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Abstract: Recent years have seen a rapid rise in the generation of high-resolution topographic data
using custom-built or commercial-grade Unmanned Aerial Vehicles (UAVs). Though several studies
have demonstrated the application potential of UAV data, significant knowledge gaps still exist in
terms of proper documentation of protocols for data acquisition, post-flight data processing, error
assessments, and their mitigation. This work documents and provides guidelines for UAV data
acquisition and processing from several years of field experience in diverse geomorphic settings
across India, including undulating topography (~17 km2), alluvial plains (~142 km2), lowland-river
basin (~66 km2), and a highly urbanized area (~5 km2). A total of 37,065 images with 16 and
20 Megapixels and 604 ground control points (GCPs) were captured with multiple UAV systems
and processed to generate point clouds for a total area of ~230 km2. The Root Mean Square Error
(RMSE) for each GCP for all sites ranged from 6.41 cm to 36.54 cm. This manuscript documents a
comprehensive guideline for (a) pre-field flight planning and data acquisition, (b) generation and
removal of noise and errors of the point cloud, and (c) generation of orthoimages and digital elevation
models. We demonstrate that a well-distributed and not necessarily uniformly distributed GCP
placement can significantly reduce doming error and other artifacts. We emphasize the need for
using separate camera calibration parameters for each flight and demonstrate that errors in camera
calibration can significantly impact the accuracy of the point cloud. Accordingly, we have evaluated
the stability of lens calibration parameters between consumer-grade and professional cameras and
have suggested measures for noise removal in the point cloud data. We have also identified and
analyzed various errors during point cloud processing. These include systematic doming errors,
errors during orthoimage and DEM generation, and errors related to water bodies. Mitigation
strategies for various errors have also been discussed. Finally, we have assessed the accuracy of our
point cloud data for different geomorphic settings. We concluded that the accuracy is influenced by
Ground Sampling Distance (GSD), topographic features, and the placement, density, and distribution
of GCPs. This guideline presented in this paper can be extremely beneficial to both experienced
long-term users and newcomers for planning the UAV-based topographic survey and processing the
data acquired.

Keywords: drones; photogrammetry error; lens calibration; camera calibration; Structure from
Motion; noise removal; digital elevation model

1. Introduction

The advent and adaptation of Unmanned Aerial Vehicles (UAVs) for photogrammetric
analysis have enhanced opportunities in remote sensing in recent years. With the avail-
ability of custom-made and consumer-grade UAV systems, high-resolution images are
easier to acquire. The affordability of consumer-grade UAVs has attracted researchers from
various scientific applications, such as mapping architectural heritages [1,2], vegetation
monitoring [3–5], species identification and habitat assessment [6,7], monitoring green-
house gas emission [8], aquaculture monitoring [9–11], coastal area monitoring [12–14],
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water resources monitoring [15,16], monitoring mining hazards [17,18], landslide and natu-
ral hazard monitoring [19,20], soil moisture estimation [21], flood risk monitoring [22,23],
geomorphic change detection [24,25], and morphometric analysis [26,27]. However, high-
quality data acquisition and processing protocols for geomorphic research and development
are still poorly documented.

Most importantly, several of these studies do not contain the information necessary to
reproduce data acquisition and processing. Specifically, the protocols for flight planning
and ground control points (GCPs) collection, choice of appropriate tools (hardware and
software) and parameters, filtering steps for the generation of reliable point clouds using
Structure from Motion (SfM) techniques [25,28,29], their classification for enhancing terrain
characterization, and point cloud error assessments are seldom documented. Also, there is
rarely any documentation or guideline on data quality and the quantification and compari-
son of inherited errors of consumer-grade equipment with that of professional grade, for
scientific study [30]. As a result, researchers rely heavily on self-learning processes, which
are challenging and time-consuming, especially for those with lesser UAV piloting and
data-processing experience.

For UAV surveys, flight preparation and planning are the most crucial steps for
successful data acquisition. Unplanned or poorly planned UAV flights may result in long
field campaigns, instrument damage, or, worse, loss of life. Longer field campaigns will
eventually increase project costs and multiply the overall risk factors [31]. Therefore, careful
pre-flight planning is necessary for surveying large areas where landscape diversity might
provide several challenges, e.g., a sudden change in topography or tree line or proximity to
restricted airspace. The presence of a river may lead to stronger winds and may jeopardize
the flight. Contemporary works seldom highlight these operational limitations [3,32–34].

Numerous studies have been conducted to reduce the distortion of output resulting
from the natural variations in lens systems, using controlled environments with consistent
topography, predefined points, and small study areas [35–39]. The use of (1) converging
images from multiple angles, (2) calibrated cameras, and (3) Ground Control Points (GCPs)
have been shown to significantly reduce the doming or dishing effects associated with
unsuccessful camera calibration. However, there is a lack of research documenting the de-
formation and positional errors in variable topographical outdoor-based UAV acquisitions
with limited controls. Also, there is a lack of information about the deformation, such as
warping artifacts, which may result from human error and lead to undesired effects in the
gridded Digital Elevation Model (DEM).

Positional errors are often quantified by the Root Means Square Error (RMSE), which
calculates the absolute distances between GCPs and those from the model (DEM or or-
thophoto). Generally, an RMSE of 2.5–4.0 cm [29,40] is reported when the flight plan
ensures a significant overlap (70–95%) between images supplemented with evenly dis-
tributed GCPs. While building a DEM of a glacier system [41] in the Alps, vertical and
horizontal accuracies of 0.10–0.25 m and 0.03–0.09 m, respectively, were obtained. Similar
studies also achieved high accuracy for small areas (<2 km2) [42–44]. The horizontal and
vertical accuracy can be improved using a UAV equipped with a navigation grade Global
Navigational Satellite System (GNSS) and differential processing [20].

For small sites (<2 km2), several works by multiple researchers have used a high
density of GCPs exceeding 200 GCPs/km2 to attain high accuracy. However, acquiring such
dense GCP network is unrealistic where the survey area spans several square kilometers,
and the study is constrained by time, resources, and infrastructure access. Researchers
can also choose low-relief GCP sites that are devoid of shrubs or urban structures and
generally have more consistent topography. In contrast, large area surveying extends over
multitudes of structures and topography, for example, buildings, roadways, water bodies,
barren lands, forests, and mountains which increases the challenges in obtaining quality
GCPs with high accuracy. Thus, there should be a balance between the number of placed
GCPs due to time constrain and desired accuracy.
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The present work aims to address these knowledge gaps and provide guidelines
for (a) pre-flight preparations, (b) post-flight data processing and evaluation, including
point cloud classification and analysis, and (c) identification of the challenges, errors, and
mitigation strategies associated with acquiring high-resolution datasets. The errors and
mitigation strategies are discussed, and they have been applied and tested over diverse
terrains. Point clouds were generated using the commercially available Agisoft Metashape
Professional (AMP) Version 1.8.3 build 14298 (64-Bit, Educational License), which is the
primary photogrammetry software used in this work unless stated otherwise. Point cloud
classification and raster generation were mostly carried out with an educational version
of Lastools from Rapidlasso [45]. Point cloud and rasters were handled and viewed with
open-source software such as QGIS, pdal [46], displaz [47], and Cloud Compare (CC) [48].

2. Study Sites, Instruments, and Datasets

We have selected four sites from India representing diverse geomorphic set-
tings: (1) undulating terrain with low hills and valleys (Mandsaur, Madhya Pradesh);
(2) mixed land use terrain (Mayurbhanj, Odisha); (3) a lowland river basin (Sakri river
basin, Kawardha, Chhattisgarh); and (4) an urbanized area (Anpara thermal power
plant, Uttar Pradesh) (Figure 1). Table 1 lists the details of the UAV flights for each
site. Additional details, UAV images, and DEMs of the study sites are provided in
Supplementary Section S1.
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Figure 1. Study areas for UAV data acquisition and processing in the area of the Indus-Gangetic Plain
in India: (1) Mandsaur, Madhya Pradesh, (2) Mayurbhanj, Odisha, (3) Kawardha, Chhattisgarh, and
(4) Anpara, Uttar Pradesh.

Each site is associated with unique challenges and terrain characteristics. Mandsaur
site (1) represents terrain traversed by multiple small but mostly dry rivers. It is almost
barren except for isolated bushes and short trees on the banks of the dry river. Mayurbhanj
site (2) represents the largest of all sites and consists of a mixture of forested land, agri-
cultural lands, hills, large infrastructures, villages and towns. Kawardha site (3) covers a
small river basin (Sakri). The area has multiple land uses, including forests, hills, and a
large urban area. The Anpara thermal power plant site (4) is a highly urbanized area and is
characterized by multiple water bodies and manmade structures, such as power plants,
housing colonies, dumping yards, and high-voltage power lines.
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Table 1. Details of UAV flight operations and their characteristics.

Site. No. Flight Month,
Year

Area
(km2) No. of Flights Duration

per Flight (min)
Mission

Duration (Days) UAV Used

1 February, 2016 17 9 30–35 4 Trimble UX5
2 December, 2016 141.8 27 30–35 6 Trimble UX5
3 August, 2018 65.78 49 15–17 5 DJI Phantom 4 Pro
4 January, 2019 4.61 47 5–15 7 DJI Phantom 4 Pro

During multiple field campaigns spanning almost five years (2015–2019), aerial and
GNSS data were captured simultaneously for each study area. Aerial images were captured
by either a fixed-wing Trimble—UX5 with Sony Alpha NEX-5T camera or a Quadcopter
DJI Phantom 4 pro with its proprietary camera (model FC6310) while the Trimble R10-V10
was used to collect GNSS data. The NEX-5T camera is a fixed-lens 16 MP camera with
a focal length of 25 mm. The Phantom 4 Pro camera is also a fixed lens 20 MP camera
with a focal length of 8.8 mm. There were two identical sets of NEX-5T cameras—RGB
(Red-Green-Blue) and RGNIR (Red-Green-Near InfraRed). The RGNIR camera is equipped
with the same fixed lens as the RGB camera, except that the blue band is replaced with
a NIR band. In every project, the RGB camera was used except at Mandsaur (1). While
flying in Mandsaur (1), the RGB camera malfunctioned after three flights and was unable
to capture additional images. It was replaced with the RGNIR camera for the rest of the
mission. Since the return intensity from healthy vegetation in the NIR is greater than that
from the vegetation-free ground, dense vegetation cover results in pronounced blue colors,
an effect observed in Mandsaur (1).

3. Approach and Methodology

The UAV data acquisition and processing typically involved five steps: (1) pre-flight
planning, including UAV selection and GCP collection strategy; (2) UAV flights and DGPS
survey; (3) post-flight data processing involving advanced photogrammetry software for
generating 3D point cloud data; (4) error assessment and mitigation; and (5) generation of
DEM and ortho-photos and their accuracy assessment (Figure 2).

3.1. Pre-Flight Planning (Including UAV Selection and GCP Collection Strategy)

The mapping area was identified on Google Earth and exported to a GIS system
(QGIS). Elevation profiles were generated using the SRTM DEM to extract the minimum
and maximum heights of the study area, which guided us in determining the minimum
flight height. A proper Ground Sampling Distance (GSD) was chosen to balance the
limitations of aviation rules (400 feet or approximately 120 m as per Federation Aviation
Administration, USA) and project requirements. The GSD varied for each project depending
on the flight height. A buffer of 3 flight lines was added to the mapping area, expanding
the boundary and thereby preventing lower image counts at the edges.

The terrain was examined using Google, Bing WMS, or aerial photos for preparing pre-
flight contingency plans, which included identification of (a) launching and landing sites,
(b) emergency landing sites, (c) potential air turbulence areas, (d) restricted airspace zones,
(e) crowded regions, and (f) potential bird nesting areas. The choice of UAV depends upon
the extent of the survey, landing conditions and the takeoff zone. For a large area survey
with ample landing and takeoff space, a fixed-wing UAV is preferred. Vertical takeoff and
landing-capable UAVs are ideal for constrained regions, for example, areas covered or
surrounded by large trees. The GCPs were pre-planned by generating random points in
QGIS, preferably at least one per square kilometer, to ensure uniformity in distribution
(Figure 3). It is desirable that a slightly larger number of random points are generated
for GCPs, as several locations may not be accessible in the field. The GCP targets had a
dimension of 1 m × 1 m and were created by pasting two A4 size black papers over a white
A3 sheet, placed diagonally.
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reachable. Point locations serve as guidance to ensure homogenous point distribution. The greatest
distance between two GCPs in this instance (Mayurbhanj) is always less than 1 km. For large-area
mapping, maintaining a maximum distance between numerous GCPs is only possible with prior
planning. For this work, we downloaded the generated random points to our mobile devices, then
utilized mobile GIS apps, such as GPX viewer or Google Earth (available for download from the
Playstore or iOS app store), to locate and observe the closest likely GCP site.

3.2. DGPS Survey and UAV Flights

For topographic surveys, the GCPs were collected before the UAV flights in two ways:
(a) target markers (targets made from contrasting colors—preferably black and white), and
(b) corners of permanent structures that could be easily visible and distinguishable in the
aerial images. In the field, a Trimble R10 GNSS system was used to collect the GCPs in
RTK mode. The GNSS base station was established on relatively higher ground for wide
coverage, and the baseline distance was always kept below 10 km. When the distance
exceeded 10 km, we daisy-chained a new base using the old base. The base was observed
in static mode for a minimum of thirty minutes before locking the base coordinates. We
first positioned the GNSS rover over the GCP and waited for a minimum of 25 s. We took
45 measurements in one-second intervals and averaged them. Structures that could be seen
and distinguished from the air were chosen for locations where GCP targets were not used.
Random points were generated within the survey area using the GIS platform to guarantee
an even distribution of GCPs. A buffer of 500–1000 m (dependent on project) was chosen
for the GCP targets since these points were randomly produced and may be affected by
access restrictions.

A schedule was developed after subdividing the study region according to the flight
plan. Prior to the UAV flights, the GCP targets were laid out and measured. An example
is shown in Figure 3, where random points with uniform distribution were generated
over Mayurbhanj (2). However, several anthropogenic disturbances can lead to the loss of
GCP markers, requiring the reacquisition of data. Further, information about neighboring
communication towers and high-tension overhead wires is not readily available, and
therefore, the potential launch and landing sites should be carefully examined. In India,
high-tension lines operate at voltages between 11 and 33 kilovolts, which could interfere
with the UAV’s ability to communicate with its controller. This problem was experienced
at Anpara (4), where multiple manual flights were made between the high-tension lines
to reduce disruption of communication. Further, it is advisable to carry out UAV flights
between 9:30 and 14:30 local time, when the shadows are short, and the sun has a near-nadir
inclination angle. While capturing images over water bodies, it is preferable to avoid the
noon sunlight (11:00–13:00 h) as that may result in unwanted reflection artifacts.

3.3. Post-Flight Image Processing

The first major task of post-flight data processing is image alignment, which involves
a few mandatory and optional steps that are common to most photogrammetry software.
These processes comprise camera (lens) calibration, image bundle adjustment, GCP posi-
tioning, and dense-point cloud generation (Figure 2). We present a brief description of each
step here, and further details are provided in Section 4 and Supplementary Section S2.

3.3.1. Camera (Lens) Calibration

Different cameras were used during the image capture period. Mandsaur (1) and
Mayurbhanj (2) sites were captured using the Sony NEX-5T. Kawardha (3) and Anpara
(4) sites were captured with an RGB proprietary camera from DJI (FC6310) attached to
the UAV (DJI Phantom 4 Pro). Every image captured by a camera documents its extrinsic
parameters consisting of orientation (rotational and translational) data and a few intrinsic
data (e.g., focal length, number of pixels). The images from NEX-5T do not embed extrinsic
parameters into the image metadata and generate a separate text file. In contrast, the
FC6310 embeds information into the metadata.
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Lens distortions are the primary errors affecting the images. All objects projected
onto the image plane through the camera lens suffer a deviation from the central axis.
The radial/optical distortion is symmetric due to the lens’s inherent structure. It may be
exacerbated by material inconsistency such as microbubbles, surface or sensor defects, and
uncertainties, for example, imprecise sensor size. Since such physical inhomogeneities are
always present in field conditions, image points deviate from their original positions. Sev-
eral manufacturing defects can be mitigated through a simple correction model describing
a lens distortion. These distortions have been extensively studied by the photogrammetry
community and are often solved by applying different distortion models, which relate the
pixel coordinates of undistorted and distorted images [49,50].

Photogrammetry software first generates key points for each image. In Metashape,
a ‘key point’ is a scale-invariant feature and represents a distinctive gradient in an image.
When a key point is found and linked to multiple images, it is referred to as a ‘tie point’.
These tie points can be used to solve camera calibration parameters and camera position,
such as optical center, pixel skewness, and lens distortions [51]. Several data acquisition
campaigns calibrate their camera before takeoff to provide better inversion constraints
when solving for the camera model [52].

The original model was developed for correcting lens distortion in close-range pho-
togrammetry [53]. It assumes that radial distortion can be described by a polynomial
equation. The coefficients are determined with images from a calibration board and mea-
suring their deviation from undistorted positions. In our work, we have used AMP for
camera calibration, which relies on a modified version of Brown’s distortion model [54]. It
generates a matrix for intrinsic parameters and combines it with the extrinsic parameters,
generating 3D points from 2D image coordinates.

x = X/Z (1)

y = Y/Z (2)

x’ = x (1+ k1r2 + k2r4 + k3r6) + p2(r2 + 2x2) + 2p1xy (3)

y’ = y (1 + k1r2 + k2r4 + k3r6) + p1(r2 + 2y2) + 2p2xy (4)

u = cx + x’fx + y’skew (5)

v = cy + y’fy (6)

r2 = x2 + y2 (7)

Wherein, X, Y, and Z are the point coordinates in the local camera coordinate system.
x-y and x’-y’ represent undistorted and distorted projected coordinates on the image frame.
k1, k2, and k3 are the radial distortion coefficients, and p1 and p2—tangential distortion
coefficients. r is the radial distance from the optical center. Further, u and v are the
projected point coordinates in the image coordinate system in pixels, and fx and fy are the
focal lengths in the respective axis. cx and cy are the principal point coordinates. Here,
skew is the skew coefficients between the x- and y-axis.

For field acquisitions with limited numbers of ground control points and usually
horizontal geometry, it is generally suggested to solve for three radial lens distortion
parameters (k1, k2, k3), two tangential lens distortion parameters (p1, p2), and the center
coordinates. Higher-order correction parameters (k4, b1, and b2) are often not supported in
outdoor settings but may be used for indoor camera calibration.
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Other than the optical error, the camera system can also be subjected to external factors
like the vibration/shaking of the UAV [55]. A high shutter speed and gimbal can drastically
reduce this impact during image acquisition [56]. It is useful to calculate and store camera
distortion parameters on a regular basis to identify lens changes. They will differ between
geographic locations if temperature and pressure change [57]. A comparison of the lens
calibration system is provided in Section 4.1.

Multiple scenarios can be envisioned to analyze the impact of intrinsic camera cali-
bration parameters on the resulting point cloud. We present three scenarios which were
applied on a cluster of 3328 images (three UAV flights—1029, 1146, and 1153 images per
flight) captured by the RGB Sony NEX-5T over Mandsaur (1) area and 12 GCPs uniformly
spread over the total area.

• Case 1: The camera’s intrinsic parameters were generated from 40 images of a cali-
bration board (On-screen board in AMP) from different angles. We used a flat-screen
IPS (In-Plane Switching) display with 178 degrees of viewing angle for calibration.
The derived model was used as a starting point and was optimized during the bundle
adjustment stage. No GCPs were used. This camera model was used for processing
all images.

• Case 2: The camera intrinsic parameters were determined separately for each flight
during bundle adjustment within AMP. We did not use any pre-calibrated values as
starting points. We first grouped all images as per flight and then performed bundle
adjustments for each group of images (group 1: 1029 images, group 2: 1146 images,
and group 3: 1153 images) without GCPs, producing individual lens models for each
flight. The image groups were merged (remember—lens models were not merged),
and all 12 GCPs were placed, followed by another bundle adjustment.

• Case 3: All images were processed together (a single group containing 3328 images),
12 GCPs were placed, and bundle adjustment generated a single intrinsic model for
the camera that applies to all flights. The image bundle was realigned, and the intrinsic
parameters were optimized.

To evaluate differences, point clouds and orthophotos were compared. The 3328 photos
from the three flights were recorded on the same day to reduce inconsistency. Each flight
took between 35 and 40 min to complete. As each flight originated from the same home
point, the time between corresponding landing and takeoff times were all within ten min-
utes, and the total flight time was two hours and thirty minutes. This area receives ample
sunlight, and the maximum temperature exceeds 42 ◦C. So, there were notable changes
in ambient brightness and temperature during the flight period. We collected a total of
18 GCPs but used only 12 GCPs within the perimeter of the three flights to generate the
point cloud.

Only the parameters k1, k2, k3, cx, cy, p1, and p2 were optimized. For each scenario, the
intrinsic properties of the lens were calculated, and point clouds were generated. The point
cloud for case scenarios 1, 2, and 3 are named P1, P2, and P3, respectively. All models were
compared for scale, distortion, and positional errors. The point clouds were first registered
with each other using the Iterative Closest Point (ICP) method, and then point-to-point
distances were calculated in CloudCompare. We observed multiple sources of errors in the
resultant point cloud and have proposed mitigation strategies in the results section.

3.3.2. Image Bundle Adjustment and Filtering

After the initial image alignment and optimization step, the key points or scale-
invariant features can be used to generate a low-density point cloud that will help to place
GCPs. This product is sometimes referred to as a sparse point cloud. We used the standard
AMP settings of 40,000 tie points and 4000 key points per image. Blurred and oblique
images were removed from the processing prior to key point detection.

An optional step to improve positioning accuracy and camera calibration is to filter
the sparse point cloud by (re-)projection attributes. This is implemented through a series of
filters in ‘Gradual selection’ in AMP. Existing literature describes assumptions, method-
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ological background, and applied thresholds [30], but we emphasize that parameters may
need to be adjusted locally. We have applied several filtering steps to remove points with
low projection accuracies, for example, points that were only detected in a limited number
of image pairs or where the image (2D) to 3D coordinates were uncertain. The goal of
these iterative filtering steps is to produce a sparse point cloud with fewer but more precise
points that better describe camera locations and lens calibration parameters.

3.3.3. GCP Positioning and Camera Optimization

The process was completed in two steps. In the first step, the GCPs were positioned
on the UAV images coinciding with the central pixel of the targets or the corner of the
structures. We manually clicked more than five images containing the target. Markers with
less than five images were ignored, removed from the calculations, and used as validation
markers for assessing accuracy. Most of the GCPs with less than five images are due to
the removal of markers by anthropogenic or natural disturbances. A few GCPs were also
rejected as they were shadowed by buildings or not identifiable from the images. Only
images with a clear view of the marker were used. After precisely clicking a few images,
the automatic marker detection in AMP can help in identifying markers on new images,
speeding up the manual steps. The image alignment process was iterated along with the
placement of each GCP, ensuring the inclusion of GCPs as tie points while re-positioning
the images. To decrease processing load and increase GCP placement speed, we only
optimized camera (image) positions by forcing the camera calibration to remain constant.

In the final step, once all GCPs were positioned, we reset and recalculated the align-
ment. This step generated optimized camera parameters and positions (intrinsic and
extrinsic) using GCPs as stationary tie points. This camera configuration was used for
bundle adjustment and dense-point cloud generation, described in the next section.

3.3.4. Dense Point Cloud Generation, Noise Removal/Reduction, and
Ground Classification

The dense point cloud is the most significant output generated from the photogram-
metric steps. The dense point clouds were developed after downscaling images by a factor
of 4 (2 times by each side) to optimize storage space, signal-to-noise ratio (SNR), and
processing time (Supplementary Section S2).

We further filtered the dense point cloud by the number of image pairs used to
generate the depth maps. This is called “confidence” in AMP and refers to the number of
pairs (e.g., 4 overlapping photos will have (n − 1)! = 6 pairs). Points with less than three
pairs were removed. This point cloud was further filtered through an outlier detection
method, such as a statistical outlier filter implemented in either Lastools (lasnoise) from
Rapidlasso [45] or pdal [58]. The point cloud was tiled into smaller files (preferably
200–100 m tile sizes) to prevent memory issues with a buffer overlap of 5–10 m to allow
parallel processing (lasnoise).

After noise removal, ground detection was performed using morphological filters,
either using Lastools (lasground) [59] or pdal (Simple Morphological Filter) [60]. The
classified point cloud tiles were merged to form a noise-free point cloud (i.e., containing all
classes and only removing noise class while merging the tiles) and a point cloud containing
only ground-classified points. The ground-classified point cloud was used for Digital
Terrain Model (DTM) generation, whereas the noise-free point cloud containing all classes
was used for DSM generation.

3.3.5. Generation of DEM/DTM/Orthoimage and Accuracy Assessment

A TIN-based interpolation routine implemented in Blast2dem from Lastools was used
for interpolating a grid from the point cloud. TIN-based interpolation allows for filling
gaps through linear interpolation. A comprehensive analysis of the differences in raster
images generated from two different methodologies is presented in Section 4.2.2.
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AMP was used to generate the orthoimage in the respective GSD of the study areas.
One can use either a mesh or a gridded surface model (DSM) to generate the orthomosaic,
and we have used the DSM. We imported the noise-free point cloud and a DSM into AMP
for generating the orthoimages. The DTM and the ground point cloud should not be used
to generate the orthoimages as they may contain interpolated areas and result in gaps
or artifacts.

Accuracy assessment is an integral part of data generation. In UAV-based data process-
ing for DEM generation, accuracy can be internal or external. Internal accuracy indicates
the geometrical deformation or relative or scaling error of the point cloud. The external
accuracy is generally measured as the deviation of the DEM or orthomosaic from the GNSS
values (GCP coordinates and altitudes). The deviation, which may be expressed as RMSE
(Root Mean Square Error), was computed in the x, y, and z direction (RMSEx, RMSEy,
RMSEz, respectively) and the total RMSE (RMSEr) using the following equations:

RMSEx =

√
∑(XUAV − XGCP)

2

n
(8)

RMSEy =

√
∑(XUAV − XGCP)

2

n
(9)

RMSEz =

√
∑(ZUAV − ZGCP)

2

n
(10)

RMSEr =

√
(RMSEx)

2 +
(

RMSEy
)2

+ (RMSEz)
2 (11)

In this work, the GCPs are used to primarily check the RMSEz, because we expect the
vertical RMSE to be the largest.

4. Results and Discussion

This section presents the mitigation results of different errors generated during data
processing which will lead to high distortion of the topographic model with unrealistic
values. We also demonstrate the efficacy of the methodology developed in this work.

4.1. Stability of Lens Calibration

Lens calibration parameters of multiple missions were extracted and compiled for
each camera system to understand their variability (Table 2. As both cameras are different
systems, we normalized the variation by their mean:

Variation (in %) = (Standard Deviation)/Mean (12)

A total of 28 flights were used to generate the NEX-5T camera calibration over the
Mayurbhanj (2) area. For FC6310, 18 flights were used over the Kawardha (3) site. The radial
variation (k2 = 79.73%) and tangential (p1 = 49.77%) distortions in FC6310, a consumer-
grade camera, are higher than that of NEX-5T. Both cameras, particularly the NEX-5T,
showed high stability in their lens calibration. This can be attributed to a more stable lens
setup. The survey-grade camera has a telecentric lens (compound lens) system, wherein
multiple lenses are used on the same axis so that light rays are incident perpendicularly on
the sensor [56], greatly reducing perspective distortion. This lens system also optimizes
other factors influencing lens calibration, such as focus time and level (leading to sharper
edges of the subjects) [61], reduced noise level (as more light enters the camera and sensor
gain can be kept low), uniform illumination of the subjects (due to reduced vignette effects),
and a consistent tilt angle along the sensor plane (near parallel rays of light). Contrarily, the
FC6310 has a focus range between 1 m and infinity (endocentric camera), which mimics the
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eye and experiences perspective distortions. In this type of distortion, light rays obliquely
incident on the sensor and produce additional errors.

Table 2. Camera calibration parameters and their variability.

(a) NEX5T (n = 28 flights)

Lens
Parameters fx fy cx cy

k1
(×10−2)

k2
(×10−2)

k3
(×10−3)

p1
(×10−3)

p2
(×10−4)

Mean 3232.05 3232.07 2446.86 1618.91 −4.81 3.49 −9.27 −1.17 6.48
Std. Dev. 12.35 12.37 9.69 6.00 0.17 0.39 2.98 0.20 1.30

% Var 0.38 0.38 0.4 0.37 3.6 11.38 32.16 17.13 19.98

(b) DJI FC6310 (n = 18 flights)

Lens
Parameters fx fy cx cy

k1
(×10−2)

k2
(×10−2)

k3
(×10−3)

p1
(×10−3)

p2
(×10−4)

Mean 3779.13 3781.01 2732.90 1755.68 0.45 −0.41 5.41 0.33 −2.11
Std. Dev. 110.434 110.724 3.136 125.516 0.15 0.33 3.51 0.16 1.00

% Var 2.92 2.93 0.11 7.15 33.25 79.73 64.9 49.77 47.27

4.2. Point Cloud Error Identification and Mitigation

Here, we document some of the causes, effects, and mitigation procedures for sev-
eral errors we encountered during the topographic surveys, which are a combination of
mechanical faults, low-image quality, algorithmic limitations, or human-induced errors.

4.2.1. Systematic Doming Errors

In UAV photogrammetry, minimizing systematic doming errors takes the highest
precedence and is expressed as central doming or dishing of an area [36,62]. As we used a
fixed-wing UAV, the use of convergent images was not feasible, but the adaptive camera
modeling and other mitigation methods decreased the error to a large extent, as discussed
below.

(a) Effect of GCP on systematic doming

Using uniformly spaced GCPs is an effective and popular step to minimize the doming
error, but obtaining uniformly spaced GCPs is seldom possible in field conditions. Here, we
use data acquired from one of our sites, Mandsaur (1), for the assessment and mitigation of
the doming error using well-distributed GCPs (n = 40). To measure the extent of this error
at Mandsaur (1), the distance between point clouds was computed and compared rather
than using individual GCPs. The maximum displacement between the nearest neighbor
points between the point clouds using the Hausdorff distance [63] was calculated in Cloud
Compare using two sets of pre-generated point clouds: (a) point cloud with n = 40 GCP
called P-A and (b) Point Cloud without GCP called P-B.

Figure 4a shows that P-B suffers a noticeable bowl-shaped systematic error, concaving
upward compared to P-A. The concavity starts at the center with errors less than 2.16 m,
increasing gradually outward up to 17 m at the edges, approximately 2.1 km from the
center of the bowl. The mean elevation difference is 5.47 m, with a standard deviation
of 2.76 m. The elevation difference is plotted in a histogram, and a distinctive unimodal
pattern emerges (Figure 4b).

The GCPs aid during bundle adjustment by providing additional constraints during
matrix inversion. Our findings are in line with previous studies suggesting that the GCPs
significantly improve the accuracy of the DEMs [36,38,50,64,65]. Also, while surveying
large areas, which may include a variety of terrains such as water bodies, barren lands,
forests, mountains, and other variables such as buildings and roadways, it is not possible to
choose uniform topography, which increases the difficulty of achieving improved accuracy.
The general advice is to space GCPs at least at the four corners and in the center of the
area to survey. In this example at Mandsaur (1), we used 40 GCPs over an area of 14 km2,
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resulting in a density of 3 GCPs per km2. Our results are in contrast to earlier trials [66]
with a higher GCP density of 20 GCPs per hectare (i.e., 540 GCPs per km2), and we suggest
that well-distributed but not necessarily uniformly spaced GCPs can prevent the doming
by serving as anchorage points for the model.
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(i.e., higher elevations), while the center portion is convergent (lower elevations) compared to a
reference point cloud. This effect is referred to as a dishing effect (doming has higher elevations in the
center of the point cloud). (b) Histogram of elevation differences (dZ) calculated from point-to-point
distances using closest points between the clouds.

(b) Effect of camera calibration on systematic doming

Three sets of camera optimization parameters were generated from the three cases
described in Section 3.3.1 (Table 3). We aim to segregate the errors caused by deformation,
rotation, scaling, and lateral and horizontal shifts under these conditions and compare
them. There are two ways of comparison—using either rasters or point clouds. Rasters are
more suitable for visualization, while point clouds retain 3D and structural information.

Table 3. Calculated intrinsic parameters from NEX-5T *.

Case No.
(Point Cloud Name) Case 1 (P1) Case 2 (P2) Case 3 (P3)

Flight Numbers Flight 1 Flight 1 Flight 2 Flight 3 Flight 1

In
tr

in
si

c
Pa

ra
m

et
er

s

f 3239.95 3240.21 3241.16 3238.05 3238.91
cx −2.85 −4.76 −3.26 1.06 −4.82
cy −21.93 −23.00 −21.69 −21.10 −22.92

b1 (×10−2) 6.98 0 0 0 0
b2 (×10−1) −5.01 0 0 0 0
k1 (×10−2) −4.35 −4.78 −4.78 −4.82 −4.80
k2 (×10−2) 1.23 3.42 3.44 3.52 3.41
k3 (×10−2) 3.32 −0.87 −0.89 −0.94 −0.86
k4 (×10−2) −2.63 0 0 0 0
p1 (×10−4) 8.45 9.17 8.62 7.38 9.09
p2 (×10−4) −8.58 −8.62 −8.40 −8.70 −8.56

* Frame camera with 4912 × 3264 pixels.

To compare, we first directly converted the point clouds from Case 1, Case 2, and Case
3 to DEMs and calculated the RMSEz using 18 GCPs (Table 4). It shows that Case 2 has the
lowest errors. Thus, for all other comparisons, the point cloud and DEMs generated from
Case 2 are considered as the reference.
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Table 4. Accuracy assessment of the DEMs.

Sl. No.
GCP Altitude

(in m)

DEM (z) in m RMS (dz) in cm

Case 1 Case 2 Case 3 Case 1 Case 2 Case 3

1 398.26 398.28 398.29 402.50 2.40 3.40 424.40
2 394.08 394.27 394.20 397.11 18.70 11.70 302.70
3 397.71 397.75 397.69 400.54 4.00 2.00 283.00
4 393.39 393.42 393.40 396.82 3.30 1.30 343.30
5 403.02 403.00 403.02 407.91 2.10 0.10 488.90
6 405.09 405.04 405.13 411.11 5.30 3.70 601.70
7 400.73 400.76 400.75 408.05 2.80 1.80 731.80
8 391.84 391.87 391.83 398.62 3.30 0.70 678.30
9 395.35 395.35 395.32 401.33 0.20 3.20 597.80
10 388.03 387.99 387.98 391.75 3.50 4.50 372.50
11 393.19 393.17 393.18 396.56 2.00 1.00 337.00
12 382.62 382.67 382.62 386.23 5.00 0.00 361.00
13 376.19 376.22 376.21 378.84 3.10 2.10 265.10
14 387.59 387.59 387.59 390.23 0.40 0.40 264.40
15 399.55 399.51 399.54 401.96 3.70 0.70 241.30
16 398.64 398.65 398.69 401.60 1.50 5.50 296.50
17 405.56 405.65 405.61 408.00 9.10 5.10 244.10
18 405.52 405.69 405.63 408.32 17.40 11.40 280.40

Average (in cm) 4.88 3.26 395.23

We subsampled the point clouds with densities of 37.83 to 38.14 points/m2 to a lower
density of 1 point/m2 (Table 5) to reduce computational load. Subsampling was done using
the point closest to the centroid of the 1 m grid. The total number of points decreased to
3.73 × 106. We refer to the corresponding subsampled point clouds for Case 1, Case 2, and
Case 3 as P1, P2, and P3, respectively. We then aligned the point clouds P1 and P3 to the
reference point cloud P2 using ICP.

Table 5. Statistics of point cloud generated.

Before After

Description P1 P2 P3 P1 P2 P3

Total No of points (106) 140.48 140.51 139.43 3.73 3.73 3.73
Point density
(points/m2) 38.13 38.14 37.83 1.01 1.01 1.01

Point spacing (m) 0.16 0.16 0.16 0.99 0.99 0.99

Both point clouds (P1 and P3) did not experience scaling errors, and the boundaries
matched (Table 6). The final registration RMSE was calculated over 3.73 × 106 points
and resulted in 0.15 m and 1.39 m for P1 and P3, respectively. No rotational change was
observed between P1 and P2, but a rotation of 0.2 degrees was calculated between P1 and
P3. Also, the center of P3 observed an RMS shift of 9.21 m.

Table 6. Registration Parameters.

Description P1 vs. P2 P2 vs. P3

Scaling 0.00 0.00

Translation Axis (m) 0.33; −0.31; −0.89 −0.19; −0.76; −0.63
Rotation Angle (deg) 0.00 0.20

Center shift (m) 0.44; 0.10; 0.20 5.73; −5.33; −4.86

The registered point clouds were used to generate the DEMs (D1, D2, and D3 for the
corresponding P1, P2, and P3) and the orthomosaic. Figure 5a shows the distribution of the
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z-distances between the DEMs D1 to D2 (dZd1d2) derived from the aligned point clouds P1
and P2. These show minimum deviation from the base DEM (D2). However, we observed
a significant difference between D3 and D2 (Figure 5b). Also, it can be observed that D1
is tilted in the SW direction by a meter (Figure 5c) while D3 is experiencing systematic
deformation (Figure 5d).
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We also generated random control points over the area to assess the RMSEr. Within
the area, we marked 15 points that can be identified on both—the orthoimage and the DEM.
The horizontal and vertical differences were calculated (Table 7). It was observed that the
GCP points from D1 and D2 had a very low RMSEr (6.86 cm and 5.8 cm), while those from
D3 showed a higher RMSEr (731.12 cm).

The above experiment establishes that camera calibration affects the absolute accuracy
of the point cloud regardless the presence of GCPs. Case 2, which involved individual
camera calibration for each flight, had the least distortion and RMSE error. This suggests
that using individual lens models for each flight can better capture changing conditions
and produce more accurate results. Further experiments were conducted on other regions
to check the dependency of parameters on the bundle adjustment process, but the results
consistently showed that flight-wise lens calibration provided the best outcomes. Thus, it
can be concluded that data obtained from each flight is unique, and dynamic lens calibration
is necessary even if the same camera system is used. This also emphasizes that errors in
lens calibration have a detrimental effect on the result and may eventually lead to warping
in the resulting point cloud. A proper lens correction, preferably generated during the
image alignment phase and proper placement of GCPs, can efficiently mitigate this error.
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Table 7. RMSE comparison of Orthoimage and DEM generated from different lens calibrations.

GCP
RMSEr Error (cm)

Case 1 Case 2 Case 3

P1 15.1 10.3 744.1
P2 2.1 5.5 759.5
P3 14.5 8.2 638.7
P4 8.2 4.4 685.5
P5 5.1 3.7 699
P6 3.8 4.4 842
P7 1.9 5.3 966.8
P8 6.9 5.8 914.7
P9 7.5 4.2 777.1
P10 5.7 6.6 744.3
P11 6.3 5.6 631.4
P12 1.4 5 627.3
P13 6.9 4.4 658.4
P14 6.7 5.7 655.1
P15 10.8 7.9 622.9

RMSE 6.86 5.8 731.12

(c) Human-Induced systematic error (incorrect GCP positioning in images)

The GCP positioning in images can be partly solved manually and, in some cases,
automatically. Manual verification of automatically placed points is advisable. Choosing
the correct pixel representing the center of the target or corners of the building was a
challenging task. Due to the rectangular nature of the pixels, circular targets display a
blocky structure with a diffused contact between the black and white patches leading to
an uncertainty of two to four pixels in placing GCP marker positions. This converts to an
error of 2–4 times the GSD in the horizontal plane per GCP.

An exercise was carried out to check the effect of incorrect positioning of the GCPs on
the images (i.e., simulating a human error) in a 250 m × 300 m area from Mandsaur (1) with
a GSD of 4.11 cm generated out of 30 images. The targets constituted a minimum area
of 24–25 pixels in all images. Two GCPs were precisely placed, and the pixel error for
the GCPs was computed as 0.635 and 0.661 pixels (2.61 cm and 2.72 cm, respectively).
This served as the error-free model (P-A). Then, both GCPs were deliberately moved by
2–3 pixels from the center in a random direction to induce a synthetic positioning error of
2.615 pixels and 2.559 pixels (10.7 cm and 10.5 cm, respectively) and a new point cloud (P-B)
was generated. The point clouds for both models were classified, and all points except
ground were deleted. It is important to note that the presence of vegetation may hinder the
quantification of the errors.

The total error is a combination of translation, rotation, and deformation (systematic
error). P-A was then registered with the original point cloud of Mandsaur (1) (Figure 6a)
and was observed to have a maximum error exceeding 0.12 m. To determine the systematic
error only, P-B was registered to P-A. In the next step, cloud-to-cloud distances were
calculated (Figure 6b). A systematic error was observed, which extended from the center
to the edge of the area. The maximum doming error (vertical offset between points) was
greater than 12 cm.

Two DTM rasters were generated from the original point clouds, and the difference in
elevation (dZ) was calculated (Figure 6b). The area was observed to incline towards the
north-western direction by 30 cm (Figure 6c), and the tilt was calculated as 9.4 cm for every
100 m. Along the north-south direction, a slope of 6 cm per 10 km was observed (Figure 6c).



Remote Sens. 2023, 15, 3692 16 of 27Remote Sens. 2023, 15, x FOR PEER REVIEW 17 of 27 
 

 

 
Figure 6. Gridded raster based on the cloud-to-cloud distance and the tilt when GCPs are moved (a) 
Difference (dZ) between P-A and original Mandsaur point cloud. (b) Difference (dZ) between P-A 
and P-B (c) dZ profile shows a tilting of the area towards SE. 

This demonstrates that the incorrect placement of two markers by 1–2 pixels will 
propagate and induce systematic doming error. Also, this underlines the importance of 
accurate GCP acquisition because the surveyor must judge the points based on the prob-
able aerial visibility from the perspective of the UAV and not based on terrestrial visibility. 
Due to the rectangular nature of the pixels, circular targets display a blocky structure with 
a diffused contact between the black and white patches leading to an uncertainty of two 
to four pixels in placing GCP markers. This adds an error of 8.22 to 16.44 cm in the hori-
zontal plane per GCP. This resolution-related offset error is introduced at the beginning 
of the photogrammetry process. To make the primary process error-free, boxes were 
drawn on the target images and markers were placed in the center. We also observed 
changes in the shape of the same square marker in different images, which made identifi-
cation of the central point difficult and added to the error in positioning the marker. 

4.2.2. Errors during DEM and Orthoimage Generation 
The DEM (or DSM) is significantly influenced by the quality of the ground-point clas-

sification and the interpolation algorithms to transform the irregular point cloud into an 
equally spaced grid. Lastools relies on a TIN interpolation [67], whereas AMP uses a 
weighted interpolation method known as Total Generalised Variation Fusion (TGV-Fu-
sion) [68,69]. Naturally, the results in complex terrain are likely to differ. A comparison 
was made between the quality of the generated DEMs and their efficacies for morpholog-
ical applications. We emphasize that this comparison is only valid for this specific topo-
graphic setting, and results may differ in other landscapes. A small point cloud of 50 m × 
25 m was extracted close to a riverbank in the Kawardha (4) area with a linear slope devoid 
of large boulders or objects. It was then separately processed using AMP and the TIN-

Figure 6. Gridded raster based on the cloud-to-cloud distance and the tilt when GCPs are moved
(a) Difference (dZ) between P-A and original Mandsaur point cloud. (b) Difference (dZ) between P-A
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This demonstrates that the incorrect placement of two markers by 1–2 pixels will
propagate and induce systematic doming error. Also, this underlines the importance of
accurate GCP acquisition because the surveyor must judge the points based on the probable
aerial visibility from the perspective of the UAV and not based on terrestrial visibility. Due
to the rectangular nature of the pixels, circular targets display a blocky structure with a
diffused contact between the black and white patches leading to an uncertainty of two to
four pixels in placing GCP markers. This adds an error of 8.22 to 16.44 cm in the horizontal
plane per GCP. This resolution-related offset error is introduced at the beginning of the
photogrammetry process. To make the primary process error-free, boxes were drawn on
the target images and markers were placed in the center. We also observed changes in
the shape of the same square marker in different images, which made identification of the
central point difficult and added to the error in positioning the marker.

4.2.2. Errors during DEM and Orthoimage Generation

The DEM (or DSM) is significantly influenced by the quality of the ground-point
classification and the interpolation algorithms to transform the irregular point cloud into
an equally spaced grid. Lastools relies on a TIN interpolation [67], whereas AMP uses
a weighted interpolation method known as Total Generalised Variation Fusion (TGV-
Fusion) [68,69]. Naturally, the results in complex terrain are likely to differ. A comparison
was made between the quality of the generated DEMs and their efficacies for morphological
applications. We emphasize that this comparison is only valid for this specific topographic
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setting, and results may differ in other landscapes. A small point cloud of 50 m × 25 m
was extracted close to a riverbank in the Kawardha (4) area with a linear slope devoid of
large boulders or objects. It was then separately processed using AMP and the TIN-based
interpolation implemented in Blast2dem (Lastools) to interpolate the point cloud to a
gridded DEM with a resolution of 16.4 cm (Figure 7a). An edge map was generated using
the zero-crossing “edge detection” function in QGIS. The function processes an image for
edge detection and generates a raster showing the location of the boundaries of elevation
change (Figure 7b). Edge detection was used to identify the natural breaks in the DEM
compared to contouring, wherein artificial breaks are generated. It was observed that
the edges in AMP were segregated, forming pits or bulges instead of showing natural
linear features. Profiles (Figure 7c) drawn along the transects do not represent a smooth
change in elevation but rather a continuous sequence of pits and bulges with intermittent
smoothening. Contrarily, in the DEM from Lastools, the edges are continuous and form a
pattern analogous to a linearly sloping surface. The surface is also free from artificial pits
and bulges. The TIN-based interpolation preserved the natural intricacies of the surface
better by generating a continuous linear texture with natural grading of elevation.
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created in the DEMs (see description in the text). (c) Comparison profile of DEMs generated from the
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employed by AMP.

It was observed that the resolution of the images for generating the point cloud
determines the quality of the final orthoimage. With lower resolution settings using
downscaled images [67], processing speed can be increased, but accuracy may suffer due
to loss in edge generation in Orthoimages (Figure 8). We suggest processing at half the
original resolution to maintain the balance between data quality and processing time
(Supplementary Section S2).

As we aimed to generate a topographic map of the Kawardha (3) area, images were
always taken from the nadir position, and GCPs were captured over corners of structures
(Figure 9a). Due to the lack of tilted photos in our work, most of the edges of the raised
structures were poorly represented, although they were visible in the orthoimages and
coincided with the GCPs (Figure 9b). This resulted in gradual slopes rather than sharp flat
walls (Figure 9c,d), generating a height difference at the corners of 3.08 m.



Remote Sens. 2023, 15, 3692 18 of 27

Remote Sens. 2023, 15, x FOR PEER REVIEW 18 of 27 
 

 

based interpolation implemented in Blast2dem (Lastools) to interpolate the point cloud to 
a gridded DEM with a resolution of 16.4 cm (Figure 7a). An edge map was generated using 
the zero-crossing “edge detection” function in QGIS. The function processes an image for 
edge detection and generates a raster showing the location of the boundaries of elevation 
change (Figure 7b). Edge detection was used to identify the natural breaks in the DEM 
compared to contouring, wherein artificial breaks are generated. It was observed that the 
edges in AMP were segregated, forming pits or bulges instead of showing natural linear 
features. Profiles (Figure 7c) drawn along the transects do not represent a smooth change 
in elevation but rather a continuous sequence of pits and bulges with intermittent smooth-
ening. Contrarily, in the DEM from Lastools, the edges are continuous and form a pattern 
analogous to a linearly sloping surface. The surface is also free from artificial pits and 
bulges. The TIN-based interpolation preserved the natural intricacies of the surface better 
by generating a continuous linear texture with natural grading of elevation. 

 
Figure 7. (a) DEMs generated by AMP and Blast2DEM for a part of the Kawardha (4) area. (b) Edges 
created in the DEMs (see description in the text). (c) Comparison profile of DEMs generated from 
the same point cloud from AMP and Blast2DEM. Note the step-sized features created by the inter-
polation employed by AMP. 

It was observed that the resolution of the images for generating the point cloud de-
termines the quality of the final orthoimage. With lower resolution settings using 
downscaled images [67], processing speed can be increased, but accuracy may suffer due 
to loss in edge generation in Orthoimages (Figure 8). We suggest processing at half the 
original resolution to maintain the balance between data quality and processing time 
(Supplementary Section S2). 

 

Figure 8. Two examples of blurred edges: (a) Structural edges and (b) trees created in the orthoimages
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formation of jagged or smudged edges. Downscaling is step scaling in x and y directions. A 1:2 ratio
indicates that the image is downscaled four times (two times each in x and y directions).
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on an individual image, and the red dot represents the corner of the terrace, (b) DSM generated and
the profile line (red), (c) the cross profile of the profile line generated over DSM (brown). Observe that
the position of the red dot moved to the ground as the edge moved by approximately 1.48 m. The
horizontal and vertical red lines trace the position of the cursor on the horizontal and vertical plane
(a red dot in (a) indicates the terrace corner). (d) Top view of the corner with superimposed elevation
differences that highlights the difference between the actual corner and the generated corner.

Marking GCPs on top of or near elevated structures should be avoided. If unavoidable,
they should only be used for the generation of the DSM and not for accuracy assessment.
The horizontal distance is not fixed and varies and should be measured from the edge
toward the center of the structure. In our example, it was measured to be 1.48 m. To
minimize unwanted effects, we created a buffer of 3 m from the GCP (Figure 9c). We
calculated the gradual change in elevation difference from the GCP to the DSM. It was
found that the error reduced towards the interior of the roof to less than 10 cm within a 1 m
radius. This elevation difference was used for calculating the RMSE.

4.2.3. Errors Related to Surface of Water Bodies

Water bodies present an unusual challenge during UAV data acquisition. Due to the
reflection and refraction of water surfaces, artifacts are created above and below the water
surfaces, which need to be removed using fine-tuned classification approaches. The best
practice should be to avoid direct sun glare while capturing the data. For example, the sun
angle varies from 50–90 degrees in summer between 10:00–14:00 local time in India and
elsewhere, and therefore, it is advisable to capture slightly oblique (10–15 degrees) imagery,
with the camera facing opposite the sun, thereby eliminating sun glare in the image.

Nevertheless, if such glare occurs, as experienced at the Anpara (4) site, the point cloud
(mis-)alignments over water bodies generate several points below and above the surface, as
seen in the top and side view (Figure 10a,b). These artifacts are image-specific because the
conditions that create them, e.g., sun alignment and water surface and depth (the principal
source of refraction), change with camera position. Using this to our advantage, statistical
outlier filters, based on image pairs used to generate the depth maps per point, allow us
to filter points with low pair numbers and clean up the point cloud (Figure 10c,d). An
alternative is to use NIR data to mask water in every image or use manual approaches,
which will be a tedious process for large datasets and thus was not used in this work. The
confidence values in AMP provide a reasonable solution to the problem.
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Figure 10. Generated noise over water and statistics for confidence for the Anpara (5) site. (a) Top
view and (b) side view (inset area) before cleaning based on image pairs (called confidence in AMP).
(c) Top view and (d) side view (inset area) after filtering.
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4.2.4. Point Cloud Accuracy Assessment

A few GCPs were kept separate from the pool of GCPs to be used as check points to
measure the relative accuracy of the output. The total number of GCPs for accuracy assess-
ment varied between the sites. There are 100 GCPs for accuracy assessment for Anpara (4)
and 40 GCPs each for Mandsaur (1), Mayurbhanj (2), and Kawardha (3). Figure 11 presents
the statistical results of the RMSEr for all four sites. We attained the lowest mean error for
Mandsaur (1) and the highest for Anpara at 6.41 cm and 36.54 cm, respectively.
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Although we followed similar protocols for acquiring and processing the UAV data
from different sites, each site offered some unique challenges and resulted in different
resolutions of the orthoimages and DTM/DEM (Table 8). These variations are attributed
to flight parameters, terrain characteristics, and several logistic constraints, including
the presence of anthropogenic structures. For example, Mandsaur (1) has a consistent
undulating topography devoid of vegetation or man-made features. Mayurbhanj (2),
Kawardha (3), and Anpara (4) have mixed topographies and varied land covers—ranging
from mountains, forests, agricultural fields, and villages to urban areas.

The GSD of the orthoimages is primarily a function of the camera model and flight
height, which in turn depends on the terrain’s elevation. This explains the lowest GSD
(4.2 cm) of the Mandsaur (1) area comprising of low elevation undulating terrain and the
highest GSD (11.6 cm) of the Mayurbhanj (2) area consisting of high mountains using the
same telecentric zoom less camera—Sony NEX-5T, mounted on Trimble UX5 (Also, notice
the number of images captured and area covered between the sites). On the other hand,
Kawardha and Anpara were surveyed using an endocentric FC6310 camera mounted on
DJI Phantom 4 pro flown at a much lower flight height. However, the resolution of the
DEM/DTM is influenced by multiple parameters, including the original GSD and the
processing protocol to optimize the signal-to-noise ratio (SNR) and processing time, as
discussed earlier (see Section 3.3.4).
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Table 8. Intercomparison of UAV survey parameters and resultant resolution at different sites.

Study Area
Total Area after

Removal of Buffer
(km2)

Flight Height
(m)/Number of

Images Used

Total No. of GCPs
Acquired/

Used in Generating
Point Cloud/

Checking Accuracy

GCP Density
(GCP/km2)

GSD of
Orthoimage/DEM

(cm)

RMSEz of DSM
(cm) Remarks

Mandsaur
(Undulating terrain

with scanty
vegetation)

14 370–405/
9675 138/40/40 2.85 4.2/8.3 6.41 No random error

Mayurbhanj (Mixed
terrain, forested and

agricultural)
121 350

8729 103/59/42 0.48 11.6/23.3 10.58 Doming error

Kawardha (lowland
river basin) 56 300/

10,425 98/44/42 0.78 8/16.3 12.32 No random error

Anpara (urban) 4 150–200/
8236 315/195/100 48.75 4.5/9.1 36.54 Random error,

heterogenous terrain
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The vertical accuracy of the DEM/DTM is influenced by its GSD as well as terrain
characteristics and the placement, density, and distribution of GCPs. Open fields allowed
us to put GCP markers on the ground while the presence of man-made structures limited
GCP placements, or we used them as a pedestal for markers. Due to human, animal,
and natural disturbances, many of the GCPs were lost and hence decreased the overall
GCP density. Also, most of the forests and hilltops were inaccessible for GCP placement.
Mandsaur (1) has a high usable GCP density of 2.85 GCPs/km2 among sites of natural
geomorphic settings (excluding Anpara (4)) and also has the lowest RMSEz of 6.41 cm
amongst all sites. At other sites, Mayurbhanj (2) and Kawardha (3), GCP density was much
lower at 0.48 and 0.78 GCPs/km2, respectively, and the corresponding average mean error
of the DSM are 10.58 cm and 12.32 cm (Figure 9). At Anpara (4), the GCP density was very
high (48.75 GCPs/km2), but the mean error of the DSM is still high (36.54 cm) because
of extensive extent of urbanization in study areas and several GCPs that were obscured
from the view of the UAV. The GCPs were only observable in elevated areas, which were
removed when the DSM was generated (Figure 9). An important observation is that the
average accuracy of the topographic model of an area with multiple topographic features
is not dependent on the number of GCPs in the area but depends upon the topography,
the way images were captured, and the location where GCPs were placed. It is also
observable that study areas with the use of markers on the ground resulted in increased
accuracy. However, in urbanized terrains such as Anpara (4), we obtained a relatively lower
accuracy for the DEM despite a high GCP density of 36.54 GCPs/km2. This is attributed
to the inhomogeneity of the terrain consisting of multiple buildings and the presence of
high-voltage electrical infrastructures.

5. Conclusions

This study has identified, assessed, and documented numerous challenges faced
by users while capturing, processing, and delivering UAV data. Our major findings are
as follows:

1. The stability of lens calibration is dependent on the camera system used. Survey-grade
cameras with compound (telecentric lenses) tend to have better stability in calibration
parameters compared to consumer-grade cameras with endocentric lenses.

2. Well-distributed and not necessarily uniformly spaced GCPs reduce systematic dom-
ing and other artifacts. Careful planning of GCP placement must be an integral part
of a successful UAV mission.

3. Incorrect positioning of GCPs on the images due to automatic or manual detection
problems may generate warping effects.

4. Errors in camera calibration affect the absolute accuracy of the generated point cloud
and may lead to warping errors.

5. The optimum processing resolution was found to be 50% of the original resolution to
optimize processing time, noise, and size of the point cloud.

6. Data obtained from each flight is unique, and dynamic (separate) lens calibration is
necessary for each flight—even for the same camera.

7. Point cloud interpolation algorithms for the generation of gridded data should be
carefully chosen; otherwise, it may result in unwanted artifacts (e.g., pits and bulges).

8. Reflection/refraction from surface-water bodies generates artifacts that can be filtered
using statistical outliers.

9. The accuracy of an area (in field settings) is influenced by Ground Sampling Distance
(GSD), topographic features, and the placement, density, and distribution of GCPs. A
large number of GCPs does not guarantee high accuracy.

While we have presented comprehensive protocols for UAV data acquisition and pro-
cessing in this paper, it is worthwhile to highlight several challenges faced at various stages
of the study. Although we followed a uniform protocol for processing the UAV data from
different sites, each site offered some unique challenges and resulted in different resolutions



Remote Sens. 2023, 15, 3692 23 of 27

of the orthoimages and DTM/DEM (discussed earlier). In the absence of guiding literature,
errors in data acquisition were incrementally corrected, and innovative methods such as
using satellite DEMs to generate minimum flight height or preplanning GCP positions by
generating random points in GIS were introduced to overcome the challenges.

Further, multiple Unmanned Aerial Vehicle (UAV) systems were employed to account
for terrain variability, which presented a complex set of challenges. The use of different
UAVs necessitated the use of different cameras and lens systems. Despite meticulous
lens calibration, achieving consistent levels of accuracy proved difficult due to inherent
camera properties. The diverse terrain also required flying at varying heights, ranging
from 150 to 400 m, resulting in multiple Ground Sample Distance (GSD) values and making
intercomparison a challenging task.

Likewise, in our first field campaign at Mandsaur, the distribution of Ground Control
Points (GCPs) was suboptimal due to the lack of clear guidelines. This issue was addressed
in subsequent campaigns. At Kawardha, we encountered a new challenge where GCPs
placed on roof corners introduced apparent errors in the Digital Elevation Model (DEM).
This was rectified by adjusting the positions of the GCPs without compromising accuracy.

Initially, these issues were perceived as shortcomings. However, they were later
recognized as strengths of the study as they represented real-life challenges that users are
likely to encounter in the field and provided us with opportunities for innovation. We
developed new methods to mitigate these challenges and achieve high-accuracy results.
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https://www.mdpi.com/article/10.3390/rs15143692/s1, Figure S1: Images of Mandsaur study
area. (a) DTM of Mandsaur area after all corrections, the green and yellow patched areas are shown
in RGB (b) Orthoimage of Mandsaur area after all corrections. It also shows the positions of all the
GCP captured during the field (c) Headwater of a stream. (d) A small dam on the channel; Figure S2:
Images of Mayurbhanj study area. (a) DTM of Mayurbhanj area after all corrections, the green and
yellow patched areas are shown in RGB (b) Orthoimage of Mayurbhanj area after all corrections.
(c) Agricultural lands over channel areas. (d) Denudation hills with forests. The valley areas in
between are converted to agricultural lands; Figure S3: Images of Kawardha study area. (a) DTM of
Kawardha area after all corrections, (b) Orthoimage of Kawardha area after all corrections. (c) Highly
modified riverbed, and river space encroached upon by buildings and structures. (d) Bank cutting;
Figure S4: Images of Anpara study area. (a) DTM of Anpara area after all corrections, the green and
yellow patched areas are shown in RGB (b) Orthoimage of Anpara area after all corrections. (c) Pres-
ence of multiple structures has altered the actual terrain. (d) presence of multiple waterbodies makes
noise removal highly essential but also adds complexity; Figure S5: Comparison of processing time
required for various stages of point cloud generation, as well as a comparison of the volume of point
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