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Abstract: Thangka refers to a form of Tibetan Buddhist painting on a fabric, scroll, or Thangka,
often depicting deities, scenes, or mandalas. Deep-learning-based super-resolution techniques
have been applied to improve the spatial resolution of hyperspectral images (HSIs), especially
for the preservation and analysis of Thangka cultural heritage. However, existing CNN-based
methods encounter difficulties in effectively preserving spatial information, due to challenges such
as registration errors and spectral variability. To overcome these limitations, we present a novel cross-
sensor super-resolution (SR) framework that utilizes high-resolution RGBs (HR-RGBs) to enhance the
spectral features in low-resolution hyperspectral images (LR-HSIs). Our approach utilizes spatial–
spectral integration (SSI) blocks and spatial–spectral restoration (SSR) blocks to effectively integrate
and reconstruct spatial and spectral features. Furthermore, we introduce a frequency multi-head
self-attention (F-MSA) mechanism that treats high-, medium-, and low-frequency features as tokens,
enabling self-attention computations across the frequency dimension. We evaluate our method on
a custom dataset of ancient Thangka paintings and demonstrate its effectiveness in enhancing the
spectral resolution in high-resolution hyperspectral images (HR-HSIs), while preserving the spatial
characteristics of Thangka artwork with minimal information loss.

Keywords: Thangka; spectral super-resolution; Transformer; RGB imaging; hyperspectral imaging

1. Introduction

Thangka paintings are culturally significant artifacts in Tibetan culture, created as
painted scrolls. These works of art are typically composed of cotton fabric with an under-
layer and are often framed with a textile mount. The paintings are adorned with mineral
pigments, adding vibrancy and beauty to the artwork [1]. However, Thangkas are suscepti-
ble to degradation caused by various environmental factors, such as temperature, humidity,
light, radiation, toxic gases, and dust. This deterioration creates challenges in observing and
identifying the content of the paintings [2]. Researchers have been actively studying the
traditional materials and techniques used in Thangka production to aid in the preservation
of this artwork. Image processing and computer vision techniques, including region filling
and object removal, have been applied to the virtual restoration of damaged patches in
Thangka paintings [3,4]. Advanced edge detection techniques, such as the Cross Dense
Residual architecture (CDR), have also enabled the creation of highly realistic and detailed
Thangka edge line drawings [5]. Spectral imaging methods, which offer non-invasive
analyses, have provided valuable insights into the layers, visual characteristics, spatial
details, and chemical composition of Thangka paintings, minimizing the need for invasive
measurements [6]. The analysis of mineral pigments used in Thangka paintings has been
instrumental to understanding their origin, production dates, and the evolution of their
painting traditions [7]. Non-destructive testing techniques play a crucial role in Thangka
studies, as the mechanical sampling of pigments from this precious artwork is strongly
discouraged. The conservators and curators responsible for preserving Thangka paintings
in public collections rely on non-destructive methods, such as X-ray fluorescence (XRF),
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Raman microspectroscopy (Raman), polarizing light microscopy (PLM), and scanning
electron microscopy with energy dispersive X-ray spectrometry (SEM-EDS), to analyze the
materials and painting techniques used to create Thangka paintings [8,9]. X-ray radiog-
raphy and infrared reflectography have also been employed for examining the technical
aspects of these paintings, including their underdrawings, concealed mantras, and color
symbols. However, the use of these techniques may be limited in non-laboratory storage
conditions, such as in temples, due to the requirements for specialized equipment and
controlled analysis conditions.

With the rapid advancement of imaging spectroscopy, hyperspectral imaging (HSI)
has gained significant popularity in the monitoring and preservation of cultural heritage
artwork [10]. HSI technology captures data cubes that consist of numerous narrow and con-
tiguous spectral bands, each with a bandwidth of less than 10 nm [11]. These spectral bands
cover various ranges, including the visible (VIS) range of 400–700 nm, the near-infrared
(NIR) range of 700–1000 nm, the short-wave infrared (SWIR) range of 1000–2500 nm, and
the mid-infrared (MWIR) range of 2500–15,000 nm. The resulting series of images form
a three-dimensional spectral cube, accompanied by a two-dimensional wavelength se-
quence. Each pixel in the image corresponds to a continuous reflectance spectrum. Unlike
multispectral images (MSIs) that utilize the RGB color model, hyperspectral data cubes
provide detailed information about the chemical composition and spatial characteristics of
artwork surfaces, making them a valuable source of information. HSI has a wide range of
applications, including the protection of artwork [12], non-destructive identification of the
material components in cultural relics [13], and extraction of faded pattern information [14].
HR-HSI presents even greater opportunities for monitoring and protecting cultural heritage
objects. This technology enables the extraction of intricate pattern information from cultural
relics [15], removal of stains from old artwork [16], and identification of the optimal combi-
nations of mineral pigments for restoring the original colors of paintings [17]. The HR-HSI
of Thangka images is not only crucial for preserving the accurate information to appreciate
the art, but also serves as a vital digital resource for art protection and restoration.

Despite the numerous advantages of high-resolution hyperspectral imaging (HR-HSI)
in cultural heritage preservation, the application of this technology is limited compared
to that of standard RGB, due to factors such as its high cost and limitations in improving
imaging equipment [18]. HR-HSI cameras are typically based on push-broom scanning
technology that has substantial registration errors and is both time-consuming and chal-
lenging for capturing large-scale images compared to area scanning technology. Achieving
a satisfactory signal-to-noise ratio (SNR) often requires a larger instantaneous field of view
(IFOV), which can result in a lower spatial resolution. There is an inherent trade-off between
spatial and spectral resolution in image capturing. As the spectral resolution increases,
the spatial resolution tends to decrease, and vice versa. HR-HSI provides a high spectral
resolution but a lower spatial resolution, while RGB offers a better spatial resolution but
fewer spectral bands, limiting its ability to differentiate between different spectral features.
To address these challenges, several methods have been developed to combine data with
different spatial and spectral resolutions, aiming to obtain images with a higher spatial and
spectral resolution at a lower cost [19]. While hardware-based approaches are one strategy
for improving hyperspectral image resolution, they are not the focus of the present study.
The other strategy involves algorithmic-based image super-resolution (SR) technology,
which entails fusing HR-HSI with a high spectral resolution but low spatial resolution
and RGB with a low spectral resolution but high spatial resolution using the same scene.
This fusion aims to obtain detailed high-resolution hyperspectral images, which are crucial
for the preservation of Thangka and other cultural artifacts. In recent decades, numerous
low-resolution HSI super-resolution methods have been successfully applied to reconstruct
HR-HSI [20].

Image super-resolution (SR) suffers from severe problems, as there is no unique solu-
tion for reconstructing a high-resolution (HR) image from one or multiple low-resolution
(LR) images. It should be noted that, before the proliferation of SR methods, the research
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focus was primarily on single-image SR (SISR) methods, which suffer from limitations
in recovering HR images from multiple LR images [21,22]. Traditional HSI SR methods
can be broadly categorized into interpolation-based and reconstruction-based approaches.
Interpolation-based methods establish a mapping relationship between LR HSI and HR
HSI, using interpolation algorithms such as bilinear and bicubic interpolation [23,24]. While
these methods are computationally efficient, they often struggle to restore high-frequency
detail information, particularly edges and textures. On the other hand, reconstruction-based
methods rely on prior knowledge of the input image as a constraint in the super-resolution
reconstruction process [25,26]. These methods typically require higher computational costs
compared to interpolation-based methods. However, manually designed priors may not
always yield satisfactory results, and there is a lack of spatial constraints to ensure spatial
consistency when the scene changes.

In recent years, the development of machine learning (ML) has led to the emergence
of learning-based super-resolution (SR) algorithms that utilize deep neural networks to
establish implicit mapping from low-resolution (LR) images to their corresponding high-
resolution (HR) counterparts. In 2014, Dong et al. introduced the application of a convolu-
tional neural network (CNN)-based SRCNN to SR, marking a significant milestone [27].
Subsequently, scholars have developed various variations of SR methods, including Faster-
SRCNN (FSRCNN) [28] and deeply recursive convolutional networks (DRCN) [29]. The
deep residual network (ResNet) has also been widely employed in image SR, with re-
searchers increasing the number of network layers to enhance the performance of residual
learning (Jiwon Kim et al., 2016 [29]). To improve the fusion of the spatial and spectral
information within the network structure, several approaches have been proposed. These
approaches include the utilization of generative adversarial networks (GANs) [30], intensity
hue saturation transforms [31], spatial attention mechanisms [32], and channel attention
modules [33]. These techniques have demonstrated a superior performance in exploiting
the mapping relationship between LR hyperspectral images and HR RGB images.

Although deep learning (DL) methods have been applied to enhance image super-
resolution (SR), they often overlook the relationship between the spectral frequency of
hyperspectral imaging (HSI) and the spatial features of RGB, resulting in checkerboard-
like artifacts that degrade the quality of the reconstructed images [34]. To address this
issue, a novel approach called a High-Resolution Dual domain Network (HDNet) has been
proposed, which integrates a spatial–spectral domain and frequency domain attention
mechanism to capture the influence of long-range pixels [35]. However, HDNet lacks the
ability to effectively map the high-frequency edge information from low-resolution (LR)
HSI, which can lead to artifacts and ambiguous structural textures in the reconstructed im-
ages. Recently, Transformer models, originally developed for natural language processing
(NLP), have been adopted in computer vision tasks and have demonstrated superiority over
traditional convolutional neural network (CNN) models in image reconstruction [36]. The
Multi-head Self-Attention (MSA) module within the Transformer model excels at capturing
non-local similarities and long-range interactions, making it a promising approach for
remote sensing image restoration, including hyperspectral imaging [18]. However, the orig-
inal Transformer design struggles to capture long-range inter-spectral dependencies and
non-local self-similarity, posing challenges in hyperspectral image reconstruction. To over-
come these challenges, we propose a novel spatial–spectral integration network (SSINet)
specifically designed to reconstruct sharp spatial details. This network includes three key
components: the Spatial–Spectral Integration (SSI) block, the Spatial–Spectral Recovery
(SSR) block, and the Frequency Multi-head Self-Attention (F-MSA) module. These compo-
nents work together to effectively integrate the spatial and spectral information and capture
the long-range dependencies, resulting in improved hyperspectral image reconstruction.
Firstly, to sufficiently capture the spatial–spectral features, Spatial–Spectral Integration
(SSI) and Spatial–Spectral Recovery (SSR) blocks are proposed. The SSI block combines
the channel attention and spatial attention modules, enabling the capture of local-level
and global-level correlations between the spatial and spectral domains. This integration
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aims to effectively represent the spatial–spectral features while minimizing the compu-
tational complexity. Next, the SSR block decomposes the fused features into frequencies
and incorporates the Frequency Multi-head Self-Attention (F-MSA) module. This module
enables the capture of local and long-range dependencies among the frequency features,
further enhancing the restoration process. By explicitly modeling frequency information,
SSINet exhibits an improved performance in handling hyperspectral images and mitigating
issues such as striping and mixed-noise artifacts. Extensive experiments were conducted
on a new Thangka dataset specifically designed for image spectral restoration. The results
demonstrated that SSINet can achieve a state-of-the-art performance, particularly in recon-
structing sharp spatial details. Notably, SSINet implicitly extracts the textures and edge
information from the feature maps through the F-MSA module, effectively suppressing
striping and mixed-noise artifacts.

This paper proposes a method that effectively obtains high-spatial-resolution and
hyperspectral reconstructed images of Thangka by fusing high-spatial-resolution RGB
images with low-spatial-resolution hyperspectral images, while sacrificing the internal
resolution balance between the texture details and high spectral information. This method
contributes significantly to the research and protection of Thangka cultural heritage.

The main contributions of this work are summarized below:

• Our proposed method, SSINet, employs an encoder–decoder Transformer architecture
to enable spatial–spectral multi-domain representation learning for HSI spectral super-
resolution on HS-RGB data. By leveraging Transformers, SSINet effectively captures
and integrates the spatial and spectral information, leading to improved reconstruction
results.

• A notable contribution of our work is the introduction of the F-MSA self-attention
module, which is designed to capture the inter-similarity and dependencies across
high, medium, and low frequency domains. This module enhances the modeling of
frequency information, enabling SSINet to restore spatial details and suppress artifacts
more effectively.

• To evaluate the performance and effectiveness of SSINet, we curated Thangka datasets
with varying spatial and spectral resolutions. These datasets serve as valuable re-
sources for experimentation, enabling comprehensive assessments of SSINet under
different conditions and facilitating comparisons with existing methods.

2. Methodology

This section provides an overview of the overall network architecture and then pro-
vides details on the Spatial–spectral Integration (SSI) and Spatial–spectral Recovery (SSR)
components. Finally, a comprehensive description of the Frequency Multi-head Self-
Attention (F-MSA) module is presented.

2.1. Overall Network Architecture

In this section, we present an overview of the network architecture utilized in our
SSINet. The overall framework of SSINet is illustrated in Figure 1, which follows a U-
shaped structure as the baseline. The architecture includes an encoder, a bottleneck, and a
decoder, thereby facilitating effective information flow and feature extraction.

The encoder component of SSINet captures and encodes the input HS-RGB data,
extracting the meaningful spatial and spectral features. The bottleneck serves as a bridge
between the encoder and decoder, facilitating the flow of information while reducing the
dimensionality of the feature representations.

The decoder component of SSINet reconstructs high-resolution spectral details based
on the encoded features. By leveraging the spatial–spectral recovery blocks and F-MSA
module, the decoder effectively combines and refines the encoded features to generate
high-quality, super-resolved hyperspectral images.
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We trained the proposed model with the L1 loss function. Given HR RGB IHR and the
corresponding LR HSI reference ILR, the loss function can be obtained as follows:

L(θ) =
1
N

N

∑
i=1

∥∥∥I(i)LR − Gθ

(
I(i)HR

)∥∥∥
1

where Gθ is the proposed model with parameters θ and the reconstructed image Gθ

(
I(i)HR

)
and N is the number of training images.

2.2. Spatial–Spectral Integration and Spatial–Spectral Recovery Block

The SSINet model takes a high-resolution RGB image I as an input, with dimensions
of I ∈ RH×W×3. The input image first passes through a convolutional layer (conv3 × 3)
to obtain low-level feature embedding I0, with dimensions of I0 ∈ RH×W×C, where H ×
W represents the spatial dimensions and C is the number of channels. These feature
embeddings I0 are then processed through a series of blocks in the SSINet framework. The
blocks consist of an N1 Transformer block, a Spatial–Spectral Integration (SSI) block, N2
Transformer block, another SSI block, N3 Transformer blocks in the bottleneck layer, N4
Transformer block, SSR block, N5 Transformer block, and another SSR block.

In the SSI block, max pooling and average pooling operations are applied along the
spectral axis, and convolutional layers (conv1× 1) are applied along the spatial axis. This
process helps to extract multi-dimensional features from the input. The feature embedding
I2, obtained from the SSI block, is then passed through the bottleneck layer, which includes
the N3 Transformer blocks. The decoder part of the network takes the potential feature
embedding I3 ∈ R H

4 ×
W
4 ×4C from the SSR block and passes it through the N4 Transformer

blocks, Spatial–Spectral Recovery block, N5 Transformer blocks, and another SSR block.
The SSR block utilizes a deconvolutional layer with a kernel size of 1× 1 and employs

residual learning to increase the spatial dimensions while reducing the spectral capacity.
The decoder refines the features using a convolutional layer (conv3× 3), resulting in the
reconstructed HSI O ∈ RH×W×C.

Finally, the reconstructed HSI O
′ ∈ RH×W×C is obtained by adding the input RGB

image I and reconstructed HSI O, i.e., O
′
= I + O. Skip connections are used to aggregate

the features between the encoder and decoder parts of the network, helping to alleviate the
information loss during the Spatial–Spectral Integration operations.
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2.3. Frequency-Aware Transformer Block

The Transformer model has garnered significant attention in spectral super-resolution
tasks due to its ability to capture long-range spectral dependencies through self-attention
mechanisms [18]. This paper introduces a novel method called F-MSA (Frequency Multi-
head Self-Attention) to address the limitations of the Transformer model in capturing spatial
dependencies and effectively enhancing hyperspectral imaging (HSI). F-MSA leverages
the inherent spatial and spectral self-similarity in HSI representations by fusing the spatial
and spectral information. To extract the spatial–spectral fusion features, F-MSA employs
a frequency domain transformation. This transformation converts the spatial–spectral
domain features into the frequency domain. By operating in the frequency domain, F-MSA
enables the application of self-attention calculations across multiple frequency branches,
including high, medium, and low frequencies.

The use of frequency domain self-attention allows F-MSA to capture the spatial–
spectral dependencies at different frequency levels. This comprehensive feature fusion
approach enhances the model’s ability to capture long-range dependencies in both the
spatial and spectral dimensions, thereby overcoming the limitations of the Transformer
model in areas with limited spatial fidelity information. By incorporating the F-MSA
module into the SSINet framework, the proposed method effectively combines spatial–
spectral fusion and multi-head feature self-attention mechanisms. This situation enables the
model to capture both the local and long-range interactions between high-resolution RGB
images and low-resolution HSI, leading to an improved hyperspectral image reconstruction
performance.

In this paper, to decompose a frequency feature, the discrete cosine transforms (DCTs)
operate separately on each feature of the high-frequency, medium-frequency, and low-
frequency parts [37]. Figure 2 shows the F-MSA, where the input I ∈ RH×W×C is partitioned
based on frequency masks of varying frequencies and separated into distinct branches
via frequency I1−3 ∈ RH×W×C. Then, I1 ∈ RH×W×C is reshaped into tokens I1 ∈ RHW×C.
Subsequently, I1 is linearly projected into query Q ∈ RHW×C, key K ∈ RHW×C, and value
V ∈ RHW×C.

Q = PQ(I1), K = PK(I1), V = PV(I1)

where PQ, PK, and PV are learnable parameters of the linear projection. Next, we further
split the Q, K, and V into N heads along the frequency dimension, and their dot-product
interaction generates the frequency self-attention map A ∈ RC×C. Overall, the F-MSA
process is defined as

O
′
= Attention

(
QWQ

i , KWK
i , VWV

i

)
+ I

Attention(Q, K, V) = So f tmax(QKT
√

d
)V

where I and O
′
are the input and output feature maps; WQ

i , WK
i , and WV

i present parameters
in different projections; and

√
d is a learning scaling parameter.
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3. Experiment and Results

In this section, we present a comprehensive evaluation of the performance of our
proposed model, including both quantitative and qualitative analyses. We begin by intro-
ducing the creation of the Thangka dataset and providing the necessary implementation
details. This dataset serves as the foundation for our evaluation, ensuring the relevance
and accuracy of our results. Next, we discuss the evaluation metrics and comparison
methods employed to assess the performance of our proposed model. These metrics and
methods enable us to objectively measure the effectiveness of our approach and compare
it against the state-of-the-art algorithms in the field. To further demonstrate the efficacy
of our network blocks, we conduct ablation experiments. These experiments involve sys-
tematically removing or modifying the specific components of our proposed model to
evaluate their individual contributions. Through these experiments, we can assess the
effectiveness of each network block and validate their importance in achieving superior
results. Finally, we compare the performance of our proposed method with state-of-the-art
algorithms in the field. This comparison allows us to highlight the advancements and
improvements achieved by our approach in hyperspectral super-resolution. By showcas-
ing the strengths and advantages of our proposed method over existing techniques, we
establish our method’s superiority and applicability in the field.

3.1. Experimental Data and Pre-Processing

For data gathering, high-resolution images were captured using a Canon 5DSR camera
under natural light. This camera can capture a wide range of visible colors in the RGB
spectrum. To ensure accuracy in the testing reconstruction results of the Thangka, only one
digital snapshot was taken. Here, each Thangka image is digitally represented such that
each pixel corresponds to an approximate spatial extent of 0.03 mm. The dataset contains
RGB images with a spatial resolution of 1798 × 1225 pixels, and 1 pixel of the digital image
covers about 0.8 mm in the painting, consisting of three spectral bands, as depicted in
Figure 3a. These RGB images serve as the input data for the subsequent stages of our
proposed method.

The LR-HSI data acquisition was carried out using a hyperspectral imaging camera,
specifically the Pika L Hyperspectral Imaging camera, as depicted in Figure 3d. This
camera is equipped with visible and near-infrared hyperspectral sensors that can capture
map images and provide the spectral information essential for a pigment analysis. The
hyperspectral sensor used in our experiment has a spectral range from 400 nm to 1000 nm,
with a spectral resolution of 3.3 nm and a spectral bandwidth of 2.1 nm for 281 channels.
The acquired LR-HSI has a size of approximately 616 × 431 pixels, where each pixel covers
an area of approximately 2.4 mm on the painting. This coverage is nearly three times
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larger than that of an RGB image in spatial resolution. Although the hyperspectral data
contain hundreds of bands that can provide comprehensive information for depicting the
Thangka, our focus in this paper is primarily on reconstructing RGB images with a high
spectral resolution. The data collection was conducted on 30 May 2022, from 12:00 to
14:00, under clear weather and constant lighting conditions. The camera was positioned
2 m away from the Thangka and radiometric calibration was performed using standard
whiteboard data during each scanning period. The collected data include a series of RGB
and hyperspectral data from the same scene and were accurately registered. The region
of interest for reconstruction testing is indicated by the red dashed box in Figure 1b,c,
encompassing various colors and intricate spatial details. The acquired data are 3D data
cubes, in which the two-dimensional spatial image is combined with the wavelength band
as the third dimension, as illustrated in Figure 4.
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than that of an RGB image in spatial resolution. Although the hyperspectral data contain 
hundreds of bands that can provide comprehensive information for depicting the 
Thangka, our focus in this paper is primarily on reconstructing RGB images with a high 
spectral resolution. The data collection was conducted on 30 May 2022, from 12:00 to 14:00, 
under clear weather and constant lighting conditions. The camera was positioned 2 m 
away from the Thangka and radiometric calibration was performed using standard white-
board data during each scanning period. The collected data include a series of RGB and 
hyperspectral data from the same scene and were accurately registered. The region of in-
terest for reconstruction testing is indicated by the red dashed box in Figure 1b,c, encom-
passing various colors and intricate spatial details. The acquired data are 3D data cubes, 
in which the two-dimensional spatial image is combined with the wavelength band as the 
third dimension, as illustrated in Figure 4. 
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Figure 3. (a) The high-resolution RGB digital image; (b,c) typical areas with high-resolution and
low-resolution images; and (d) RGB composition of the LR-HSI.
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Figure 4. Diagram of RGB image generated (Canon 5DSR camera) and spectral reconstruction (RGB
→ Hyperspectral image).

To reduce the severe impact of the uneven light source intensity distribution and dark
current noise in the HSIs, radiometric correction was performed. This correction converts
the pixel digital number (ND) to standard whiteboard and dark current data using the
following method:

R =
Rraw − Rdark

Rwhite − Rdark
× 100%
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where R represents the calibrated image, Rraw indicates the original HSI, Rdark is the black
reference image, and Rwhite is the standard whiteboard image. For the experimental dataset,
a range from 400 nm to 800 nm was selected after meticulous band filtering and calibration.
This range includes a total of 196 bands. The subsequent bands were excluded as they
predominantly contained noise.

The high-resolution RGB image and low-resolution HSI of the Thangka were resam-
pled to have the RGB spatial resolution and were then used in the training and testing
phases individually to evaluate our proposed methods. The HSI and RGB were then
cropped into cubic patches with dimensions of 200 × 200 × 196 and 200 × 200 × 3, respec-
tively. Around 80% of these patches were randomly selected for the training set, while the
remaining patches were used for the testing set. Each image was sliced into 20 patches with
overlapping regions.

3.2. Experimental Setting

Based on the MST configuration in [36], we used 196 wavelengths ranging from 393
to 800 nm for the HIS through spectral interpolation manipulation. In our evaluation, we
compared the performance of SSINet with several state-of-the-art spectral reconstruction
techniques, including HSCNN [38], HSCNN+ [39], EDSR [40], HINet [41], Restormer [42],
and MST++ [36]. These models were trained and optimized on the Thangka dataset to
achieve the best results. During the training process, we utilized the Adam optimizer
with an initial learning rate of 0.0004 over 200 epochs. The learning rate was halved every
50 epochs to ensure a stable convergence. The training procedure aimed to optimize the
hyperparameters of each model and improve their performance on the Thangka dataset.
The proposed SSINet was implemented using Python 3.9 and the PyTorch 1.9 framework.
The experiments were conducted on an Nvidia GeForce RTX 2080ti GPU with 64 GB of
memory to leverage the computational power and accelerate the training process.

3.3. Evaluation Metrics

In this paper, six quantitative image quality indices were employed to assess the quality
of the spectral super-resolution (SR) reconstruction results. These indices provide objective
measures for various aspects of the reconstructed images, allowing for a comprehensive
evaluation. The following section describes the six indices used in this study. Root Mean
Square Error (RMSE): This index measures the average difference between the reconstructed
SR image and the reference image. It quantifies the spectral fidelity of the reconstruction,
indicating how close the reconstructed image is to the ground truth. Dimensionless Global
Relative Error of Synthesis (ERGAS): ERGAS evaluates the global relative error of the
reconstructed image in terms of the spatial–spectral information. This index provides a
measure of the overall quality of the reconstructed image, considering both the spatial
and spectral characteristics. Spectral Angle Mapper (SAM): SAM quantifies the spectral
similarity between the reference image and the reconstructed image by measuring the angle
between their spectral vectors. A lower SAM value indicates a higher degree of similarity
in terms of the spectral content. Universal Image Quality Index (UIQI): UIQI measures
the overall similarity between the reference image and the reconstructed image, reflecting
brightness and contrast distortions. This index provides a comprehensive assessment of
the similarity between the two images [43]. Peak Signal-to-Noise Ratio (PSNR): PSNR
represents the ratio between the maximum possible power of the reference image and
the power of the difference between the reference and reconstructed images. PSNR is a
widely used index for measuring the fidelity of image reconstruction, with higher values
indicating a better reconstruction quality [44]. Structural Similarity (SSIM): SSIM evaluates
the structural similarity between the reference and reconstructed images, considering the
luminance, contrast, and structural components. This index provides a measure of how
well the structures and textures in the reconstructed image match those in the reference
image [45].
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The aforementioned metrics, including UIQI, PSNR, SSIM, RMSE, ERGAS, and SAM,
provide quantitative measures for the quality of the recovered hyperspectral images. Higher
values of UIQI, PSNR, and SSIM represent better recovery results, indicating a higher sim-
ilarity and fidelity between the reconstructed images and the ground truth. Conversely,
lower values of RMSE, ERGAS, and SAM correspond to better recovery results, indicating
lower errors and discrepancies between the reconstructed and ground truth images. The er-
ror maps visualize the discrepancies between the true spectral values and the reconstructed
values in an image. These maps are created by computing the pixel-wise differences
between the reconstructed image and ground truth image. In these maps, darker areas
represent regions where the reconstruction closely matches the ground truth, indicating a
better accuracy. Conversely, brighter spots indicate larger deviations or errors between the
reconstructed and ground truth values.

3.4. Comparison with Other Methods

In this section, we present an analysis of the experimental results obtained from
our simulated experiments on the Thangka dataset, aiming to evaluate the effectiveness
of the proposed SSINet in achieving a super-resolution reconstruction. The evaluation
results, encompassing various image quality indices, are summarized in Table 1, where
the best performance is indicated in bold and the second-best performance is underlined.
These metrics serve as quantitative measures for assessing the quality and fidelity of the
reconstructed images. The results presented in Table 1 offer valuable insights into the
performance of our proposed SSINet, showcasing its superiority over other methods in
terms of the image quality and reconstruction accuracy.

Table 1. Quantitative results on the Thangka dataset. Results in bold are the best and those underlined
are the second best.

HSCNN HSCNN+ EDSR HINet Restormer MST++ SSINet

RMSE 15.3730 15.2221 29.3646 14.5156 12.7500 14.0767 11.9773
ERGAS 20.1375 19.9285 48.0325 20.0000 18.3242 18.8177 15.8489

SAM 4.7342 4.5390 17.3205 5.8034 5.7635 5.7523 3.9851
UIQI 0.5028 0.5180 0.3123 0.5200 0.5767 0.6081 0.6387
PSNR 25.2837 25.3818 19.1752 25.5317 26.4004 25.9618 27.4166
SSIM 0.8340 0.8459 0.5677 0.8554 0.8672 0.8940 0.9057

Table 1 shows that SSINet achieves the lowest values for RMSE, ERGAS, and SAM,
indicating a superior performance in terms of spectral fidelity. Additionally, SSINet corre-
sponds to the highest values for UIQI, PSNR, and SSIM, indicating better recovery results in
terms of brightness distortion, contrast distortion, and structural similarity. Comparing the
results of HSCNN, HSCNN+, and EDSR, we find that a deeper and more complex network
architecture does not necessarily lead to improved results. Although HSCNN+ performs
well in terms of SAM, its ability to reconstruct spectral details is relatively poor. While
ResNet-based methods can achieve good results, they tend to consume significant compu-
tational resources due to their complex residual network connections. On the other hand,
Restormer and MST++ models, which combine Transformers with CNNs, demonstrate a
promising performance in spectral super-resolution, indicating that spectral interpolation
can effectively capture both local and non-local interactions to better preserve spectral
features.

The proposed SSINet method in this paper combines frequency division, Transformers,
and CNNs to effectively reduce the sensitivity to noise in spectral reconstruction and
integrate both local and global spatial information. This integration was found to offer
a superior performance in terms of the image quality indices compared to the evaluated
benchmark methods.

Figures 3c and 5 provide a visual comparison of the error maps between the recon-
structed results generated by different models and the ground truth from 0 to 1. A randomly
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selected image from the test set is used as an example, and magnified views within the red
box in Figure 3a are provided to facilitate this comparison. By examining these maps, sev-
eral interesting conclusions can be drawn. Firstly, the color regions in the different spectral
bands exhibit variations in the reconstruction, indicating the diversity of the spectral curves
in the Thangka dataset. Secondly, although HSCNN and HSCNN+ were found to achieve a
better restoration of spatial information, they exhibit higher spectral errors in all the spectral
bands except for the 400 nm band. EDSR did not successfully learn the mapping of HR-RGB
to LR-HSI. This result suggests that these models struggle to effectively learn the complete
mapping from the RGB domain to the hyperspectral domain. Furthermore, the results of
other models show higher spectral errors in complex-shaped areas, indicating difficulties
in accurately reconstructing the spectral information in these regions. In contrast, SSINet
demonstrates an almost perfect recovery of the spectrum compared to the ground truth,
with minimal errors observed in the 500 nm band, highlighting the powerful mapping
ability of SSINet in maintaining a balance between high spatial and spectral resolutions.
This result further emphasizes the excellent performance of SSINet in both the spatial and
spectral domains.
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To further analyze the accuracy of the super-resolution (SR) results, we present box-
plots depicting the absolute pixel differences between the reconstructed results and the
ground truth in all the spectral bands (Figure 6). The boxplots provide indicators such
as the median, mean, and range from the 25th to the 75th percentile, as well as the 1st
and 99th percentile values. These indicators clearly demonstrate that the proposed SSINet
method achieves the highest accuracy across all the bands. These findings highlight that
the SR results obtained by SSINet closely match the ground truth, indicating the superior
performance of our proposed method in accurately reconstructing hyperspectral images.

In addition to the error maps presented in Figure 5, we also conducted a comparison
of the spectral curves by randomly selecting pixels from the Thangka dataset (Figure 7).
The results of this comparison align with the quantitative evaluation. Although the spectral
reflectance curves of the six competing methods exhibit similar trends for the representative
pixels, their ability to restore the spectral reflectance values across different wavelength
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bands varies. Here, Restormer and MST++ were found to retain more spectral details
compared to HSCNN. On the other hand, HINet and HSCNN+ performed better in re-
constructing subtle spectral variations. However, our proposed SSINet outperformed all
the CNN-based models by closely matching the subtle spectral fluctuations in the ground
truth and preserving the overall trend. This demonstrates the superiority of our method in
retaining the spectral information and accurately capturing the spectral variations in the
Thangka dataset. The comparison of the spectral curves further supports these findings,
as SSINet achieved a better reconstruction of the spectral reflectance values, effectively
capturing subtle variations and preserving the overall trend in the spectral information.
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4. Discussion
4.1. Ablation Study

In this subsection, we report on a series of ablation experiments performed to analyze
the individual contributions of the key components in SSINet, namely SSI (Spatial–spectral
Integration), SSR (Spatial–spectral Recovery), and F-MSA (Frequency Multi-head Self-
Attention). The quantitative results of these ablation studies conducted on the Thangka
image are presented in Figure 8 and Table 2.

The baseline model was created by removing all three components (SSI, SSR, and
F-MSA) from the standard SSINet. Comparing Model 1, Model 2, and Model 4 shows that
using the SSI and SSR components individually does not lead to significant improvements
in the quality of the hyperspectral image reconstruction. This lack of improvement can
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be attributed to the difficulty of the neural network structure in effectively extracting the
features from the spatial and spectral fusion information, which is necessary for enhancing
the spectral super-resolution performance. Furthermore, comparing Model 3, Model 4,
and the complete SSINet, we can see that reconstructing hyperspectral information by
incorporating spatial–spectral feature fusion and the multi-head feature self-attention mech-
anism (F-MSA) can greatly enhance the quality of the recovery. This finding indicates that
F-MSA plays a crucial role in improving the hyperspectral super-resolution performance
by capturing spectral features.
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Table 2. Ablation study results of the proposed elaborate designs in the proposed SSINet. Results in
bold are the best and those underlined are the second best.

Model Baseline Model 1 Model 2 Model 3 Model 4 SSINet

SSI × × 3 3 × 3

SSR × 3 × 3 × 3

F-MSA × 3 3 × 3 3

RMSE 15.6191 36.6485 33.1223 12.8843 30.2657 11.9773
ERGAS 19.3564 46.6416 46.7124 17.5920 39.4191 15.8489

SAM 4.7740 12.5387 18.3812 4.7307 12.4032 3.9851
UIQI 0.5133 0.3841 0.3313 0.6182 0.4043 0.6387
PSNR 25.6360 18.6504 19.0243 26.6145 20.1283 27.4166
SSIM 0.8763 0.6180 0.5797 0.8917 0.6724 0.9057

The ablation experiments demonstrate that the individual usage of the SSI and SSR
components does not lead to substantial improvements, but when combined with F-MSA in
the complete SSINet architecture, the spatial–spectral feature fusion and multi-head feature
self-attention mechanisms work synergistically to significantly enhance the hyperspectral
super-resolution reconstruction quality. This result highlights the importance of capturing
spatial–spectral correlations and frequency dependencies to achieve state-of-the-art results
in hyperspectral image reconstruction.

Our quantitative analysis is further supported by the reconstruction images presented
in Figure 8. These images visually demonstrate the impact of incorporating the different
components in the SSINet architecture. When using the SSI and SSR components individu-
ally, the reconstructed hyperspectral images exhibit distorted textures and fuzzy artifacts.
This outcome indicates that these components alone are insufficient for capturing both
spatial and spectral features accurately. However, when Model 3 incorporates both SSI and
SSR, the resulting images show significant improvements in terms of their sharpness and
similarity to the real image in terms of the spectral information. This result demonstrates
that a combination of SSI and SSR effectively enhances the reconstruction performance.
Comparing our proposed SSINet with Model 3, which includes SSI and SSR, the inclusion
of the F-MSA component further improves the results. The images reconstructed by SSINet
with F-MSA exhibit higher PSNR and SSIM values, as well as smaller SAM values. This
result indicates that the network, when combined with F-MSA, can efficiently extract the
spatial features and enhance the spatial fidelity of the reconstructed images. Moreover,
the F-MSA component significantly optimizes the spectral information, resulting in hy-
perspectral images with higher PSNR values, suggesting that the incorporation of F-MSA
improves the reconstruction of spectral details.
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A combination of SSI, SSR, and F-MSA in the SSINet architecture effectively fuses
the spatial and spectral features, enhances the spatial fidelity, and optimizes the spectral
information. This comprehensive approach results in a superior hyperspectral image
reconstruction performance compared to using the SSI, SSR, and F-MSA components
individually.

4.2. Computational Speed Analysis

In this section, we present a comparison of the model complexity and computational
speed of different deep learning methods using FLOPs (Floating Point Operations), Params
(number of parameters), training convergence, and the test times in Table 3. The results
are summarized in the subsequent table. When comparing CNN-based models with
Transformer-based models, it is commonly observed that Transformer-based models tend
to have more parameters. Similarly, in our method (SSINet), the number of parameters is
relatively high, mainly because our network integrates the spatial and spectral dimensions
and utilizes a frequency attention mechanism to capture long-range interaction spectral
features, which increases its computational complexity. Although SSINet may require more
computation time due to its complex architecture, it maintains a good balance between
accuracy and computation speed. While SSINet does not exhibit a significant advantage in
terms of its running time compared to CNN-based models, SSINet delivers an improved
accuracy in spectral recovery tasks. Therefore, the additional computation time is justified
by the enhanced performance and accuracy achieved by SSINet. SSINet strikes a balance
between model complexity and computation speed, ensuring an improved accuracy in
spectral recovery while still maintaining a reasonable runtime. The increased computational
requirements of SSINet are justified by its superior performance, making it a promising
choice for hyperspectral image reconstruction tasks.

Table 3. Computational speed analysis of deep-learning-based methods on the Thangeka dataset.

Method HSCNN HSCNN+ EDSR HINet Restormer MST++ SSINet

FLOPs(G) 0.723 5.211 10.284 83.739 5.934 55.706 96.903
Params(M) 0.670 4.825 2.515 208.569 15.236 62.922 132.304
Training(s) 28 235 95 970 300 645 642

Test(s) 1.736 2.917 1.709 7.497 4.836 6.981 8.302

4.3. Limitations of the Cross-Sensor Unpaired Images

In this section, we discuss the generalization performance and limitations of the
proposed cross-sensor unpaired SR framework. One key aspect is the difference between
multispectral area scan cameras and hyperspectral line scan cameras in terms of their
image capture. Multispectral cameras capture an entire image in a single frame, while
hyperspectral cameras build a high-resolution image line by line. However, the actual line
frequency of hyperspectral cameras may deviate from the ideal line frequency, resulting in
distortion in the line scan image. HSI SR refers to the task of reconstructing high-resolution
hyperspectral images from high-resolution multispectral images while preserving high
spectral information. Even if we have access to pairs of multispectral and hyperspectral
images, geometric registration errors between different sensors can pose challenges and
affect the accuracy of the reconstruction algorithm. SSINet addresses this issue by using
spatial–spectral fusion features to reduce the impact of these image registration errors. The
trained model can bridge the gap between training and testing data through domain-gap
aware training and domain-distance weight supervision strategies.

Another approach is to exploit the data distribution learning with a GAN-based
framework for unpaired image SR [46]. The CinCGAN [47] is an early attempt in this
direction, which combines two CycleGAN structures to train both low-resolution (LR) to
clean LR and clean LR to target high-resolution (HR) mappings. However, GAN-based
frameworks rely on the image content for degradation, which may not hold true in all
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applications. While the proposed framework demonstrates promising results, there are
potential limitations that need to be addressed. Geometric registration errors have a
significant impact on the quality and quantity of training data, and a lower registration
accuracy can lead to blurred images. Therefore, further improvements are necessary
to develop an adaptive strategy for the SR of real-world cross-sensor unpaired images,
considering the challenges of these geometric registration errors.

Addressing these limitations will require continued research and development to
enhance the robustness and effectiveness of GAN-based frameworks for unpaired image
SR. It is crucial to explore adaptive techniques and novel approaches that can handle the
complexities introduced by real-world scenarios and address the challenges associated with
geometric registration errors. By doing so, we can further advance the field and improve
the performance of SR algorithms in practical applications.

5. Conclusions

The paper introduced a novel framework called the Spatial–spectral Integrated Net-
work (SSINet), which focuses on accurately reconstructing high-resolution hyperspectral
images (HSI) using a Transformer-based approach. SSINet incorporates various compo-
nents, including feature extractors, spatial–spectral feature fusion, frequency decomposi-
tion, and a multi-head feature self-attention mechanism. These components enable the
effective extraction and restoration of both spatial and spectral features, while addressing
challenges such as image registration errors. By utilizing multiple frequency branches,
SSINet learns powerful spectral representations to reduce the influence of these registration
errors.

The effectiveness of SSINet was evaluated through quantitative experiments, provid-
ing visually satisfactory results for HSI reconstruction. This result highlights the potential
of the proposed framework for enhancing the preservation and analysis of cultural artifacts,
thereby contributing to the advancement of digital heritage research.

Author Contributions: Conceptualization, Methodology, Software, Writing: S.W.; Conceptualization,
Methodology, Funding Acquisition, Resources, Supervision, Writing—review and editing: F.F. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Social Science Fund of China (21AMZ011) and
the Major Cultivation Fund for Philosophy and Social Sciences of South China Normal University
(ZDPY2206).

Data Availability Statement: Not applicable.

Acknowledgments: We want to thank Liaocheng University and Tibet University. Liaocheng Univer-
sity provided Pika L Hyperspectral imaging camera and Tibet University offered Thangka paintings.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Shaftel, A. Conservation Treatment of Tibetan Thangkas. J. Am. Inst. Conserv. 1991, 30, 3–11. [CrossRef]
2. Cotte, S. Conservation of Thangkas: A Review of the Literature since the 1970s. Stud. Conserv. 2011, 56, 81–93. [CrossRef]
3. Wang, W.; Qian, J.; Lu, X. Research Outline and Progress of Digital Protection on Thangka. In Advanced Topics in Multimedia

Research; InTech: Houston, TX, USA, 2012.
4. Yao, F. Damaged Region Filling by Improved Criminisi Image Inpainting Algorithm for Thangka. Clust. Comput. 2019, 22,

13683–13691. [CrossRef]
5. Wang, N.; Wang, W.; Hu, W. Thangka Mural Line Drawing Based on Cross Dense Residual Architecture and Hard Pixel Balancing.

IEEE Access 2021, 9, 48841–48850. [CrossRef]
6. Dyer, J.; Derham, A.; O’flynn, D.; Tamburini, D.; Heady, T.; Ramos, I. Studying Saraha: Technical and Multi-Analytical

Investigation of the Painting Materials and Techniques in an 18th Century Tibetan Thangka. Heritage 2022, 5, 2851–2880.
[CrossRef]

7. Ernst, R.R. In Situ Raman Microscopy Applied to Large Central Asian Paintings. J. Raman Spectrosc. 2010, 41, 275–284. [CrossRef]
8. Li, Z.; Wang, L.; Ma, Q.; Mei, J. A Scientific Study of the Pigments in the Wall Paintings at Jokhang Monastery in Lhasa, Tibet,

China. Herit. Sci. 2014, 2, 21. [CrossRef]

https://doi.org/10.2307/3179514
https://doi.org/10.1179/sic.2011.56.2.81
https://doi.org/10.1007/s10586-018-2068-4
https://doi.org/10.1109/ACCESS.2021.3068199
https://doi.org/10.3390/heritage5040148
https://doi.org/10.1002/jrs.2443
https://doi.org/10.1186/s40494-014-0021-2


Remote Sens. 2023, 15, 3603 16 of 17

9. Pouyet, E.; Miteva, T.; Rohani, N.; de Viguerie, L. Artificial Intelligence for Pigment Classification Task in the Short-Wave Infrared
Range. Sensors 2021, 21, 6150. [CrossRef]

10. Cucci, C.; Delaney, J.K.; Picollo, M. Reflectance Hyperspectral Imaging for Investigation of Works of Art: Old Master Paintings
and Illuminated Manuscripts. Acc. Chem. Res. 2016, 49, 2070–2079. [CrossRef]

11. Shippert, P. Introduction to Hyperspectral Image Analysis. Online J. Space Commun. 2003, 2, 3.
12. Fischer, C.; Kakoulli, I. Multispectral and Hyperspectral Imaging Technologies in Conservation: Current Research and Potential

Applications. Stud. Conserv. 2006, 51, 3–16. [CrossRef]
13. Bonifazi, G.; Capobianco, G.; Pelosi, C.; Serranti, S. Hyperspectral Imaging as Powerful Technique for Investigating the Stability

of Painting Samples. J. Imaging 2019, 5, 8. [CrossRef] [PubMed]
14. Pan, N.; Hou, M.; Lv, S.; Hu, Y.; Zhao, X.; Ma, Q.; Li, S.; Shaker, A. Extracting Faded Mural Patterns Based on the Combination of

Spatial-Spectral Feature of Hyperspectral Image. J. Cult. Herit. 2017, 27, 80–87. [CrossRef]
15. Peng, J.; Yu, K.; Wang, J.; Zhang, Q.; Wang, L.; Fan, P. Mining Painted Cultural Relic Patterns Based on Principal Component

Images Selection and Image Fusion of Hyperspectral Images. J. Cult. Herit. 2019, 36, 32–39. [CrossRef]
16. Hou, M.; Zhou, P.; Lv, S.; Hu, Y.; Zhao, X.; Wu, W.; He, H.; Li, S.; Tan, L. Virtual Restoration of Stains on Ancient Paintings with

Maximum Noise Fraction Transformation Based on the Hyperspectral Imaging. J. Cult. Herit. 2018, 34, 136–144. [CrossRef]
17. Zhou, P.; Hou, M.; Lv, S.; Zhao, X.; Wu, W. Virtual Restoration of Stained Chinese Paintings Using Patch-Based Color Constrained

Poisson Editing with Selected Hyperspectral Feature Bands. Remote Sens. 2019, 11, 1384. [CrossRef]
18. He, J.; Yuan, Q.; Li, J.; Xiao, Y.; Liu, X.; Zou, Y. DsTer: A Dense Spectral Transformer for Remote Sensing Spectral. Int. J. Appl.

Earth Obs. Geoinf. 2022, 109, 102773.
19. Maselli, F.; Chiesi, M.; Pieri, M. A Novel Approach to Produce NDVI Image Series with Enhanced Spatial Properties. Eur. J.

Remote Sens. 2016, 49, 171–184. [CrossRef]
20. Chen, N.; Sui, L.; Zhang, B.; He, H.; Gao, K.; Li, Y.; Marcato Junior, J.; Li, J. Fusion of Hyperspectral-Multispectral Images Joining

Spatial-Spectral Dual-Dictionary and Structured Sparse Low-Rank Representation. Int. J. Appl. Earth Obs. Geoinf. 2021, 104,
102570. [CrossRef]

21. Li, Y.; Zhang, L.; Dingl, C.; Wei, W.; Zhang, Y. Single Hyperspectral Image Super-Resolution with Grouped Deep Recursive
Residual Network. In Proceedings of the 2018 IEEE 4th International Conference on Multimedia Big Data (BigMM), Xi’an, China,
13–16 September 2018; pp. 3–6.

22. Zhao, J.; Kechasov, D.; Rewald, B.; Bodner, G.; Verheul, M.; Clarke, N.; Clarke, J.L. Deep Learning in Hyperspectral Image
Reconstruction from Single Rgb Images—A Case Study on Tomato Quality Parameters. Remote Sens. 2020, 12, 3258. [CrossRef]

23. Keys, R.G. Cubic Convolution Interpolation for Digital Image Processing. IEEE Trans. Acoust. 1981, 29, 1153–1160. [CrossRef]
24. Jo, Y.; Kim, S.J. Practical Single-Image Super-Resolution Using Look-Up Table. In Proceedings of the 2021 IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 691–700.
25. Morse, B.S.; Schwartzwald, D. Image Magnification Using Level-Set Reconstruction. In Proceedings of the 2001 IEEE Computer

Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, Kauai, HI, USA, 8–14 December 2001; Volume 1.
26. Xiong, Z.; Sun, X.; Wu, F.; Member, S. Robust Web Image Video Super-Resolution. IEEE Trans. Image Process. 2010, 19, 2017–2028.

[CrossRef] [PubMed]
27. Dong, C.; Loy, C.C.; He, K.; Tang, X. Learning a Deep Convolutional Network for Image Super-Resolution. Lecture Notes

in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioin-Formatics). In
Proceedings of the 13th European Conference, Zurich, Switzerland, 6–12 September 2014; Volume 8692, pp. 184–199.

28. Dong, C.; Loy, C.C.; Tang, X. Accelerating the Super-Resolution Convolutional Neural Network. Lecture Notes in Computer
Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioin-Formatics). In Proceedings of the
European Conference on Computer Vision (ECCV), Amsterdam, The Netherlands, 11–14 October 2016; Volume 9906, pp. 391–407.

29. Kim, J.; Lee, J.K.; Lee, K.M. Deeply-Recursive Convolutional Network for Image Super-Resolution. In Proceedings of the 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; Volume 2016,
pp. 1637–1645.

30. Ledig, C.; Theis, L.; Huszár, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Aitken, A.P.; Tejani, A.; Totz, J.; Wang, Z.; et al.
Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network. In Proceedings of the 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; Volume 2, p. 4.

31. Tuna, C.; Unal, G.; Sertel, E. Single-Frame Super Resolution of Remote-Sensing Images by Convolutional Neural Networks. Int. J.
Remote Sens. 2018, 39, 2463–2479. [CrossRef]

32. Lei, P.; Liu, C. Inception Residual Attention Network for Remote Sensing Image Super-Resolution. Int. J. Remote Sens. 2020, 41,
9565–9587. [CrossRef]

33. Wang, P.; Bayram, B.; Sertel, E. Super-Resolution of Remotely Sensed Data Using Channel Attention Based Deep Learning
Approach. Int. J. Remote Sens. 2021, 42, 6050–6067. [CrossRef]

34. Jia, S.; Wang, Z.; Li, Q.; Jia, X.; Xu, M. Multiattention Generative Adversarial Network for Remote Sensing Image Super-Resolution.
IEEE Trans. Geosci. Remote Sens. 2022, 60, 5624715. [CrossRef]

35. Hu, X.; Cai, Y.; Lin, J.; Wang, H.; Yuan, X.; Zhang, Y.; Timofte, R.; Van Gool, L. HDNet: High-Resolution Dual-Domain Learning for
Spectral Compressive Imaging; Computer Vision Fundation: New York, NY, USA, 2022; pp. 17521–17530.

https://doi.org/10.3390/s21186150
https://doi.org/10.1021/acs.accounts.6b00048
https://doi.org/10.1179/sic.2006.51.Supplement-1.3
https://doi.org/10.3390/jimaging5010008
https://www.ncbi.nlm.nih.gov/pubmed/34465709
https://doi.org/10.1016/j.culher.2017.02.017
https://doi.org/10.1016/j.culher.2018.09.008
https://doi.org/10.1016/j.culher.2018.04.004
https://doi.org/10.3390/rs11111384
https://doi.org/10.5721/EuJRS20164910
https://doi.org/10.1016/j.jag.2021.102570
https://doi.org/10.3390/rs12193258
https://doi.org/10.1109/TASSP.1981.1163711
https://doi.org/10.1109/TIP.2010.2045707
https://www.ncbi.nlm.nih.gov/pubmed/20236889
https://doi.org/10.1080/01431161.2018.1425561
https://doi.org/10.1080/01431161.2020.1800129
https://doi.org/10.1080/01431161.2021.1934598
https://doi.org/10.1109/TGRS.2022.3180068


Remote Sens. 2023, 15, 3603 17 of 17

36. Cai, Y.; Lin, J.; Hu, X.; Wang, H.; Yuan, X.; Zhang, Y.; Timofte, R.; Van Gool, L. Mask-Guided Spectral-Wise Transformer for Efficient
Hyperspectral Image Reconstruction; Computer Vision Fundation: New York, NY, USA, 2021; pp. 17481–17490.

37. Xie, W.; Song, D.; Xu, C.; Xu, C.; Zhang, H.; Wang, Y. Learning Frequency-Aware Dynamic Network for Efficient Super-Resolution.
In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10–17
October 2021; pp. 4288–4297.

38. Xiong, Z.; Shi, Z.; Li, H.; Wang, L.; Liu, D.; Wu, F. HSCNN: CNN-Based Hyperspectral Image Recovery from Spectrally
Undersampled Projections. In Proceedings of the 2017 IEEE International Conference on Computer Vision Workshops, ICCVW
2017, Venice, Italy, 22–29 October 2017; pp. 518–525.

39. Shi, Z.; Chen, C.; Xiong, Z.; Liu, D.; Wu, F. HSCNN+: Advanced CNN-Based Hyperspectral Recovery from RGB Images. In
Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Salt Lake
City, UT, USA, 18–22 June 2018; pp. 1052–1060.

40. Wang, H.; Liao, K.; Yan, B.; Ye, R. Deep Residual Network for Single Image Super-Resolution. In ACM International Conference
Proceeding Series; Association for Computing Machinery (ACM): New York, NY, USA, 2019; pp. 66–70.

41. Chen, L.; Lu, X.; Zhang, J.; Chu, X.; Chen, C. HINet: Half Instance Normalization Network for Image Restoration. In Proceedings
of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Nashville, TN, USA, 19–25
June 2021; pp. 182–192.

42. Zamir, S.W.; Arora, A.; Khan, S.; Hayat, M.; Khan, F.S.; Yang, M.H. Restormer: Efficient Transformer for High-Resolution Image
Restoration. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, New Orleans,
LA, USA, 18–24 June 2022; pp. 5718–5729.

43. Wang, Z.; Bovik, A.C. A Universal Image Quality Index. IEEE Signal Process. Lett. 2002, 9, 81–84. [CrossRef]
44. Steele, R. Peak Signal-to-Noise Ratio Formulas for Multistage Delta Modulation with RC-Shaped Gaussian Input Signals. Bell

Syst. Tech. J. 1982, 61, 347–362. [CrossRef]
45. Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Member, S.; Simoncelli, E.P.; Member, S. Image Quality Assessment: From Error Visibility to

Structural Similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [CrossRef]
46. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial

Networks. Commun. ACM 2014, 63, 139–144. [CrossRef]
47. Zhu, J.Y.; Park, T.; Isola, P.; Efros, A.A. Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks.

In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017;
pp. 2242–2251.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/97.995823
https://doi.org/10.1002/j.1538-7305.1982.tb03410.x
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1145/3422622

	Introduction 
	Methodology 
	Overall Network Architecture 
	Spatial–Spectral Integration and Spatial–Spectral Recovery Block 
	Frequency-Aware Transformer Block 

	Experiment and Results 
	Experimental Data and Pre-Processing 
	Experimental Setting 
	Evaluation Metrics 
	Comparison with Other Methods 

	Discussion 
	Ablation Study 
	Computational Speed Analysis 
	Limitations of the Cross-Sensor Unpaired Images 

	Conclusions 
	References

