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Abstract: In the depth map obtained through binocular stereo matching, there are many ill regions
due to reasons such as lighting or occlusion. These ill regions cannot be accurately obtained due to
the lack of information required for matching. Since the completion model based on Gan generates
random results, it cannot accurately complete the depth map. Therefore, it is necessary to accurately
complete the depth map according to reality. To address this issue, this paper proposes a depth
information precise completion GAN (DIPC-GAN) that effectively uses the Guid layer normalization
(GuidLN) module to guide the model for precise completion by utilizing depth edges. GuidLN
flexibly adjusts the weights of the guiding conditions based on intermediate results, allowing modules
to accurately and effectively incorporate the guiding information. The model employs multiscale
discriminators to discriminate results of different resolutions at different generator stages, enhancing
the generator’s grasp of overall image and detail information. Additionally, this paper proposes
Attention-ResBlock, which enables all ResBlocks in each task module of the GAN-based multitask
model to focus on their own task by sharing a mask. Even when the ill regions are large, the model can
effectively complement the missing details in these regions. Additionally, the multiscale discriminator
in the model enhances the generator’s robustness. Finally, the proposed task-specific residual module
can effectively focus different subnetworks of a multitask model on their respective tasks. The model
has shown good repair results on datasets, including artificial, real, and remote sensing images. The
final experimental results showed that the model’s REL and RMSE decreased by 9.3% and 9.7%,
respectively, compared to RDFGan.

Keywords: ill regions; stereo matching; GAN; depth map repair

1. Introduction

In recent years, there has been significant improvement in the accuracy of 3D matching
algorithms in the field of 3D matching. However, there are still issues with the depth values
of ill regions. These ill regions can be categorized into occluded regions, reflective regions,
and low-texture regions.

Occluded regions occur when certain regions in a scene cannot be simultaneously
captured by all cameras in a multiview 3D matching algorithm. This results in a lack of
corresponding information and prevents the accurate generation of stereoscopic vision
using the 3D matching algorithm. Reflective regions arise due to lighting conditions that
destroy information in a specific region, making it difficult to find matching information for
that area. The lack of available corresponding information hinders the accurate matching
process. Low-texture regions occur when there is insufficient information available for
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successful matching. These regions lack the necessary features or distinctive patterns
required for effective matching. All these regions, which suffer from a lack of matching
information due to various reasons, are collectively referred to as ill regions.

Repairing ill regions in the depth map can significantly enhance the accuracy of the
overall depth map. Currently, the accuracy of 3D matching algorithms that match incorrect
depth values is mostly concentrated in ill regions. Consequently, the overall accuracy of
the depth map obtained by the algorithm depends on the accuracy of ill regions. Therefore,
addressing and rectifying these ill regions is crucial for improving the accuracy of the depth
map in 3D matching algorithms.

Enhancing the accuracy of 3D matching algorithms is particularly essential in the
industry. The inadequacy of 3D matching accuracy has previously resulted in serious
accidents, as exemplified by the Tesla Autopilot accident in 2016, which caused the driver’s
death. An investigation revealed that the 3D matching algorithm failed to identify the
truck correctly, leading to incorrect decisions by the autonomous driving system. Hence,
in industrial applications, the accuracy of 3D matching algorithms holds tremendous
importance.

Currently, there are many problems with existing depth map completion algorithms
for completing large ill regions. The main problem is that the repaired ill regions lack
detailed information, especially when the ill region is too large, resulting in incorrect
or random results. Therefore, it is necessary to use specific guidance information when
repairing ill regions to avoid repairing errors caused by the lack of detailed information in
the ill region.

Satellite depth maps have been widely used in fields such as Earth observation, natural
disaster warning, and urban planning. Although researchers have proposed a series of
depth estimation algorithms, such as stereoscopic matching, optical flow, and deep learning-
based methods, and made progress, there are still serious ill regions in the depth maps
obtained from satellite images, which limit the accuracy and precision of depth estimation.
These ill regions mainly refer to areas such as rivers and lakes, where the different reflection
strengths and angles of light due to the different satellite photographing positions make
it impossible to accurately match the corresponding images. In addition, buildings, hills,
and trees in the images also generate occlusion areas due to the different photographing
positions and angles. Although there are already some models available for processing
these problem areas and improving the accuracy and precision of depth estimation, the
results are not satisfactory. We proposed depthFillGan, a model that repairs ill regions in
depth maps by using depth edges as guidance information. This model can effectively
utilize the guidance information to fill in the lost details in the ill regions, thus improving
the reliability of the completion of depth maps.

There are many problems with existing depth map completion algorithms for complet-
ing large ill regions. The main problem is that the repaired ill regions need more detailed
information, especially when the ill region is too large, resulting in incorrect or random
results. Therefore, it is necessary to use specific guidance information when repairing ill
regions to avoid repairing errors caused by the lack of detailed information in the ill region.

Satellite depth maps have been widely used in fields such as Earth observation, natural
disaster warning, and urban planning. Although researchers have proposed a series of
depth estimation algorithms, such as stereoscopic matching, optical flow, and deep learning-
based methods, and made progress, there are still serious ill regions in the depth maps
obtained from satellite images, which limit the accuracy and precision of depth estimation.
These ill regions mainly refer to areas such as rivers and lakes, where the different reflection
strengths and angles of light due to the different satellite photographing positions make it
impossible to match the corresponding images accurately. In addition, buildings, hills, and
trees in the images generate occlusion areas due to the different photographing positions
and angles. Although some models are already available for processing these problem
areas and improving the accuracy and precision of depth estimation, the results could be
more satisfactory. We proposed depthFillGan, a model that repairs ill regions in depth maps
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using depth edges as guidance information. This model can effectively utilize the guidance
information to fill in the lost details in the ill regions, thus improving the reliability of the
completion of depth maps.

Existing depth map completion algorithms face numerous challenges when complet-
ing large ill regions. The main issue stems from the fact that the reconstruction of these ill
regions necessitates more detailed information, particularly when dealing with large-scale
ill regions. That often leads to incorrect or random outcomes. To circumvent this problem,
it becomes imperative to utilize specific guidance information during the repair process to
avoid errors resulting from the lack of detailed information within the ill region.

Satellite depth maps have found widespread application in various fields such as
Earth observation, natural disaster warning, and urban planning. Despite the introduction
of various depth estimation algorithms, including stereoscopic matching, optical flow,
and deep learning-based methods, significant ill regions remain within the depth maps
obtained from satellite imagery. Consequently, the accuracy of depth estimation are limited.
These ill regions primarily manifest in areas like rivers and lakes, where the varying
reflection strengths and angles of light in satellite images impede accurate image matching.
Furthermore, buildings, hills, and trees in these images create occlusion areas due to the
differing photographing positions and angles. While certain models have been proposed
to address these problematic areas and enhance depth estimation accuracy and precision,
the results have been suboptimal.

We propose a model called depth information precise completion GAN (DIPC-GAN),
which repairs ill regions in depth maps by utilizing depth edges as guidance information.
This model effectively leverages this guidance information to fill in the missing details
within the ill regions, thereby improving the reliability of depth map completion. Figure 1
demonstrates the model’s efficacy.

Figure 1 illustrates the limitations of RDFGAN in effectively utilizing guidance in-
formation to repair diseased areas within reflective regions like rivers and lakes. On the
contrary, our model successfully utilizes the provided guidance information to repair re-
flective regions effectively. Similarly, RDFGAN encounters difficulties when attempting
to rectify occlusion areas in regions obstructed by buildings due to its limited ability to
leverage guidance information efficiently. As a result, the repairs in these areas are less
accurate, as the model struggles to determine whether it should repair the occlusion area
based on the depth information of the roof or the ground. In contrast, our model excels in
precisely repairing occlusion areas in such regions.

This article makes the following contributions:

• By using a GAN network for the precise correction of deep images, this article pro-
poses a multiscale discriminator GAN network for repairing stereoscopic images. The
multiscale discriminator can distinguish between different scales of results, allow-
ing the generator to learn overall features more effectively and strengthening the
generator’s learning of details at different scales.

• We propose the GuidLN module, which effectively introduces guidance information
to guide the generator. To accurately repair large ill regions, we design the GuidLN
to effectively utilize deep edges as guidance information to enable the generator to
perform precise repair on ill regions.

• We propose an attention module that effectively enables the generator and discrimina-
tor subnetworks of the GAN model to adapt better to their respective tasks. Specifically,
in the multiscale discriminator network proposed in this article, the attention module
can enhance the performance of different discriminators by enabling them to focus on
the most relevant features for their specific task.
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Figure 1. In the figure, (a) is the satellite reference image, and (b) is the depth map of the reference
image, which contains a large number of ill regions, including reflective rivers, lakes, areas blocked
by buildings and trees, etc., which are marked as black. (c) is the depth map of the repaired image by
the RDFGAN model, and (d) is the depth map of the repaired image by our model. It can be seen
that both the reflective rivers and lakes and the occlusion areas caused by buildings and trees have
been well repaired.

2. Related Work

The current research focus on depth map completion technology is mainly on complet-
ing sparse depth maps into dense depth maps. Dense depth maps can be obtained from
sparse images or point clouds obtained by a lidar.

Traditional methods use matrix interpolation to complete depth maps. In the litera-
ture, [1] uses semantic segmentation relationships to interpolate the matrix, while [2] uses
constraints on the edges of sparse and dense depth maps to complete the interpolation and
restoration. The authors of [3] use RGB images to restore sparse depth maps, which have
rich information. Although this is too redundant for depth map restoration work, it is more
effective compared to previous methods.

Although there are many image completion algorithms, there are still few algorithms
for depth map completion. In non-deep learning methods, [4] selects noncovered points
near the covered points to replace the covered points. The authors of [5] use a video’s
previous and future frames to complete the depth map. The authors of [6] improved a
random forest model, which iteratively inputs RGB images and depth maps until the ill
regions disappear. The authors of [1] use the relationship between semantic segmentation
to interpolate the matrix, and the authors of [3] use RGB image information to repair sparse
depth maps.

With the continuous development of neural networks and deep learning, image
repair and completion using deep learning techniques is also a hot research topic in image
restoration. However, research on depth map completion is still insufficient, such as [7],
where the authors use RGB images to guide the completion of sparse visual difference
maps into dense visual difference maps. The authors of [8] use traditional image processing
methods to fill the sparse depth maps in the KITTI dataset.
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The authors of [9] use CNN to process sparse differential images by designing a mask
image to mark the sparse differential images and generate a dense image by processing
the differential and mask images. The authors of [10] improve this method by modifying
it, resulting in better results. The authors of [11] generate a confidence map to mark the
confidence of each pixel’s differential value and then generate a dense differential image
through propagation. The authors of [12] obtain better dense differential images by iterating
and repairing sparse differential images to dense differential images continuously. The
authors of [13] extract features from RGB images and use an encoding network to extract
features from sparse differential images. The features of RGB images are integrated into
feature maps during the decoding process, and three different scales of encoding networks
are used to fill the sparse images. The authors of [14] use normal vectors to fill sparse
differential images. The authors of [15] input RGB images and sparse differential images,
generate a confidence map, and use nonlocal propagation for spatial propagation to fill the
differential image. Although these methods have been studied extensively, they mainly
focus on completing sparse depth maps produced by devices such as lidar [16]. They need
to provide deep completion for large areas.

The authors of [17]. use RGB images as input to predict object surfaces’ dense polygons
and occlusion information. These predictions are then combined with the original depth
map through global optimization to address missing pixel issues in the original image.
However, the algorithm takes a long time to execute. The authors of [18] input RGB images
and depth maps into a multiscale network for learning and obtaining predicted depth
maps, which are used for depth map completion. These methods directly utilize RGB
images to repair depth maps introduce redundancy, resulting in less ideal repair results.
The authors of [19] categorize the repair areas into 12 types and use semantic segmentation
images to guide the filling of the repair areas. However, semantic segmentation images
still contain redundancy because the depth of the same target in the semantic segmentation
image may not be the same. The authors of [20] super-resolve low-resolution depth maps
to obtain high-resolution depth maps. Then, a texture edge extraction network is used
to obtain texture edges in the RGB image. Finally, the initial depth map is optimized to
obtain a repaired depth map. This method uses texture edges for depth map optimization,
but texture edges are not effective in guiding depth map repair, because there is still
excessive redundancy.

Goodfellow [21] proposed the generator–discriminator network (GAN) in 2014, which
has since been applied to numerous scenarios in digital image generation, such as image
super-resolution, image editing, and so on. In particular, GAN has been applied to image
restoration. The authors of [22] train a general restoration network by using a GAN to
generate training data. However, the network is not used for ill region restoration. The
authors of [23] propose a style transformation method for generating complete depth maps.
The authors of [24] design a network with two branches: the first branch uses an encoding–
decoding approach to convert sparse or incomplete depth maps into complete depth maps,
while the other branch uses a GAN network to perform depth map style transformation
on RGB images to generate depth maps for restoration. The authors of [25] use domain
adaptation methods to design and train networks, generating geometric information or
noise on synthetic datasets to mimic real datasets. The GAN network generates RGB images
more consistent with real-world scenarios to assist network training. Since the accuracy
of the depth maps generated through this style transformation is low, the performance of
depth map completion could be improved.

Although GAN-based models can generate images that conform to the data distri-
bution, which is acceptable for general generative tasks, there is an increasing demand
for tasks that require more than random generation. Hence, there is a need to properly
guide the models for completion. Many completion models currently use conditional infor-
mation to guide the generation of desired results [26]. There are primarily two methods
to incorporate guiding information into models. The first approach involves introducing
the guiding information through the loss function. For instance, Liu et al. [27] added an
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edge loss term to the overall loss function. Hegde et al. [28] proposed gradient-aware
mean-squared error loss (GAMSE) that effectively harnesses edge information. The second
approach involves integrating the guiding information into the model itself [29], meaning
incorporating the guiding information during the model’s inference process. Conditional
information can also be used to guide GAN models in depth map restoration. Numerous
studies focus on how to use conditional information to guide or constrain the generation
results of GAN models, such as conditional self-attention [30] and domain adaptation [31].
These models incorporate guiding information into the inference process, which generally
satisfies the requirements for incomplete tasks that do not require high precision. In depth
map completion, they can restore minor ill regions or convert sparse disparities into dense
disparities. However, when the ill regions are too large, these models cannot effectively use
the guiding information to restore the lost details, thus failing to meet the requirements
for depth map completion. Accurate completion is crucial for depth map restoration tasks,
particularly in autonomous driving scenarios where inaccurate completion due to large ill
regions could lead to serious safety hazards. To effectively reintegrate detailed information
into ill regions, this paper proposes GuidLN, which can effectively incorporate detailed
information between different stages of the generator. This approach effectively guides the
generator to accurately restore large ill regions.

Currently, many models require collaboration between multiple tasks, typically falling
into three types. The first type directly concatenates multiple tasks and then inputs them
into the main network [32]. The second type merges intermediate features of different
tasks [33]. The third type aggregates the results from different tasks to obtain the final
result [34]. Recent approaches have introduced more complex fusion methods, such as
image-guided spatially variant convolution [16] and graph propagation [35]. However,
these algorithms only fuse different tasks at different stages without considering the inter-
ference that may occur between tasks, making it difficult to effectively train all tasks in the
model and seriously affecting the algorithm’s performance. GAN models themselves are
also multitask models, typically consisting of a generator and a discriminator, each respon-
sible for different tasks. The generator generates results, while the discriminator evaluates
the reasonability of the generator’s outputs. In this paper, since the GAN model uses three
discriminators for three different resolutions of results, it is more heavily impacted. To
address this issue, we propose Attention-ResBlock, which enables different tasks in the
multitask model to effectively focus on their respective tasks, thereby ensuring that the
performance of the multitask model is not affected.

3. Methods

We designed an end-to-end network, Depth-GanNet, for restoring ill regions in depth
maps, such as occluded, reflective, and low-texture regions. These regions cannot be
accurately obtained due to the lack of information. We will introduce Depth-GanNet in
three parts: the main network, GuidLN, and AttentionResNet modules.

3.1. Depth Information Precise Completion GAN

The overall structure is shown in Figure 2, where the generator of Depth-GanNet uses
a U-shaped network as the main structure of the generator network, and the input of the
network is a stereoscopic image containing diseased areas. In the decoder structure of the
generator, we will obtain different scale results, whose sizes are respectively 1/4 of the
original size, 1/2 of the original size, and the original size of the resulting image. In the
network, we design three different discriminators to distinguish these results. The input
of the generator is the depth map with labeled diseased areas and the depth edge map,
where the depth map is used as the input of the generator’s first layer of convolutions.
The depth edge map is fused as guidance information in the various convolution blocks of
the generator to guide the generator to repair the depth map more effectively.
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Figure 2. The overall structure of the model.

In this paper, we designed three discriminators to improve the generator’s perfor-
mance, composed of residual blocks. During training, the generator generates three differ-
ent scales of results during the decoding process. This paper uses three discriminators to
evaluate these three scales of images, which can comprehensively improve the generator’s
performance. Detecting small-scale images can better evaluate the overall quality of images,
while evaluating large-scale images emphasizes the evaluation of details. Using multiscale
discriminators to evaluate different scales of images can comprehensively detect the quality
of images generated by the generator, making the network more precise and robust. As
the generator decodes the feature map at each step, it can obtain more details from the
feature map, and the images generated by the generator become more detailed. Therefore,
evaluating the smallest-scale images focuses on evaluating the global information of images,
helping the generator better learn global information. As the scale of the images increases,
the discriminators can combine the new detailed information added by the generator to
evaluate them, helping the generator better learn details.

3.2. Attention-ResBlock

The residual module is widely used in various tasks due to its excellent performance.
In the network structure of this article, the edge extraction network and the generator and
discriminator of the GAN network use residual blocks as the basic convolutional module.
To make the generator and different discriminators adapt and focus on their own tasks, we
propose the AttentionResNet block, which improves the ResNet block by incorporating
a double-attention layer. The layer in ResNet obtains the weight of the feature map by
calculating the correlation between the input feature map and the output feature map.
The modules in different tasks adapt to their tasks by sharing weights. The structure of the
module is shown in Figure 3.

Figure 3. The structure of Attention-ResBlock.

The first layer is the task mask layer, which shares parameters with the entire subtask
network, allowing the residual block to focus on the current task. For example, in the
generator of the adversarial generation network described in this article, the task mask
layer of each ResNet block shares parameters to focus on the image generation task of
the generator. The three discriminators in the model also have a shared task mask layer
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for each resolution, allowing them to focus on different tasks at different resolutions.
The second layer is the adaptive mask layer, which does not share parameters with other
Attention-ResBlock layers. It obtains the required weights for the block itself, allowing
the Attention-ResBlock to have its weight adjustment function under the task mask layer.
The calculation formula for the Attention-ResBlock is as follows:

y = sigmoid(weightm2 · sigmoid(weightm1 · I)) ∗O (1)

The operator “·” represents the convolution operation, while the operator “∗”
represents the matrix multiplication operation. The parameter weightm1 is the mask layer
parameter of the module, while weightm2 is the mask layer parameter of the residual block.
The output of the right-hand two ordinary convolutions is O.

The AttentionResBlock in this article allows the generator and discriminator of the
GAN network to focus more on their respective tasks. All residual blocks in the same task
can learn to extract the necessary features more effectively. In the multiscale discriminator
of this article, each discriminator can also focus on its discriminator task.

3.3. Guid Layer Normalization

When employing GANs to repair diseased areas, the model has the capability to utilize
the surrounding information and incorporate global information in order to complete the
depth of the region. However, the loss of details remains an issue, particularly in larger ill
regions. Consequently, to prevent the introduction of random or incorrect fill-in information,
it becomes essential to guide the network in repairing the image details of the ill regions.

Using RGB images or semantic images as guidance information can introduce
redundancy, which may lead the network to perform erroneous repairs. In contrast,
the utilization of depth edges as guidance information can effectively minimize redun-
dancy. By relying on depth edges, the network can better focus on the specific details
necessary for accurate repair work, resulting in improved performance and reduced likeli-
hood of incorrect repairs.

To effectively guide the network in repairing details in a depth map, this paper
proposes the GuidLayerNormalization(GuidLN) module placed after the generator net-
work’s feature extraction stage. This allows the generator to utilize guidance information
better to supplement missing detail information, resulting in more accurate repair results.

As shown in Figure 4, the module accepts two inputs: the intermediate features map
and the guidance map of the generator’s output. Similar to the batch normalization module,
σ is calculated for each channel of the feature map. The σ is used for two purposes. Firstly, it
serves as the weight of the guidance information required for the feature map. Secondly, it
is used for subsequent normalization of the feature map to improve the training speed of
the network.

ω =
1
eσ

(2)

This paper integrates guidance information into the feature map to guide the generator
for precise completion, and then performs normalization on the feature map m to meet the
required distribution for the model task.

y = γc

(
hg − µc|g

σc|g
+ ω ∗

hx − µc|x
σc|x

)
+ βc (3)

where h is the activation value processed by the activation function in the generator,
µc|g and σc|g are the mean and variance of the guidance information in channel c, µc|x
and σc|x are the mean and variance of the feature of input in channel c.

µc =
1

NHW ∑
n,y,x

hn,c,y,x (4)
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σc =

√
1

NHW ∑
n,y,x

((
hn,c,y,x

)2 − (µc)
2
)

(5)

where γ and β are parameters designed to enhance the adaptability of the model. Unlike
other models that input other information directly with the feature map into the module,
we provide guidance throughout the entire generation process, allowing the guidance
information to effectively guide the generation process. Since directly using guidance
information would prevent the model from effectively integrating it into the feature map,
we perform normalization on the guidance information and feature map information before
effective fusion within a common standard range. This avoids dominant parameters being
determined by data with large or small distributions, which can otherwise lead to unstable
training. After fusion, the model can adaptively adjust the distribution of the feature map
using the learnable γ and β parameters.

Figure 4. The structure of Guid normalization.

4. Experiments
4.1. Loss Function

The L1 loss and the L2 loss are the most widely used loss functions, but they have
advantages and disadvantages. The L1 loss is relatively stable in the early stages of training,
and noise in the dataset has a smaller impact on network training. However, it can cause
difficult convergence in the later stages of training. On the other hand, the L2 loss is
relatively smooth in the later stages of training, but it is more affected by noise in the early
stages of training.

The smoothL1 loss function, developed on top of these two losses, enjoys both ad-
vantages. It is stable in the early and middle stages of training and smooth in the later
stages, making it easier for the network to converge. Therefore, we adopt the smoothL2 loss
function as the basis for designing the loss function of our model.

The output of the discriminator in this experiment is a tensor. The discriminator
includes loss functions for both positive and negative examples. The loss function for
negative examples of discriminator is shown in Formula (6):

LDF = smoothL1(F− D(Yi, xi)) =

{
0.5 ∗ |F− D(Yi, xi)|2, if |F− D(Yi, xi)| < 1
|F− D(Yi, xi)| − 0.5, otherwise

(6)

The loss function for positive examples of discriminators is shown in Formula (7):

LDR = smoothL1(R− D(Yi, Yi)) =

{
0.5 ∗ |F− D(Yi, Yi)|2, if |F− D(Yi, Yi)| < 1
|F− D(Yi, Yi)| − 0.5, otherwise

(7)
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The total function of discriminators is shown in Formula (8):

LD = 0.5 ∗ (LDF + LDR) (8)

where F is a tensor corresponding to the negative examples, R is a tensor corresponding to
the positive examples, and Yi is the groundtruth.

The generator loss function contains two parts: the loss relative to the groundtruth
and the loss caused by the discriminators.

LG = smoothL1(Yi − G(xi)) =

{
0.5 ∗ |Yi − G(xi)|2, if |Yi − G(xi)| < 1
|Yi − G(xi)| − 0.5, otherwise

(9)

The total function of generator is shown in Formula (8):

L = LG +
n

∑
i=1

λiLDi (10)

This paper presents a GAN-based depth map completion model that utilizes three
different scales of discriminator. The generator’s loss function is denoted as LG, while the
loss functions of the different discriminators are LD1, LD2, and LD3, respectively. Each dis-
criminator has its own set of hyperparameters: λ1 = 0.3, λ2 = 0.5, and λ3 = 0.7, respectively.

4.2. Dataset

The WHU-Stereo dataset is a public dataset collected by the GF-7 satellite from China,
which contains 1757 sets of images with a resolution of 1024 × 1024. Each set of images
contains a left image, a right image, and a disparity map. Although the disparity map is
dense (each pixel contains a disparity value), it does not have accurate disparity values in
ill regions. The dataset covers a variety of scenes, including cities, mountains, and rivers.

Sceneflow is an artificially generated dataset. Since it is generated in an ideal con-
dition, it does not contain any noise. The dataset contains a variety of scenes, including
both indoors and outdoors, as well as road scenes. It contains 354,540 training sets and
4370 testing sets with a resolution of 960 × 540. Each set of images contains a left image, a
right image, and a disparity map, where the disparity map is dense.

KITTI is a real-world scene dataset with a large amount of noise. The dataset includes
KITTI2012 and KITTI2015, mainly used for highway driving scenarios. KITTI2015 con-
tains 200 sets of images for training with a resolution of 1242 × 375. KITTI2012 contains
194 sets of training images. Each set of images used in the dataset contains a left image,
a right image, and a disparity map. The disparity map in the dataset is obtained from Lidar,
so it is a sparse disparity map.

4.3. Metric

All the metrics for evaluation are shown as follows:

RMSE(mm) :

√
1
v ∑

x

(
ĥx − hx

)2
(11)

MAE(mm) :
1
v ∑

x

∣∣∣ĥx − hx

∣∣∣ (12)

iRMSE(1/km) :

√
1
v ∑

x

(
1
ĥx
− 1

hx

)2
(13)

iMAE(1/km) :
1
v ∑

x

∣∣∣∣ 1
ĥx
− 1

hx

∣∣∣∣ (14)
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δτ : max

(
hx

ĥx
− ĥx

hx

)
< τ, τ ∈

{
1.25, 1.252, 1.253

}
(15)

4.4. Results

We compared recent models used for image or depth map completion in our experi-
ments, including NLSPN [15], PRR [36], ACMNet [35], DySPN [37], UARes [38], and RDF-
GAN [24]. As shown in Figure 5, the RDFGAN model uses the original image as guidance.
However, the excessive redundancy in the original image cannot accurately guide the
model to repair the missing details. In contrast to RDFGAN, the model proposed in this
paper uses the deep edge map instead of the original image as guidance information.
Therefore, during the generation of results, we effectively avoid the excessive redundancy
brought by the original image, which is prone to misleading the model into generating
incorrect results. At the same time, our multiscale detector can also provide a compre-
hensive evaluation of the generator’s results at different scales, thereby improving the
generator’s performance.

Figure 5. The visualization results of each algorithm on the SceneFlow dataset, where (a) is the
ground truth, (b) is the disparity map after generating ill regions randomly, (c) is the label of the
ill regions, (d) is the deep edge map, (e) is the result of the NLSPN model, (f) is the result of the
ACMNet model, (g) is the result of the RDFGAN model, and (h) is the result of the model proposed
in this paper.
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Other models, such as ACMNet, cannot effectively repair lost details, and therefore
lose details during the repair process and generate incorrect repair results. In contrast
to these models, our model uses the GuildLN module to effectively introduce guidance
information into the generator so that it can be more effectively completed in areas with
much missing information and repair ill regions in the deep map.

As shown in Table 1, our algorithm achieved better results on the SceneFlow dataset,
with a reduction of 36.1% and 9.3% in REL compared to NLSPN and RDFGAN, and a
reduction of 32.3% and 9.7% in RSME compared to NLSPN and RDFGAN.

Table 1. The result on Sceneflow.

Method MAE iMAE iRMSE (m) REL RMSE (m) σ1.25 σ1.25
2 σ1.25

3

NLSPN 145.68 0.9 1.94 0.061 0.288 91.5 95.6 97.5
PRR 127.89 0.81 1.68 0.054 0.257 92.3 96.3 97.9

ACMNet 108.54 0.78 1.42 0.051 0.261 92.8 96.6 98.3
DySPN 112.95 0.82 1.46 0.053 0.243 93.4 97.8 98.7
UARes 93.58 0.71 1.39 0.047 0.224 93.6 97.5 98.5
RDFGAN 89.21 0.68 1.33 0.043 0.216 94.2 98.2 98.8

Ours 81.32 0.63 1.26 0.039 0.17 96.3 98.6 99.1

Figure 6 shows the repair results of various models on the KITTI dataset. It can be seen
that our model achieves better repair results. When the ill region contains multiple targets,
the NLSPN and RDFGAN models cannot effectively obtain detailed information, so they
cannot accurately distinguish the depths of various targets and generate incorrect repair
results. However, our model can effectively utilize guidance information to supplement
the missing detailed information in the ill region. Our model can still achieve good repair
results, even when the ill region is large.

Figure 6. In the figure, row (a) is the groundtruth, row (b) is a randomly generated ill region,
row (c) is the result diagram of the NLSPN model, row (d) is the result diagram of the RDFGAN
model, and row (e) is the result diagram of our model.

Due to the unavoidable noise influence on the real dataset, as shown in Table 2,
all models have a decline in performance on the KITTI dataset. However, our model is less
influenced by noise compared to other algorithms, since the multiscale discriminator can
distinguish results at different scales. The small-scale discriminator helps the generator
to grasp the overall structure of the image, while the large-scale discriminator helps the
generator to reduce the impact of noise while maintaining the overall image structure.
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Table 2. The result on KITTI.

Method MAE RMSE (mm) iMAE iRMSE

NLSPN 209.46 898.13 1.08 2.23
PRR 183.32 762.25 1.03 2.12

ACMNet 157.13 620.36 0.94 1.98
DySPN 162.89 572.62 0.91 1.88
UARes 153.34 531.86 0.88 1.73

RDFGan 145.63 518.18 0.85 1.69
Ours 128.21 490.37 0.81 1.65

Figure 7 demonstrates that our model achieves good repair results for ill regions when
repairing the WHU-Stereo dataset. Our model can effectively repair lost details in the
images, such as the depth information of lost trees and blurred river banks.

Figure 7. The (a) column shows a remote sensing image, the (b) column displays the disparity map
of randomly generated defective regions, the (c) column exhibits the results of the NLSPN model,
the (d) column displays the results of the PRR model, the (e) column shows the results of the UARes
model, the (f) column displays the results of the RDFGAN model, and the (g) column shows the
results of our algorithm. As the disparity map of remote sensing images is not visually prominent,
we magnified the defective regions in this experiment and adjusted the contrast of the images to
display the missed details by each model in defective regions more clearly.

4.5. Ablation Experiment
4.5.1. The Impact of GuidLN

Using concatenate to directly integrate guidance information into the repair process
does not effectively utilize repair information, as the generator in the model cannot adapt
the strength of the guidance information according to intermediate results information
according to intermediate results as shown in Table 3. However, GuidLN can effectively
integrate guidance information within a unified range.

Table 3. The result of ablation experiment.

Sceneflow WHU-Stereo
Method GildLN Discri AttenRes MAE RMSE MAE RMSE

Ours-N ! 0.105 0.223 0.315 0.832
Ours-GA ! ! 0.088 0.212 0.288 0.805
Ours-GD ! ! 0.065 0.188 0.254 0.723
Ours-DA ! ! 0.071 0.198 0.271 0.785

Ours ! ! ! 0.057 0.17 0.236 0.712
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As shown in Figure 8, when the guidance information is not integrated with GuidLN,
the model cannot achieve accurate repair when the repair area is large. Without true
guidance information to guide the model during repair, the model can only perform
random and incorrect repairs on the repair area. When the repair area is smaller, the lost
detailed information is also smaller, so the impact of not integrating guidance information
is not significant. However, when the repair area is large, there are many lost details in the
repair area, so the results of the random repair by the model generate significant errors.

Figure 8. The (a) column shows a ground truth of disparity map, the (b) column masks a large
area of repairable areas, the (c) column exhibits the results of the Ours-DA model, the (d) column
displays the results of the Ours-GA model, the (e) column shows the results of the Ours-GD model,
the (f) column displays the results of the complete model.

4.5.2. The Impact of Multiscale Discriminators

This paper compares the impact of using a single discriminator and multiple discrim-
inators on the network. When using a single discriminator, we discriminate the results
generated by the generator at the highest resolution. It can be seen from the results that
various indicators of the model are affected. Without a low-resolution discriminator, the
model lacks control over the overall structure, resulting in errors in the overall structure
of objects in the results, which subsequently affects the results. Although the model in-
corporates detailed information as guiding information, it lacks accurate discrimination
of detailed information due to the single discriminator’s limitations in discerning details.
Therefore, the final restoration results show that the model still cannot accurately complete
the ill regions.

4.5.3. The Impact of Attention-ResBlock

When regular ResNet blocks are used instead of Attention-ResBlocks, the model’s
performance is seen to be compromised. That is because with regular ResNet blocks, all
subtask modules in the network employ the same ResNet block structure. Consequently,
the ResNet blocks in individual subtask modules cannot share task-specific information,
and the subtask modules cannot fully focus on their respective tasks. That significantly
impacts the performance of the model proposed in this paper. From Figure 8, it can be
observed that although the restored results do not severely lose detailed information, the
results in terms of detail completion are unsatisfactory.

5. Conclutions

In the problem of depth map restoration, where the lack of detailed information
due to large ill regions results in deviations between the restored depth map and the
real scene, this paper proposes the DIPC-GAN model, which can accurately restore the
ill regions in the depth map. When the ill regions lack detailed information, our model
effectively integrates depth edges as guiding information to restore the missing details in
the ill regions accurately. To enhance the comprehensive learning of the generator for both
the overall and detailed depth map, we use multiple discriminators to discriminate the
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results generated by the generator at different resolutions, thereby improving the genera-
tor’s performance. For GAN-based multitask networks, we propose Attention-ResBlock,
which allows different subnetworks of the model to focus on their respective tasks, thereby
enhancing the network’s overall performance. Compared with recent generative restoration
models, our model achieves good results in the task of depth map restoration, especially
when the ill regions are large, where it can accurately restore the ill regions.
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