Salinization in water bodies
results in high chloride concentration which has the potential to lead to the corrosion of
water distribution systems leading to the release of lead and copper into drinking water
supplies [75]. Basic sources of salinity include discharge from wastewater treatment plants,
nonpoint source discharges such as agricultural runoff, and leaching of soil [79].

Salt loading in lakes may be a contributing factor to the shifting timing of lake strat-
ification and spring mixings of lakes. An increase in salt concentration not only poses a
danger to freshwater organisms but can also cause stabilization in water columns due to
the density difference between less dense fresh and denser saline water. Salinization is also
a major hindrance to an ecologically significant spring turnover event of water columns.
Lake salinization can potentially impact the stratification and mixing of the lake as the
density of the lake profile is influenced by the mixing dynamics of the lake. The buildup of
salt concentration in lakes can cause a corresponding increment in density gradients in the
column of water which could delay, diminish, and or disrupt lake mixing. The effect of
temperature on the density of freshwater lakes largely influences their stratification [75].

In the study [75], to assess the impact of salinization on lake stratification and spring
mixing, the impact of salinization on mixing in Lakes Mendota and Monona located in
Wisconsin was investigated by using an analytical approach to quantify salinity thresholds
and the long-term impact of winter salt loading on mixing and stratification. It was
established that increases in water loading causes a delay in spring turnover, prolonging
summer stratification, and increasing water column stability in northern temperate lakes.
Lake mixing is also influenced by water density which is induced by salinity [80].

The quantified economic damage due to excessive salinity in the Colorado River Basin
(CRB) was reported to be USD 295 million in 2010, with agriculture getting hit the most
with USD 153 million in damages representing 52%, followed by households with a value
of USD 83 million representing 28%. Commercial and management came next with each
representing 6%, followed by utility and industries having a lesser impact of 4% each [81].
Other studies have reported the annual economic damages to be over USD 300 million [82].
The effect of the salinity in the CRB is a major issue for both the US and the Republic
of Mexico since both countries rely on the river for water. Salinity issues cause adverse
effects on millions of acres of irrigated farms and the people who depend on the river for
water [81,83]. It is also a priority to ensure compliance with the 1944 Treaty signed between
the United States (USA) and the Republic of Mexico, which limits the TDS concentration
in the approximately 1.850 km3 discharge to the Republic of Mexico annually [79,82,84].
The US–Mexico Water Treaty is a complex, multi-basined transboundary water diplomacy
that is focused on water allocation critical to each of the two country’s water security in the
border region. The treaty is said to be the single most important bilateral agreement on
water resources between the two countries and not only is it durable, but is also shown
to apply to environmental challenges which were unforeseeable to the drafters [85]. The
salinity in water bodies may be influenced by changes in streamflow, reservoir storage,
and natural variations in salinity, water use by municipal and industrial players, as well as
agricultural practices and energy development such as coal, oil, and gas. An increase in
streamflow dilutes the salinity in water. Salinity is increased when the flow levels decline
(at high evaporation) and reduce at an increased level of flow (i.e., when evaporation is less).
Climatic changes in rainfall and snowmelt runoff play a significant role in the differences
in inflow and salinity. Reservoir storage alters the salinity variability of downstream rivers.
Large reservoirs selectively route less saline water but hold more saline water during
the period with low flows. Poor water quality is subsequently relieved when inflows
begin to increase. Irrigation activities are the largest contributor to salinity in the CRB.
Irrigation causes an increase in the salt concentration of the source water by consuming
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water through evapotranspiration and leaching salts found in saline soil and geologic
formations [18,81,86]. Irrigation is said to have contributed about 661,000 megagrams
of salinity load annually to the upper CRB (UCRB). Excessively exposed bare ground in
mountainous areas is reported as a source of salinity contribution to the UCRB [45]. A study
by [87] to assess the TDS contribution to the Colorado River due to population growth in
the Las Vegas Valley using system dynamic models revealed that the TDS concentration in
the Las Vegas Wash will rise to about 14% in the year 2035. A 10% reduction in population
of water softeners users by 2035 will also cause a reduction of TDS level by 126 mg/L.

3.2. TSS Issues and Implications

The US EPA identifies fluvial sediments as the most pervasive pollutant in the rivers
and streams of the US, impacting aquatic habitat, drinking water treatment procedures, and
recreational usage of rivers, lakes, and estuaries [88]. The US EPA in their 2017 National
Water Quality Inventory Report to Congress cited sediments as one of the leading causes
of impairment in the water bodies assessed. The report revealed that 15% of river’s and
stream’s lengths have excess streambed sediments which were found to have quite an
impact on the biological conditions of the water bodies [89].

Suspended sediments in water may not be toxic, but an excessive amount leads to a
high level of turbidity. Turbidity is a visual characteristic of the water consisting of biotic
and abiotic elements that indicate its clarity or lack of it due to the presence of organic
and inorganic suspended materials or matter (SM), plankton, and microscopic organisms
causing scattering and absorbing of light [4,28,90,91]. Turbidity in water could be measured
conventionally in the laboratory through the nephelometric method and by measurements
using optical in situ sensors often called turbidimeters as described in Section 2130B and
2130A, respectively, of the standard methods for the examination of water and wastew-
ater [4]. Turbidity and turbid waters have also been studied and monitored using RS
images [92–96]. Researchers found satellite-derived reflectance from the National Aeronau-
tics and Space Administration (NASA)’s Moderate Resolution Imaging Spectroradiometer
(MODIS) at the wavelength of 667 nm to be a proxy for water turbidity measurements, with
larger values of water turbidity resulting in higher reflectance at 667 nm wavelength [92].

Turbidity is increased during the period of high flow events due to increased con-
centrations of sediments making turbidity a known surrogate or proxy for TSS concentra-
tion [28,94,97]. Studies have also estimated turbidity from forms of TSS in water bodies
using empirical relationships [94,98]. Researchers found a high correlation of 0.986 between
TSM and turbidity in the Southern North Sea, UK [98]. Other researchers in [99] also found
an almost perfect correlation (r = 0.99) between turbidity and TSM concentration following
the removal of outliers in the data in the brackish lower sea Scheldt, located at the border
of Belgium and the Netherlands. Another study by [100] also found a correlation of 0.91
between turbidity and SPM in the Río de la Plata estuary in South America which is widely
known to be among the most highly turbid rivers worldwide with TSM concentrations of
100–300 mg/L [101].

A high water turbidity index, as a result, causes a greater amount of scattered light
in several directions, which further leads to a reduction in light penetration deep into
the water bodies and consequently impacts the rate of photosynthesis, leading to oxygen
depletion. The high amount of TSS concentrations can raise water temperatures and lead
to lower dissolved oxygen concentrations. Because the suspended particles absorb more
heat and use up more oxygen, the water may heat more quickly as a result, which may be
harmful to aquatic life [38]. TSS can also cause clogging in the gills of fish leading to their
death [49,102–104]. The reported average upper tolerance level of SSC is about 90 mg/L
for fish and 13 mg/L for bottom invertebrates [69]. These conditions are about twice as
likely to occur in streams and rivers with high levels of streambed sediments than in those
without. Sediments in the water can result in smoother streams causing suffocation of fish
eggs and organisms dwelling in the bottom water. Increased sediments in the water can
also interfere with recreational uses and drinking water treatment processes [89].
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Sedimentation is a key issue in the sustainable management of water supply systems.
Accumulation of sediments is a likely phenomenon in lakes and would therefore need to be
addressed since it impacts the quality of water [105]. It is important to understand issues
relating to sediment concentrations that impact the quality of water and subsequently affect
human and aquatic life that depend on the lake as their source of water. SS affects the optical
clarity of the water. TSS causes the scattering of light and impacts the optical properties
of water. Detection of these particles in water using RS or UV systems is possible since
they cause scattering of light [106]. The higher the TSS concentration in water, the harder
it is for light to travel through the water creating turbidity. Turbidity is said to correlate
with TSS. The higher the amount of TSS in water, the more turbid the water appears. TSS
is an important parameter for consideration because it impacts the amount of sunlight
penetration to the water body which subsequently negatively impacts photosynthesis
needed for the growth of plankton and algae [7,36].

A study performed by [107] found a significant correlation between SS and turbidity.
For a sample size of 19, the reported coefficient of determination (R2) in the study was 80%.
The presence of sediments in water is said to cause turbidity which settles on the floor of
the water reservoir. Reservoirs have a known volume of water storage capacity at the time
of inception. This however reduces with the siltation mechanism [108].

Researchers in [102] found a possible impact of years of drought on the rise in the
concentration of TSS in the Overton and Colorado River Arm of Lake Mead located in the
Western US, specifically in Las Vegas, Nevada. Lake Mead is the largest reservoir in terms
of water capacity in the US and the 16th worldwide. An estimated 98% of the Lake’s inflow
is said to be from the Colorado River, which is a conduit of sediment transport from the
UCRB. This sediment transport into the Lake has seen a 90% reduction since 1963 when the
Glen Canyon Dam was completed. Despite these efforts in reducing sedimentations, the
need to assess the impact of TSS is crucial in achieving desired results in water resources
management efforts [102].

4. Measurement and Monitoring of TDS and TSS

TDS and TSS have traditionally been analyzed and monitored through field or in
situ sampling and laboratory testing generally classified as conventional methods. Field
and laboratory measurements include grab sampling, filtering, and evaporating a sam-
ple through a fine filter paper followed by drying in an air oven which are collectively
known as gravimetric methods [35,109]. Conventional methods of monitoring of WQPs
are, however, cost-prohibitive, labor-intensive, time-consuming, and, also not suitable for
large-scale analysis [46,103,110,111].

4.1. Measuring TDS and TSS Using Conventional Approaches

Several techniques and tools are used to measure TDS or TSS in a lab or out in the
field. TDS and TSS can be measured using the US EPA Gravimetric method, and direct
measurements as set by Sections 2540C (for TDS) and 2540D (for TSS) of the Standard Methods
for the Examination of Water and Wastewater [4]. The various conventional approaches used
in the quantification of TDS and TSS are described in Sections 4.1.1 and 4.1.2.

4.1.1. Measurement of TDS

TDS or dissolved solids (DS) concentration is measured either directly or indirectly.
Direct TDS determination involves grab sampling which entails the collection of indi-

vidual samples at specified times which are reflective of the water conditions at the moment
the sample is collected [35]. These samples are prepared in the lab and oven-dried. TDS is
then determined by weighing the residue that remains after the evaporation of a specific
volume of a filtrate. TDS can also be analyzed in the field or lab by utilizing electrochemistry
meters and probes developed to detect the dissolved solids in a sample [38].

One way to indirectly determine TDS involves the summing of measured concentra-
tions of various constituents in the filtered water sample. Researchers in [112] have found
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strong correlations among various dissolved minerals such as TDS, electrical conductivity
(EC), and chloride with r > 0.8 which makes the EC an effective tool for determining
the salinity of water [113]. TDS can therefore be estimated indirectly by multiplying EC
measured in micromhos per centimeter by an empirical factor that ranges from 0.55 to
0.9. The exact factor used in TDS estimation is influenced by the temperature and solu-
ble components of the water which is determined by establishing repeated paired linear
regressions of measurements of TDS and specific conductance for a specific water body.
A high factor is used for saline water while a lower value is used for water systems with
considerable hydroxide or free acid [4]. A value of 0.67 is often adopted for several natural
water systems [4]. However, Ref. [114] used a correlation factor of 0.64 in their study to
estimate and characterize physical and organic chemical indicators of water quality. Both
TDS and EC are used to describe the salinity level in the water. EC measures the capacity
of the water to conduct an electric charge and its ability to do so is influenced by the ionic
strength, temperature of measurement, and concentrations of dissolved ions. The concen-
trations of these dissolved ions are measured as TDS. TDS analysis is said to offer a better
understanding of groundwater quality and the effect of seawater intrusion compared with
EC analysis. While the EC of water is inexpensive to measure and can be measured in situ
through the use of a portable water quality checker, analysis and measurement of TDS are,
however, more difficult, time-consuming, and expensive [109]. TDS estimation from EC
using a correlation factor is based on the assumption that dissolved solids are mainly ionic
species of low concentration needed to yield a linear EC–TDS relationship [115]. Chemical
analysis is said to be the only reliable means to measure TDS. This method can, however,
be time-consuming and costly. An indirect method is usually used to aid in the effort of
salinity measurement. The direct method is performed through the measurement and
establishment of empirical relationships between salinity and other physical properties of
water such as conductivity, sound speed, refractive index, and density [4].

4.1.2. Measurement of TSS

Several researchers have monitored TSS in water bodies because it is key to ensuring
the restoration of the integrity of water bodies, leading to the sustainability of water
resources and ultimately protecting human and aquatic lives [116,117].

Water loaded with suspended sediments increases its turbidity, reducing its light ab-
sorption capability while allowing a greater amount of reflection. An increase in sediments
and turbidity, therefore, causes an increase in the reflectance of light in the visible and the
near-infrared (NIR) spectrum of the electromagnetic spectrum [46]. The remotely sensed
estimation of sediment concentration (TSS) is influenced by particle parameters, including
their size, shape, density, and color, dissolved and particulate color. Suspended particles
originate from runoff, soil erosion, stirred bottom sediments, algal blooms, or discharges.
The composition of TSS materials in inland waters includes components supplied by trib-
utaries called allochthonous and components produced within the water column called
autochthonous and resuspension [118]. Both TSS and turbidity are used as indicators to
assess the clarity of water and are a macro-descriptor for water quality as they are directly
related to other variables used in the management of inland waters such as the lake. The
composition of suspended particles may differ in inland waters as they are governed by
characteristics of the drainage basin, resuspension of bottom deposits driven by motion,
and hydrology [118].

Researchers in [119] found a correlation between TSS and turbidity of 0.64. A sampling
of TSS can be performed using multiple particle filtration systems (MuPFiSs), a system that
has four filtration lines in parallel with water meters to measure the flow of water filtered
over a period under pressure using appropriate filter pore sizes [120]. In a study performed
by [121] to analyze WQPs including TSS in the effluent of a WWTP in Switzerland, an
in situ UV spectrometer was applied to the effluent and calibrated using a multivariate
calibration algorithm and partial least squares (PLS) regression. The accuracy of the TSS
measurement was found to be unsatisfactory. This is because the spectrometer used did
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not cover a wavelength spectrum of up to 700 nm, which was said to give a better signal
for TSS calibration owing to the strong correlation between TSS and turbidity.

Researchers in [122] estimated TSS concentrations using ML models coupled with sev-
eral watershed factors rainfall depth, drainage area, percent of imperviousness, runoff vol-
ume, land use, and antecedent dry days for various storm events retrieved from 17 US states.
The authors reported they found the random forest and the adaptive boosting regressors
the best models for TSS estimations from these watershed factors with R2 ≥ 0.64 and Nash–
Sutcliffe Efficiency (NSE) ≥ 0.62 from the training to the prediction steps of the models.

4.1.3. Strengths and Limitations of the Conventional Method for Measuring TDS and TSS

The strengths and limitations associated with the conventional methods of measuring
TDS and TSS in water bodies are introduced in Table 1 [2,4,36,38,123,124].

Table 1. Strengths and limitations of conventional methods for measuring TDS and TSS.

Strengths Limitations

Well-established standardized methods Labor and cost intensive and time-consuming

Associated with a high degree of precision
and accuracy

Accuracy may be impacted by errors
associated with field samplings, transportation,

storage, and lab analysis

Can provide WQP measurements at
varying depth

Impossible to monitor the entire water body at
the same time due to inaccessibility issues due

to topography

Does not involve the knowledge of big data
processing and the complexity of data analysis

Knowledge of specialized measuring devices
or equipment may be required

Provides direct measurement of WQPs Limited spatial and temporal coverages

The following paragraphs further explain the strengths and drawbacks of conventional
methods of measuring TDS and TSS.

Strengths

Conventional methods [38], are well-established methods employed in laboratories
and have been used for decades. They have been proven to produce reliable and accurate
results and are widely understood by many experts and researchers in the field of water
quality and water resources management.

There is a substantial body of literature on the subject in terms of reports provided by
governmental and non-governmental institutions and companies [4,38,88,123].

Conventional methods also present details about instantaneous concentrations of TDS
and TSS at a certain time. Additionally, conventional methods present standardized proce-
dures for determining TDS and TSS which means the results from different measurements
can be compared [4,35].

Limitations

Conventional methods of TDS and TSS measurement techniques can take a lot of
preparation and analysis time. From sample preparation to oven drying in the case of
TDS measurements, the conventional method requires significant time ranges from hours
to days for their analysis [125]. The time required to collect samples, send them to a
laboratory for processing, and receive findings can be long and particularly cumbersome
when sampling at multiple locations [126].

Conventional methods of TDS and TSS measurement techniques can be laborious
and require skilled personnel for effective and accurate measurements, analysis, and
interpretation of results [125].
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Some standard or conventional methods of measuring these WQPs require the use of
dangerous chemicals and specialized equipment which can pose safety issues to researchers
and laboratory technicians [4,125].

Conventional methods are limited by spatial and temporal resolution. Traditional
approaches require physical sampling and are therefore confined to using the point mea-
surements taken at certain times and locations, which may miss significant changes in
water quality across time and space and are therefore not feasible for large or remote
water systems [2,36,127–129].

4.2. Monitoring of TDS and TSS Using RS

This subsection presents the sensors used in monitoring TDS and TSS as well as the
principles and methods used in the retrieval of these WQPs.

4.2.1. Concept of TDS and TSS Interactions and Measurements Using RS

The basic underlying principle and concept of retrieving WQPs such as TSS and TDS
from RS are based on the interaction of suspended and dissolved colored substances with
light. Dissolved colored and suspended substances increase light absorption (dissolved)
and absorption and scattering (suspended) in water and change the direction of the returned
light. The spectral distribution of backscattered energy is affected by additional absorption
by dissolved colored matter in the water column. SM on the other hand increases the
backscattering of light and hence may increase the remote signal [130]. The interaction
of light with SM produces a signal reflectance that is detectable from a distance. These
signals can therefore be used to estimate the presence and the quantity of TSS. The strong
backscattering property of TSS makes it possible to be detected by RS techniques [131]. The
spectral properties of the water are categorized as the Inherent Optical Properties (IOPs)
and the Apparent Optical Properties (AOPs). The IOPs which describe the spectral light
absorption and backscattering are key components in linking reflectance measurements
to the concentrations of water parameters such as TSS. The absorption coefficients of
particles in optically complex waters such as inland, coastal, and estuarine are broken into
components caused by phytoplankton and those caused by non-algal particles. While the
IOPs can be quantified in the laboratory, the AOPs which include radiance and downwelling
plane irradiance are only measured using the IOPs and depend on the IOPs and the
geometric structure of the radiance distribution including the wind speed, surface water
structure, and atmospheric conditions [118,132].

RS-based approaches for the estimation and retrieval of the TSS and TDS involve estab-
lishing relations between these WQPs and spectral properties of RS images. The approaches
include empirical methods which utilize statistical relationships derived from measured RS
spectral properties and these WQPs. These are simple and straightforward approaches which
been used in the effective estimation and retrieval of these WQPs [10,41,124,133–137].

Another approach used is the analytical method which uses the IOPs including the
scattering and absorption coefficient and the volume scattering function, and the AOPs
such as the diffuse attenuation coefficient for downwelling irradiance and the irradiance re-
flectance to model and derive these WQPs [2,124,133,135]. Other studies are semi-empirical
methods: which are a combination of the empirical and analytical methods for the retrieval
of these WQPs [2,10,124,133,138–140]. In this approach, the spectral radiance is recalcu-
lated to above the surface irradiance reflectance and subsequently, through regression
techniques related to the TDS and TSS. Over the years, studies have developed and im-
proved these approaches leading to more recent use in the state-of-art artificial intelligence
(AI) approaches such as machine learning (ML) models and deep learning which uses
implicit algorithms to capture both linear and nonlinear relationships compared with the
conventional statistical methods [2,124,141–145].
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4.2.2. Optical Characterization of TDS and TSS

WQPs are categorized as optically active and inactive parameters for RS applications.
Optical RS is based on the difference in spectral reflectance of water and land [146]. Op-
tically active water parameters are those parameters that are likely to impact the optical
characteristics measured by RS sensors while non-optically active parameters are those
parameters that are less likely to influence the optical characteristics measured by the
RS sensors [147]. TSS is an optically active parameter while TDS is an optically weak
property. Optically active parameters such as TSS absorb light in the ultraviolet and visible
wavelength range and influence the optical properties enabling them to be sensed from
satellite observations. Optically active water parameters are also used to monitor several
other processes aside from water quality. The high amount of sediment loads have the
potential to reduce water clarity and block radiation needed for submerged aquatic veg-
etation growth. Sediments affect the optical characteristics of estuarine waters making a
color in both in situ and RS a good indicator for monitoring phenomena, including run-off
processes [148]. Studies have also found a good correlation between the SPM concentrations
and water reflectance in the green and red regions of the electromagnetic spectrum for
low to moderately turbid waters [138]. The reflectance in the 580–680 nm and 700–900 nm
ranges of the electromagnetic spectrum have been reported to be most sensitive to TSM
concentration changes and hence most ideal for the retrieval of TSM concentrations [124]. A
study by [149,150] corroborated this assertion by finding SS concentration to be associated
with an increase in reflected energy at longer wavelengths (630–690 nm).

A study was performed by [151] to estimate optical water parameters using a guided
approach. The optical WQPs considered included TSM using the Ocean and Land Color
Instrument (OLCI), and MSI data at Estonian and Finnish lakes and the Baltic Sea coastal
area. The study used empirical algorithms. A high correlation (r > 0.87) was established
for in situ measured optical WQPs and the parameters predicted by the optical water-type
guided approach. The amount of SSC and turbidity affects the reflectance of light with the
relationship between spectral reflectance and SSC or turbidity often described as a positive
linear correlation or nonlinear regression in the visible and the NIR wavelengths [152,153].

Researchers [154] found an increase in reflectance in the NIR regions and reduced
reflectance in red and SWIR due to high water absorption in the most turbid regions of the
Río de la Plata estuary located in South America. Researchers [155], however, noted the NIR
spectral bands to be less sensitive to the increase in TSM concentrations in highly turbid
waters with TSM > 100 mg/L making the use of SWIR with a wavelength of 1000–1300 nm
an alternative in such scenarios.

Studies have also found a relationship between the optimum wavelength and the SSC
and have therefore developed empirical relationships between the SSC and reflectance
radiance for a specific site and date [67]. TDS and other inactive optical parameters are
measured owing to their correlations with optically active parameters. Studies performed
have also measured the correlations between WQPs such as in the case of optically active
and optically inactive parameters which would be useful in the case of determining TDS.
For example; researchers in [156] found a moderate correlation of 0.435 between TSS
and TDS for the study to map WQPs using Landsat 7 ETM+ for Manzala Lagoon, Egypt.
The study also found a moderate correlation of 0.43 between the band ratio (B2/B4).
Researchers in [157] also developed a correlation matrix for both optical and non-optical
WQPs. Correlation between TDS and TSS, TDS, and turbidity were reported as 0.35 and
0.58, respectively. Although TDS is not spectrally active, it can be estimated from RS
using various models including the semi-empirical models. Retrieving optically inactive
parameters such as TDS using satellite visible, NIR, or IR bands is possible because of
the assumption that they may be highly correlated with optically active parameters and
assuming that there is some process that (usually) co-occurs with changes in the TDS or
salinity that are affecting a WQP that is optically active. These processes may, however, not
always co-occur at the same magnitude.
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4.2.3. RS Sensors for Monitoring TDS and TSS

Microwave and optical RS technologies are two technologies used in the estimation of
WQPs including TDS and TSS. Optical RS sensors collect data in the visible, near-infrared,
and shortwave infrared regions of the electromagnetic spectrum, but microwave sensors
use a longer wavelength (cm to m) which makes them able to penetrate through cloud
cover, dust, haze, and all kinds of rainfall except the heaviest rains. The longer wavelengths
of microwave sensors make them insusceptible to atmospheric scattering which impacts
shorter optical wavelengths which makes it possible for them to detect microwave energy
under all weather and environmental conditions at any time [158–160]. Microwave sensors
provide cost-effective, reusable, reliable, and automatic water-sensing technologies to
provide accurate real-time water quality measurements [161].

Microwave RS are categorized as active, also known as non-optical sensors, and
passive sensors also called optical sensors. Optical sensors depend on the energy of the
sun, unlike non-optical sensors which produce their energy. Although most studies have
measured WQPs using optical RS, there is an opportunity to measure these parameters
from the microwave region of the electromagnetic spectrum [158,159,162,163]. Passive
microwave sensors detect the emitted energy within their field of view. Active microwave
sensors are those sensors that provide their source of radiation to illuminate their target.

Optical RS sensors are mainly passive sensors that make use of the sun’s energy.
The USGS’s Landsat, NASA’s MODIS, the ESA’s Sentinel-2, and the Medium Resolution
Imaging Spectrometer (MERIS) among many others are some optical remote sensors
that have been used by several scientists, including water researchers for monitoring
and managing water resources [2,160,164,165]. Other known sensors used in studies
include the Oceanic and Atmospheric Administration (NOAA) Advanced Very High-
Resolution Radiometer (AVHRR) and the OrbView-2 Sea-viewing Wide Field-of-view
Sensor (SeaWiFS) sensors [166].

Passive sensors can be either airborne or spaceborne sensors based on the platforms
launched. Images from these sensors can be multispectral or hyperspectral, based on
spectral and spatial resolutions. Multispectral systems collect data in 3–10 spectral bands
in a single observation from the visible and the near-infrared range of the electromag-
netic spectrum. The spectral bands of multispectral bands range from 0.4–0.7 µm for
red–green–blue, and infrared wavelengths within the range of 0.7–10 µm, or more for
near, middle, and far infrared [36,124,167]. The use of multispectral images is, however,
restrictive because the spectral resolution of the images influences the quality and quan-
tity of the information they can provide [168]. Hyperspectral RS applications offer an
effective mechanism for frequent, synoptic water quality monitoring over a large spatial
extent [169]. Hyperspectral sensors collect 200 or more bands enabling the construction of a
continuous reflectance spectrum for all the pixels in the scene using cameras categorized as
snapshot, pushbroom, or whiskbroom. The snapshot camera captures the whole image at
one time. The pushbroom captures one line of the picture while the whiskbroom captures
one point of the picture [2,170]. Multispectral and hyperspectral images have been used
for the direct or indirect measurement of several WQPs including TSS and TDS or salin-
ity [36,124,167]. Spaceborne sensors are those carried by satellites or spacecraft to areas
outside the Earth’s atmosphere. Examples of spaceborne sensors include Landsat satellite,
Advanced Spaceborne Thermal Emission and Reflection Radiation (ASTER), Moderate
Resolution Imaging Spectroradiometer (MODIS) Sensor, GeoEye, and IKONOS among
others. Airborne sensors are mounted on platforms flown within the Earth’s atmosphere.
These platforms include boats, helicopters, aircraft, or balloons. Examples of airborne sen-
sors used for capturing images for WQP monitoring include the Airborne Visible Infrared
Imaging Spectrometer (AVIRIS) manufactured by NASA Jet Propulsion Lab (Pasadena,
CA, USA), the Airborne Prism Experiment (APEX) manufactured by VITO (Mol, Belgium),
Hyperspectral Digital Imagery manufactured by the Naval Research Lab (Washington,
DC, USA), Daedalus Multispectral Scanner (MSS) manufactured by the Daedalus Enter-
prise Inc (Ann Arbor, MI, USA), Compact Airborne Spectrographic Imager (CASI-1500)
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manufactured by ITRES Research Limited (Calgary, AB, Canada), and the Multispectral
Infrared and Visible Imaging Spectrometer (MIVIS) manufactured by Daedalus Enterprise
Inc., (Ann Arbor, MI, USA) [36].

Both airborne and spaceborne sensors have been used in past studies to examine
a wide range of WQPs since the early 1970s [171]. Airborne sensors are hyperspectral
passive sensors that measure the reflectance of solar radiation throughout the visible, near
and mid-infrared, and thermal regions of the electromagnetic spectrum. Images acquired
are numerous but narrower. Spaceborne are also passive sensors that cover a broader
geographic area compared to the coverage of airborne sensors. Spaceborne sensors make
use of the constant orbital patterns of the satellite they are launched on. Images acquired by
spaceborne sensors can either be multispectral or hyperspectral. The choice of a particular
sensor to be used in a study depends on spectral properties and associated strengths and
limitations [167]. The category of RS technologies, sensors, and images is summarized in
Figure 2 below.
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A summary of some of the sensors used and proposed for capturing images for the
estimation of TDS/salinity, TSSs, and their forms of occurrence are presented in Tables 2 and 3.
The spatial, temporal, and spectral resolutions of the images, as well as the year of the launch
of the sensor, are presented in Tables 2 and 3 [2,7,13,36,37,41,44,93,102,124,165–167,172–194].

4.2.4. RS Spectral Indices Used in Estimating TDS and TSS

RS indices combine information from two or more spectral bands. The incorporation
of reflectance values from different bands through band ratios has been noted to improve
the estimation of WQPs by reducing the effect of the atmosphere and further increasing the
signal-to-noise ratio [41]

Several indices have been established and widely acknowledged as valuable tools
in the identification of features of interest. Studies have developed indices for vegetation
vigor, land use changes, and crop assessment [195]. Band ratios or indices have been used
as model variables and have been found to produce good results [196]. For example, [195]
used indices termed salinity indices, vegetation indices, and principal component analysis
(PCA) to map and discriminate salt-affected, waterlogged areas/water bodies in Faisalabad,
Pakistan. The indices used include salinity indices which are the square root of the product
of the first and third bands and the normalized differential salinity index which utilizes band
3 and band 4. Additionally used were the Normalized Difference Vegetation Index (NDVI),
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and band ratio (Band 3/Band 4). The acquired images used were from the Linear Image Self-
scanning Spectrometer (LISS-II) of the Indian RS satellite (IRS-1B). Additionally, ref. [197]
found that the band ratio of 560/660 nm of radiometric data acquired with hyperspectral
radiometers with a 3 nm resolution and bandwidths over the 400–700 nm range is the best
ratio at p < 0.005 for the estimation of suspended mineral concentration for inland and
coastal waters in the Vancouver Island of British Columbia, Canada.

Some of the commonly used indices include the Normalized Suspended Material Index
(NSMI), the Normalized Difference Suspended Sediment Index (NDSSI), and the Band Ratio
(BR) used in the analysis of suspended sediments [190,198–200]. Normalized Difference
Salinity Index (NDSI), salinity indices, and TDS indices are used for the monitoring of
TDS or salinity [127,189,201]. Indices utilized in the literature for monitoring TSS include
the Water-Sediment Ratio Index (WSRI), the NDVI, the normalized difference water index
(NDWI), and the Enhanced Green Ratio Index (EGRI) [195,200,202].

The following subsections highlight some of the indices that have been used in water
quality monitoring.

Table 2. Optical Sensors used in the Estimation of TDS/Salinity and TSS with their specifications.

Satellite Sensor Year
Launched

Spatial Res.
(m)

Temporal
Res. (Days)

Spectral Resolution
Parameter
MeasuredNumber of

Bands
Wavelength
Range (µm)

Sentinel-2 A/B MSI 2015 10–60 5 12 0.44–2.19 TSS, TSM, TDS

SPOT 6 2012 1.5–6.0 26 5 0.45–0.89 TSS, TSM

Landsat-4, 5 TM 1982 30–120 16 7 0.50–2.35 TSS, SSC, TSM,
TDS, Salinity

Landsat-7 ETM+ 1993 15–60 16 8 0.45–0.90 TSS, SM, SSC

Landsat-8 OLI/TIRS 2013 15–100 16 11 0.43–12.51 TSS, TSM, TDS,
Salinity

Landsat-9 OLI-2/TIRS 2021 15–100 16 11 0.43–12.51 TSM

RapidEye 2008 5 5.5 5 0.44–0.85 TSS, SSC

Geostationary Ocean Color
Imager (GOCI) 2010 500 1 8 0.41–0.87 SS, Salinity

ALOS AVNIR-2 2006 2.5–10 2 5 0.42–0.89 TSS

MERIS 2002 300–1200 1 15 0.39–1.04 TSM, TSS,

Terra ASTER 1999 15–90 16 14 0.52–11.65 TSS, TDS,
Salinity

Terra MODIS 1999 250–1000 1–2 36 0.41–14.5 TSM, TSS

Aqua MODIS 2002 250–1000 1–2 36 0.41–14.5 TSM, TSS

Visible Infrared Imaging
Radiometer Suite (VIIRS) 2011 375–750 0.5 22 0.50–12.01 TSS

Hyperspectral Imager for the
Coastal Ocean (HICOTM) 2009 100 10 128 0.35–1.08 SPM

Earth-Observing One
satellite (EO-1) Hyperion 2000 30 16 242 0.35–2.57 SM

EO-1 ALI 2000 10–30 16 10 0.43–2.35 TSS, SSC

NOAA AVHRR 1978 1000 1 5 0.60–1.20 TSS

OrbView-2 SeaWiFS 1997 1130 16 8 0.41–0.87 SS
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Table 3. Microwave Sensors used in the Estimation of TDS/Salinity and TSS with their specifications.

Satellite Sensor
Year

Launched/
Deployed

Spatial Res.
(km)

Temporal Res.
(Days)

Spectral Resolution
Parameter
MeasuredNo. of

Bands
Wavelength
Range (µm)

NIMBUS-7 Scanning Multichannel
Microwave Radiometer (SMMR) 1978 2.7–8.5 4 5 0.008–0.045 SS, Salinity

European Remote Sensing (ERS-2) SAR 1995 ≤0.03 35 1 0.057 SSC

Soil Moisture and Ocean Salinity
(SMOS) MIRAS 2009 3.5–50 3 1 0.212 Salinity

Scientific Application Satellite-D
(SAC-D) Aquarius 2011 100 7 1 0.212 Salinity

(Airborne) Electronically Scanning
Thinned-Array (ESTAR) 1990 100 - - 0.212 Salinity

(Airborne) Scanning Low-Frequency
Microwave Radiometer (SLFMR) 1999 0.5–1 - - 0.212 Salinity

(Airborne) Salinity, Temperature, and
Roughness Remote Scanner (STARRS) 2001 1 - - Up to 0.212 Salinity

(Airborne) Passive Active L- and
S-band Sensor 1999 0.350–1 - - 0.212 Salinity

(Airborne) Two-Dimensional
Electronically Scanning

Thinned-Array Radiometer
2003 0.800 - - 0.212 Salinity

NASA Aquarius and Soil Moisture
Active Passive mission

(SMAP) (L-band)
2015 ~40 2–3 - 0.214 Salinity

TDS and Salinity Indices

Multiple spectral salinity indices have been established in various studies. Highly
reflective spectral packages are used in understanding the relationship between WQPs
and spectral bands. Three water body reflectances exist for assessing WQPs using band
reflectance. These are surface reflectance, bottom reflectance, and volume reflectance. To
demonstrate the properties of water, a spectral range with higher reflectance is adopted.
Several salinity indices which are combinations of bands in the visible and NIR range of the
electromagnetic spectrum have been reported in the literature [78,189,203,204]. Clear water
(i.e., water with a depth greater than 2 m) likely exhibits low reflectance in a visible range
of the electromagnetic spectrum (i.e., blue, red, and green bands) There is a characteristic
trend of reduction in the spectral signature value of water reflectance with increasing
wavelength in the visible (band 2) and NIR infrared band [189,205]. Spectral indices used
in the literature are presented in Table 4 where R = red band; B = blue band; G = green band;
NIR = near-infrared band; R1 = Red_edge1 band; SWIR1 = Shortwave Infrared 1 band,
SWIR2 = Shortwave Infrared 2 band, and C = Coastal band. Additionally, B1, B2, B3, B4
stand for bands 1, 2, 3, 4, and so on [54,73,168,189,206]. The wavelengths for each band for
the Landsat and Sentinel platforms are provided as Appendices A and B. Landsat 8 OLI,
7 ETM+, and 5 TM are presented in Appendix A (Tables A1–A3) while Sentinel-2 MSI is
presented in Appendix B (Table A4) [149,189,207–211].
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Table 4. RS Indices used in estimating TDS and Salinity concentrations.

Index Image/Data Equation Metrics Study Area
(Country/Region) References

Salinity Index 1 Landsat 8 OLI
√

R ∗ B

R2 = 0.72 Colorado River (USA) [127]
R2 ≥ 0.72 Shatt al-Arab River (Iraq) [189]

Salinity Index 2 Landsat 8 OLI
√

G ∗ B
R2 = 0.73 Colorado River (USA) [127]
R2 > 0.79 Shatt al-Arab River (Iraq) [189]

Salinity Index 3 Landsat 8 OLI
√

R2 + G2 R2 = 0.72 Colorado River (USA) [127]
Salinity Index 4 Landsat 8 OLI

√
R2 + G2 + NIR2 R2 = 0.70 Colorado River (USA) [127]

Salinity Index 5

Landsat 8 OLI G ∗ R
R2 = 0.73 Colorado River (USA) [127]
R2 ≥ 0.44 Shatt al-Arab River (Iraq) [189]

Landsat 5 TM

Landsat 8 OLI G ∗ R

R2 > 0.65

R2 > 0.49

Coastal surface water
(Bangladesh) [212]

Salinity Index 6 Landsat 8 OLI
√

G2 ∗ NIR2 R2 = 0.71 Colorado River (USA) [127]

Salinity Index 7

Landsat 5 TM

Landsat 8 OLI
B
G

R2 > 0.06

R2 > 0.46
Coastal surface water

(Bangladesh) [212]

- ASTER B5
B3 ∗ B7 R2 > 0.57 Qaroun Lake (Egypt) [206]

NDSI Landsat 8 OLI R−NIR
R+NIR R2 > 0.51 Mekong Delta (Vietnam) [213]

TDS 1

TDS 2

TDS 3

TDS 4

TDS 5

TDS 6
TDS 7

Sentinel-2 MSI

G + R + R1

G+R−R1
G+R+R1

R1−B
R1+B

R1 + R− B

R1 + R

R+R1
SWIR1+SWIR2

R∗R1
SWIR2

r ≥ 0.79

r ≥ 0.00

r ≥ 0.52

r ≥ 0.79

r ≥ 0.79

r ≥ 0.00
r ≥ 0.00

Guartinaja and Momil
wetlands (Colombia)

[54]

R = red band; B = blue band; G = green band; NIR = near-infrared band; R1 = Red_edge1 band; SWIR1 = Shortwave
Infrared 1 band, and SWIR2 = Shortwave Infrared 2 band. B1, B2, B3, B4 stand for bands 1, 2, 3, 4, and so on.

TSS and Sediment Indices

Indices used for the estimation of TSS indices include the Normalized Suspended
Material Index (NSMI), the Normalized Difference Suspended Sediment Index (NDSSI),
the Band Ratio (BR), and other established indices.

Values of NSMI and NDSSI range from −1 to +1. Lower values of NSMI correspond
to clearer water. When the blue band has a higher value than the sum of the red and green
bands, the equation gives a negative value, indicating the presence of clearer water. Higher
values correspond to water with more SM. Sediment also increases the reflectance of the
green range of the spectrum [198]. Higher values of NDSSI, however, indicate the presence
of clearer water and lower values indicate the presence of more turbid water or land. BR
ranges from 0 to infinity. The highest value indicates the presence of more suspended
sediments. A study found NSMI to have a better performance in estimating TSS compared
to NDSSI because the wavelength of visible bands as associated with NSMI have greater
penetrating power in the water surface compared with infrared bands [199]. Another study
by [198] utilized NSMI to identify SM by using Landsat 7 Enhanced Thematic Mapper
(ETM+) satellite data on the coast of Cabo Rojo in Puerto Rico. Results obtained from
the NSMI were compared to other indices, such as the NDSSI and BR, and found similar
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patterns and indications of validity of the results. Although the NSMI was found to
be successful in distinguishing between clear water and suspended material in a study
performed in Cabo Rojo in Puerto Rico, it was unable to identify suspended matter in
shallow areas such as coral reefs and swamps. Spectral indices used in the literature for the
study of TSS and its related forms are presented in Table 5.

Table 5. RS indices used in estimating TSS and its Forms.

Index Image/Data Equation Metrics Study Area
(Country/Region) References

NSMI

Landsat 7 ETM+ R+G−B
R+G+B

R2 ≥ 0.96 Lake Mead (USA) [190]

- Cabo Rojo (Puerto Rico) [198]
R2 > 0.51 Barito Delta (Indonesia) [199]

Landsat 8 OLI R2 > 0.70 Dams (South Africa) [200]

NDSSI Landsat 7 ETM+

B−NIR
B+NIR

- Lake Mead (USA) [190]

- Cabo Rojo (Puerto Rico) [198]
R2 = 0.01 Barito Delta (Indonesia) [199]
R2 > 0.66 Mississippi River

Lake Pontchartrain (USA) [214]

BR Landsat 7 ETM+

G
B

- Lake Mead (USA) [190]

Cabo Rojo (Puerto Rico) [198]
R2 = 0.05 Barito Delta (Indonesia) [199]

WSRI Landsat 8 OLI 1−
(

SWIR−B
R

) R2 > 0.70 Dams (South Africa) [200]

EGRI Landsat 8 OLI G
C+B

R2 > 0.70 Dams (South Africa) [200]

NDVI Landsat 8 OLI NIR−R
NIR+R

R2 > 0.70 Dams (South Africa) [200]

R = red band; B = blue band; G = green band; NIR = near-infrared band; SWIR1 = Shortwave Infrared 1 band,
SWIR2 = Shortwave Infrared 2 band, and C = Coastal band.

4.2.5. Summary of Studies on TDS and TSS Estimation with RS Applications

RS applications have also been used in the analysis and estimation of TSS and TDS in
water bodies. The impact of TSS concentrations on the reflectance is clear and substantial
making it one of the most successful parameters to be measured using RS applications [118].
Satellite and airborne imagery have become valuable tools for scientists to map, assess, and
monitor the spatial distribution of suspended sediments. RS is used in combination with in
situ measurements to assess and monitor the distribution of WQPs such as TSM [215]. RS
spectral indices have been used in determining suspended sediment distributions.

Empirical regression algorithms have been used in the determination of salinity or
TDS using reflectance data obtained from spaceborne optical sensors such as Landsat
5 TM, Landsat 7 ETM+, Landsat 8 OLI, and other satellite images [44,156,216]. Salt or
ion accumulations affect the reflectance of electromagnetic radiation as it interacts with
the water.

Microwave-based RS sensors used for monitoring salinity include the STARRS, SLFMR,
and Nimbus-7 SMMR. The STARRS is an enhanced version of the Scanning Low-Frequency
Microwave Radiometer. The STARRS sensor accepts input data and improves salinity
retrieval accuracy [217]. Microwave sensors have been found to provide accurate measure-
ments of ocean salinity and temperature because the emission measured by the microwave
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systems is sensitive to the dielectric constant or the permittivity, which is dependent on
the water salinity and temperature [132]. The sea surface temperature and salinity are
important in determining the density of seawater which is a critical indicator driving
the currents of the ocean. Ocean circulation is a critical phenomenon to analyze global
water balance, evaporation rates, and productivity forecast models [36]. Although the RS
sensors are effective in the monitoring of water quality of ocean waters, their usage in fresh
waters such as rivers and lakes may be limited due to very large pixel sizes (coarse spatial
resolution) varying to kilometers [132], which are larger than many freshwater systems.

Studies have reported satisfactory performance using microwave sensors for the
estimation of salinity/TDS and TSS in ocean waters. Examples include the study by [218]
where ship-borne microwave radiometer data were used to develop improved sea surface
microwave emission models or algorithms for the retrieval of sea surface salinity. The
authors found root mean square error (RMSE) or differences between the in situ and
retrieved sea surface salinity of around 0.4 Practical Salinity Units (PSU) which indicates
good model performance. Another study by [219] measured the variability in sea surface
salinity by the Aquarius and SMOS satellite missions using an assimilation scheme as
described by researchers in [220] and obtained a RMSE of <0.1 PSU between derived
and field surface salinity in most of the ocean with a global median value of 0.05 PSU.
Additionally, the NASA Aquarius, in situ field, and Hybrid Coordinate Ocean Model
(HYCOM) products were used to assess sea surface salinity in a study by [221]. The
study found RMSE for Aquarius Level-2 and Level-3 data to be 0.17 PSU and 0.13 PSU,
respectively, using triple point analysis.

Researchers in [55] used microwave SAR and thermal images and an inversion tech-
nique applied to the models of scattering to estimate WQPs including TDS and salinity in
high-precision SAR and thermal images. Analysis of the results pointed to the potential of
identifying WQPs with superior precision using microwave sensors. Researchers in [222]
used an airborne scanning low-frequency microwave radiometer and in situ bio-optical
variables to estimate WQPs including SS for Florida Bay located in the southern tip of
the state of Florida, USA using empirical relationships or algorithms. The study found
the average salinity for the outer and central bay stations to be 31.2 PSU and 23.6 PSU,
respectively. The study also found that the concentration and variability of TSS were greater
in the outer bay as compared to the central bay stations. Average TSS concentrations of
14.4 mg/L and 2.8 mg/L were recorded, respectively, for the outer and central bay stations.
Inorganic composition counted for 70% and 15% of the TSS loads, respectively, for the outer
and central bay stations. Results from the study demonstrate the significance of salinity
measurement in delineating bio-optical regimes useful for the development of regional
ocean color RS techniques for coastal waters.

TSS estimations have also been successfully carried out in rivers, reservoirs, and estuaries
using empirical regression algorithms or analyses. These analyses are performed with in situ
measurements and reflectance data from airborne RS and spaceborne optical sensors, including
Landsat (4 and 5) TMs, (7) ETM+, (8) OLI, and other sensors. Airborne RS produces more accurate
results in TSS estimations in rivers and reservoirs, owing to less atmospheric interference, fewer
temporal restraints, and adaptable spatial resolutions [44,119,156,214,223,224].

The following paragraphs summarize some of the work that has been performed on
the estimation of TSS and TDS using RS applications.

Researchers in [192] applied empirical neural networks in the estimation of WQPs, in-
cluding SSC, in the Gulf of Finland using combined optical (Landsat 5 TM) and microwave
data (ERS-2 SAR). Results indicated that the neural network was adequate in describing
the nonlinear transfer function between the optical and microwave sensors and the water
surface parameters as compared to the regression analysis. The optical bands produced
an R2 of 54% and 89% for regression and neural network analyses, respectively. The re-
ported performance when optical and microwave bands were fused was slightly higher
(55% and 91%, respectively, for regression and neural network analyses). Analysis of the
results also showed a difference in RMSE between the optical and the optical/microwave
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fused bands of 0.01 mg/L and 0.007 mg/L, respectively, for the regression and neural
network analyses. A similar study by [179] compared the results of MODIS-Landsat fusion
to single-band algorithms for TSS estimations. The algorithms employed in this study
included the Aqua-MODIS-based spectral model, Landsat and synthetic Landsat images,
and copula integrated fusion model. The study found the fusion model to have a better
performance in the TSS estimations in dynamic river systems compared to the single-band
MODIS model due to the finer spatial resolutions of the fusion model. The reported R2

for the MODIS-based model was 65–77% while that of the Landsat-MODIS fused model
increased up to 85–89%.

Researchers in [225] explored the possibility of using MODIS 250 m and 500 m resolu-
tion bands at 469 nm, 555 nm, and 645 nm for the monitoring of water quality indicators
including TSS in Tampa Bay, FL, USA. Tampa Bay is the largest open-water estuary in the
State of Florida, USA with an approximate area of 910 km2. Field sampling conducted
shows that Tampa Bay has Case-II waters (waters in which the parameters studied do not
co-vary) with a salinity range of 24–32 PSU and TSS of 2 to 11 mg/L. The authors estab-
lished a regression model for the total radiance measured by the MODIS and the WQPs,
which were subsequently used to develop a synoptic map of suspended sediments. The
authors found a significant R2 of 90% for a sample size of 31 between TSS and the spectral
RS reflectance value of the 645 nm band of the MODIS image using empirical regression.

Researchers in [226] also used the 250 m resolution to map concentrations of TSM
in coastal waters located in the Northern Gulf of Mexico. The study established a linear
relationship between in situ TSM measurements and band 1 of the MODIS Terra 250 m
image with 620–670 nm wavelength and found an R2 of 89% for a sample size of 52.

Researchers in [227] used reflectance band ratios to estimate suspended and dissolved
matter concentration in the Tamar estuary located in the southwest UK using in situ
hyperspectral remote-sensing reflectance measurements. The study obtained a strong R2

of 96% between the NIR (wavelength of 850 nm) to visible reflectance (wavelength of
550 nm) (visible/NIR) ratio of the compact airborne spectrographic imager (CASI) and the
TSM concentrations.

Researchers in [228] compared several ML algorithms including ANN, SVR, random
forest, and cubist regression for the retrieval of WQPs including concentrations of sus-
pended solids in the coastal waters of Hong Kong using in situ reflectance (CROPSCAN
Multispectral Radiometer (MSR)) and satellite data (Landsat 5 TM, Landsat 7 ETM+, and
Landsat 8 OLI). The authors found the ANN to be the model with the highest accuracy
for estimating TSS with R2 of 92% and 93% for the satellite data and in situ reflectance
data, respectively.

Researchers in [229] used ANN to investigate and assess WQPs. The study establishes
a relationship between the reflectance from Landsat 5 TM data for different bands (i.e., band
1 to band 7) and WQPs including suspended sediments for the Beaver Reservoir located
in Arkansas, USA. The Beaver Reservoir is the main source of drinking water for more
than 300,000 people in the northwestern part of the state of Arkansas with a surface area of
103 km2 and with a depth ranging from 18 to 60 m. The study first linearly regressed the
combination of bands termed as indices and found moderate predictions for estimations
for most of the indices utilizing the first three bands (R values of 0.21 to −0.69). Further
analyses were performed by feeding the bands and indices values into an ANN model
for the estimation of WQPs. The ANN model produced an 81.6% to 98.2% efficiency for
the estimation of suspended sediments with the highest efficiency coming from an ANN
model using bands 1 to 4. This model was trained at an efficiency of 98%.

Researchers in [214] developed an RS-based index from Landsat 7 ETM+ to estimate
and map SSC in a river and lake environment in the USA. The study explored the possibility
of using RS Landsat images to estimate coefficients that could further predict SSC in periods
where in situ field measurements become impossible due to extreme events using empirical
relationships or algorithms. The authors found the model with power relations yielding
R2 of 73.8% to show potential for the estimation of SSC for the Mississippi River and
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Lake Pontchartrain located in Louisiana, USA for the Bonnet Carre Spillway opening
event and before and after Hurricane Katrina. Results were compared with simulations
from CCHE2D: a numerical model developed by the National Center for Computational
Hydroscience and Engineering (NCCHE) for unsteady turbulent flow simulation. Results
were in good agreement quantitatively and qualitatively [214].

Researchers in [230] retrieved the TSM and chlorophyll-a concentration using the
Indian Remote-Sensing Satellite (IRS-P6). Analysis of the water quality data and satellite-
received radiances signals using empirical regression and ANN models or algorithms.
Results showed that the empirical models produced an R2 of 94% for TSM. The perfor-
mance accuracy improved significantly with the ANN model with R2 of 98% for the TSM
concentration. RMSEs produced were 15% and 7.5%, respectively, for the empirical and
ANN models. Researchers in [102] developed an RS-based early warning system for mon-
itoring TSS concentration in Lake Mead located in a water-scarce area in the US. This
study applies integrated data fusion and mining (IDFM) capabilities to develop an almost
real-time monitoring system for daily predictions of TSS concentrations. The study further
applies a model called the nonlinear autoregressive neural network input (NARXNET)
model for the time series of forecasting of TSS concentrations using the IDEFM techniques.
This forecast shows no direct influence of forest fire events in accelerating the rise of TSS
concentrations. The study, however, found a probable impact of drought on increasing TSS
concentrations in the Overton and Colorado River Arms of Lake Mead.

Researchers in [231] applied GIS and RS techniques for the monitoring of several WQPs
including TDS and TSS using empirical linear regression in Lake Al-Habbaniyah, Iraq. The
authors compared remotely sensed results from Landsat 8 OLI to in situ measurements and
reported a variation of 147–1520 mg/L and 68–3200, respectively, for TDS and TSS. Results
indicate a probable significant correlation between bands 2 and 3 with TDS for autumn and
summer. TSS has a probable strong correlation with band 2 during the autumn. The study
estimates the highest r in TDS (0.94 at p = 0.016) and the highest r (0.73 at p = 0.158) for
band 2 reflectance.

Researchers in [166] performed a study to quantify surface river SS along a river-
dominated coastline in Louisiana, USA using statistical models including correlation, linear
and nonlinear algorithms or techniques. The study used data acquired by the NOAA
AVHRR and the Orbview-2 SeaWiFS ocean color sensors. Field measurement samples
used in the study were obtained using a helicopter, small boat, and automatic water
sampler within a few hours of the satellite overpasses. The study used satellite and field
measurements to develop statistical models for the estimation of near-SS and surface-
suspended sediments. Analysis shows that the NOAA AVHRR Channel 1 (580–680 nm),
Channel 2 (725–1100 nm), and SeaWiFS Channel 6 (660–680 nm) with a cubic, linear, and
power model, respectively, were the best models for surface SSC predictions. The SeaWiFS
Channel 5 (545–565 nm) was found to perform poorly. The authors attribute the inferior
performance to reasons including the type of atmospheric correction technique applied, the
shallow depth of the water samples collected, and the absorption effects from non-sediment
water constituents.

Researchers in [169] developed an empirical algorithm using hyperspectral RS. The
water irradiance reflectance spectra were acquired with dual Ocean Optic 2000 spectro-
radiometers (USB2000) with a sample size of 53 and about 2000 bands and a sampling
interval and spectral resolution of approximately 0.3 nm and 1.5 nm, respectively. The
study was carried out on the Patuxent River, a large tributary of Chesapeake Bay in the
USA with a 2427 sq. km watershed area. The study developed empirical models using
water reflectance for the retrieval of WQPs including TSS and found that the ratio of green
to blue spectral bands was the best predictor of TSS (R2 of 75% was established).

Researchers in [180] used a robust algorithm for the estimation of TSS in inland and
nearshore coastal waters using a Statistical, inherent Optical property (IOP)-based, and
muLti-conditional Inversion proceDure (SOLID) approach developed from semi-analytical,
ML, and empirical models. To demonstrate the performance of the SOLID model, the model
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was implemented for images acquired by MultiSpectral Imager aboard Sentinel-2A/B over
the Chesapeake Bay, San-Francisco-Bay-Delta Estuary, Lake Okeechobee, and Lake Taihu.
It was established that the SOLID approach has the potential for producing TSS products
in global coastal and inland waters. To obtain consistent, multi-mission TSS products, the
model performance was extended and evaluated for other satellite missions including
the OLCI, Landsat 8 OLI, MODIS, and VIIRS. Results obtained from statistical analysis
showed the SOLID model improved retrieval performances offered by five widely used TSS
retrieval methods for global and all water types. Comparing results to other models used
in other studies shows improvement in the SOLID model to other models. For example
for global waters, the statistical performance of the SOLID model had a median absolute
percentage error (MAPE) of 49%, root means squared logarithmic error of 0.32, the mean
absolute error (MAE) computed in log-space of 1.81, and log-transformed residuals (bias)
of 1.09 compared with MAPE, MAE, RMSE, Bias of 58.82%, 2.56, 0.53, and 0.50, respectively,
obtained by [226], MAPE, MAE, RMSE, Bias of 59.74%, 2.31, 0.46, and 1.26, respectively,
obtained by [215,226], MAPE, MAE, RMSE, Bias of 57.71%, 2.17, 0.41, and 0.70, respectively,
obtained by Petus et al. (2010), MAPE, MAE, RMSE, Bias of 68.38%, 2.28, 0.46, and 1.60,
respectively, obtained by [148] and MAPE, MAE, RMSE, Bias of 52.73%, 1.92, 0.35, and 1.27,
respectively, obtained by [138].

Researchers in [232] evaluated the radiometric and spatial performance of Chinese
high-resolution GF-1 Wide Field Imager (WFI) data for monitoring SPM using inversion
and regression models. Results obtained from GF-1 data were compared to outputs from
the Landsat 8 OLI and MODIS (250 and 500 m) resolution bands. High consistency in
spatial distribution and concentration of SPM maps was seen between the GF-1 and Landsat
8 OLI data. More than 75% of the spatial variations in turbidity were resolved by the GF-1
while only 40% were resolved by the MODIS band with 250 m resolution.

Researchers [233] used the NDVI to assess how catchment condition varies within and
across river catchments in Zimbabwe. The study used a non-linear regression to check if
the NDVI is significantly related to the levels of TSS. Results from the analysis showed a
consistent negative curvilinear relationship between the NDVI derived from the Landsat
8 OLI and TSS measured across the catchments under study. A total of 98% of the variations
in TSS are explained by the NDVI in the drier catchments with 64% of the variations in TSS
explained by the NDVI in the wetter catchments at the 0.05 significance level. The results
showed a consistent negative curvilinear relationship between Landsat 8 OLI-derived
NDVI and TSS measured across the catchments under study.

Researchers in [234] reported a linear relationship between reflectance and TSS at
concentrations from 1 to 500 mg/L for a study conducted at the Didipio catchment located
in the northern territory of the Philippines with a surface area of 39.25 km2 using remote
sensing images and empirical regression models. The catchment area is made of seven
rivers (i.e., Dupit, Alimit, Surong, Camgat, Camgat-Surong, Didipio, and Dinauyan Rivers).
The authors found that reflectance increases at a lower and variable rate in the concentration
ranges of 500 to 3580 mg/L. This study used three different satellite sensors namely, 5 m
resolution RapidEye, 2 m resolution Pleiades-1A, and 6 m SPOT 6 images. The study finds
consistency in the model developed with the red band data for the various images and
reports an R2 value of 65% for all three sensors.

Researchers in [235] used Landsat 7 ETM+ and Landsat 8 OLI sensors to monitor
WQPs, including TSM in a nutrient-rich (hypereutrophic) Qaraoun Reservoir in Lebanon.
The study area has a surface area and median depth varying from 4 to 10 sq. km and 10
to 20 m, respectively. The reservoir has a maximum depth of 45 m. The study develops
empirical algorithms to quantify the parameters of interest. In general, ETM+ sensors have
improved performance compared to OLI sensors for this study. R2 was 81% for the ETM+
models and 58% for the OLI-based models. Results confirmed the effectiveness of using
Landsat-based models to quantify WQPs in a semi-arid hypereutrophic reservoir, which
presents the opportunity to improve the spatiotemporal coverage of data cost-effectively.
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Researchers in [200] used Landsat 8 OLI RS spectral indices and empirical regression
models for mapping SS in various dam impoundments located in South Africa. These
dams include Spring Grove Dam, Midmar Dam, Nagle Dam, Albert Falls Dam, and the
Inanda Dam. The indices this study considered were NSMI, WSRI, NDVI, and EGRI. The
NSMI was the most effective index among the studied indices for the mapping of SS in
the study area. Other spectral indices in the visible to shortwave infrared also produce
reasonable estimations (R2 of 70% at p < 0.05). The NSMI showed greater accuracy for
the mapping of WQPs, as opposed to two-band spectral indices. The authors recommend
comparing these results to other indices derived from high-resolution images such as
Sentinel-2 and Ziyuan-3.

Researchers in [236] retrieved and mapped chlorophyll-a and TSS using Sentinel-2A
images and Cubist ML models. Water samples used in the study were collected from
water reservoirs within the southern part of the Czech Republic in Central Europe. The
authors reported an R2 of 80% for the accurate prediction of TSS. The study found dramatic
temporal changes in the values of TSS in fishponds compared to sand lakes. Differences in
the management practices in these water bodies were linked to the dramatic changes in
TSS values over time.

Researchers in [208] assessed the impact of LULC on groundwater quantity and quality
in Ajman City and its adjoining area located in the United Arab Emirates (UAE). The study
correlated a Spectral Angle Mapper (SAM) and NDVI of Landsat 7 ETM+ and Landsat
8 OLI with WQPs including TDS. Analysis of the spatial extents revealed a sharp depletion
in the quality and quantity of groundwater related to an increase in LULC. The mean TDS
reported was about 24,210.5 mg/L with a groundwater depth of 14.8 m for 15 years.

Researchers in [157] used the NDWI indices of Landsat 8 OLI images as an effective
tool to determine surface WQPs including TDS and TSS concentrations using step-wise
regression-based models for the Bijayapur River flowing through Pokhara in Nepal. Re-
ported TDS concentration ranges from about 244 to 1145 mg/L while TSS concentrations
range from 0 to 750 mg/L.

Researchers in [237] used Landsat 8 OLI and forward regression analysis to develop
models for the estimation of WQPs including TDS and TSS in the Tubay River located in the
Philippines. The study found an R2 of 96.8% for TDS and ≥24.4% for the regression models.

Another study by [238] developed an empirical regression algorithm to assess WQPs,
such as TDS, EC, and water temperature, in the Tigris and Euphrates rivers in Iraq by using
Landsat 5 TM. The stations used for the water quality monitoring were situated in Diyala
and Baghad cities along the 120 km stretch of the Tigris River, and Ramadi and Karbala
cities along the 277 km stretch of the Euphrates River. The model developed showed
a significant correlation between models and WQPs with R2 > 0.83. The measured and
predicted TDS ranged from 350 to 550 mg/L.

Researchers in [203] also established a correlation between water extraction indices
of Landsat 8 OLI and WQPs including TDS and TSS for the Tigris River for different type
periods and found correlation of −0.808 between TDS and WRI and r of 0.651 for TSS and
AWEI for the samples collected on 11 May 2017 in five stations in a stream of 15–20 m
width. Field-measured TDS concentrations ranged from 450 to 646 mg/L while TSS ranged
from 16 to 54 mg/L for the five stations on the said date.

Researchers in [239] correlated values of different Landsat 8 OLI sensor bands with
the measured TDS and established a regression model for the estimation of TDS. The
authors investigated the use of Digital Numbers (DN) of atmospherically corrected Landsat
8 OLI images in estimating TSS and TDS in Mosul Dam Lake located in Iraq using linear
corrections between the reflectance values and the in situ field measurements. Bands 1,
5, and 6 were found to correlate to TSS for summer, spring, and autumn, while bands 3,
6, and 7 significantly correlated to TDS for autumn, summer, and spring. The highest R2

values of 31% and 41% were obtained for TSS and TDS, respectively, in July.
Researchers in [26] utilized several ML models for estimating WQPs including TDS

in Lake Tana located in the Tropical Highlands of Ethiopia, using Landsat 8 OLI images.
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The authors found the random forest regressors to be the best performing model for the
estimation of TDS, which performed best for the TDS R2, NSE, MARE, and RMSE of 79%,
0.80, 0.082, and 12.30 mg/L, respectively, for features such as the outcomes of (B4 + B3)/2,
(B4 + B2)/2, (B3 + B2)/2, and (B2 + B3 + B4)/3.

Researchers in [240] assessed the water quality of River Beas in India using Landsat
5 TM imagery through multivariate and RS applications for pre- and post-monsoon seasons.
They established that TDS correlates positively to the green band and negatively to the
red band, using multiple linear regression and β-regression analysis. There was also a
highly significant correlation between the predicted and observed values from an ANN
for the parameters measured at p < 0.001. The study, however, did not report the R2

values obtained.
Researchers in [189] used band reflectance and a combination of bands termed salinity

indices in estimating TDS in the Shatt al-Arab River in Iraq using simple linear regression.
Measured TDS were within the range of 800 to over 37,000 mg/L. Reported R values in this
study were within a range of 0.70 to 0.97 with R2 being in the range of 56 to 94% between
in situ measurements and spectral data of Salinity Index 2. Salinity Index 2 is the square
root of the product of green and blue bands of the Landsat 8 OLI.

Researchers in [54] also used RS spectral indices to estimate TDS in the freshwater
Guartinaja and Momil wetlands located in the Wetland Complex of Bajo Sinú, Northern
Colombia. The authors utilized Sentinel-2 images in establishing empirical regression
models for TDS estimations. Field measured TDS concentration ranged from about
154–218 mg/L. The study used ten spectral bands of the Sentinel-2 image and 11 indices
which have been used in literature for the estimation of water, vegetation, or soils, and
2 indices developed by the authors. The model performed with high accuracy with a
recorded normalized RMSE of <10%.

Researchers in [241] retrieved TDS concentrations from WQPs such as TSS obtained
from drinking, ground, and surface waters for a study performed in a mining community
of Tarkwa located in Ghana using models such as Gaussian process regression, principal
component regression, and backpropagation neural network models. The findings reveal
average R2, RMSE, and MAE, of 98.7%, 4.090 mg/L, and 7.910 mg/L, respectively.

Additionally, researchers in [242] also used Sentinel-2 and Landsat 8 OLI coupled
with the ANN model to retrieve and map the spatiotemporal variability of salinity in
Lake Urmia in Iran. The results of the ANN model were compared with outputs from
the Adaptive Network-based Fuzzy Inference System and the multiple linear regression
models. The findings show that the ANN was superior in the accurate retrieval of the
salinity concentration from the surface water reflectance with an obtained R2 of 94%.

A summary of studies carried out to retrieve optically active TSS and optically inactive
TDS using RS applications and statistical and machine learning models, or algorithms and
the degree of accuracy established are presented in Tables 6 and 7.

4.2.6. Strengths and Drawbacks of RS Methods for Measuring TDS and TSS

The concentrations of TDS and TSS in water are some of many environmental phe-
nomena that may be efficiently monitored using cutting-edge, modern, and advanced RS
techniques. The use of RS to measure and monitor TDS and TSS has produced promis-
ing results in the assessment of water quality [34,40,129,189,190,198,239]. However, some
limitations and difficulties must be noted, as with any technology. These strengths and
drawbacks are summarized in Table 8 [2,10,36,124].
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Table 6. RS Application Models for the Retrieval and Estimation of TDS/Salinity and its Forms.

Sensor/Data Model/Algorithms Metrics Study Area
(Country/Region) References

ASTER Empirical R2 > 0.50 Qaroun Lake (Egypt) [206]

Landsat 8 OLI ML R2 = 0.79 Lake Tana (Ethiopia) [26]

Landsat 8 OLI Empirical R2 > 0.00
Coastal Surface Water

(Bangladesh) [243]

Landsat 5 TM, 8 OLI Empirical R2 ≥ 0.76
Coastal Surface Water

(Bangladesh) [212]

Landsat 8 OLI Empirical R2 ≥ 0.62 Colorado River (USA) [127]

Landsat 8 OLI Empirical R2 ≥ 0.83
Lake Al-Habbaniyah

(Iraq) [231]

Sentinel-2 MSI Empirical R2 > 0.70
Guartinaja, Momil

wetlands (Columbia) [54]

Landsat 8 OLI Empirical R2 > 0.84 Gorano Dam (Pakistan) [244]

Landsat 8 OLI, Sentinel-2 MSI, Göktürk-2 ML R2 ≥ 0.51 Lake Gala (Turkey) [245]

Landsat 8 OLI Empirical R2 > 0.55
Shatt al-Arab River

(Iraq) [189]

Landsat 8 OLI Empirical, ML R2 ≥ 0.68
Karun River Basin

(Iran) [246]

GOCI Empirical PMARE = 0.75%
Southern Yellow Sea
(China, North and

South Korea)
[247]

Landsat 8 OLI Empirical R2 ≥ 0.60
Arabian Gulf
(Middle East) [248]

Landsat 5 TM Empirical R2 = 95
Tigris and Euphrates

Rivers (Iraq) [238]

Ship-borne microwave radiometer - RMSE ≈ 0.4 PSU East China Sea (China) [218]

Landsat 8 OLI Empirical R2 > 0.96
Tubay River
(Philippines) [237]

IRS LISS III Empirical R2 > 0.46 Gomti River (India) [249]

Landsat 8 OLI Empirical R2 > 0.13 Mosul Dam Lake (Iraq) [239]



Remote Sens. 2023, 15, 3534 27 of 43

Table 7. RS Application Models for the Retrieval and Estimation of TSS and its forms.

Sensor/Data Model/Algorithms Metrics Study Area (Country/Region) References

Unmanned Aerial Vehicle (AV) multispectral
images, Landsat 8 OLI ANN, Empirical R2 > 0.60 Lake at Unisinos University (South Brazil) [202]

Landsat 5 TM, Landsat 8 OLI, and Chinese
GaoFen-1 (GF-1) Wide Field of View (WFV)

Wen, Nechad, and
Novoa algorithms R2 > 0.88 Min River (China) (TSS) [250]

Landsat 5 TM Empirical R2 > 0.23 Reelfoot Lake, Tennessee (USA) [119]

MERIS, OLCI Semi-analytical R2 ≥ 0.25

Lakes Kasumigaura, Suwa, Akan (Japan),
Lake Taihu (China), Lac Vieux Desert, Lakes
Winnebago, Poygan, Winneconne, Green Bay

of Lake Michigan (North America)

[251]

Landsat 8 OLI Empirical R2 ≥ 0.71 Dam impoundments (South Africa) [200]

Sentinel-2 MSI Empirical R2 = 0.85 Negro River, Amazon Basin (Brazil) [137]

Landsat 8 OLI, MODIS - R2 ≥ 0.40 Poyang Lake (China) [232]

Landsat 5 TM Semi-analytical model R2 ≥ 0.51 Gulf of Bohai (China) [135]

Ocean Optic 2000
spectroradiometers (USB2000) Empirical R2 = 0.75 Chesapeake Bay (USA) [169]

Landsat 8 OLI Empirical R2 ≥ 0.87 Lake Al-Habbaniyah (Iraq) [231]

Landsat 7 ETM+ Empirical R2 > 0.66 Mississippi River and Lake
Pontchartrain (USA) [214]

SPOT 6 Empirical R2 = 0.65 Didipio catchment (Philippines) [234]

MODIS Empirical R2 = 0.89 Lake Pontchartrain, Mississippi River,
Mississippi Sound (USA) [226]

MODIS Empirical PMARE = 25.5% Yangtze river (China) [134]

Landsat 5 TM, Landsat 7 EM+, MODIS Empirical R2 ≥ 0.13 Yangtze river (China) [252]

MODIS Neural Network R2 > 0.60 Bohai Sea, Yellow Sea, East China Sea (China) [253]

Landsat 9 OLI-2, Sentinel-2 Bio-Optical Model R2 ≥ 0.17 Lakes Trasimeno, Maggiore,
and Mantova (Italy) [181]

MODIS, Landsat 8 OLI Copula-based enhanced
nonlinear R2 ≥ 0.31 Hooghly River (India) [179]

ALOS/AVNIR-2 Empirical R2 ≥ 0.71 Monobe River (Japan), Altamaha River (USA),
St. Mary’s River (USA) [183]

LISST-200x and EXO2 Multiparameter
Sonde sensors Empirical R2 ≥ 0.67 Coastal regions [254]

Landsat 7 ETM+, Landsat 8 OLI Empirical R2 ≥ 0.16 Qaraoun Reservoir (Lebanon) [235]

Landsat 8 OLI Empirical R2 ≥ 0.64 Thirty-two sub-catchments (Zimbabwe) [233]

Landsat 5 TM Neural Network R2 > 0.90 Beaver Reservoir (USA) [229]

MODIS Empirical R2 > 0.80 Green Bay of Lake Michigan (USA) [255]

Sentinel-2 MSI Semi-empirical R2 ≥ 0.63 Yangtze Main Stream (China) [131]

MODIS Empirical, ML R2 > 0.27 Chesapeake Bay (USA) [129]

CASI Empirical R2 > 0.84 Tamar estuary (UK) [227]

Landsat 8 OLI Empirical R2 > 0.73 Orinoco River (Venezuela) [256]

OLCI

Landsat 4,5 TM, 7 ETM+, 8 OLI Empirical R2 ≥ 0.58 Estuaries and Coasts (China) [257]

Chinese HJ-1A/CCD Semi-analytical R2 > 0.66 Oujiang River Estuary (China) [258]

MODIS Empirical R2 = 0.90 Tampa Bay (USA) [225]

Sentinel-2A MSI Semi-empirical, ML R2 = 0.80 Water Reservoirs (Czech Republic) [236]

Landsat 8 OLI AI R2 > 0.93 Saint John River (Canada and USA) [259]

Sentinel-2 A/B MSI Empirical R2 > 0.13 Sado Estuary (Portugal) [93]

Landsat 8 OLI Empirical R2 > 0.10 Mosul Dam Lake (Iraq) [239]

IRS LISS III Empirical R2 > 0.23 Gomti River (India) [249]

Landsat 8 OLI, Sentinel-2 MSI, Göktürk-2 ML R2 ≥ 0.64 Lake Gala (Turkey) [245]

Landsat 8 OLI, Sentinel-2 MSI Empirical,
Semi-empirical R2 ≥ 0.81 Hedi Reservoir (China) [34]

HICOTM Semi-empirical R2 = 0.85 Northern Adriatic Sea [260]
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Table 8. Strengths and limitations of the RS applications in measuring and monitoring TDS and TSS.

Strengths Limitations

Provides a synoptic overview of the entire water body Accuracy may be limited

Easy access and acquisition of open source Image may be impacted by atmospheric interference

Monitoring of WQPs on large spatiotemporal scale coverage Accuracy may be impacted by the resolution

Cost and labor effective Requires knowledge of data processing and analysis

Repository of historical images for water quality studies Requires high-spec computer for large download and storage

The strengths and drawbacks are further explained in the following paragraphs below:

Strengths

RS applications allow for the monitoring of WQPs including TDS and TSS on a large
spatiotemporal scale. With RS, changes in these WQPs are monitored over time and across
large areas and at a great distance ranging from hundreds to thousands of miles compared to
grab sampling approaches which are point specific. Additionally, RS can facilitate the study
of these WQPs in areas that are hard to access or inaccessible, such as remote, dangerous,
or politically sensitive areas. RS also makes it easy to identify sources, routes, and sinks of
sediments and other parameters in water bodies in these areas [2,13,36,124,239].

RS images used for monitoring these WQPS range from low, to moderate to high-
resolution obtained from Landsat, RapidEye, SPOT, MODIS, MERIS, the Advanced
Wide Field Sensor (AWiFS), and Sentinel-2 among many others. A high spatial resolu-
tion image captured allows for accurate detection of TDS and TSS comparable with
conventional methods [2,34,36,40,127,134,190].

Most RS images are publicly accessible, open-source data that users can obtain for
free or at a low cost. Some of these images such as those of Landsat can date back as
far as the 1970s and have been used extensively for the estimation of TSS and TDS in
several studies possibly due to the fact they are easily accessible and come at little to no
cost. RS applications aid in reducing associated cost-intensive laboratory equipment and
reagents [167,189,200,239]. By using Landsat image data, users have saved around USD
3.45 billion as of 2017, with users in the United States making up more than half of that
total [261]. Landsat imagery has been used in historical as well as contemporary regional
assessments of various WQPs to assess water clarity [262].

When used in conjunction with conventional field measurements, RS can be used to
develop algorithms and models for accurate estimations of TDS and TSS concentrations
even in remote and inaccessible areas and in real-time. Additionally, conventional methods
of measurement are susceptible to errors caused by sample storage, transportation, and
analysis which can be reduced with the RS application. RS thus offers a non-invasive
mechanism that does not require physical water sampling, hence cutting errors associated
with sample storage, transportation, and analysis [2,189,251].

Drawbacks

RS applications in the retrieval of WQPs such as TDS and TSS can be quite challenging,
particularly in shallow waters where the retrieved parameter levels could be greatly influ-
enced by the contribution of the benthic signal to the overall reflectance signal, requiring
the need for specific correction algorithms which consider the influence of the bottom
reflectance to improve the accuracy of the WQP estimations. Other factors of the shallow
water bodies which could also impact the accuracy of retrieval of the TDS and TSS include
the varied bottom depths, types, and substrates which have the potential to impact the
scattering and absorptive characteristics of light signals [263,264]. The accuracy of these
retrieved WQPs in transitional waters such as estuaries could also be less successful owing
to the high optical complexities of these waters coupled with their closeness to the land [93].
Additionally, the accuracy of data acquired might be affected by atmospheric factors such
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as cloud cover and haze, which are serious drawbacks of using RS for monitoring WQPs
such as TDS and TSS. It is much more difficult to obtain accurate data with RS technologies
in regions that have regular cloud cover or significant levels of air pollution [2,124,265].

RS may not always produce the level of detail needed for precise TDS and TSS
measurements since the resolution of the imagery and data collected can be limited by
the altitude of the platform used for the data collection which can present challenges to
monitoring and measuring parameters such as TDS and TSS in water bodies with intricate
shorelines or highly localized areas [266].

Another drawback with the use of RS in the measurement of TDS and TSS is the
difficulty in making distinctions between these components of total solids. TSS is an
optically active parameter that can be easily detected with optical sensors, TDS on the hand
is difficult to accurately obtain from RS platforms. They are estimated from RS images
because of their relationships with colored WQPs with which they may co-vary [2,36,267].

Although most RS images are available at no cost there are some images particularly
hyperspectral images that require payment for the use of images. The associated cost of
airborne sensors mounted on aircraft to acquire RS images may be significantly high and can
deter other people from having access to such technologies. The initial cost of equipment
and training for RS technology can be high. This may make them inaccessible to smaller
organizations or underfunded researchers particularly those in developing countries [124,266].

RS applications in WQPs measurement require specialized training to analyze the
images and data gathered. Individuals using RS in monitoring and measuring WQPs
such as TDS and TSS require expertise in the use of software such as ArcGIS and Google
Earth Engine among others, which can limit the number of people who can utilize
these applications [46,132,266].

Another limitation of RS applications is the spatial, temporal, and spectral resolutions
of the sensor used in the data collection. It may be challenging to rely on a certain RS sensor
with a longer repeat cycle to detect temporal variations in the TDS and TSS. RS sensors
offer a variety of spatial, spectral, and temporal resolutions. One example is contrasting the
temporal resolutions of Landsat 8 OLI and Sentinel-2 A/B MSI, both of which have revisit
times of 16 days and 5 days, respectively [2,268].

The last but not the least limitation of RS techniques in estimating WQPs such as
TDS and TSS, is the lack of field data for the calibration and validation of the models
developed with RS data due to the high cost of on-site sampling and the required expertise
in analyzing and making inferences from the samples collected. These issues are more
prevalent in Sub-Saharan Africa which has less expertise and technology. The lack of proper
calibration and validation of remote sensed models exposes the accuracy of these models
to questioning [2,7,10,36].

5. Conclusions and Recommendations

TDS and TSS concentrations or loads in a water body play a significant role in the
management and sustainability of water resources. Increased TDS may affect the taste of
drinking water and can also cause scaling and corrosion of pipes and other water systems.
It can reduce the efficacy of water treatment systems, raising the cost of operating these
facilities. An increase in TSS on the other hand, affects the optical clarity of the water and
hence impacts the rate of photosynthesis of aquatic organisms. Monitoring and managing
these water quality indicators is therefore key to reducing the adverse consequences on
human and aquatic health, and the environment, and to ensuring the sustainability of the
water resource.

Monitoring of TDS and TSS can be achieved through conventional and RS methods.
Conventional methods such as field sampling and gravimetric analysis determining TDS
and TSS have been in use for a long time and are still crucial for monitoring these WQPs.
Conventional methods are standardized, straightforward, and validated over time, offering
consistent and reliable measurement. Monitoring conventionally, however, presents limita-
tions. Field sampling and gravimetric analysis are labor and cost-intensive and require a lot
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of time. They are also limited in space and time. RS techniques and geospatial tools offer
an economical method for determining TDS and TSS on a large spatial scale in an accurate
manner in both space and time. RS sensors categorized as airborne and spaceborne have
been used to capture images for the retrieval and estimation of WQPs such as TSS and
TDS. While TSS is optically active and can be sensed directly from these sensors, TDS
is an optically inactive parameter whose determination is based on its association with
other WQPs with which it may co-vary [2]. The reflectance in the 580–900 nm region of
the electromagnetic spectrum has been reported to be most sensitive to TSS concentration
changes and hence most ideal for its retrieval [124,149,269].

Estimations and retrieval of these parameters are widely performed using empirical,
analytical, semi-empirical models, and more recently, through advanced models in the
form of AI or ML models. The choice of a particular image from the sensors to be used
depended on several factors including associated cost, and spectral, temporal, and spatial,
resolutions [2]. These models could present some errors due to the coarse resolutions of
the images. An example is the use of coarse 250 m resolution MODIS data for a study
of small inland water bodies. A study by researchers [232] compared the Chinese high-
resolution GF-1 Wide Field Imager (WFI) data with MODIS for the estimation of suspended
particulate matter and found that the GF-1 was able to resolve over 75% of the spatial
variations, whereas the MODIS band with 250 m resolution could only detect 40% of them,
demonstrating the drawbacks of employing such coarse resolution images. The issues of
temporal, spectral, and spatial resolution associated with images in RS are addressed with
recent advancements and increment of UAV airborne captured images [2].

Another limitation of RS methods is the issue of atmospheric interference on the
captured images, introducing errors in the retrieval of the WQPs. Studies have, however,
suggested several models including the Dark Object Subtraction (DOS), Polynomial-based
algorithm applied to MERIS (Polymer), Sentinel 2 Correction (Sen2Cor), correction for
atmospheric effects (iCOR), The standard NASA atmospheric correction (NASA-AC),
and Atmospheric correction for OLI ‘lite’ (ACOLITE) models, the Rayleigh-corrected
reflectance algorithms among others minimize associated errors [2,101,270]. Hyperspectral
RS inversion models could also be used in retrieving the optical properties when dealing
with shallow waters to improve the accuracy of the results [263].

Additionally, the presence of different constituents including CDOM, NAP, and phyto-
plankton at different concentrations in inland waters has made the determination of WQPs
such as TSS and TDS in inland waters more challenging and less effective as compared to
open oceans [6]. There is also a need for testing and training of developed models using in
situ field measurements to improve the accuracy of their predictions.

For effective monitoring and management of TDS and TSS in water bodies using RS
applications, the following recommendations are proposed:

1. Fusion or combination of bands from different sensors: the fusion of microwave
and optical bands should be explored in the estimation of TDS and TSS in water
bodies. The fusion of data from optical bands and ERS-2 SAR bands could increase
the performance in the retrieval of WQPs such as TDS and TSS concentrations in
water systems. There have been significant successes in the use of microwave domain
radiometers and synthetic aperture radars in the estimation of surface salinity in
coastal water systems. In a study [179] comparing the MODIS-Landsat fusion results
to single-band algorithms for TSS estimations, the fusion model performed better in
TSS estimations in dynamic river systems than the single-band MODIS model because
it had finer spatial resolution. The reported R2 for the MODIS-based model increased
from 65–77% to 85–89% for the Landsat-MODIS fused model [179].

2. Utilization of ML and AI Algorithms for the retrieval and estimation of WQPS: instead
of utilizing empirical approaches, estimation, retrieval, and interpretation of TDS and
TSS concentrations from RS data should use ML techniques. Despite being simple
to use and requiring less computation time and effort than other methods, empirical
methods of retrieval may not be able to distinguish these WQPs. To increase the
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accuracy of WQPs retrieved using RS, ML models including ANN and SVM that have
the potential to reflect complex nonlinear models through training and testing should
be utilized [2,24,192].

3. Observed or ground-truth data from conventional field sampling should be used to
complement RS measurements: this is important to ensure proper calibration and
validation of RS models. Statistical or evaluation metrics such as the R2, Percent Bias
(PBIAS), MAE, NSE, RMSE, and the ratio of the RMSE to standard deviation which
have been widely used should be utilized to evaluate developed models to improve
their accuracy and robustness [2,128,145,271–277].

4. Remote sensed retrieval and estimation of TDS and TSS should be using high-resolution
images where practical and possible: for accurate and effective detection of these
WQPs by remote sensing, a high-resolution image with frequent revisit times should
be used to ensure a timely change in these parameters are adequately captured. Images
from GeoEye IKONOS, which has a spatial resolution of 0.82–5 m with a revisit inter-
val of 2–3 days, and Digital Globe WorldView-1, which has a resolution of 0.5 m and a
revisit period of 1.7 days, are two examples of high-resolution satellite images which
could be used for the effective retrieval and estimations of TDS and TSS. Hyperspectral
and high-resolution imageries such as images from the Hyperspectral Digital Imagery
Collection Experiment by the Naval Research Lab, Airborne Imaging Spectrometer
Multispectral by Spectral Imaging, and the AVIRIS by the NASA Jet Propulsion Labo-
ratory could aid in the elimination of issues of discrete spectral signatures associated
with other images. Hyperspectral and high-resolution images have a high potential of
effectively discriminating changes in TSS and TDS in water bodies [2].

5. Applying atmospheric corrections when using level 1 satellite images: atmospheric
corrections such as DOS, Polymer, Sen2Cor, iCOR, NASA-AC, and ACOLITE should
be employed in minimizing errors associated with atmospheric interferences on the
satellite images to ultimately improve the accuracy of the WQP retrievals [2,270].

In conclusion, as water bodies are continuing to be impaired by anthropogenic ac-
tivities and changes in climate, the importance of continued water quality monitoring
should not be overlooked. There should be continuous exploration and investigation of
forward-thinking ideas for research in the monitoring of WQPs such as TDS and TSS using
conventional and RS techniques. While this research offers a thorough overview of the vari-
ous applications for measuring TDS and TSS in the water body, there are several directions
for further study in TDS and TSS measurement particularly with RS measurements.

Some of these areas of possible future research and exploration include the develop-
ment of new technology and sensors that can offer real-time in situ monitoring of TDS and
TSS. These technologies can enable quick responses to changes in water quality and help to
increase the effectiveness and accuracy of water quality monitoring.

Another area of future research is the integration of multiple RS data, such as the use
of both satellite and UAV data to provide comprehensive and detailed information on the
water bodies for accurate measurements. The UAV provides hyperspectral images with
finer spatial resolution, which has the potential to improve the overall performance of
models used in estimating TDS and TSS.

Further investigation is also required into the potential effects of anthropogenic and
natural factors on TDS and TSS levels in water bodies, as well as how these factors can
be considered in conventional measurements and RS techniques. Additionally, there is a
need for further research to develop novel RS algorithms that can efficiently and accurately
estimate TDS and TSS in real-time to facilitate rapid responses to the changes in the state of
water caused by changes in these WQPs.

This review provides conventional and RS approaches which could be applied to
the monitoring and management of water resources. This comprehensive review offers
stakeholders and decision-makers a go-to repository to enhance their monitoring efforts
assessments and mitigation of water quality impairments. Regulatory bodies could also rely
on this repository to aid in developing effective regulations to enhance monitoring efforts.
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Appendix A. Landsat Band Designations

Table A1. Band specifications for Landsat 8 OLI with wavelength, spatial resolution, and signal-to-
noise ratio (S/N) scaled for radiances. Adapted from [207–209].

Band S/N Wavelength
(µm)

Spatial
Resolution

(m)

Band 1–Coastal aerosol 284 0.43–0.45 30
Band 2–Blue 321 0.45–0.51 30

Band 3–Green 223 0.53–0.59 30
Band 4–Red 113 0.64–0.67 30

Band 5–NIR * 45 0.85–0.88 30
Band 6–SWIR 1 * 10.1 1.57–1.65 30
Band 7–SWIR 2 * 7.4 2.11–2.29 30

Band 8–Panchromatic 0.50–0.68 15
Band 9–Cirrus 1.36–1.38 30

* NIR = Near Infrared. * SWIR = Short Wave Infrared.

Table A2. Band specifications for Landsat 7 ETM+ with wavelength and spatial resolution.
Adapted from [149,207,208].

Band Wavelength (µm) Spatial
Resolution (m)

Band 1–Blue 0.45–0.52 30
Band 2–Green 0.52–0.60 30
Band 3–Red 0.63–0.69 30

Band 4-NIR * 0–77–0.90 30
Band 5–SWIR * 1 1.55–1.75 30
Band 6–Thermal 10.40–12.50 60 (*30)
Band 7–SWIR * 2 2.09–2.35 30

Band 8–Panchromatic 0.52–0.90 15
* NIR = Near Infrared. * SWIR = Short Wave Infrared. *30 = 60 m spatial resolution resampled to 30 m.

Table A3. Band specifications for Landsat 5 ETM with wavelength and spatial resolution.
Adapted from [207,238].

Band Wavelength (µm) Spatial
Resolution (m)

Band 1–Blue 0.45–0.52 30
Band 2–Green 0.53–0.61 30
Band 3–Red 0.63–0.69 30

Band 4-NIR * 0.76–0.90 30
Band 5–SWIR * 1 1.55–1.75 30
Band 6–Thermal 10.40–12.50 120
Band 7–SWIR * 2 0.08–2.35 30

* NIR = Near Infrared. * SWIR = Short Wave Infrared.
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Appendix B. Sentinel-2 MSI Band Designations

Table A4. Band specifications for Sentinel-2 MSI with band center, S/N, and spatial resolution scaled
for radiances. Adapted from [209,211,278].

Band

S2A S2B

S/N Wavelength
(nm)

Bandwidth
(nm)

Wavelength
(nm)

Bandwidth
(nm)

Spatial
Resolution (m)

B2-Blue 102 492.4 66 492.1 66

10
B3-Green 79 559.8 36 559.0 36
B4-Red 45 664.6 31 664.9 31

B8-NIR * 20 832.8 106 832.9 106
B5-Red Edge 1 45 704.1 15 703.8 16

20

B6-Red Edge 2 34 740.5 15 739.1 15
B7-Red Edge 3 26 782.8 20 779.7 20
B8a-Red Edge 4 16 864.7 21 864.0 22

B11-SWIR * 1 2.8 1613.7 91 1610.4 94
B12-SWIR * 2 2.2 2202.4 175 2185.7 185
B1-Aerosols 439 442.7 21 442.2 21

60B9-Water vapor 945.1 20 943.2 21
B10-Cirrus 1373.5 31 1376.9 30

* NIR = Near Infrared. * SWIR = Short Wave Infrared.
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