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Abstract: In recent years, the development of super-resolution (SR) algorithms based on convolutional
neural networks has become an important topic in enhancing the resolution of multi-channel remote
sensing images. However, most of the existing SR models suffer from the insufficient utilization of
spectral information, limiting their SR performance. Here, we derive a novel hybrid SR network
(HSRN) which facilitates the acquisition of joint spatial–spectral information to enhance the spatial
resolution of multi-channel remote sensing images. The main contributions of this paper are three-
fold: (1) in order to sufficiently extract the spatial–spectral information of multi-channel remote
sensing images, we designed a hybrid three-dimensional (3D) and two-dimensional (2D) convolution
module which can distill the nonlinear spectral and spatial information simultaneously; (2) to enhance
the discriminative learning ability, we designed the attention structure, including channel attention,
before the upsampling block and spatial attention after the upsampling block, to weigh and rescale
the spectral and spatial features; and (3) to acquire fine quality and clear texture for reconstructed SR
images, we introduced a multi-scale structural similarity index into our loss function to constrain the
HSRN model. The qualitative and quantitative comparisons were carried out in comparison with
other SR methods on public remote sensing datasets. It is demonstrated that our HSRN outperforms
state-of-the-art methods on multi-channel remote sensing images.

Keywords: multi-channel remote sensing images; super-resolution; convolutional neural networks;
hybrid network

1. Introduction

Remote sensing images are being increasingly widely utilized in various fields, such as
target characteristic analysis [1], detection [2], and classification [3,4]. However, due to the
trade-off between spectral and spatial resolution, the multi-channel images have a coarse
spatial resolution, limiting their further development. Super-resolution (SR) approaches,
which directly reconstruct high-resolution (HR) images from low-resolution (LR) images,
play a vital role in resolution enhancement and are meaningful for the practical application
of remote sensing images. How to design an effective SR model for remote sensing images
is the focus of this research paper.

Numerous SR models have been proposed in recent years and can be classified into
two types: multi-image SR models (MISR) and single-image SR models (SISR). For the
first type, models [5–7] employed diverse methods by fusing multi-remote sensing images
to improve the spatial resolution. Dian et al. [5] learned a spectral dictionary from multi-
spectral and hyperspectral images to produce sparse representations for enhancing the
resolution. In [6], Liu et al. applied a two-stream fusion network to enhance the resolution
of multi-spectral images combined with panchromatic images. Huang et al. [7] proposed
a compact step-wise fusing strategy by incorporating multi-spectral and panchromatic
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images into a framework to favor the resolution improvement in hyperspectral images.
These models achieved a remarkable SR performance for remote sensing images due to the
additional fused data. However, the reconstructed results of multi-image SR models are
sensitive for geometric correction and time variations, limiting their further applications.

The SISR models concentrate on creating powerful models to extract features from
a single image. The reconstructed images using SISR [8] can be applied for many other
applications, such as target tracking [9] and disparity map generation [10]. Most existing
SISRs can be roughly categorized into hand-crafted models and end-to-end models [11].
For the former, each step of these methods is manually designed with good interpretability.
Interpolation-based models such as bilinear and bicubic models [12] are a kind of hand-
crafted SR model which have been widely applied in remote sensing production. Earlier
studies have worked on optimizing linear regression models to improve their reconstruction
performance. Ma et al. [13] proposed a robust local kernel regression approach to enhance
the spatial resolution of multi-angle remote sensing images. In [14], Schulter et al. also
presented a locally linear model which employed random forests for mapping LR images
into HR images. Timofte et al. [15] summarized seven techniques which are widely
applicable in SISR methods. These models have an intuitive structure and can quickly
enhance the resolution, but suffer from a serious problem of quality degradation after
reconstruction. Sparse representation-based models are another type of hand-crafted SR
model which flexibly combine atoms and elements [16] to reconstruct HR images. Peleg
and Elad [17] designed a dictionary pair model by extracting the sparse coefficients of
HR and LR images to improve the resolution. In [18], Hou et al. explored a global joint
dictionary model to sufficiently obtain the global and local information of remote sensing
images. To increase the representation ability of sparse decomposition, Shao et al. [19]
applied a coupled sparse autoencoder to effectively map LR images into HR images.
However, these models carry huge computational expense for sparsity constraint, which
may have a minimal effect on image representation [20,21]. More importantly, the sparsity-
based SISR models suffer from the weakness of extracting deep features, restricting their
reconstruction precision.

End-to-end models are composed of various networks [22] in which parameters can be
automatically updated by forward and afterward propagation. These models [18–27]
are designed for natural images, which provide references for the SR task of remote
sensing images. Patil et al. [23] proposed using a neural network to extract the structural
correlation and predict fine details of reconstructed images. Su et al. [24] combined a
Hopfield neural network and contouring to enhance the super resolution of remote sensing
images. In recent years, convolutional neural networks (CNNs) have been widely used
to enhance the resolution of images. The pioneering study [25] employed a CNN to
improve the resolution, and achieved a better performance than hand-crafted ones. Shi et al.
[26] designed an efficient sub-pixel convolutional network (ESPCN) which introduced
a pixel-shuffle layer to reduce the computation complexity. In [27], Kim et al. used a
residual-learning module and designed a very deep SR model (VDSR) to reconstruct HR
images. A deeper model named a residual dense network (RDN) [28] was constructed
to make full use of the hierarchical features from the LR images and produce a better
trade-off between efficiency and effectiveness in recovering the HR images. These models
fully exploited spatial information to improve the resolution, but they ignored the internal
relations between different channels. In [29], Zhang et al. designed residual channel
attention networks to weigh the spectral band and built an SR model named a residual
channel attention network (RCAN). Basak et al. [30] optimized an RCAN model and
applied it to enhance single-image resolution. In [31], Mei et al. explored the effects of
cross-scale spatial information on SR requirements and proposed a cross-scale non-local
network (CSNLN). It introduced the non-local priors into framework for extracting multi-
scale features within an LR image. Xia et al. [32] built an architecture called an efficient
non-local contrastive network (ENLCN). This model consists of non-local attention and a
sparse aggregation module to further strengthen the effect of relevant features. However,
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these models are not designed for multi-channel remote sensing images and fail to extract
nonlinear spectral information.

Inspired by the aforementioned approaches, a great number of SR models for remote
sensing images were proposed. Mei et al. [33] constructed a three-dimensional full con-
volutional neural network (3D-FCNN) for multi-spectral and hyperspectral images. This
model exploited both the spatial neighboring pixels and spectral bands without sufficient
distinction between interesting and uninteresting information. Li et al. [34] proposed a
gradient-guided group-attention network to map LR images into HR images. The gradient
information was introduced in the reconstruction framework to promote sharp edges and
realistic textures. This strategy causes texture distortion when it enhances resolution on
a small scale. In [35], Wang et al. employed a recurrent feedback network to exploit the
spatial–spectral information. They introduced a group strategy for spectral channels which
destroyed the structure of the spectral curve. Lei and Shi [36] designed a hybrid-scale
self-similarity exploitation network (HSENet) which used different scales’ similarities to
enhance the remote sensing images. Then, they designed the transformer-based enhance-
ment network (TranENet) [37] which applied the transformers to fuse multi-scale features
for image enhancement. The multi-scale self-similarity exploitation provides abundant
textures for reconstructed images, but they ignore spectral features. Deng et al. [38] de-
signed a multiple-frame splicing strategy to enhance the resolution of hyperspectral images.
However, this model focuses on improving distorted images, limiting the stability of the
spectral information in the reconstructed images.

Generally, the adjacent spectral bands and spatial pixels in multi- or hyperspectral
remote sensing images are correlated [39]. To fully extract interesting spatial-spectral
information, we designed a novel algorithm named the hybrid SR network (HSRN) to
map the LR multi-channel (channel number ≥ 3) remote sensing images into HR images.
Specifically, we designed a hybrid module consisting of three-dimensional (3D) and two-
dimensional (2D) convolutional layers to extract the nonlinear information of the spectral
and spatial domains. Additionally, to exploit the inherent differences and interdependence
across feature maps, we introduced channel (spectral) and spatial attention mechanisms,
which prompt an increase in discriminative learning ability. We employed a sub-pixel
upsampling module (pixel-shuffle layer) to recombine the feature maps to enhance the
resolution of the images. In the end, we applied the joint loss function to constrain the model
and recover the images with the most accurate texture and spectra possible, compared with
label maps. We tested our model on three public datasets and calculated three evaluation
metrics to assess the performance of the SR methods. The experimental results prove that
our model outperforms state-of-the-art models. The main contributions of this article can
be summarized as follows.

(1) We propose a novel hybrid SR model combining 3D and 2D convolutional networks
for multi-channel images. The improvement encourages our model to capture the spa-
tial and spectral information simultaneously, and fully utilizes the different responses
of various channels to enhance the spatial resolution.

(2) We designed an attention structure to strengthen the SR performance for multi-channel
images. We applied channel attention to learn the inter-band correlation before the
upsampling block and employed spatial attention to refine the spatial texture of the
upsampling feature maps.

(3) We introduced multi-scale structural similarity (MS-SSIM) into our loss function to
constrain the proposed model and acquire a rich texture. The MS-SSIM function forces
our model to learn the multi-scale structure from labels and reconstruct high-quality
HR images.

The organization of this article is as follows. In Section 2, we present the related works
on SR models. Section 3 depicts the details of our proposed algorithm for multi-channel
remote sensing images. The experimental consequences and the analysis of the public
datasets are exhibited in Section 4. Conclusions are drawn in Section 5.
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2. Related Works

In recent decades, CNN frameworks have been shown to be highly successful in
remote sensing imagery augmentation [40]. These models are capable of directly extracting
abundant characteristics from large volumes of realistic images. The attention mechanism
is an important component of CNN models that can enhance the discriminative ability of
the model to depict rich scenes from remote sensing images. In this subsection, we focus
on works related to CNN-based SR models and the attention mechanism.

2.1. CNN for SR without Attention Mechanism

This pioneer method was proposed by Dong et al. [25]. It employed three-layer
convolutional networks to increase the resolution and achieved a remarkable performance
compared to traditional methods. Along with the proposal of residual blocks [41], SR
models made continuous progress in the algorithm’s architecture. Kim et al. [27] de-
signed a 20-layer residual network which acquired significant improvement in recon-
struction accuracy. A faster SR network [42] was designed to map LR images into HR
images and accelerate the training and test process. Lim et al. [43] built an enhanced
deep super-resolution (EDSR) network which removed batch normalization layers and
adopted a deep convolutional structure to improve the resolution. Shi et al. [44] adopted a
160-/240-layer network consisting of standard residual blocks to recover HR hyperspectral
images. However, simply stacking residual blocks to construct a very deep network can
hardly result in improvement. The attention mechanism is an alternative strategy to im-
prove the representation ability of SR models. Tian et al. [45] proposed a coarse-to-fine SR
network, consisting of a 46-layer convolution, to reconstruct a high-resolution (HR) image.
The network includes feature extraction blocks, an enhancement block, a construction block,
and a feature refinement block. They designed a feature fusion scheme to prevent informa-
tion loss and introduced a cascaded network that combines LR and HR features to mitigate
potential training instability and performance degradation. Huan et al. [22] designed a
pyramidal multi-scale residual network that consists of a feature extraction part and a
reconstruction part. The feature extraction part utilized dilation convolution to enhance
the ability to detect contextual information, while employing hierarchical residual-like con-
nections to fuse multi-scale features. The reconstruction part employed a complementary
block of global and local features to address the issue of useful original information being
ignored.

2.2. CNN for SR with Attention Mechanism

The attention mechanism encourages learning models to focus on the prominent
features [46] between the spatial and spectral domains. Zhang et al. [29] introduced
the channel attention block and constructed a residual channel attention block (RCAB).
As shown in Figure 1, the RCAB applies a long skip connection to deliver the main signal
and channel attention to weigh different feature maps. The skip connection encourages the
network to focus on the high-frequency signal of the LR feature maps. Suppose that the i-th
output and input of the RCAB are Fi and Fi−1. The calculation of the RCAB is as follows:

Fi = Fi−1 + CAi(Xi) · Xi, (1)

where CAi denotes the function of the channel attention and Xi is the residual signal
produced by two stacked convolution layers from Fi−1. This block fully captures the
channel-wise dependencies and is essential to multi-channel remote sensing images con-
taining varied spatial and spectral information. However, it ignores the nonlinear spectral
information, which is important for the SR task of remote sensing images. Jiang et al. [47]
designed a cross-dimension attention network to improve the resolution of remote sensing
images. While considering the interactivity between the channel and spatial dimensions,
they overlooked the extraction of nonlinear spectral information from multi-channel remote
sensing images. In [48], Li et al. designed a 3D-RCAB to extract abundant spatial and
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spectral information to enhance the spectrum. However, the 3D-RCAB is complex and
time consuming, and suffers from the weakness of extracting prominent spatial informa-
tion. Therefore, we explored an efficient 3D–2D hybrid network to recover the HR images,
and designed a spectral and spatial attention structure to improve the representational
power of the network.

Figure 1. The architecture of the adopted residual channel attention block (RCAB).

3. Materials and Methods

The flowchart of the proposed HSRN is illustrated in Figure 2. The LR remote sensing
images are first input into the hybrid 3D–2D module to extract the abundant spatial–
spectral information. Then, an RCAB is employed to learn and represent the acquired
feature maps for improving the discriminative ability of the SR model. Moreover, the sub-
pixel upsampling block is adopted to enhance the resolution of the incoming feature maps.
Finally, the reconstructed feature maps are refined by our residual spatial attention block
(RSAB) and turned into HR remote sensing images. The whole framework is constrained
by a joint loss function and can be converged quickly.

Figure 2. The flowchart of our HSRN model for multi-channel images.
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3.1. Hybrid 3D–2D Module

Let the multi-channel remote sensing cube be denoted by I ∈ RH×W×C, where H
and W are the height and width, respectively, and C is the number of spectral channels.
Every cube contains abundant spatial–spectral information, and traditional 2D convolution
fails to capture the nonlinear interactions between the spectral channels. Therefore, we
explored the 3D convolution over the contiguous spatial and spectral domain, as exhibited
in Figure 3. The activation value at position (h, w, c) in the j-th feature map of i-th layer,
denoted as υh,w,c

i,j , is calculated as follows:

υh,w,c
i,j = ReLU

(
bi,j +

di−1

∑
τ=1

η

∑
λ=−η

γ

∑
ρ=−γ

δ

∑
σ=−δ

ω
σ,ρ,λ
i,j,τ × υ

h+σ,w+ρ,c+λ
i−1,τ

)
, (2)

where bi,j is the bias parameter for the j-th feature map, di−1 is the number of feature
maps in the (i − 1)-th layer, 2η + 1 is the scale of the convolutional kernel along the
spectral dimension, 2γ + 1 and 2δ + 1 are the width and height of the convolutional kernel,
respectively, and ωi,j,τ is the coefficient of convolution for the j-th feature map of the i-th
layer. Based on the actual statistical analysis, the dimensions of the 3D convolutional kernels
are 32× 3× 3× 3× 1 and 64× 3× 3× 3× 32 in the first and second layers, respectively.
After two-layer 3D convolution (Conv3d), we reshape the feature maps and introduce
2D convolution to process the spatial–spectral information with a 64× 3× 3× (C · 64)
convolutional kernel. The reshaping algorithm rearranges the elements of the feature maps
without changing the pixel values. The dimension of the feature map tensors turn from
H ×W × C× 64 to H ×W × (C · 64). A 2D convolution layer is adopted to resample the
feature maps as follows:

υh,w
i,j = ReLU

(
bi,j +

di−1

∑
τ=1

γ

∑
ρ=−γ

δ

∑
σ=−δ

ω
σ,ρ
i,j,τ × υ

h+σ,w+ρ
i−1,τ

)
, (3)

where υh,w
i,j is the value of the j-th {j ∈ Z|1 ≤ j ≤ 64} feature map of the i-th layer, all the

parameters are the same as described in Formula (2), and di−1{j ∈ Z|1 ≤ j ≤ 64 · C} is
the number of feature maps in the (i− 1)-th layer. The coefficient of convolution ω

σ,ρ
i,j,τ is

automatically updated to resample the feature maps.

Figure 3. The architecture of the hybrid 3D–2D module.
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Finally, we employ the channel attention as described in Formula (5) to weigh the fea-
ture maps; the main architecture of this module is shown in Table 1. A 5-layer convolution
is applied in our hybrid module. The first and second convolutional layers are designed to
extract the spectral and spatial information from the original data. The third layer is applied
to fuse the feature maps. The remaining layers are employed to strengthen the positive
information. The module can extract the high-dimensional characters effectively containing
the spectral and spatial information. We designed this module to fully exploit the response
difference of the same ground objects in different bands for improving the resolution.

Table 1. The main convolutional layers of the designed hybrid 3D–2D module.

Convolutional Layer Output Shape

Input (H,W,C)
Conv3D_1 (H,W,C,32)
Conv3D_2 (H,W,C,64)
Conv2D_3 (H,W,64)
Conv2D_4 (H,W,16)
Conv2D_5 (H,W,64)

3.2. RCAB Component

In this section, we employ the RCAB described in Formula (1) to learn the deep
characters from the input feature maps. As shown in Figure 1, we first use a two-layer 2D
convolution with a 64× 3× 3× 64 kernel to process the residual signal. Residual signal Xi
is calculated as follows:

Xi = ω2
i

(
ω1

i Fi−1

)
, (4)

where ω1
i and ω2

i are the coefficients of the convolutional layers in the RCAB.
Then, we calculate the channel-wise descriptor for each feature map with the spatial

average pooling. The channel attention CAi generates different attention values for each
channel-wise feature and consists of global average pooling (Avgpool2d), a 2D convolu-
tional layer (Conv2d), a rectified linear unit (ReLU), and a sigmoid function. The channel
attention is computed as follows:

CAi = Sigmoid(ωU ReLU(ωDZi)), (5)

where ωU is the coefficient of the channel-upscaling Conv2d layer and ωD is the coefficient
of the channel-downscaling Conv2d layer. To capture the channel-wise dependencies
between the different feature maps, a sigmoid gate is applied to learn the nonlinear inter-
actions between channels. Zi is a weighted signal by Avgpool2d from the input Xi and is
computed as follows:

Zi =
1

H ×W

H

∑
h=1

W

∑
w=1

Xi(h, w), (6)

where H and W are the height and width of images. This average pooling can acquire the
global information of each feature map. The dimensions of the channel-downscaling and
channel-upscaling Conv2D layers are set to 16× 3× 3× 64 and 64× 3× 3× 16, respectively.
Finally, four such blocks are constructed to further improve the discriminative ability of
our network. The main structure of this component is presented in Table 2. A total of
19 Conv2D layers are introduced to achieve a powerful performance for SR images. The first
and second sets of the four convolutional layers are the channel attention structures to
squeeze the feature maps and capture the discriminative features in the lower-dimensional
space. These layers can learn inter-band correlation and weigh the spectral feature. The
ninth layer is applied to organize the residual and main signals. The remaining layers are
repeated structures to strengthen the network. We introduce the channel attention before
the upsampling block to strengthen the spectral features.
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Table 2. The main convolutional layers of the adopted RCAB.

Convolutional Layer Output Shape Convolutional Layer Output Shape

Conv2D_6_1 (H,W,64) Conv2D_8_1 (H,W,64)
Conv2D_6_2 (H,W,64) Conv2D_8_2 (H,W,64)
Conv2D_6_3 (H,W,16) Conv2D_8_3 (H,W,16)
Conv2D_6_4 (H,W,64) Conv2D_8_4 (H,W,64)
Conv2D_7_1 (H,W,64) Conv2D_9_1 (H,W,64)
Conv2D_7_2 (H,W,64) Conv2D_9_2 (H,W,64)
Conv2D_7_3 (H,W,16) Conv2D_9_3 (H,W,16)
Conv2D_7_4 (H,W,64) Conv2D_9_4 (H,W,64)
Conv2D_7_5 (H,W,64) Conv2D_9_5 (H,W,64)

- - Conv2D_10 (H,W,64)

3.3. Sub-Pixel Upsampling Block

The multi-channel remote sensing images consist of mixed pixels which contain more
than one surface material [49]. The mixed pixels affect the reconstruction performance of
the SR images, and we adopt the sub-pixel upsampling block to alleviate the problem. This
block captures the HR pixels from the adjacent feature maps to enhance the resolution. It
can be described as follows:

υHR
i = PS

(
ωi × υLR

i−1 + bi

)
, (7)

where υHR
i is the HR feature maps, PS is a periodic shuffling operator that rearranges the

LR feature maps υLR
i−1 with a shape of (H×W × C · r2) to HR feature maps (rH× rW × C),

r is a scale-up factor, and ωi and bi are learnable network weights and biases, respectively.
The schematic of this block is presented in Figure 4. We first adopt a Convd2d layer to
expand the feature maps to a (H×W ×C · r2) tensor, and the kernel shape is (64 · r2)× 3×
3× 64. Then, the sub-pixel upsampling block is used to reconstruct the HR feature maps,
and we show an example of a sub-pixel upsampling block with a scale-up factor of r = 2.

Figure 4. The schematic of the sub-pixel upsampling block.

3.4. RSAB Component

In this section, we design an RSAB component to extract the spatial information and
refine the reconstructed texture. As exhibited in Figure 5, the RSAB employs a residual
structure to represent the reconstructed maps. Suppose that the k-th output and input of
the RSAB are Fk and Fk−1. It can be calculated as follows:

Fk = Fk−1 + SAk(Xk) · Xk, (8)

where SAk is the function of the spatial attention, and Xk denotes the residual signal
produced by two stacked convolution layers (64× 3× 3× 64) from Fk−1, as described in
Formula (4). In contrast to the channel attention, the spatial attention concatenates them



Remote Sens. 2023, 15, 3693 9 of 23

to generate an efficient feature descriptor for the spatial distribution. To reconstruct the
remarkable texture, we compute the mean and max values of all the feature maps to weigh
the residual signal Xk acting as the spatial attention. The spatial attention is as follows:

SAk = Sigmoid(ωsa[Avgpool1d(Xk); Maxpool1d(Xk)]), (9)

where ωsa is the coefficient of the Conv2d layer with a 1× 7× 7× 2 kernel, and Avgpool1d(·)
and Maxpool1d(·) are the mean and max values of the residual signal Xk over the different
feature maps. The entire architecture is summarized in Table 3, and 16 Conv2D layers are
employed to reconstruct the HR images. The first and second sets of three convolutional
layers are designed to weigh and rescale the spatial features. These layers can encourage
the network to focus on the prominent information. The seventh layer is adopted to fuse
the residual and main signals from the previous layers. The next repeated layers are used
to strengthen the network, and the last two layers are applied to reconstruct the HR images.
We apply the spatial attention after the upsampling block to refine the spatial content.

Figure 5. The architecture of the residual spatial attention block (RSAB).

Table 3. The main convolutional layers of the designed RSAB.

Convolutional Layer Output Shape Convolutional Layer Output Shape

Conv2D_11_1 (H,W,64) Conv2D_13_2 (H,W,64)
Conv2D_11_2 (H,W,64) Conv2D_13_3 (H,W,1)
Conv2D_11_3 (H,W,1) Conv2D_14_1 (H,W,64)
Conv2D_12_1 (H,W,64) Conv2D_14_2 (H,W,64)
Conv2D_12_2 (H,W,64) Conv2D_14_3 (H,W,1)
Conv2D_12_3 (H,W,1) Conv2D_14_4 (H,W,64)
Conv2D_12_4 (H,W,64) Conv2D_15 (H,W,64)
Conv2D_13_1 (H,W,64) Conv2D_16 (H,W,C)

3.5. Joint Loss Function

In this section, we refer to the joint loss function containing L1 and MS-SSIM to
estimate the parameters. Suppose that the i-th reference and reconstructed SR images are
denoted as Ri ∈ RH×W×C and Yi ∈ RH×W×C. Then, the joint loss function L(Ri, Yi) can
be calculated as follows:

L(Ri, Yi) = L1(Ri, Yi) + λ1 · LMS−SSIM(Ri, Yi), (10)

where L1(Ri, Yi) and LMS−SSIM(Ri, Yi) are the L1 and MS-SSIM loss functions, and λ1 is a
weight to adjust the values of two loss functions to the same range of magnitude. Here,
L1(Ri, Yi) can be formulated as:

L1(Ri, Yi) =
1

H ×W × C
·

C

∑
c=1

H

∑
h=1

W

∑
w=1
|Ri(h, w, c)− Yi(h, w, c)|, (11)
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where H, W, and C are the height, width, and channel number of the remote sensing images.
LMS−SSIM(Ri, Yi) is computed as follows:

LMS−SSIM(Ri, Yi) = 1−
N

∑
n=1

γn · SSIM(Ri,n, Yi,n), (12)

where N = 5 is the scale number,
N
∑

n=1
γn = 1 is weight values, and Ri,n and Yi,n are the

downsampling images with a scale factor of 2n. As recommended by the former work [50],
the parameters are γ1 = 0.0448, γ2 = 0.2856, γ3 = 0.3001, γ4 = 0.2363, and γ5 = 0.1333,
respectively.

Generally, compared with the traditional L2 loss function, L1 is insensitive to outliers
and prevents exploding gradients in some cases. Moreover, the MS-SSIM loss function
forces the network to acquire the HR images with a more detailed texture than using only
the L1 loss function. Therefore, we employ this joint function to constrain the whole frame-
work.

4. Results

In this section, we first clarify the public SR datasets, evaluation metrics, and training
settings. Then, we compare the performance of our HSRN with the state-of-the-art SR
algorithms, including Bicubic [12], ESPCN [26], RDN [28], RCAN [25,26], CSCLN [31],
ENLCN [32], 3D-FCNN [33], HSENet [36], and TransENet [37] for multi-channel remote
sensing images. We report the mean peak signal-to-noise ratio (PSNR), mean structural
similarity (SSIM) [51], and mean spectral angle mapper (SAM) [52] indices on the different
datasets. Moreover, we further present the visual comparison of the images reconstructed
by the SR models, following each experimental dataset.

4.1. Experimental Datasets

To prove the performance of our models with multi-channel remote sensing images
from different sources and resolutions, three public datasets were introduced in our ex-
periment with a brief review in terms of band range and image resolution, as shown in
Table 4. These datasets have decreasing channel numbers for proving the SR performance.
The original images were considered HR images, and we downsampled each image as a
LR image.

Table 4. A brief review of three public datasets.

Dataset Band Number Band Range Spatial Resolution

AVIRIS 224 From 350 nm to 2500 nm 16 m
SEN12MS-CR 13 From 400 nm to 2500 nm 10 m

WHU Building 3 Red, green, and blue bands 0.2 m

Hyperspectral AVIRIS dataset [53]: these images were acquired by the airborne visi-
ble/infrared imaging spectrometer (AVIRIS) over the seaside area in Salinas, with a spatial
resolution of 16 m. It can be downloaded from NASA’s website (http://aviris.jpl.nasa.gov/
data/get_aviris_data.html, accessed on 18 November 2016). It contains 224 spectral bands
ranging from 350 nm to 2500 nm. The images are reflectance products (the proportion of
the radiation striking a surface to the radiation reflected off of it), and pixel values are in the
range of [0, 1]. Both the training and test datasets had 241 hyperspectral images, and each
picture consists of 256× 256 pixels.

Multispectral SEN12MS-CR dataset [54]: these images were chosen from the Sentinel-
2 satellite, with different types of ground surfaces included, such as farmland, rivers,
and urban and mountain areas. The acquired images have 13 channels, and the spectral
range is from 400 nm to 2500 nm. The images include radiance data and pixel values were

http://aviris.jpl.nasa.gov/data/get_aviris_data.html
http://aviris.jpl.nasa.gov/data/get_aviris_data.html
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normalized to [0, 1]. The images were resampled and have an unified spatial resolution of
10 m, and the cropped images are composed of 256× 256 pixels. To save experimental time,
we chose partial data (file number is “summer_s2_147”) from the SEN12MS-CR dataset to
run the SR model. Both the training and test datasets had 297 images.

Three-channel WHU Building dataset [55]: the images consist in a large number of
independent buildings extracted from aerial images covering Christchurch, New Zealand.
The dataset contains rural, residential, cultural, and industrial areas, and each image has
three channels, including red, green, and blue (RGB) bands. The size of these images
is 512 × 512 and the spatial resolution is 0.2 m. The values were normalized to [0, 1].
The training and test datasets had 1260 and 690 images.

4.2. Evaluation Metrics and Parameter Setting
4.2.1. Evaluation Metrics

Three evaluation metrics, i.e., PSNR, SSIM, and SAM, were employed in our ex-
periment to quantitatively assess the SR models. The PSNR evaluates the mean peak
signal-to-noise ratio between the i-th reference image Ri and the reconstructed HR image
Yi. The definition is as follows:

PSNR =
N

∑
i=1

10log10
1

(Ri −Yi)
2 , (13)

A larger PSNR value indicates a higher quality of the reconstructed HR images.
The SSIM measures the mean structural similarity between the i-th reference image Ri

and the reconstructed HR images Yi. The definition is as follows:

SSIM =
N

∑
i=1

 (
2µRi µYi + C1

)
·
(
2σRiYi + C2

)(
µ2

Ri
+ µ2

Yi
+ C1

)
·
(

σ2
Ri
+ σ2

Yi
+ C2

)
, (14)

where µRi and µYi are the mean value of the i-th reference image Ri and the recon-
structed HR image Yi, σRi and σYi are the corresponding standard values, σRiYi is the
covariance between the reference image Ri and the reconstructed HR images Yi, and
C2 = (3 · C1)

2 = 0.032 (recommended by the former study [51]). The value of SSIM is in
the range of 0–1, and the image quality increases as the SSIM increases.

The SAM calculates the mean spectral angle mapper between the reference images Ri
and the reconstructed HR images Yi. The definition is as follows:

SAM =
180
π
·

N

∑
i=1

arccos

 ∑WH
j=1 ri(j)yi(j)(

∑WH
j=1 r2

i (j)
)1/2

·
(

∑WH
j=1 y2

i (j)
)1/2

, (15)

where W and H are the width and height of the reference image Ri and the reconstructed
HR image Yi, and ri and yi are the spectral curves of the reference image Ri and the
reconstructed HR image Yi, respectively. The SAM values range from 0◦ to 90◦. The SAM
values near zero indicate high spectral quality.

4.2.2. Parameters Setting

For the fairness of the experiment, all of the SR methods were trained on three remote
sensing datasets separately and adopted the same hyperparameters to construct the SR
models. We adopted the adaptive moment estimation (ADAM) to optimize the network,
and the size of the label tensors was 256× 256. We saved and selected the best model
after running them for 1000 epochs. We set both the training and test batch sizes to 2, and
the learning rate to 1× 10−4. All the compared models were the original codes downloaded
from the corresponding reference papers. A detailed running time will be presented in the
following subsection. After setting these parameters, the PSNR of our HSRN increased,
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accompanied by a decreasing loss function, as shown in Figure 6. The stability and
convergence of the loss function proves its behavior with good parametrics.

Figure 6. The loss function and corresponding PSNR of HSRN on the SEN12MS-CR dataset with an
upsampling factor of 2 over 1000 epochs.

4.3. SR Performance
4.3.1. AVIRIS Dataset

We first tested the SR algorithms on the AVIRIS dataset, which has 224 spectral chan-
nels, and the quantitative results are reported in Table 5. Indices with bold types represent
the best performance achieved in the same row, where three upsampling factors containing
×2, ×4, and ×8 are calculated and exhibited. In contrast, our HSRN delivered better
PSNR and SSIM scores compared to the other algorithms for all scale factors. In particular,
the PSNR of our model was greater than that of the state-of-the-art TransENet method
by 0.5433 dB, 0.2726 dB, and 0.1957 dB for the ×2, ×4, and ×8 scale factor. It is worth
noting that our model achieved an average performance in the SAM index. This result also
demonstrated that our model sacrificed spectral accuracy to enhance the spatial resolution.
The reconstructed spectral curves are probably affected by the low signal-to-noise ratio
(SNR) channels, which were preserved in the comparison.

Table 5. Quantitative results of super-resolution models on the AVIRIS dataset. Indices with bold
types for all tables represent the best performance achieved in the same row.

Scale Bicubic ESPCN RDN RCAN CSNLN ENLCN 3D-FCNN HSENet TransENet Ours

×2
PSNR 43.7178 41.9711 45.6773 46.0382 45.3586 45.1305 44.5548 45.8904 45.9450 46.4883
SSIM 0.9738 0.9685 0.9838 0.9840 0.9827 0.9819 0.9782 0.9844 0.9849 0.9849
SAM 0.1383 1.9282 0.4562 0.4723 0.4245 0.4446 0.1102 0.4611 0.6681 0.4680

×4
PSNR 39.2244 38.3873 40.6197 41.0866 40.7598 40.3743 39.3862 40.7832 41.4172 41.6898
SSIM 0.9373 0.9250 0.9538 0.9579 0.9547 0.9518 0.9389 0.9551 0.9610 0.9615
SAM 0.9679 1.8873 0.9505 0.9410 1.0092 0.9933 0.9592 1.0030 1.0487 0.9335

×8
PSNR 36.1034 33.7565 37.3726 38.0435 37.5841 37.5112 36.4650 37.2758 38.0328 38.2285
SSIM 0.9036 0.8321 0.9200 0.9295 0.9232 0.9220 0.9062 0.9182 0.9286 0.9304
SAM 2.8432 3.0559 2.2265 2.0168 2.2273 2.2132 2.5287 2.3122 2.1520 2.1058

The qualitative comparisons are presented in Figure 7, where we recorded the sea and
urban areas from the AVIRIS dataset. Figure 7a–g are the SR results (×4) of the Bicubic,
RDN, RCAN, 3D-FCNN, HSENet, TransENet, and the proposed model, and Figure 7h,i are
the ground truth and corresponding spectral curve. As shown in Figure 7h, the sea area
contains a lot of port buildings (highlighted by red rectangles) standing in sharp contrast to
the seawater on the left. The SR results in the Bicubic, RDN, and 3D-FCNN suffer from a
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blurring effect. The reconstructed images of the RCAN, HSRNet, and TransENet reveal
that the boundaries of the different architectures tend to mix with each other. Our model
achieved the best visual effect compared with the other SR models, and recovered the rich
texture of the port facilities. The evaluation indices of our HSRN were 42.7595 dB, 0.9751,
and 1.1149◦, which is better than those of the other methods. More importantly, as shown
in Figure 7i, our recovered spectra (red circle) were most similar to those of the ground
truth (black triangle), proving the SR’s superior performance.

Figure 7. The reconstruction maps and spectral curves of the super-resolution models on the seaside
areas from the AVIRIS dataset with a scale factor ×4.

To demonstrate the SR’s performance on different scenes, we tested the SR models on
mountain areas, as shown in Figure 8. Figure 8a–g show the SR results (×4) of the Bicubic,
RDN, RCAN, 3D-FCNN, HSENet, TransENet, and the proposed model, and Figure 8h,i
are the ground truth and corresponding spectral curve. Again, our model outperformed
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the other SR algorithms, and alleviated the blurring artifacts. Our HSRN recovered more
details in the mountain chain, as exhibited in Figure 8g. The reconstructed texture of our
model highlighted in red rectangles was clearer than that of the state-of-the-art models.
Meanwhile, the reconstructed spectral data of our SR model were more similar to those
of the ground truth than those of the compared methods, indicating that our algorithm
enhances the resolution of multi-channel images quite effectively at the expense of weak
spectral distortion (Figure 8i).

Figure 8. The reconstruction maps and spectral curves of the super-resolution models on the mountain
areas from the AVIRIS dataset with a scale factor ×4.

4.3.2. SEN12MS-CR Dataset

Next, we tested the SR models on the SEN12MS-CR dataset, which contains 13 chan-
nels, as listed in Table 6. When compared with the other methods, our model outperformed
the other algorithms with respect to all the spatial evaluation indices (PSNR and SSIM) for
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all scaling factors. The relative gap between the HSRN (Our model) and the other models,
which increases with the upsampling factors, deserves particular attention. Especially for
the ×8 scale factor, our model achieved an outstanding performance, and the values of the
PSNR, SSIM, and SAM are 41.0994 dB, 0.9738, and 0.7764◦. The SAM values of our model
are at top of the list, verifying the spectral fidelity of our reconstructed HR data. It turns
out that our model exploits the spectral information to enhance the spatial resolution.

The visual comparisons of the SR model on the river and urban areas are illustrated in
Figure 9 and Figure 10, respectively. Figure 9a–g are the SR results (×8) of the Bicubic, RDN,
RCAN, 3D-FCNN, HSENet, TransENet, and the proposed model, and Figure 9h,i are the
ground truth and corresponding spectral curve. The SR maps of the Bicubic and 3D-FCNN
suffer from heavy blurring artifacts, and the remaining SR maps are slightly contaminated
by noise data, failing to recover more details. From Figure 9h, we observe that our model
achieved a better visual performance (highlighted by the red rectangle), containing fewer
artifacts and a more detailed texture, which is consistent with the evaluation metrics.
Moreover, the reconstructed spectral curve of the HSRN (red circles) is closer to the ground
truth (black triangle) than that of the other algorithms.

To prove the model’s scene adaptivity, Figure 10 exhibits the SR results of the ur-
ban area, which consist in detailed texture. Figure 10a–g are the SR results (×8) of the
Bicubic, RDN, RCAN, 3D-FCNN, HSENet, TransENet, and the proposed model, respec-
tively, and Figure 10h,i are the ground truth and corresponding spectral curve, respectively.
The recovered HR images and spectral curves of our HSRN are more faithful to the ground
truth. Nevertheless, all the compared approaches were affected by different degrees of blur
(highlighted by red rectangles). Such obvious comparisons demonstrate that our model
can extract sophisticated features and effectively improve the resolution of multi-channel
images.

4.3.3. WHU Building Dataset

To demonstrate the SR effectiveness for remote sensing images, we first compared
our network with the hand-crafted and CNN-based models on the WHU Building dataset
consisting of only RGB channels. The quantitative results for scale factors ×2, ×4, and ×8
are presented in Table 7. The PSNR and SSIM of our model are at top of the list, proving
SR’s applicability. Specifically, our HSRN achieved the best PSNR and SSIM of all the
models when the scaling factor was ×2×2. It is worth noting that the SSIM of our model
was higher than that of the other methods for almost all scaling factors, due to the joint
loss function we applied. The SAM of our model is not outstanding, perhaps because it is
tricky for the 3D hybrid module to extract the spectral information from images only with
three channels. Our model may sacrifice the spectral accuracy to improve the resolution
of the reconstruction images. Furthermore, the SAM measures the spectral similarity
between the reconstructed and original images, so the SAM indice is more suitable for
multispectral or hyperspectral data, but the images of the WHU Building dataset are
RGB images, which only have three channels. We also present the visual reconstruction
images from the WHU Building dataset, as shown in Figure 11. Figure 11a–g are the SR
results (×4) of the Bicubic, RDN, RCAN, 3D-FCNN, HSENet, TransENet, and the proposed
model, and Figure 11h,i are the ground truth and corresponding spectral curve. Our model
obtains the best reconstruction performance compared to the state-of-the-art SR models.
The corresponding PSNR and SSIM of our algorithm are 23.8611 dB and 0.5763, which are
slightly higher than the compared models, demonstrating that our method is applicable
for only-three-channel remote sensing images. The reconstructed car highlighted by red
rectangles in Figure 11g is most similar to those of the ground truth, proving the SR’s
superior performance. The reconstructed spectral curves look similar in Figure 11i on the
left. Our spectral curve is reconstructed with poor appearance in the right corner of the
Figure 11i. This phenomenon proves that our model applies the spectral information to
enhance the remote sensing images.
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Table 6. Quantitative results of super-resolution models on the SEN12MS-CR dataset.

Scale Bicubic ESPCN RDN RCAN CSNLN ENLCN 3D-FCNN HSENet TransENet Ours

×2
PSNR 45.6728 48.4261 52.1085 53.9716 51.2913 49.6070 48.5111 54.0833 53.6462 54.8343
SSIM 0.9896 0.9933 0.9973 0.9982 0.9968 0.9955 0.9936 0.9982 0.9980 0.9985
SAM 0.2009 0.2941 0.1975 0.2002 0.2276 0.2031 0.2361 0.1895 0.2615 0.2202

×4
PSNR 39.3311 40.9415 42.3691 43.8431 43.3067 41.4983 40.2574 43.7074 45.3179 45.5625
SSIM 0.9601 0.9688 0.9769 0.9827 0.9805 0.9728 0.9639 0.9825 0.9879 0.9882
SAM 0.5553 0.5311 0.3934 0.3700 0.4113 0.4250 0.5154 0.3987 0.6190 0.3806

×8
PSNR 33.6025 35.1888 36.2570 38.5665 37.9443 35.9386 34.4387 37.2628 40.3338 41.0994
SSIM 0.9074 0.9221 0.9341 0.9546 0.9502 0.9314 0.9125 0.9436 0.9678 0.9738
SAM 1.9642 1.4279 1.2314 0.9549 1.0551 1.2219 1.5838 1.1569 0.8413 0.7764

Figure 9. The reconstruction maps and spectral curves of SR models on the river areas from the
SEN12MS-CR dataset with a scale factor ×8.
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Figure 10. The reconstruction maps and spectral curves of SR models on the urban areas from the
SEN12MS-CR dataset with a scale factor ×8.

Table 7. Quantitative results of super-resolution models in the WHU Building dataset.

Scale Bicubic ESPCN RDN RCAN CSNLN ENLCN 3D-FCNN HSENet TransENet Ours

×2
PSNR 23.8249 26.3325 27.0202 27.0111 26.9092 25.8780 26.0320 27.0019 26.6260 27.0671
SSIM 0.6891 0.8084 0.8230 0.8235 0.8211 0.7968 0.7975 0.8228 0.8140 0.8282
SAM 0.1739 0.2493 0.1702 0.1654 0.1973 0.1707 0.1977 0.1638 0.1999 0.2068

×4
PSNR 21.6610 22.9743 23.3805 23.3446 23.2715 22.7953 22.7498 23.3512 23.1586 23.3269
SSIM 0.5124 0.6107 0.6347 0.6337 0.6317 0.6005 0.5920 0.6321 0.6241 0.6379
SAM 0.2860 0.2730 0.2127 0.2318 0.2879 0.2244 0.2903 0.2189 0.3381 0.3078

×8
PSNR 20.0802 20.9555 21.1534 21.1195 21.0724 20.9007 20.7813 21.0925 21.0997 20.8123
SSIM 0.4043 0.4597 0.4772 0.4752 0.4779 0.4533 0.4456 0.4706 0.4787 0.4768
SAM 0.6160 0.5683 0.3937 0.4449 0.5800 0.3858 0.5382 0.4848 0.6052 0.5883
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Figure 11. The reconstruction maps and spectral curves of the SR models on the forest areas from the
WHU Building dataset with a scale factor ×4.

In summary, one notable advantage of our method lies in its strong generalization
ability. Our model is insensitive to the number of bands and content variations, making it
suitable for common super-resolution tasks in hyperspectral, multispectral, and three-band
remote sensing images. Additionally, our model demonstrates a strong representational
capability, resulting in higher accuracy when reconstructing super-resolved images com-
pared to state-of-the-art algorithms. However, a drawback of our model is that the fidelity
of reconstructing spectra is average, as the emphasis was placed on enhancing the super-
resolution effect at the expense of the spectral reconstruction capacity.

5. Discussion

In this section, we analyze the key factors which affect the SR’s performance and need
to be considered in practical applications.
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5.1. Loss Function Parameter

To select the best weight for the loss function, we tested our model with the distinct
parameter λ1 on the SEN12MS-CR dataset. We selected the best result over 200 epochs
(to save running time) with a scaling factor of ×4. As exhibited in Figure 12, the line
graph illustrates changes in the evaluated metrics along with the variation in parameter
λ1. The PSNR rises slightly from λ1 = 0 to λ1 = 0.1, before falling sharply at λ1 = 1.
Meanwhile, the SSIM gradually increases, peaking at λ1 = 1, and achieves a rapid decline
at λ1 = 10. This result demonstrates that our model is sensitive to the parameter λ1. We set
λ1 = 0.1, avoiding a significant decline in PSNR.

Figure 12. PSNR (dB) and SSIM comparisons under different coefficients of loss function. The results
were calculated on the SEN12MS-CR dataset with a scaling factor ×4 over 200 epochs.

5.2. Ablation Investigation

To verify the effectiveness of each component, we tested the SR’s performance by
removing the individual block from the HSRN. The quantitative consequences are shown
in Figure 13 and Table 8, showing that all the networks gradually converge. The basic SR
model (without 3D, RCAB, and RSAB modules) obtained the worst reconstruction result,
and the PSNR and SSIM were 41.2360 dB and 0.9715. The employment of the 3D, RCAB,
and RSAB modules increased the PSNR by 3.39%, 6.52%, and 5.61%, respectively. This
proves that all three modules are beneficial to the SR task, and that the RCAB is more
effective than the others. The 3D module extracts the spectral-spatial information from
the multi-channel remote sensing images and gains 1.3967 dB more than the basic SR
models. The attention structure of the RCAB and RSAB strength’s spectral and spatial
features achieved 2.6874 dB and 2.3116 dB more than the basic SR models. Moreover,
the combination of these modules is more important than a single module for the RS model.
The attention structure containing the RCAN and RSAB outperformed the other pairs.
The best performance was achieved by our HSRN, proving the validity of the 3D, RCAB,
and RSAB modules.

Table 8. Quantitative evaluation of the ablation experiments.

Ablation PSNR SSIM

w/o all three modules 41.2360 0.9715
w/o RCAB and RSAB 42.6327 0.9782

w/o 3D and RSAB 43.9234 0.9832
w/o 3D and RCAB 43.5476 0.9816

w/o RSAB 44.4369 0.9849
w/o RCAB 44.4971 0.9851

w/o 3D 45.3522 0.9869
Ours 45.5625 0.9882
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Figure 13. Effect of HSRN with different convolutional structures. The curves are based on the PSNR
(dB) on the SEN12MS-CR dataset with an upsampling factor of ×4 over 1000 epochs.

5.3. Training and Testing Times

Here, we present the training and testing times for the end-to-end model. All the tests
were performed on a workstation with two Intel Xeon(R) Gold 5128 central processing
units, 128 GB memory, and four NVIDIA GeForce RTX 3090 GPUs. The operating system
was Windows 10. In Table 9, we can see that the proposed method had little advantage
in computational time consumed due to its complex construction. Our model only had a
faster testing speed than the CSNLN, 3D-FCNN, HSENet, and TransENet. Future work
will focus on model simplification.

Table 9. Training and testing time on the SEN12MS-CR dataset with an upsampling scale of ×2. The
unit of time is seconds.

Models Training Time Testing Time

ESPCN 12.3096 12.06227
RDN 12.8103 12.4258

RCAN 13.8602 12.7183
CSNLN 45.1342 21.5814
ENLCN 25.4723 24.4237

3D-FCNN 24.9178 17.1695
HSENet 33.5243 17.9910

TransENet 27.1521 17.2124
Ours 26.2231 15.9818

6. Conclusions

In this paper, we proposed a hybrid SR network (HSRN) for multi-channel remote
sensing images. Specifically, the hybrid 3D–2D module allows the HSRN to extract the
spatial-spectral information from the LR images. Then, we designed an attention structure
consisting of channel and spatial attention, and adopted it to weigh and rescale the features.
Furthermore, we applied a joint loss function to constrain the HSRN to reconstruct HR
remote sensing images. Most evaluations of three public datasets proved that our model
not only gains higher PSNR and SSIM values, but also generates clearer visualization SR
outputs than the compared models. The spectral curves of our reconstructed images main-
tained stability and our model utilized spectral information to improve the SR performance.
Extensive experiments demonstrated the effectiveness of our HSRN. In future work, we
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will optimize the HSRN and improve its operation efficiency. We will also further explore
the feasibility of applying our method to achieve super-resolution for synthetic aperture
radar (SAR) images.
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