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Abstract: The vertical structure of radar echo is crucial for understanding complex microphysical
processes of clouds and precipitation, and for providing essential data support for the study of low-
level wind shear and turbulence formation, evolution, and dissipation. Therefore, finding methods to
improve the vertical data resolution of the existing radar network is crucial. Existing algorithms for
improving image resolution usually focus on increasing the width and height of images. However,
improving the vertical data resolution of weather radar requires a focus on improving the elevation
angle resolution while maintaining distance resolution. To address this challenge, we propose a
network for super-resolution reconstruction of weather radar echo vertical structures. The network
is based on a multi-scale residual feedback network (MR-FBN) and uses new multi-scale feature
residual blocks (MSRB) to effectively extract and utilize data features at different scales. The feedback
network gradually generates the final high-resolution vertical structure data. In addition, we propose
an elevation upsampling layer (EUL) specifically for this task, replacing the traditional image subpixel
convolution layer. Experimental results show that the proposed method can effectively improve the
elevation angle resolution of weather radar echo vertical structure data, providing valuable help for
atmospheric detection.

Keywords: super-resolution reconstruction; weather radar; vertical structure; multi-scale features

1. Introduction

To monitor and track rapidly evolving small and medium-scale weather systems,
weather radar is a great active detection system [1]. Using weather radar to detect the
vertical structure of weather has a great effect on the monitoring, early warning, and
forecasting of disastrous weather. The vertical structure of weather can invert the relatively
complex microphysical processes experienced by clouds and precipitation during formation.
In recent years, the demand for refinement and quantification of subjective and objective
precipitation forecasts has continued to increase. Short-term strong convective forecasts
require a deep understanding of the rapid evolution of precipitation cloud structures.
Research on cloud and fog physics requires a deeper understanding of melting processes,
etc., making it more urgent to understand the characteristics of precipitation microphysical
parameters, particle phase distribution, and melting processes in precipitation clouds.
On the other hand, high-spatial, low-altitude, and close-range radar observations are
instrumental in tornado detection [2]. The fast scanning radar can obtain effective data on
the low-level elevation angle very quickly, so that the relationship between the updraft and
the downdraft, the rotation of the mesocyclone, and debris characteristics can be observed.
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They can provide data support for the study of the generation, disappearance mechanisms,
and evolution processes of severe convective weather processes, such as tornadoes. And
geospatial regression shows that improving the vertical space observation resolution and
lateral distance horizontal resolution of radar echo can improve the detection probability
and false alarm rate of tornadoes [3].

China began to deploy a new generation of weather radar networks in the 1990s.
Currently, more than 200 weather radars have been deployed, and a complete and dense
radar observation network (CINRAD) has been established [4]. It realizes the commercial
observation mode of the whole network and global three-dimensional volume scanning [5].
Its outstanding operational detection capabilities can provide more detailed related prod-
ucts for meteorological operational applications, such as disastrous weather monitoring,
short-term nowcasting, and artificial weather modification. The radar volume scan mode
provides two types: clear sky mode and precipitation mode. Commonly used precipitation
modes include Volume Coverage Pattern 11 (VCP11) and Volume Coverage Pattern 21
(VCP21), and their scanning strategy is shown in Figure 1. VCP11 can complete fourteen
different elevation scans within five minutes, and VCP21 can complete nine different el-
evation scans within six minutes. VCP11 has a higher recognition ability because there
are more levels of elevation angles in the vertical direction [6]. For ordinary volume
scanning, higher resolution can be achieved to delineate strong echo regions in the hor-
izontal direction, but the elevation angle resolution in the vertical direction is relatively
rough. The Range Height Indication (RHI) scanning mode of meteorological radar can
provide detailed information on the vertical structure of cloud and rain echoes, and obtain
the spatial structure and intensity of refined precipitation. The polarization parameters
of vertical structure data can also increase the phase state information of precipitation
echo particles, improve the identification accuracy of precipitation types, and carry out
targeted disaster prevention forecasting. However, although the RHI scan mode with
an angular resolution of 0.15◦ to 0.3◦ can effectively detect the vertical structure of the
radar echo, the continuous three-dimensional volume scan operational observation mode
provides monitoring information and limits the application of the traditional RHI scan
mode. The traditional RHI scan method can only be scanned by manually obtaining the
scanning azimuth. The disadvantage is that it cannot scan multiple azimuths at the same
time, and it will occupy the entire radar resource, which seriously affects the continuous
three-dimensional volume scanning monitoring business. How to obtain refined vertical
structure information without affecting the three-dimensional volume scanning monitoring
business has become a current research topic.

Figure 1. Schematic diagram of VCP11 and VCP21 scanning strategy.

To improve the resolution of weather radar echo, the most common approach is to
use interpolation methods such as bilinear or bicubic interpolation [7]. However, these
methods lead to loss of spatial information and insufficient data gradients, especially
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in edge and high-frequency regions [7,8]. Although there are better radar echo super-
resolution reconstruction algorithms than interpolation, which we will systematically
describe in the next section of the paper, the super-resolution reconstruction study of the
vertical structure of radar echoes has not been paid much attention.

With the rapid advancement of deep learning technology, Convolutional Neural
Networks (CNNs) have become a popular method for super-resolution reconstruction.
They have been successfully applied in various fields such as medical imaging [9], satellite
remote sensing [10], and security monitoring [11]. However, these methods are primarily
developed for image super-resolution and are not directly applicable to the problem
of super-resolution of weather radar vertical structures. To address this issue, in this
paper, we first use the classic Super-Resolution Convolutional Network (SRCNN) [12] to
demonstrate that neural networks improve the reconstruction performance of our task
compared to traditional methods. Second, we designed a suitable and efficient super-
resolution reconstruction algorithm (MR-FBN) for radar echo vertical structure data. This
algorithm can be applied to all azimuths at the same time, thereby achieving the refinement
of the vertical structure of the entire echo, which overcomes a shortcoming of traditional
RHI scanning. MR-FBN utilizes the feedback mechanism to correct the previous outputs,
and the multi-scale residual block can be used to adaptively extract the features between
adjacent elevation angles, so as to obtain more effective features for the reconstruction of
fine structures.

The main contributions of this paper are:
(1) A deep learning-based approach for super-resolution reconstruction of weather

radar echo vertical structure is proposed.
(2) The multi-scale residual block (MSRB) is introduced to realize adaptive extraction

of features at different scales, enabling more effective information extraction and refined
structure reconstruction.

2. Related Work
2.1. Radar Echo Based Resolution Improvement

In recent years, many scholars have conducted in-depth research on this topic. Super-
resolution techniques employed in weather radar echo analysis have shown promise in
enhancing resolution by updating radar hardware facilities, such as employing larger
antennas or denser networks, or adopting different azimuth sampling strategies on existing
systems to match narrower Antenna [13]. In 2005, Yao Hongmei et al. [14] used the mini-
mum entropy spectrum extrapolation technique to realize the range super-resolution of
step frequency radar. In 2011, Gallardo-Hernando et al. [15] proposed a wind turbine clut-
ter spectrum-enhanced super-resolution technology based on autoregressive coefficients.
He et al. [16] proposed an improved iterative back-projection algorithm (IBP) based on a
sliding window reconstruction model using temporal correlation constraints to improve
data resolution. In 2017, Wu et al. [17] proposed a new method for angular super-resolution
of scanning radar based on truncated singular value decomposition (TSVD) based on the
least squares optimization technique. Experimental results show that this method can
improve azimuth resolution without increasing noise and loss of edge information. In
2018, Tan et al. [18] proposed a penalized maximum likelihood angle super-resolution
method to solve the above deconvolution problem. Experimental results prove the effec-
tiveness and superiority of this method. Zeng et al. [19] analyzed the sparsity and data
redundancy of weather radar data, studied its spatial-temporal correlation, and proposed a
compression scheme coding based on prediction, which provides data correlation for the
super-resolution of weather radar echoes. In 2019, Zhang et al. [20] proposed a new super-
resolution nonlocal self-similar sparse representation (NSSR) model for meteorological
radar echoes, which took advantage of the sparse data composition and data redundancy
of meteorological radar echo data. Experimental results show that this method is superior
to the existing general radar echo super-resolution methods, but there is a problem of
introducing artifacts. In 2021, Yuan et al. [21] proposed a neural network-based non-local
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residual network method (NLRN) to reconstruct the distance library and azimuth at the
same time. This method introduces a non-local attention mechanism that can focus on
global features, thereby obtaining better reconstruction accuracy. However, due to the na-
ture of being based on radar images, the data are quantified initially and then reconstructed.
This process can result in a loss of certain information within the data.

From this perspective, the current super-resolution reconstruction of radar echoes
primarily focuses on the horizontal structure of radar echoes, while the vertical structure
of radar echoes holds crucial information. To address this, we propose a novel approach
that utilizes raw radar data instead of quantized radar images as input to construct a
super-resolution reconstruction network specifically designed for the vertical structure
of radar echoes. This approach aims to achieve a refined reconstruction of the vertical
structure of radar echoes, thereby capturing the critical details and enhancing the overall
accuracy of the reconstruction process.

2.2. Upsampling Block

The upsampling block is a module used to change the input size of feature maps
to a specified size. It is a key step in super-resolution reconstruction. The simplest up-
sampling method is interpolation. To tackle the limitations of traditional interpolation, a
novel upsampling technique has been introduced, using a deconvolution layer. This layer
increases image resolution by inserting zero-padded convolutions. This method has been
applied successfully for visualizing layer activations [22] and semantic segmentation [23].
Dong et al. [24] first applied the deconvolution layer as an upsampling layer in the FSR-
CNN network, kickstarting the development of post-upsampling frameworks. However,
the use of deconvolution, with its large number of zero-padding operations, can bring in
invalid information and hinder gradient optimization, leading to the “uneven overlap”
phenomenon [25]. This results in a checkerboard pattern, degrading SR performance. To
address this issue, Shi et al. [26] proposed the ESPCN network, introducing the influen-
tial sub-pixel convolutional layer to increase the model’s receptive field and achieve HR
feature maps via multi-channel recombination. Sub-pixel convolutional layers are now
widely used in super-resolution tasks, leading to numerous successful network structures.
However, uneven distribution of receptive fields may result in block regions sharing the
same receptive field, causing artifacts near the boundaries of different block regions. Ad-
ditionally, independently predicting neighboring pixels of blocky regions may lead to
non-smooth output [27]. To resolve this, Gao et al. [28] proposed PixelTCL, a plug-and-play
solution that replaces any transposed convolution and replaces independent predictions
with interdependent sequential ones, yielding smoother and more consistent results. From
this point of view, the current upsampling modules are aimed at simultaneous sampling in
two directions, and it is important to find an effective unidirectional upsampling block.

3. Proposed Method
3.1. Network Structure

As depicted in Figure 2, the blue arrow represents the feedback connection. The
MR-FBN architecture was proposed and can be unfolded into T iterations, where each
iteration t is ordered temporally from 1 to T. To bring the hidden state in MR-FBN into
play with the output, the loss at each iteration is tied. The sub-network in each iteration
t consists of three parts: (1) a shallow feature extraction layer (represented by the red
dotted line box in Figure 2). The features extracted by the shallow network are closer to the
input and contain more pixel information. Although it contains more position and detail
information, it has lower semantics and more noise due to fewer convolutions. (2) a deep
feature extraction feedback layer (represented by the yellow dotted line box in Figure 2).
The features extracted by the deep network are closer to the output and contain more
abstract information. It mainly obtains data integrity information. (3) a reconstruction layer
(represented by the blue dotted line box in Figure 2). The input and output of the network
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are defined as ILR and ISR, respectively. Thus, the reconstruction process of the network
model can be described as follows:

ISR = HMR−FBN(ILR) (1)

where HMR−FBN is our MR-FBN operation.

Figure 2. The overall structure of MR-FBN.

For a clearer understanding, the network structure is described as follows: We begin by
extracting shallow features from the input low-resolution data using a 3× 3 convolution. It
is a simple convolution layer at the front of the entire network, which can obtain more local
features and texture information from low-resolution data. This process can be represented
as follows:

Ft
0 = f3×3(ILR) (2)

where Ft
0 is the shallow features extracted by 3× 3 convolution, and f3×3 denotes a convo-

lution operation with a kernel size of 3× 3 and a stride of 1.
Then the deep feature extraction layer consists of a 1× 1 convolution and a feedback

block. The purpose of the 1 × 1 convolution in the deep feature extraction layer is to
perform feature reduction, and reduce the dimension to reduce the computational difficulty
of the subsequent complex network structure. This helps to streamline subsequent feature
calculations, minimize time costs and conserve computing resources. The use of the 1× 1
convolution as a feature attenuation step ensures that the network remains efficient while
still achieving its desired outcome. This process can be represented as follows:

Ft
in = f1×1

(
Ft

0
)

(3)

where Ft
in is the feature maps after 1× 1 convolution, and f1×1 denotes a 1× 1 convolution.

The output of the feedback block will generate a hidden state, and the hidden state is
then sent to the next iteration. The input of the feedback block in the next iteration will



Remote Sens. 2023, 15, 3676 6 of 18

receive the hidden state generated in the previous iteration. This process can be represented
as follows:

Ft
out = fFB

(
[Ft−1

out , Ft
in ]
)

(4)

where fFB represents the operations of the Feedback Block (FB), [Ft−1
out , Ft

in ] represents
the connection operation,in this article, MSRB (see Section 3.2 for details) is used as the
feedback block to realize the function of transmitting information. Ft−1

out represents the
hidden state from the previous iteration, and Ft

in represents the current input state.
The reconstruction layer operation is represented by HREC. An upsampling module

(as described in Section 3.3) was used to increase the resolution of the elevation angle,
while maintaining the same distance resolution. The final step of the network uses a 3× 3
convolution for reconstruction. The 3× 3 convolution here mainly converts 64 channels
into a standard format for 1-channel output through convolution, and can extract some
feature information at the same time. This process can be represented as follows:

ISR = HREC
(

Ft
out
)

(5)

3.2. Multi-Scale Fusion Residual Block (MSRB)

To obtain more detailed features at various scales, we propose a Multi-scale Residual
Block, as depicted in Figure 3. The details of its structure will be described in the following.

Figure 3. The structure of a multi-scale fusion residual block (MSRB).

The utilization of large convolution kernels in a network is associated with an increased
receptive field, leading to the detection of more intricate features. However, these large
kernels are high in computational complexity and consume substantial computing resources
and storage space. To address this issue, we propose a three-bypass network structure,
where different bypasses utilize varying convolution kernels, with information shared
among adjacent kernels. This approach limits the size of the convolution kernel span,
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reducing the use of larger kernels and enabling the detection of features at different scales,
all while being easy to train. The feature fusion of the previous iteration’s output layer and
the current input layer is achieved through a 1× 1 convolution, as expressed below:

X = f1×1

(
[Ft

in , Ft−1
out ]

)
(6)

where X represents the output after 1× 1 convolution, Ft−1
out represents the hidden state from

the previous iteration, Ft
in represents the current input state, and represents a 1× 1 con-

volution operation. Then, three feature vectors P1, Q1, and S1 are generated, respectively,
through convolution with 3× 3, 5× 5, and 7× 7 filters. The operation can be expressed
as follows:

P1 = σ
(

f 1
3×3(X)

)
(7)

Q1 = σ
(

f 1
5×5(X)

)
(8)

S1 = σ
(

f 1
7×7(X)

)
(9)

where f3×3, f5×5, f7×7 denote 3× 3, 5× 5, 7× 7 convolution, respectively. The σ symbol
represents the Rectified Linear Unit (ReLU) activation function [29]. It introduces nonlin-
earity to enhance the expressive power of the network. And P1, Q1, and S1 feature vectors
are then shared to generate new feature vectors. P1 and Q1 are concatenated and processed
through a 3× 3 convolution to generate P2, while P1 and S1 are concatenated and pro-
cessed through a 5× 5 convolution to generate Q2. Finally, Q1 and S1 are concatenated and
processed through a 7× 7 convolution to generate S2, which can be expressed as follows:

P2 = σ
(

f 2
3×3([P1, Q1])

)
(10)

Q2 = σ
(

f 2
5×5([P1, S1])

)
(11)

S2 = σ
(

f 2
7×7([Q1, S1])

)
(12)

where [P1,Q1], [P1,S1], [Q1,S1] denote the connection operation. The feature vectors are
connected and fused through the defined operations, as follows:

Z = f1×1([P2, Q2, S2]) (13)

To simplify the learning process and enhance the gradient propagation, we adopt the
residual learning strategy. This strategy significantly reduces computational complexity
and improves network performance, as expressed by the following equation:

Ft
out = X + Z (14)

3.3. Upsampling Module

The task of enhancing the vertical structure resolution of weather radar echo is differ-
ent from the traditional image super-resolution task. The current image super-resolution
methods aim to improve both the height and width of an image, such as a 64× 64 size
image becoming 128× 128 after ×2 super-resolution reconstruction. Our research, on
the other hand, focuses on enhancing the elevation resolution while retaining the range
resolution, such as a 64× 64 size data becoming 64× 128 after ×2 super-resolution recon-
struction. This requirement makes the traditional upsampling layers inappropriate, which
is why we propose an improved upsampling layer, referred to as the elevation upsampling
layer (EUL).
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Figure 4 shows the overall design of the Upsampling Block. It starts by applying
a convolutional layer to expand the original n feature maps into n × r feature maps (n
represents the number of feature maps and r represents the magnification). Subsequently,
the EUL is utilized to rearrange the feature maps into the desired size. The mathematical
expression for this module can be expressed as:

Ioutput = f L(Iinput
)
= PS

(
W ∗ Iinput + b

)
(15)

where Iinput and Ioutput refer to the input and output of the Upsampling Block, and the
Upsampling Block operation denoted by f L. The new periodic shuffling operator, PS,
rearranges the elements of a H ×W × C× r tensor into a tensor of shape rH ×W × C. The
impact of this operation is demonstrated in Figure 4. The EUL is based on the original
image sub-pixel convolutional layer [27]. During the convolution of the filter on the feature
map, these modes are periodically activated, depending on the position of the sub-data:
(mod(x,r), y), where x and y are the output data coordinates in the HR space, and r is the
magnification factor. Mathematically, this operation can be expressed as follows:

PS(T)x,y,c = Tbx/rc,byc, mod (x,r)+c (16)

Figure 4. Upsampling Block: a convolutional layer is used to extract features, and an improved
sub-pixel convolutional layer is used to aggregate feature maps in LR space.

The process of arranging the positions of multiple feature maps on one feature map
to obtain an enlarged feature map is achieved through the modulo operation. Taking
r = 4 as an example, the first row of the first, second, third, and fourth feature maps of
low resolution are, respectively, arranged in the first row of the first feature map of high
resolution, and the first row of the feature map of the first Second row, third row and fourth
row. The second row of the first, second, third, and fourth low-resolution feature maps are
arranged in the fifth, sixth, seventh, and seventh rows of the high-resolution first feature
map, respectively, eight lines. By following this pattern, the enlarged feature map as shown
in Figure 4 (EUL) can be obtained.

4. Experiment
4.1. Datasets and Metrics

The experimental data were obtained from the basic reflectivity data of the RXM-25
radar RHI scan collected between June to October 2020 and June to October 2021. As
shown in Figure 5, RXM-25 radar is produced by Colorado State University and has a dual
polarization. Doppler weather radar operating in the x-band with a range coverage of
approximately 50 km, and its relevant technical indicators are shown in Table 1. Its high
sampling resolution provides advanced polarization radar data products. We used the RHI
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data with a range resolution of 60 m, a maximum range of 66 km, and elevations between
2.0 and 59.8◦. The low-resolution (LR) data were simulated using the VCP11 (0.5◦, 1.45◦,
2.4◦, 3.35◦, 4.3◦, 5.25◦, 6.2◦, 7.5◦, 8.7◦, 10.0◦, 12.0◦, 14.0◦, 16.7◦, 19.5◦). However, due to the
blocking of the buildings around the radar, data for 0.5◦ and 1.45◦ could not be detected,
and only 12 elevation angle data were used as the LR input. For the production of the
label ×2HR corresponding to the input data, we use the 14 elevation angles of VCP11 as the
basis, and take the central angle between the elevation angles as the central elevation angle.
Due to occlusion, we only need 24 elevation angles. The label production of ×4HR is based
on the elevation angle of ×2HR, and then the central angle between the elevation angles is
taken as the central elevation angle; finally, 48 elevation angle data are obtained. LR data
are used as the input for the proposed super-resolution algorithm, which is reconstructed
through super-resolution to obtain high-resolution datasets of 24 (×2SR) and 48 (×4SR)
elevation angles. The performance of the proposed algorithm can be objectively evaluated
by comparing the similarity between the original data and the high-resolution dataset.

Figure 5. RXM-25 Radar.

Table 1. Main parameters of RXM-25 radar.

Parameter Min Typ Max Unit

Frequency 9380 9410 9440 MHz
Peak Output Power 18.0 18.5 25.0 kW

Duty Cycle 0.15 0.16 %
Pulse Width 100 660 2000 ns

Range sampling interval 60 m
Elevation angle interval 0.1 0.3 ◦

Radar data can contain invalid values due to blocking during the detection process. We
performed basic reflectivity statistics on the initial LR dataset and found that the proportion
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of invalid values differed greatly from other reflectivity values (as shown in the yellow
bar chart in Figure 6). This would cause the network model to learn more characteristics
of the invalid regions. Therefore, we preprocessed the initial LR dataset by cutting it to
32 in the distance direction with a step size of 10, resulting in 12 × 32. Second, if the
number of invalid values in a data block was less than two-thirds of the total, it was stored
in the dataset, otherwise, it was discarded as bad data. The basic reflectivity statistics
of the processed dataset are shown in the green bar chart in Figure 6, the proportion of
inefficiencies has been significantly reduced.

Figure 6. Reflectivity distribution, yellow denotes the original data, green denotes the processed data.

The high-resolution dataset is generated from the low-resolution dataset by preserving
the information. The block size for the×2HR data is 24× 32 and for the×4HR data is 48× 32.
Finally, the basic reflectivity value of the dataset is converted to the 0–255 range through
Formula (17) to simulate a grayscale pixel value, which expands the dynamic range and can
help the network learn features such as texture, shape, and structure of radar data.

R′ = 33 + 2× R (17)

R′ refers to the basic reflectivity value that has been mapped to a range of 0–255,
while R refers to the original basic reflectivity value. To evaluate the performance of super-
resolution reconstruction, we use two metrics: Peak Signal to Noise Ratio (PSNR) and
Structural Similarity (SSIM) [30]. The formula for PSNR is as follows:

PSNR = 10 · log10

(
R2

max
MSE

)
(18)

MSE =
1

mn

m−1

∑
i=0

n−1

∑
j=0

[
IHR(i, j)− ISR(i, j)

]2
(19)

where Rmax represents the maximum reflectivity, MSE is the mean square error between the
reconstructed data value and the actual data value, while HR data are denoted by IHR, SR
data by ISR, and m and n represent the height and width of the data, respectively. A higher
value of PSNR indicates better reconstruction performance, while a lower value means
worse performance. Since PSNR only considers the error between the original echo and
the reconstructed echo, it only pays attention to the details of the reconstructed structure,
and ignores the structural similarity in human perception, especially in data with complex
structures. In contrast, SSIM is more in line with human perception to evaluate the quality
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of reconstruction results, considering global and local features, especially the degree of
preservation of structural information. Therefore, this paper adds the SSIM index to judge
the structural characteristics of the echo. The SSIM formula is given as follows:

SSIM(x, y) =

(
2µxµy + c1

)(
2σxy + c2

)(
µ2

x + µ2
y + c1

)(
σ2

x + σ2
y + c2

) (20)

where x, y denotes SR data and HR data, respectively, µx, σ2
x are mean and variance of x, µy,

σ2
y are mean and variance of y, σxy is the covariance of x and y. c1 and c2 are constants used

to make the calculation more stable and prevent the denominator from being too small. The
SSIM is used to evaluate the reconstruction performance, with a value closer to 1 indicating
a better performance and a value closer to 0 indicating a worse performance.

4.2. Implementation Details

The block size of the low-resolution (LR) data is 12× 32, while the HR data blocks have
dimensions of 24× 32 and 48× 32 for ×2 HR and ×4 HR, respectively. During the training
process, we set the batch size to 64 and use the Adam optimizer, with hyperparameters
β1 = 0.9, β2 = 0.99, ε = 10−8 [31], to optimize MR-FBN. The learning rate is set to
1× 10−4. To optimize MR-FBN, we choose L1 loss as the primary objective function, which
is widely used in super-resolution algorithms [32]. The loss function in MR-FBN calculates
the absolute value error between each iteration’s output and the real value, and then the
final objective function is determined by taking a weighted average of these values and
averaging over all training samples, where θ denotes the network parameters to be learned
by minimizing the loss between the reconstructed data F(Y; θ) and the corresponding
high-resolution data X. Given a set of high-resolution data {Xi} and a corresponding
set of low-resolution data {Xi}, we use the following formula as the loss function.The
mathematical expression for the loss function in the network can be represented as:

L(θ) =
1
n

n

∑
i=1

(
1
T

T

∑
t=1

W(t)
∥∥∥F(t)(Yi; θ)− Xi

∥∥∥
1

)
(21)

where θ is the parameter of MR-FBN. W(t) is a weighted factor that demonstrates the worth
of the output at the t-th iterations. T represents the number of iterations. In line with the
approach presented in [32], we set the output value of each iteration to 1, indicating that
each output contributes equally. n is the number of training samples.

As demonstrated in [33], the reconstruction quality continues to improve as the num-
ber of iterations increases. To strike a balance between the reconstruction quality and
computational resources, we set the number of iterations T to 4. Additionally, the filter size
is set to 64. All experiments in this paper were performed using the PyTorch [34].

4.3. Comparison with Existing Technology

To evaluate the effectiveness of the proposed network model, MR-FBN, we compare
it with three commonly used methods: bicubic interpolation, IBP [16], and SRCNN [13].
The interpolation operation for IBP and SRCNN was modified to only interpolate in height
while keeping the width unchanged to suit the specific requirements of this task. The
comparison was carried out using the same training and test sets to ensure a fair evaluation
of their reconstruction performance.

4.3.1. Visual Comparison

Considering the importance of weather radar reflectivity maps to forecasters and
researchers, we visualized the vertical structure data to evaluate the reconstruction perfor-
mance. Three vertical structural data samples with azimuth angles of 172.0◦ on 29 August
2020, 218.4◦ on 7 July 2021, and 73.0◦ on 26 July 2021, have been selected for visual analysis,
referred to as Case 1, Case 2, and Case 3, respectively. Here we test the data within the
entire detection range, and do not handle invalid values. The LR echo is used as the input of
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super-resolution reconstruction, and the high-resolution echo is obtained using the method
of interpolation/reconstruction/learning. The scaling factors are ×2 and ×4. Scaling factor
×2 means that the number of vertical scanning elevation angles is increased by two times,
and the distance resolution remains unchanged at 60 m; scaling factor ×4 means that the
number of vertical scanning elevation angles is increased by four times, and the distance
resolution remains unchanged at 60 m;

As seen in Figures 7–9, the vertical structure data reconstructed by bicubic interpola-
tion is visibly distorted and contains many artifacts. While the IBP method shows some
improvement, it still fails to address the problem of edge diffusion. The use of the deep
learning method, SRCNN, has significantly improved the reconstruction compared to the
previous methods, which demonstrates the potential of deep learning for this task. How-
ever, the echo structure reconstructed by the MR-FBN method proposed in this paper is
closest to the high-resolution echo structure, and the reconstruction quality of edge texture
features in both strong echo and weak echo areas is higher, and artifacts and false echoes
are relatively fewer. Especially under the ×2 scaling factor, not only is the strong echo area
closer to the original data, but the edge diffusion phenomenon is also greatly suppressed,
and detailed information on the strong echo area can be recovered as much as possible.

Figure 7. Case1 Visual comparison with other methods on ×2SR (a) and ×4SR (b).
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Figure 8. Case2 Visual comparison with other methods on ×2SR (a) and ×4SR (b).

Figure 9. Case3 Visual comparison with other methods on ×2SR (a) and ×4SR (b).
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To show more clearly where the proposed method has relatively better results, we
divide the reflectivity interval into five intervals of 0–10, 10–20, 20–30, 30–40, and >40 for
comparison and obtain PSNR values of different methods in each interval.

It can be seen from the Figures 10–12 that in the reflectivity interval without stray area
interference, they all have relatively high PSNR values. It can be seen that the proposed
method has a relatively good reconstruction effect for the intervals of 20–30, 30–40, and
>40, i.e., the interval with a reflectivity greater than 20 dBZ. These areas usually correspond
to disastrous weather processes such as strong convection, and can effectively reflect the
evolution of weather processes. Therefore, the proposed method has a better PSNR value
than the traditional bicubic interpolation method, IBP, and SRCNN is more effective for the
regional reconstruction of key meteorological elements. At the same time, the proposed
method can effectively reconstruct the vertical structure of the radar echo in a more refined
weather process in the strong echo area, which is of great significance to the understanding
of the evolution of weather and meteorological services, such as forecasting and early
warning. However, the PSNR in the weak echo area has not improved much, and it may
be lower than SRCNN (Case3). We guess that the preprocessing interpolation operation
of SRCNN may have some advantages in the weak echo area, and we can follow this in
future research.

Figure 10. Case1 Comparison of different methods in different reflectivity intervals on ×2SR (a) and
×4SR (b).

Figure 11. Case2 Comparison of different methods in different reflectivity intervals on ×2SR (a) and
×4SR (b).
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Figure 12. Case3 Comparison of different methods in different reflectivity intervals on ×2SR (a) and
×4SR (b).

4.3.2. Quantitative Results

To further verify the effectiveness of the proposed method, we tested the PSNR and
SSIM values of the entire detection area. Table 2 displays the results at ×2 and ×4 super-
resolution. The bolded values indicate the best performance under similar conditions. It
can be seen that our method has significantly better PSNR and SSIM values than bicubic
interpolation and IBP. Compared with the interpolation method commonly used in the
meteorological field, our method can improve by about 2 dB. Compared with SRCNN,
there is also a certain improvement. The results show that our method can extract more
complex features from LR radar echoes. When the magnification is larger, more information
needs to be reconstructed, while the LR radar echo contains relatively less information,
resulting in the loss of most high-frequency information, making it difficult to reconstruct
better performance results. This leads to the reconstruction performance of ×4 is not as
good as that of ×2.

Table 2. Comparison with existing methods.

Method Scale PSNR(dB) SSIM

Bicubic ×4 22.54 0.7253
IBP ×4 24.14 0.7880

SRCNN ×4 24.73 0.8121
MR-FBN ×4 25.12 0.8182
Bicubic ×2 24.18 0.8130

IBP ×2 25.37 0.8298
SRCNN ×2 26.19 0.8734
MR-FBN ×2 26.35 0.8773

The best results are bold.

5. Conclusions

This paper proposes a convolutional neural network that can refine the vertical struc-
ture of radar echoes without occupying radar resources. To improve the feature extraction
ability of the network, the network result constructs a multi-scale residual block, which can
carry out multi-scale feature information sharing, which not only reduces the network pa-
rameters but also obtains more accurate feature extraction. At the same time, the feedback
network is used as the overall framework, and the refined information iterated step-by-step
is used to guide the reconstruction of more refined results to achieve feature reuse, which
can not only maintain the diversity of feature maps but also improve network performance.
Experiments show that MR-FBN is a network model suitable for the reconstruction of radar
echo vertical structure data, which can reconstruct data closer to the original radar echo in
a visual effect. In quantitative analysis, compared with interpolation and reconstruction,
the method has obvious improvements, but compared with SRCNN, which is also a neural
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network, the performance improvement is not particularly great. This may be due to (1) a
small amount of data. Since the RHI scan mode is a non-standard mode, the amount of
data is relatively small. (2) The particularity of the task. Our radar echo vertical structure
refinement task is the number of elevation angles, i.e., the resolution in only one direction
is increased, so there is relatively little space for performance improvement. The refined
vertical structure of radar echoes is crucial for understanding the complex microphysical
processes of clouds and precipitation, and providing necessary data support for studying
the formation, evolution, and dissipation of low-level wind shear and turbulence. In the
future, we will enrich our database and obtain more effective data for network learn-
ing feature information. At the same time, this task is crucial for the in-depth study of
the generation and elimination process of disastrous weather. It is important to explore
super-resolution reconstruction networks suitable for the vertical structure of radar echoes.
We will explore more network frameworks, such as Recurrent Neural Networks(RNN),
Generative Adversarial Networks(GAN), etc.
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SRCNN Super-Resolution Convolutional Neural Network
RHI Range Height Indicator
VCP11 Volume Coverage Pattern 11
VCP21 Volume Coverage Pattern 21
CNN Convolutional Neural Networks
LR Low-Resolution
HR High-Resolution
SR Super-Resolution
PSNR Peak Signal-to-Noise Ratio
SSIM Structural Similarity Index
RNN Recurrent Neural Networks
GAN Generative Adversarial Networks

References
1. Liu, J.; Huang, X.; He, Y.; Wang, Z.; Wang, J. Comparison and Analysis of X-band Phased Array Weather Radar Echo Data.

Plateau Meteorol. 2015, 34, 1167–1176.
2. Lim, S.; Allabakash, S.; Jang, B.; Chandrasekar, V. Polarimetric radar signatures of a rare tornado event over South Korea. J. Atmos.

Ocean. Technol. 2018, 35, 1977–1997. [CrossRef]

http://doi.org/10.1175/JTECH-D-18-0041.1


Remote Sens. 2023, 15, 3676 17 of 18

3. Cho, J.Y.; Kurdzo, J.M. Weather radar network benefit model for tornadoes. J. Appl. Meteorol. Climatol. 2019, 58, 971–987.
[CrossRef]

4. Huang, C.; Zhang, A.; Chen, S.; Hu, B. Comparison of GPM Satellite and Ground Radar Estimation of Tornado Heavy Precipitation
in Yancheng, Jiangsu. J. Atmos. Sci. 2020, 43, 370–380.

5. Chen, D.; Chen, G.; Wu, Z. Combination RHI Automatic Realization Algorithm Based on Volume Scan Mode. Meteorological 2010,
36, 109–112.

6. Liu, Y.; Gu, S.; Zhou, Y.; Zhang, S.; Dai, Z. Comparison and Analysis of Volume Scan Models of New Generation Weather Radar.
Meteorological 2006, 32, 44–50.

7. Zhang, Y.; Zhao, D.; Zhang, J.; Xiong, R.; Gao, W. Interpolation-dependent image downsampling. IEEE Trans. Image Process. 2011,
20, 3291–3296. [CrossRef]

8. Thévenaz, P.; Blu, T.; Unser, M. Image interpolation and resampling. Handb. Med. Imaging Process. Anal. 2000, 1, 393–420.
9. Qiu, D.; Zheng, L.; Zhu, J.; Huang, D. Multiple improved residual networks for medical image super-resolution. Future Gener.

Comput. Syst. 2021, 116, 200–208. [CrossRef]
10. Guo, K.; Guo, H.; Ren, S.; Zhang, J.; Li, X. Towards efficient motion-blurred public security video super-resolution based on

back-projection networks. J. Netw. Comput. Appl. 2020, 166, 102691. [CrossRef]
11. Huang, Y.; Shao, L.; Frangi, A.F. Simultaneous super-resolution and cross-modality synthesis of 3D medical images using

weakly-supervised joint convolutional sparse coding. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 6070–6079.

12. Dong, C.; Loy, C.C.; He, K.; Tang, X. Learning a deep convolutional network for image super-resolution. In Part IV 13, Proceedings
of the Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, 6–12 September 2014; Springer: New York, NY,
USA, 2014; pp. 184–199.

13. Torres, S.M.; Curtis, C.D. 5B. 10 Initial Implementation of Super-Resolution Data on the Nexrad Network. Available online:
https://ams.confex.com/ams/87ANNUAL/techprogram/paper_116240.htm (accessed on 27 December 2022).

14. Yao, H.; Wang, J.; Liu, X. Minimum Entropy Spectral Extrapolation Technique and Its Application in Radar Super-resolution.
Mod. Radar 2005, 27, 18–19.

15. Gallardo-Hernando, B.; Munoz-Ferreras, J.; Pérez-Martınez, F. Super-resolution techniques for wind turbine clutter spectrum
enhancement in meteorological radars. IET Radar Sonar Navig. 2011, 5, 924–933. [CrossRef]

16. He, J.; Ren, H.; Zeng, Q.; Li, X. Super-Resolution reconstruction algorithm of weather radar based on IBP. J. Sichuan Univ. (Nat.
Sci. Ed.) 2014, 51, 415–418.

17. Wu, Y.; Zhang, Y.; Zhang, Y.; Huang, Y.; Yang, J. TSVD with least squares optimization for scanning radar angular super-resolution.
In Proceedings of the 2017 IEEE Radar Conference (RadarConf), Seattle, WA, USA, 8–12 May 2017; IEEE: New York, NY, USA,
2017; pp. 1450–1454.

18. Tan, K.; Li, W.; Zhang, Q.; Huang, Y.; Wu, J.; Yang, J. Penalized maximum likelihood angular super-resolution method for
scanning radar forward-looking imaging. Sensors 2018, 18, 912. [CrossRef]

19. Zeng, Q.; He, J.; Shi, Z.; Li, X. Weather radar data compression based on spatial and temporal prediction. Atmosphere 2018, 9, 96.
[CrossRef]

20. Zhang, X.; He, J.; Zeng, Q.; Shi, Z. Weather radar echo super-resolution reconstruction based on nonlocal self-similarity sparse
representation. Atmosphere 2019, 10, 254. [CrossRef]

21. Yuan, H.; Zeng, Q.; He, J. Weather Radar Image Superresolution Using a Nonlocal Residual Network. J. Math. 2021, 2021, 4483907.
[CrossRef]

22. Zeiler, M.D.; Fergus, R. Visualizing and understanding convolutional networks. In Part I 13, Proceedings of the Computer
Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, 6–12 September 2014; Springer: New York, NY, USA, 2014;
pp. 818–833.

23. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440.

24. Dong, C.; Loy, C.C.; Tang, X. Accelerating the super-resolution convolutional neural network. In Part II 14, Proceedings of the
Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Springer: New York, NY,
USA, 2016; pp. 391–407.

25. Odena, A.; Dumoulin, V.; Olah, C. Deconvolution and checkerboard artifacts. Distill 2016, 1, e3. [CrossRef]
26. Shi, W.; Caballero, J.; Huszár, F.; Totz, J.; Aitken, A.P.; Bishop, R.; Rueckert, D.; Wang, Z. Real-time single image and video

super-resolution using an efficient sub-pixel convolutional neural network. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1874–1883.

27. Wang, Z.; Chen, J.; Hoi, S.C. Deep learning for image super-resolution: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 2020,
43, 3365–3387. [CrossRef]

28. Gao, H.; Yuan, H.; Wang, Z.; Ji, S. Pixel transposed convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 2019,
42, 1218–1227. [CrossRef] [PubMed]

29. Agarap, A.F. Deep learning using rectified linear units (relu). arXiv 2018, arXiv:1803.08375.
30. Horé, A.; Ziou, D. Image Quality Metrics: PSNR vs. SSIM. In Proceedings of the 2010 20th International Conference on Pattern

Recognition, Milan, Italy, 23–26 August 2010; pp. 2366–2369. [CrossRef]

http://dx.doi.org/10.1175/JAMC-D-18-0205.1
http://dx.doi.org/10.1109/TIP.2011.2158226
http://dx.doi.org/10.1016/j.future.2020.11.001
http://dx.doi.org/10.1016/j.jnca.2020.102691
https://ams.confex.com/ams/87ANNUAL/techprogram/paper_116240.htm
http://dx.doi.org/10.1049/iet-rsn.2010.0362
http://dx.doi.org/10.3390/s18030912
http://dx.doi.org/10.3390/atmos9030096
http://dx.doi.org/10.3390/atmos10050254
http://dx.doi.org/10.1155/2021/4483907
http://dx.doi.org/10.23915/distill.00003
http://dx.doi.org/10.1109/TPAMI.2020.2982166
http://dx.doi.org/10.1109/TPAMI.2019.2893965
http://www.ncbi.nlm.nih.gov/pubmed/30668465
http://dx.doi.org/10.1109/ICPR.2010.579


Remote Sens. 2023, 15, 3676 18 of 18

31. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
32. Wang, S.; Zhou, T.; Lu, Y.; Di, H. Contextual transformation network for lightweight remote-sensing image super-resolution.

IEEE Trans. Geosci. Remote. Sens. 2021, 60, 1–13. [CrossRef]
33. Li, Z.; Yang, J.; Liu, Z.; Yang, X.; Jeon, G.; Wu, W. Feedback network for image super-resolution. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 3867–3876.
34. Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.; DeVito, Z.; Lin, Z.; Desmaison, A.; Antiga, L.; Lerer, A. Automatic

Differentiation in Pytorch. 2017. Available online: https://openreview.net/forum?id=BJJsrmfCZ (accessed on 27 December 2022).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TGRS.2021.3132093
https://openreview.net/forum?id=BJJsrmfCZ

	Introduction
	Related Work
	Radar Echo Based Resolution Improvement
	Upsampling Block

	Proposed Method
	Network Structure
	Multi-Scale Fusion Residual Block (MSRB)
	Upsampling Module

	Experiment
	Datasets and Metrics
	Implementation Details
	Comparison with Existing Technology
	Visual Comparison
	Quantitative Results


	Conclusions
	References 

