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Abstract: The despeckling of synthetic aperture radar images using two different convolutional
neural network architectures is presented in this paper. The first method presents a novel Siamese
convolutional neural network with a dilated convolutional network in each branch. Recently, atten-
tion mechanisms have been introduced to convolutional networks to better model and recognize
features. Therefore, we propose a novel design for a convolutional neural network using an attention
mechanism for an encoder–decoder-type network. The framework consists of a multiscale spatial
attention network to improve the modeling of semantic information at different spatial levels and
an additional attention mechanism to optimize feature propagation. Both proposed methods are
different in design but they provide comparable despeckling results in subjective and objective
measurements in terms of correlated speckle noise. The experimental results are evaluated on both
synthetically generated speckled images and real SAR images. The methods proposed in this paper
are able to despeckle SAR images and preserve SAR features.

Keywords: synthetic aperture radar; speckle; speckle suppression; despeckling; deep learning;
convolutional neural network

1. Introduction

Synthetic aperture radar (SAR) is an air-born radar imaging sensor capable of pro-
ducing radar images under all weather conditions and at any time of the day. It provides
backscattering information on electromagnetic echoes produced by radar. Many different
applications using radar imaging technology have been used widely in polarimetry and
interferometry for the monitoring of the Earth‘s surface in real time. SAR is a coherent
imaging system that is affected by speckle noise, which hinders details of the observed
scene and makes automatic image interpretation difficult. Speckle noise is a consequence
of many scattered echoes with a shifted phase within the same resolution cell. The sum of
all echoes within the resolution cell causes strong fluctuations in intensity from one cell to
another. SAR data are generally complex-valued; therefore, information of interest can be
explored within the SAR amplitude data or a phase part. In recent years, many different
SAR satellites, including Cosmo SkyMed, Sentinel 1, ALOS-2, and RadarSAT2, have been
orbiting around the Earth, and the data can be accessed very easily. Speckle removal is
an essential task before performing SAR data processing. Many different algorithms have
been proposed for suppressing speckle since 1980 [1].

Speckle can be suppressed by using multi-looking techniques or spatial and frequency
averaging, applying Bayesian inference or time-frequency analysis, averaging neighbor
pixels, and, more recently, using convolutional networks. Speckle is multiplicative noise;
therefore, models for despeckling should estimate speckle and preserve all spatial features,
edges, and strong scatterers. The estimated speckle should have a Gamma distribution
with a mean equal to 1.

Different methods of despeckling exist in the literature that depend on the modeling
of SAR data. Adaptive spatial domain filters, such as Lee [2], Kuan [3], and Frost [4],
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deploy a weighted average of the central pixel intensity and the average intensity of its
neighboring pixels in the moving window. An advanced version of the Lee and Frost
filters was proposed that operates similarly but categorizes the coefficient of variation into
homogeneous regions, heterogeneous regions, and isolated points [5].

Model-based despeckling involves maximizing the posterior (MAP) probability den-
sity function (PDF), which consists of PDF data and a model [6]. A group of despeckling
techniques involves discrete wavelet transform (DWT). These techniques involve reducing
noise by applying thresholding to the coefficients of the log-transformed single-look im-
age’s DWT. Several works have been proposed within wavelet and the second generation
of wavelet transforms, which use the threshold within the wavelet subbands [7], or apply
Bayesian inference to the subbands [8]. The authors of [9] proposed a weighted-average
algorithm of similar pixel values. Pixel similarity is defined as the Euclidean distance
between patches. A more general definition of pixel similarity is based on a noise distri-
bution model, as proposed in [9]. A scattering-based version of the SAR block-matching
3D (SARBM3D) filter [8] was presented in [10]. The authors of [10] modified the original
algorithm from [8] and exploited the already available information on the imaged scene,
and the authors of [11] proposed a despeckling evaluation framework.

Deep learning has also been investigated for image-denoising tasks in recent years.
Deep learning methods have shown a lot of success in classification [12] and low-level com-
puter vision problems, such as segmentation [13], denoising [14], and super-resolution [15].
State-of-the-art image restoration with high-quality results and real-time processing capa-
bility using a convolutional neural network (CNN) was proposed in [16]. The deep learning
approach can also be applied to the denoising of optical images, mainly in the context of
additive white Gaussian noise (AWGN). A dramatic improvement in denoising can be
achieved using advanced regularization and learning methods, such as Rectifier Linear
Unit (ReLU), batch normalization, and residual learning [17]. The authors of [14] presented
a feed-forward denoising convolutional neural network (DCNN) following a residual learn-
ing approach [17] paired with batch normalization (BN) [18]. Residual learning methods
perform better since they focus on predicting the residual image (i.e., noise image) instead
of directly producing a noise-free image. The residual learning approach helps improve the
training of CNNs. CNNs learn better when asked to produce an output that is significantly
different from the input [14,19]. The authors of [20] proposed an image-despeckling convo-
lutional neural network (ID-CNN), which assumes multiplicative speckle noise, recovering
the filtered image through a component-wise division-residual layer.

Recent research has proposed different machine learning approaches for processing
SAR images, such as the SAR Dilated Residual Network (SAR-DRN) [21], which employs
dilated convolutions and a combination structure of skip connections with residual learn-
ing, the CNN-based deep encoder–decoder architecture of the U-Net to capture speckle
statistical features [22], and a non-local despeckling method for SAR images. In this method,
the weight of the target pixel is estimated using a convolutional neural network [23]. The
despeckling of SAR images within the contourlet wavelet transform using a CNN-based
structure was proposed in [24]. The CNN-based despeckling of polarimetric SAR data
using a complex-value CNN was proposed in [25]. Recently, CNNs have been updated with
attention mechanisms [26], where a residual attention network maps features better within
an encoder–decoder network. A second-order channel attention that refines convolutional
features using second-order statistics was proposed in [27]. The despeckling performance
was improved by incorporating an attention mechanism [28–31]. Almost all despeckling
methods introduce several artifacts, which are consequences of either image modeling or
the spatial relation between image data. The SAR evaluation procedures are well defined
in [11].

Recently, published methods for SAR image despeckling have used convolutional
neural networks [32–36]. The authors of [32] proposed a residual network known as
SAR-DRDNet, which consists of non-local and detail recovery parts and uses the global
information of the SAR image and multiscale contextual information of the pixels. A
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wavelet-based thresholding method known as MSPB [33] uses the pixel neighborhood and
a bilateral filter for noise suppression, together with an intelligent Bayesian thresholding
rule. SAR-DDPM [34] is a denoising diffusion probabilistic model with a Markov chain.
The despeckled image is obtained through a reverse process that predicts the added noise
iteratively using a noise predictor conditioned on the speckled image. The authors of [35]
employed an overcomplete CNN architecture to focus on learning low-level features by
restricting the receptive field. The proposed network consists of an overcomplete branch
that focuses on the local structures and an undercomplete branch that focuses on the global
structures. Transformer-based SAR image despeckling [36] comprises a Transformer-based
encoder, which allows the network to learn global dependencies between different image
regions, aiding in better despeckling. The network is trained end-to-end with synthetically
generated speckled images using a composite loss function. The SAR-CAM method [37]
improves the performance of the encoder–decoder CNN architecture by using various
attention modules to capture multiscale information.

A self-calibrated dilated convolutional neural network for SAR image despeckling
called SARSCDCNN was proposed in [38], which consists of several self-calibrated blocks.
The features are extracted within two branches, representing the contextual features within
the original space and the features within the long-range space. A down-up sampling
operation and convolutions with hybrid dilated rates are used. Multi-temporal features
and a similarity estimation approach to despeckling were proposed in [39]. A single-image-
capable despeckling method using similarity-based block-matching and a noise-referenced
encoder–decoder convolutional neural network exploits similarity-based block-matching
within one noisy SAR image. The method uses a Siamese network to share parameters
between two branches.

Traditional CNNs try to increase the receptive field size as the network goes deeper,
thus extracting global features. However, the speckle is relatively small, and increasing
the receptive field does not help extract speckle features. The goal of newly developed
methods is to incorporate newly designed features into deep convolutional networks, such
as spatial attention mechanisms and transformers.

This paper presents two different approaches to the modeling of SAR data statistics,
both using a CNN. The first method uses residual learning with additive noise, similar
to [14]. The adaptation of optical imaging processing to SAR image processing is achieved
by handling multiplicative speckle noise and using a dual or Siamese CNN. Each sub-
network consists of a structure and loss function, which ensures that each sub-network
is the most similar to the corresponding clean SAR image. The minimal configuration of
each sub-network assures minimal training time using the proposed training database. The
second method uses an encoder–decoder structure, similar to the U-Net structure, and
adds a multi-resolution attention mechanism for advanced speckle modeling. The attention
mechanism consists of several additional sub-networks: a Dilated Residual Network (DRN),
an Attention Supervision Network (ASN), and a hlMulti-resolution Attention Mechanism
(MAM). The experimental results of the proposed methods show very good results in
speckle estimation and provide visual results similar to those of the SARBM3D method for
synthetic and real data. In addition, the proposed methods provide better results compared
to the SAR-CAM and overcomplete neural network methods in objective and subjective
measurements.

2. Related Works
2.1. Gaussian Denoiser

Despeckling using a deep convolutional network, as proposed in [14], is used to
estimate Gaussian noise statistics. The architecture of the algorithm is depicted in Figure 1.
The algorithm is designed in such a manner that it assumes an additive speckle model.
Therefore, the algorithm estimates the speckle noise, which is subtracted from the original
image, as shown in Figure 1. The supervised algorithm is trained using synthetically
generated speckled images with known noise parameters. The goal was to design a
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network that minimizes errors between the estimated and synthetically generated speckle.
Different approaches to the generation of synthetic speckle images have been used in
the literature. The simplest one adds synthetically generated speckle [40] to the optical
images as multiplicative noise [14,20]. The averaging method using time series over a scene
with constant backscatter over time is the most reliable method for providing speckle-free
images [19]. The main problem in SAR images is that strong scatterers and double-bounce
scatterers do not contain speckle, and this model should be used in speckle modeling.

speckled
image

deep convolutional
network

speckle speckled
image

Figure 1. Architecture of the denoising convolutional neural network [14].

The network consists of 17 fully convolutional layers with no pooling. The first layer
uses Conv+ReLU with 64 filters of size 3× 3 to generate 64 feature maps, followed by
rectified linear units for non-linearity. Layers 2–16 use Conv+BN+ReLU with 64 filters of
size 3× 3× 64, where batch normalization is added between the convolution and the ReLU.
The last layer uses Conv with a filter of size 3× 3× 64 to reconstruct the output. The loss
function that is minimized during the training step is the l2 loss (i.e., the sum of squared
errors, averaged over the whole training set).

The goal of despeckling using a CNN is to determine the link between speckled and
despeckled images, which is defined as

x = CNN(y, θ) (1)

where CNN represents the denoising CNN, and θ = {W1, W2, b1, b2} represents the param-
eters of the network. Equation (1) can be transformed for a CNN with residual learning
R as

y− x = R(y, θ) (2)

Residual learning R is given by

R(y, θ) = W2 f (W1y + b1) + b2 (3)

where θ and f (.) represent the non-linearity at the rectified linear units ReLu = max(0, .).
A single hidden-layer CNN can be extended by introducing M convolutional layers with
WM weights. Residual learning R(y; θ) is then given by

R(y, θ) = WM ∗ aM−1 + bM (4)

am = ReLu · BN(Wm ∗ am−1 + bm)

where bm represents the estimated biases, am represents an activation, BN is the batch
normalization, and m ∈ (1, M) is the current convolutional layer. Each convolutional
layer’s size is defined as p × p × Cm × dm, where p × p is the size of the convolutional
filter, Cm = dm−1 is the number of channels in the m-th layer, and dm is the number of
convolutional filters in the m-th layer. A loss function l(θ) estimates the discrepancy D
between the target output and actual network output. The loss function l(θ) is estimated as

l(θ) =
N

∑
i=1

D(R(log yi, θ), log(yi/xi)) (5)

where xi and yi represent the discrepancy between the targets in N training pairs, and
the actual output is D(x, y) = || log x− log y||22. A mini-batch stochastic gradient descent
algorithm is utilized to minimize the loss function l(θ). Other perceptual-based loss
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functions could be used to achieve better visual quality. However, the use of different loss
functions is beyond the scope of this paper and is not discussed further.

The Adam optimizer [41] is utilized to train the designed CNN. The same parameters
are used throughout the designed CNN architecture to reduce the number of parameters
and the plausibility of overfitting.

Chierchia et al. [19] used a log transformation and applied a very similar structure to
SAR image despeckling using an additive model. A multiplicative model applied to a deep
convolutional network was proposed in [20], as depicted in Figure 2, where the smoothing
of images is improved by the joint minimization of both the Euclidean loss (EL) and total
variation (TV) loss functions.
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Figure 2. SAR image despeckling assuming a multiplicative noise model [20].

2.2. SAR Dilated Residual Network

A novel network for SAR image despeckling, called SAR-DRN, was proposed, which
is trained in an end-to-end fashion using a combination of dilated convolutions and skip
connections with a residual learning structure [21]. Instead of relying on a pre-determined
image, a priori knowledge, or a noise description model, the main advantage of using a
deep neural network strategy for SAR image despeckling is that the model can acquire
and update the network parameters directly from the training data and the corresponding
labels, which does not require the manual adjustment of critical parameters, and can auto-
matically learn the complex internal non-linear relations with trainable network parameters
from the massive training simulative data. The holistic neural network model for SAR
image despeckling contains seven dilated convolution layers and two skip connections, as
illustrated in Figure 3.
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Figure 3. SAR-DRN for SAR image despeckling [20].

Dilated Filter

Dilated convolutions can both enlarge the receptive field and maintain the filter size
with a lightweight structure. Furthermore, skip connections are added to the despeckling
model to maintain the image details and avoid the vanishing gradient problem. Dilated
convolution is a technique that expands the kernel by inserting zeros between its consecu-
tive elements. In simpler terms, it is the same as regular convolution, but it involves pixel
skipping, allowing it to cover a larger area of the input. An additional parameter l (dilation
factor) indicates how much the input is expanded. Based on the value of this parameter,
(l − 1) pixels are skipped in the kernel. Therefore, regular convolution has a dilation factor
of l = 1. Dilated convolution helps expand the area of the input image area without
pooling. The objective is to capture more information from the output obtained with every
convolution operation. This method offers a wider field of view at the same computational
cost. We determine the value of the dilation factor l by observing how much information
is obtained with each convolution for varying values of l. By using this method, we can
obtain more information without increasing the number of kernel parameters. When we
keep the value of l = 2, we skip 1 pixel (l − 1 pixels) while mapping the filter onto the



Remote Sens. 2023, 15, 3698 6 of 25

input, thus capturing more information in each step. If the traditional 3× 3 convolution
filter is used, the network will either have a receptive field with dimensions of 15× 15 with
the same network depth (i.e., 7) or have a depth of 16 with the same receptive field (i.e.,
33× 33).

2.3. U-Shaped Denoising Network

Based on the principle of denoising auto-encoders, the authors of [22] proposed a
despeckling method, where speckled images and their corresponding speckle-free recon-
structions are involved in training the CNN. The same approach can be applied to SAR
image despeckling by extracting latent representations from the speckled images and gen-
erating their corresponding reconstructions. A modified version of the U-Net, initially
designed for biomedical image segmentation tasks [42], can compress the information by
extracting relevant features from the input image at different scales. The U-Net employs
a symmetric encoder–decoder structure (U-shape), with skip connections going from the
contracting path on the left to the expansive one on the right. This way, details in the SAR
image can be captured at various scales. Figure 4 depicts the architecture of the original
U-Net proposed in [42].

Speckled
image

Speckle

Despeckled
image

-

Figure 4. Architecture of U-shaped CNN [22].

3. The Proposed Deep Despeckling Architecture
3.1. The Proposed Architecture of the Siamese-Based Dilated Deep CNN

The combination of a Siamese network and the SAR-DNR method allows for the
exploitation of both the inherent properties of speckle noise learned by the network and the
denoising capabilities of the SAR-DNR algorithm. This novel method, which is basically a
fusion of two existing networks, can lead to improved despeckling results by effectively
preserving important image information while suppressing unwanted noise. The Siamese
network can learn discriminative features that capture the statistical properties of speckle
noise. By training the network on pairs of noisy and noise-free SAR images, it can learn
to distinguish between noise and the underlying signal. This feature learning capability
enables the network to extract relevant information for despeckling. The Siamese network
can capture complex non-linear relationships between the input noisy SAR image and the
desired denoised output. By employing deep neural network architectures, the Siamese
network can learn intricate mappings that effectively suppress speckle noise while pre-
serving important image details. The Siamese network can capture contextual information
within the SAR imagery by considering local and global image patches. This allows the
network to leverage the spatial dependencies and correlations present in SAR images, en-
abling better noise estimation and removal. The trained Siamese network can adapt to the
different noise patterns and noise levels encountered in SAR imagery. The combination of a
Siamese network and the SAR-DNR method allows for the exploitation of both the inherent
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properties of speckle noise learned by the network and the denoising capabilities of the
SAR-DNR algorithm. This fusion of approaches leads to improved despeckling results by
effectively preserving important image information while suppressing unwanted noise. A
twin-based network using a SAR-DNR-like network structure is depicted in Figure 5.
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Figure 5. Architecture of the Siamese-based Dilated Residual Convolutional Neural Network (SDR-
CNN).

The Siamese-based Neural Network (SNN) [43] consists of twin networks, which ac-
cept distinct inputs but are joined by an energy function at the top. This function estimates
the metric between the highest-level feature representation on each side. The parameters
between the twin networks are tied. Weight-tying guarantees that two extremely similar
images could not possibly be mapped by their respective networks to very different loca-
tions in feature space because each network computes the same function. Also, the network
is symmetric, so that whenever we present two distinct images to the twin networks, the
top conjoining layer will compute the same metric as if we were to present the same two
images to the opposite twins.

3.1.1. Loss Function

The performance of a CNN relies heavily on loss functions. While per-pixel EL is a
reliable quantitative measure, it could reduce image details and produce artifacts in the
final output image. The minimization of pixel-wise errors cannot be based solely on the
per-pixel loss; therefore, differences in detailed features must be considered. To address
this problem, we combine the TV regularization term and EL into a final loss function
that evaluates the visual quality of each subband. The TV regularization term and EL are
estimated as

TV =
W

∑
i=1

H

∑
j=1

√
(x(i, j + 1)− x(i, j))2 + (x(i + 1, j)− x(i, j))2 (6)

EL =
1

WH

W

∑
i=1

H

∑
j=1

(x(i, j)− y(i, j))2)

where x(i, j) is the input speckled SAR image, and y(i, j) is the corresponding despeckled
image with width W and height H. The combined loss function, which can be used for
estimating the difference between the speckled and corresponding despeckled images, is
given by

LCS = TV + EL (7)

The common loss function can be estimated using the TV and penalty terms for both
sub-networks:

L(d, Y) =
1
2

Yd2 + (1−Y)
1
2

max(0, m− d)2 (8)

d = TVlow + TVhigh + ELlow + ELhigh (9)
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where the subscripts low and high represent the two branches of the network.

3.1.2. Training the Designed CNN

The two CNN models were trained on two datasets: a synthetic SAR image dataset
and a real SAR image dataset. The synthetic SAR image dataset was generated by adding
a single-look speckle to 2500 optical images. The real SAR image dataset consisted of a
stack of 150 images obtained from 10 different scenes using the Sentinel platform. All the
images used in the experiment were either cut out from existing SAR images or resized
to dimensions of 256× 256, and 90% of the images in each dataset were used for learning.
The TensorFlow framework was used to implement the entire network, and the Adam
optimizer was employed to train it [41]. The ReLU activation function was used, with con-
volution kernels of 3× 3 for feature extraction and 1× 1 for feature aggregation. The final
convolution layer generated a grayscale image. The learning rate was initially set to 0.0002,
which decreased by a quarter every 25 epochs. The CNN training took approximately nine
hours to complete using an NVIDIA RTX 2080Ti for the 13 sub-networks.

Figure 6a,b show real SAR images of the same area acquired by the ALOS-2 satellite
and TerraSAR-X. The images were taken in HH polarization, with a ground resolution of 4
(Alos-2) and 1 (TerraSAR-X) meters. The images depict an urban area with houses, a river,
bridges, a forest, and homogeneous areas.

(a) (b)

Figure 6. Geocoded SAR images of an urban area. (a) ALOS 2 image with a ground resolution of 4 m.
(b) TerraSAR-X image with a ground resolution of 1 m.

3.2. The Proposed Architecture of the Dilated Deep CNN with an Attention Mechanism

In this paper, we propose a combination of different deep learning approaches for
despeckling image enhancement. The architecture of this method is depicted in Figure 7.
It consists of a Dilated Residual Network (DRN), U-net, Attention Supervision Network
(ASN), and hlMulti-resolution Attention Mechanism (MAM). The algorithm converts a
speckled image into feature maps using the first set of convolutional layers, and the U-net
extracts fine features at different scales. The extracted features are enhanced once again
using the ASN, which extracts important features and neglects non-important features;
therefore, it gives larger weights to important features using training sets. The MAM is
used to enhance contextual features at different scales. All the features are reconstructed in
the final convolutional layer, which provides a speckle-free image.

SAR
image

DRN U-Net ASN MAM
Despeckled

Image

Figure 7. Structure of the Attention-Based Convolutional Neural Network (ABCNN).

To introduce additional speckle modeling, the DRN is inserted before the U-net to
extract features additionally. The DRN used is shown in Figure 8, and it is described in
detail in the previous sections. The ASN shown in Figure 9 uses the extracted features of
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the U-net, generated into the residual image using 1× 1 convolution, and adds them to the
original image. This step is very important since it adds additional supervision using the
original image. The resulting sum is further filtered using 1× 1 convolution and a Sigmoid
function, which generates an attention mask.
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Figure 8. Structure of the DRA network used within the proposed network.
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The information hindered by the speckle can be recovered if the speckle can be
detected across different resolutions. A MAM can be used to detect and extract features
and multiscale features. The MAM block can be designed using dilation convolution and
an Efficient Channel Attention (ECA) module [44]. The main role of the residual block is
to overcome the problem where the learning rate becomes low and the accuracy cannot
be effectively improved due to the deepening of the network. The MAM is depicted
in Figure 10a, where a dilated convolution is used with factors of 1, 3, and 5 for each
convolution branch. The residual block within the MAM network is shown in Figure 10b.
The ECA module collects the aggregated features and averages them using Global Average
Pooling (GAP) and then estimates the weights using one-dimensional CNN with a kernel
dimension of 3. The MAM consists of a series of MAM modules. Five of them were
considered, as shown in Figure 10a [44].
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Figure 10. Multi-resolution attention mechanism (MAM). (a) Structure of the MAM. (b) Structure of
the residual network within the MAM and structure of the ECA network.
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Loss Function

The loss function that uses the L2 norm is not effective because it introduces additional
artifacts in the reconstructed data [45]. The loss function can be formed using a logarithm
of despeckling gain and LTV

L = LDG + (1− LSSIM(Y−Yorig)) (10)

where Y represents the despeckled image, Yorig represents the speckle-free image, and LDG
is given by

LDG = log10

N

∑
i=1

M

∑
j=1

||x̂i,j − xi,j||22
||ŷi,j − xi,j||22

(11)

where N and M represent the width and height of the SAR image. Within the learning
process, the Adam optimizer is used to update the network weights.

4. Experimental Results

This section evaluates the two proposed methods, Siamese-Based Dilated Residual
Convolutional Neural Network (SDRCNN) and Attention-Based CNN (ABCNN), shown
in Figures 5 and 7, respectively. Two scenarios were considered for the efficiency evaluation
of the proposed methods using synthetically generated speckled images and real SAR
images. First, we evaluated the performance of the proposed despeckling methods using
synthetically speckled images, and later, we added the real-valued data to adapt the model
to the real SAR data. This procedure can be done because the model can be further trained.
In this paper, we generated synthetic speckle and added it to the synthetically generated
images as multiplicative noise. A total of 800 images were used with known speckle.
In [19], multi-temporal data were used to average the same scene and train the network
to estimate the speckle. The second step was to use temporally averaged images from
homogeneous areas. The strong scatterers from buildings within high-resolution SAR
data do not contain any speckle. Therefore, those datasets were also included in the
learning process. The proposed SDRCNN and ABCNN methods were compared to the
SARBM3D [8], DCNN [20], overcomplete convolutional neural network (OCNN) [35], and
SAR image despeckling using a continuous attention module (SAR-CAM) [37] methods.

4.1. Experimental Settings for the SNN Method

Figure 5 shows that the SNN comprises 17 fully convolutional layers without pooling.
The first layer was built with 64 filters of size 3× 3 to generate 64 feature maps, followed by
rectified linear units for non-linearity (ReLU). For layers 2–16, 64 filters of size 3× 3× 64
were used, with batch normalization added between the convolution and the ReLU. The
final layer used a filter of size 3× 3× 64 for output reconstruction. During the training step,
the loss function l2 was minimized, which involved the sum of squared errors averaged
over the entire training set.

4.2. Synthetic Example

The despeckling efficiency was estimated using the despeckling evaluation methodol-
ogy suggested in [11]. The authors of [11] proposed a method for evaluating despeckling
techniques using specially designed metrics on five different datasets. The experiments con-
ducted in this study employed synthetically generated images, including a homogeneous
image, as well as square, building, corner, and Digital Elevation Model (DEM) images, as
illustrated in Figures 11a, 12a, 13a, 14a and 15a.

4.2.1. Homogeneous Area

The synthetic SAR homogeneous image, shown in Figure 11a, was despeckled, and
the image quality was assessed based on the mean of intensity (MoI), mean of ratio (MoR),
variance of ratio (VoR), equivalent number of looks (ENL), and despeckling gain (DG),
as proposed in [11]. MoI is an indication of possible bias; MoR shows how well the
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speckle was estimated; VoR reports under-smoothing (VoR < 1) and over-smoothing (VoR
> 1, only for non-flat areas); DG shows the despeckling rejection, with higher values
providing better speckle reduction; and ENL represents the averaging during the SAR data
formation. The measurements for the SAR homogeneous images are reported in Table 1.
The proposed ABCNN method provided the best results in all measurements, followed by
the proposed SDRCNN method. The SARBM3D and DCNN methods provided similar
results for the objective measurements of the MoR, equivalent number of Looks (ENL), and
DG. The OCNN and SAR-CAM methods were able to smooth the homogeneous image but
introduced a shift in the mean of the despeckled image and did not estimate speckle noise
well, as reported in Table 1. The despeckled homogeneous images using all methods are
shown in Figure 11c–h.

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 11. Synthetic SAR homogeneous images. (a) Original image. (b) Speckled image. (c) Image
despeckled using the SDRCNN method. (d) Image despeckled using the ABCNN method. (e) Image
despeckled using the SARBM3D method. (f) Image despeckled using the DCNN method. (g) Image
despeckled using the OCNN method. (h) Image despeckled using the SAR-CAM method.
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Table 1. Image quality measurements based on the MoI, MoR, VoR, ENL, and DG for homogeneous
images.

Method MoI MoR VoR ENL DG

clean 1.00 0.998 0.987 436.97 -
noisy 0.9980 - - 1 0

SDRCNN 0.998 0.998 0.928 271 23.3
ABCNN 0.998 0.998 0.928 273 23.2

SARBM3D 0.998 0.997 0.912 150 21.65
DCNN 0.998 0.998 0.923 247 22.5
OCNN 1.12 0.893 0.788 541 14.4

SAR-CAM 0.78 1.27 1.362 194 12.6

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 12. Synthetic SAR square images. (a) Original image. (b) Speckled image. (c) Image de-
speckled using the SDRCNN method. (d) Image despeckled using the ABCNN method. (e) Image
despeckled using the SARBM3D method. (f) Image despeckled using the DCNN method. (g) Image
despeckled using the OCNN method. (h) Image despeckled using the SAR-CAM method.

4.2.2. Square Image

The proposed despeckling methods’ efficiency in preserving edges was determined
using a synthetic SAR image of four homogeneous areas using different methods, as shown
in Figure 12a. Edge Smearing (ES) and Pratt’s figure of merit (FOM) were used as indirect
measures to evaluate the ability to recognize edges in the filtered image [11]. A higher
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value of FOM shows better edge preservation. The square image had two vertical edges
and two horizontal edges of varying contrast—one area had a higher contrast, whereas
the other had a lower contrast. Table 2 shows the measurements for the synthetic SAR
square image. The DCNN method resulted in the most blurred edges, followed by the
SARBM3D, SDRCNN, and ABCNN methods. The values reported were rather similar,
indicating that the CNN-based methods were superior to the SARBM3D method. The
OCNN and SAR-CAM methods did not estimate speckle well; therefore, the despeckled
images shown in Figure 12g,h still had noise that was basically artifacts caused by both
methods. Both methods introduced a mean shift and smeared edges. These results were
confirmed by the objective measurements shown in Table 2. The despeckled images are
illustrated in Figure 12c–h.

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 13. Synthetic SAR image depicting a building. (a) Original image. (b) Speckled image.
(c) Image despeckled using the SDRCNN method. (d) Image despeckled using the ABCNN method.
(e) Image despeckled using the SARBM3D method. (f) Image despeckled using the DCNN method.
(g) Image despeckled using the OCNN method. (h) Image despeckled using the SAR-CAM method.
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Table 2. Edge preservation measurements based on ES and FOM for the square image.

Method ES (Up) ES (Down) FOM

clean - - 0.993
noisy 0.01 0.029 -

SDRCNN 0.071 0.21 0.888
ABCNN 0.071 0.21 0.885

SARBM3D 0.036 0.113 0.847
DCNN 0.070 0.21 0.881
OCNN 0.024 0.18 0.099

SAR-CAM 0.016 0.13 0.098

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 14. Synthetic SAR image depicting a corner reflector. (a) Original image. (b) Speckled image.
(c) Image despeckled using the SDRCNN method. (d) Image despeckled using the ABCNN method.
(e) Image despeckled using the SARBM3D method. (f) Image despeckled using the DCNN method.
(g) Image despeckled using the OCNN method. (h) Image despeckled using the SAR-CAM method.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 15. Synthetic SAR DEM image. (a) Original image. (b) Speckled image. (c) Image despeckled
using the SDRCNN method. (d) Image despeckled using the ABCNN method. (e) Image despeckled
using the SARBM3D method. (f) Image despeckled using the DCNN method. (g) Image despeckled
using the OCNN method. (h) Image despeckled using the SAR-CAM method.

4.2.3. Building

A synthetic SAR image of a building was constructed, as shown in Figure 13a. Two
parameters were assessed: radiometric precision CDR, as the estimated contrast difference
between the average intensity estimated on the double reflection segment and the average
intensity of the SAR image’s background, and Building Smearing (BS), which measures
the distortion of the radiometric building profile in the range direction [11]. Table 3 shows
the CDR and BS measurements for the proposed despeckling methods. The SDRCNN and
ABCNN methods preserved building features well by estimating BS close to zero. The
SARBM3D method preserved building features well but had problems with correlated
speckle noise over a homogeneous area. The OCNN and SAR-CAM methods smeared high-
intensity scatterers, and noise remained within the homogeneous areas. The despeckled
images are depicted in Figure 13c–h.
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Table 3. Measurements for the building image.

Method CDR BS

clean 127.96 -
SDRCNN 66.05 0.22
ABCNN 66.04 0.23

SARBM3D 65.91 1.46
DCNN 65.99 0.26
OCNN 55.83 0.31

SAR-CAM 51.69 0.33

4.2.4. Corner Reflector

Figure 14a,b depict corner reflectors with and without speckle, respectively. The
contrast values CNN and CBG are indicators of radiometric preservation and were used to
evaluate the proposed despeckling methods for synthetic SAR images depicting corner
reflectors. CNN is determined by calculating the logarithmic ratio between the intensity
observed at the corner reflector site and the average intensity of the surrounding area
formed by the eight-connected nearest neighbors. CBG is computed as the ratio between
the intensity observed at the corner reflector site and the average background intensity.
The despeckled images should demonstrate values comparable to those obtained for the
input image. Table 4 shows the CNN and CBG in the despeckled images using the proposed
despeckling methods. The SDRCNN, ABCNN, SARBM3D, and DCNN methods delivered
nearly identical outcomes since they all exhibited good preservation of point scatterers.
The OCNN and SAR-CAM methods did not preserve the impulse response caused by
the simulated corner reflector. The SAR-CAM method introduced a slight shift in the
despeckled image and noise remained within the homogeneous areas. The despeckled
images can be seen in Figure 14c–h.

Table 4. CNN and CBG measurements for a synthetic SAR image depicting a corner reflector.

Method CNN CBG

clean 7.75 36.56
noisy 7.77 36.50

SDRCNN 7.48 35.98
ABCNN 7.47 35.81

SARBM3D 7.39 35.46
DCNN 7.41 35.98
OCNN 3.21 18.27

SAR-CAM 4.23 14.56

4.3. DEM

The despeckling of the synthetic DEM image shown in Figure 15a was evaluated
using the MoI, MoR, VoR, and DG, as well as the coefficient of variation Cx, providing
information on the edge and texture preservation. Table 5 shows the measurements for
the DEM image. The SDRCNN, ABCNN, DCNN, and SARBM3D methods obtained the
best results. The coefficient of variation and despeckling gain show that the CNN-based
techniques produced the best outcomes for the DEM image, followed by the SARBM3D
method. The OCNN and SAR-CAM methods preserved the details of the DEM image.
The OCNN over-smoothed the image and introduced bias, and the SAR-CAM method
was unable to estimate speckle noise and also introduced bias. The despeckled images are
illustrated in Figure 15c–h.

In conclusion, the efficiency of CNN-based methods depends primarily on the training
images used. The proposed CNN despeckling methods successfully preserved homoge-
neous areas and edge preservation, but the SARBM3D method introduced some additional
noise within the homogeneous areas. The SAR-CAM and OCNN methods introduced
slight biases into the despeckled image, and both methods were not able to estimate speckle
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within the homogeneous areas, which is reflected in the VoR, MoR, and DG. The point
scatterers were not preserved, and all the SAR features were over-smoothed or smeared.

Table 5. Measurements for the DEM image.

Method MoI MoR VoR Cx DG

clean 1.0 1.001 0.999 2.40 -
noisy 1.003 - - 3.54 0

SDRCNN 0.999 0.973 0.91 2.73 6.68
ABCNN 0.999 0.973 0.90 2.72 6.68

SARBM3D 0.968 0.933 0.756 2.42 5.46
DCNN 0.999 0.971 0.90 2.70 6.61
OCNN 1.26 0.885 0.763 1.02 3.51

SAR-CAM 0.89 0.817 0.835 0.97 4.65

4.4. Real SAR Images

The proposed CNN despeckling methods were tested using two real SAR images: a
mosaic of real SAR images and a high-resolution SAR image. The mosaic of real SAR images
comprised 16 distinct patches using eight other SAR images obtained by the TerraSAR-X
satellite in Spotlight and Stripmap mode. The SAR patches represented varied scenes with
sizes of 200× 200 pixels. Figure 16a shows the complete 800× 800-pixel mosaic image.

Figure 16b–g show the despeckled images using the proposed SDRCNN, ABCNN,
SARBM3D, DCNN, OCNN, and SAR-CAM methods, respectively. The differences between
the SDRCNN and ABCNN methods are barely noticeable. The images produced by the
SDRCNN and ABCNN methods effectively suppressed speckles within the homogeneous
areas while preserving strong scatterers. This can also be said for homogeneous areas with
high scatterers such as grassland and woodlands and artificial objects such as buildings.
The despeckled images generated by the SDRCNN and ABCNN methods preserved the
textured regions. However, the homogeneous areas appeared significantly blurred. It
was observed that in the case of the mosaic SAR image, the DCNN method yielded a
despeckled image with more speckle in homogeneous areas compared to the ABCNN and
SDRCNN methods. The DCNN-based methods occasionally introduced artifacts that ap-
peared in the training datasets while strong scatterers were well-preserved. The SARBM3D
method did not estimate speckle well and yielded a despeckled image with speckle in
homogeneous areas. The OCNN method removed noise well over the homogeneous areas
but over-smoothed point scatterers and smeared edges. It also introduced bias in the
despeckled images. The SAR-CAM method did not over-smooth the textural features
and point scatterers but did not estimate speckle well within homogeneous areas and also
introduced bias.

The effectiveness of the proposed methods was evaluated using the ratio images
between the original image shown in Figure 16a and the despeckled images shown in
Figure 16b–g. The ratio images shown in Figure 17a,b confirm effective speckle estimation
using the proposed SDRCNN and ABCNN methods. The ENLs for the SDRCNN and
ABCNN methods’ ratio images were 1.12 and 1.13, with a mean value of 0.997 and 0.998,
respectively. The ratio images also demonstrate that the edges within the homogeneous
areas were represented accurately. The SARBM3D and DCNN methods yielded slightly
worse results than the SDRCNN and ABCNN methods. Nevertheless, the ratio images
shown in Figure 17c,d confirm effective speckle estimation using the proposed SARBM3D
and DCNN methods. The OCNN and SAR-CAM methods failed to estimate the speckle in
the test images. It can be concluded that the CNN-based methods demonstrated comparable
results in both the subjective and objective measurements, as shown in Table 6. The MoI,
MoR, and VoR values are presented for the entire SAR image. The ENL was estimated from
the homogeneous area of the SAR image. The estimated Cx values are shown in the first
row and last column in Figure 16a.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 16. Real SAR images. (a) Mosaic of SAR images, 800× 800 pixels in size. (b) Despeckled
using the SDRCNN method. (c) Despeckled using the ABCNN method. (d) Despeckled using the
SARBM3D method. (e) Despeckled using the DCNN method. (f) Image despeckled using the OCNN
method. (g) Image despeckled using the SAR-CAM method.
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(a) (b) (c)

(d) (e) (f)

Figure 17. Ratio images between the original SAR image shown in Figure 16a and the despeckled
images. (a) Original SAR image compared to the despeckled image using the SDRCNN method
shown in Figure 16b. (b) Original SAR image compared to the despeckled image using the ABCNN
method shown in Figure 16c. (c) Original SAR image compared to the despeckled image using
the SARBM3D method shown in Figure 16d. (d) Original SAR image compared to the despeckled
image using the DCNN method shown in Figure 16e. (e) Original SAR image compared to the
despeckled image using the OCNN method shown in Figure 16f. (f) Original SAR image compared
to the despeckled image using the SAR-CAM method shown in Figure 16g.

Table 6. Objective measurements of the quality criteria for the mosaic SAR image shown in Figure 16a.

Method MoI MoR VoR ENL Cx

Original
image 182.9 - - - 1.93

SDRCNN 182.9 0.99 3.13 488.2 1.92
ABCNN 182.9 0.99 3.05 489.2 1.92

SARBM3D 186.7 1.01 3.72 468.7 1.26
DCNN 182.9 0.99 3.02 476.1 1.91
OCNN 153.6 0.83 0.46 588.2 0.707

SAR-CAM 159.5 0.99 0.54 520.1 0.7059

The high-resolution SAR image used for the proposed despeckling methods’ evalua-
tion, which is shown in Figure 18a, was obtained from the TerraSAR-X satellite in Spotlight
mode with a 300 MHz chirp bandwidth. Its size is 1024× 1024 pixels and it features both a
forest and an urban industrial area. The despeckled images are shown in Figure 18b–g for
the proposed SDRCNN, ABCNN, SARBM3D, DCNN, OCNN, and SAR-CAM methods,
respectively. The SDRCNN and ABCNN methods removed speckle effectively while pre-
serving the integrity of the strong scatterers. The ratio images in Figure 19a,b compare the
original image and its SDRCNN and ABCNN despeckled counterparts, respectively. The
ratio images of the SDRCNN and ABCNN methods demonstrated ENL rates of 1.1 and 1.09
and mean values of 0.995 and 0.994, respectively. The ratio images in Figure 19c,d compare
the original image and its SARBM3D and DCNN despeckled counterparts, respectively.
The SARBM3D method could not handle correlated speckles effectively, as evidenced by
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the associated despeckled and ratio images. The proposed DCNN methods proved highly
adept at estimating speckles in high-resolution SAR images accurately while preserving
the edge sharpness in homogeneous areas. The OCNN and SAR-CAM methods cannot
be compared with the other methods presented in this paper, because the OCNN method
over-smoothed the image and the SAR-CAM method underestimated the speckle, which
was still noticeable within the homogeneous areas. The point scatterers and textural fea-
tures were preserved well by the SAR-CAM method. The OCNN and SAR-CAM methods
failed to produce comparable results in the objective measurements presented in Table 6.

(a) (b) (c)

(d) (e) (f)

(g)

Figure 18. Real SAR image. (a) Original SAR image ©DLR 2012 (1024× 1024 pixels). (b) Despeckled
using the SDRCNN method. (c) Despeckled using the ABCNN method. (d) Despeckled using the
SARBM3D method. (e) Despeckled using the DCNN method. (f) Image despeckled using the OCNN
method. (g) Image despeckled using the SAR-CAM method.
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(a) (b) (c)

(d) (e) (f)

Figure 19. Ratio images between original the SAR image shown in Figure 18a and the despeckled
images. (a) Original SAR image compared to the despeckled image using the SDRCNN method
shown in Figure 18b. (b) Original SAR image compared to the despeckled image using the ABCNN
method shown in Figure 18c. (c) Original SAR image compared to the despeckled image using
the SARBM3D method shown in Figure 18d. (d) Original SAR image compared to the despeckled
image using the DCNN method shown in Figure 18e. (e) Original SAR image compared to the
despeckled image using the OCNN method shown in Figure 18f. (f) Original SAR image compared
to the despeckled image using the SAR-CAM method shown in Figure 18g.

The high-resolution SAR image used for the proposed despeckling methods’ evalua-
tion, which is shown in Figure 18a, was obtained from the TerraSAR-X satellite in Spotlight
mode with a 30 MHz chirp bandwidth. Its size is 1024× 1024 pixels and it features both
a forest and an urban industrial area. The despeckled images are shown in Figure 18b–e
for the proposed SDRCNN, ABCNN, SARBM3D, and DCNN methods, respectively. The
SDRCNN and ABCNN methods removed speckle effectively while preserving the integrity
of the strong scatterers. The ratio images in Figure 19a,b compare the original image and
its SDRCNN and ABCNN despeckled counterparts, respectively. The ratio image of the
SDRCNN and ABCNN methods demonstrated ENL rates of 1.1 and 1.09 and mean values
of 0.995 and 0.994, respectively. The ratio images in Figures 19c,d compare the original
image and its SARBM3D and DCNN despeckled counterparts, respectively. The SARBM3D
method could not effectively handle correlated speckle, as evidenced by the associated de-
speckled and ratio images. The analysis of the despeckling quality was summarized using
the objective measurements and is presented in Table 7. The MoI, MoR, and VoR averages
for the entire SAR image are presented. The ENL was estimated from the homogeneous
area of the SAR image. All the CNN-based methods proved highly adept at accurately
estimating speckle in high-resolution SAR images while preserving edge sharpness in
homogeneous areas. The results in Table 7, the despeckled images shown in Figure 18f,g,
and the ratio images shown in Figure 19e,f clearly indicate that the OCNN and SAR-CAM
methods introduced biases and over-smoothed the original SAR image.
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Table 7. Objective measurements of the quality criteria for the SAR high-resolution image shown
in Figure 18a.

Method MoI MoR VoR ENL Cx

Original
image 32.62 - - - -

SDRCNN 32.46 1.001 1.36 318.1 -
ABCNN 32.45 1.001 1.35 319.8 -

SARBM3D 36.69 0.86 1.75 336.8 -
DCNN 32.50 0.99 1.37 322.2 -
OCNN 46.6 0.85 0.28 423.1 -

SAR-CAM 25.8 1.18 0.46 488.3 -

5. Discussion

In this paper, we propose two methods based on a CNN to improve the overall
performance of existing methods. The proposed methods differ in their network structures.
The first one exploits a Siamese structure with a DRN network. This method introduces a
minor novelty over existing approaches because it “just” combines two existing methods.
The second proposed method uses recent trends in object detection and combines a U-
shaped network with a multi-resolution attention mechanism. The methods were compared
with the overcomplete CNN and SAR-CAM methods. The SAR-CAM method uses some of
the components within the proposed network’s structure. We chose synthetic and real SAR
images to compare the despeckling efficiency of five methods. The results obtained from
the synthetically generated images showed that the OCNN and SAR-CAM methods can
estimate speckle noise, but they are not capable of preserving high SAR dynamics such as
point scatterers, edges, and changes of contrast. They could not preserve textural features.
The reason for the very bad efficiency of the OCNN and SAR-CAM methods is that the
authors of these methods converted SAR images into 8-bpp images and decreased the
SAR image dynamics. Therefore, the methods do not have any practical value, except for
competing in PSNR with existing methods. Considering the examples using synthetically
generated images, we can conclude that the homogeneous areas were over-smoothed and
some bias in the SAR image’s mean value was introduced by the OCNN and SAR-CAM
methods. This may be a consequence of the fact that we did not scale the presented
images to an 8-bit dynamic. The SARBM3D, SNN, and ABCNN methods achieved very
similar results in the objective and subjective measurements, as reported in Tables 1–7.
The methods achieved different despeckling efficiencies due to their different network
structures. Also important is the training of the network so that it includes diverse SAR
features.

When used to despeckle the real SAR image, the proposed methods achieved results
that were comparable to those of the SARBM3D method, more successfully modeled
homogeneous areas and estimated speckle noise in homogeneous areas, and effectively
preserved textural features. The OCNN and SAR-CAM methods over-smoothed the
real SAR image, destroying the point features and textural features, as shown in the
Experimental Results section.

Further work could include recent advances in SAR image processing, where the
attention mechanism can have different structures and can be exploited by transformer-
based structures. Recent advances have shown that the standard approaches to adaptive
mean weighting and nonlocal means can be combined successfully with CNN-based
methods. To achieve improvements in efficiency, it is important to find a mechanism that is
able to assign higher importance to the strong features and restrain the non-important ones.

6. Conclusions

This paper proposed and evaluated two methods for SAR image despeckling. In the
first method, the dilated convolutional network for SAR image despeckling was extended
using a twin network to better estimate and preserve SAR image features. The second
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method combined a residual network and U-net and additionally enhanced the image
features using a multi-resolution attention mechanism containing a Multiscale Attention
Mechanism with ECA. The methods were designed differently and used different loss
functions but were trained on the same datasets. The datasets used for training and
validation consisted of a dataset containing synthetic images with speckle noise and a
multi-temporal dataset containing images from the Sentinel 1, ALOS-2, and TerraSAR-X
satellites. This paper demonstrated that although both proposed methods have different
architectures, they both provide very good results in measurements of despeckled image
quality. The methods were compared with the SARBM3D and dilated CNN methods. All
the methods could effectively deal with correlated speckle noise, except for the SARBM3D
method, which could not estimate this noise in the case of real SAR images. According to
the experimental evaluation, the suggested approaches can effectively assess speckle and
they exhibit superior capabilities over conventional techniques and DCNNs.
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Abbreviations
The following abbreviations are used in this manuscript:

SAR Synthetic Aperture Radar
MAP Maximum a Posteriori
PDF Probability Density Function
DWT Discrete Wavelet Transform
SARBM3D SAR block-matching three-dimensional
CNN Convolutional Neural Network
AWGN Additive White Gaussian Noise
ReLU Rectifier Linear Unit
DCNN Denoising Convolutional Neural Network
BN Batch Normalization
ID-CNN Image Despeckling Convolutional Neural Network
SAR-DRN SAR Dilated Residual Network
TV Total Variation
SNN Siamese Neural Network
EL Euclidean loss
DRN Dilated Residual Network
ASN Attention Supervision Network
MAM Multi-resolution Attention Mechanism
ECA Efficient Channel Attention
SDRCNN Siamese-based Dilated Residual Convolutional Neural Network
ABCNN Attention-Based CNN
DEM Digital Elevation Model
VoR variance of ratio
MoR mean of ratio
DG despeckling gain
ENL equivalent number of looks
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ES Edge Smearing
FOM Figure of Merit
BS Building Smearing
OCNN overcomplete convolutional neural network
SAR-CAM SAR image despeckling using a continuous attention module

References
1. Argenti, F.; Lapini, A.; Bianchi, T.; Alparone, L. A Tutorial on Speckle Reduction in Synthetic Aperture Radar Images. IEEE Geosci.

Remote Sens. Mag. 2013, 1, 6–35. [CrossRef]
2. Lee, J. Digital image enhancement and noise filtering by using local statistics. IEEE Trans. Pattern Anal. Mach. Intell. 1980,

PAMI-2, 165–168. [CrossRef]
3. Kuan, D.T.; Sawchuk, A.A.; Strnad, T.C.; Chavel, P. Adaptive noise smoothing filter for Images with Signal dependent noise.

IEEE Trans. Pattern Anal. Mach. Intell. 1985, 7, 165–177. [CrossRef] [PubMed]
4. Frost, V.; Stiles, J.; Shanmugan, K.; Holtzman, J. A model for radar images and its application to adaptive digital filtering of

multiplicative noise. IEEE Trans. Pattern Anal. Mach. Intell. 1982, PAMI-4, 157–165. [CrossRef] [PubMed]
5. Lee, J.S.; Wen, J.H.; Ainsworth, T.; Chen, K.S.; Chen, A. Improved Sigma Filter for Speckle Filtering of SAR Imagery. IEEE Trans.

Geosci. Remote Sens. 2009, 47, 202–213.
6. Molina, D.E.; Gleich, D.; Datcu, M. Evaluation of Bayesian Despeckling and Texture Extraction Methods Based on Gauss Markov

and Auto-Binomial Gibbs Random Fields: Application to TerraSAR-X Data. IEEE Trans. Geosci. Remote Sens. 2012, 50, 2001–2025.
[CrossRef]

7. Argenti, F.; Bianchi, T.; Lapini, A.; Alparone, L. Fast MAP Despeckling Based on Laplacian Gaussian Modeling of Wavelet
Coefficients. IEEE Geosci. Remote Sens. Lett. 2012, 50, 13–17. [CrossRef]

8. Parrilli, S.; Poderico, M.; Angelino, C.V.; Verdoliva, L. A Nonlocal SAR Image Denoising Algorithm Based on LLMMSE Wavelet
Shrinkage. IEEE Trans. Geosci. Remote Sens. 2012, 50, 606–616. [CrossRef]

9. Deledalle, C.A.; Denis, L.; Tupin, F. Iterative Weighted Maximum Likelihood Denoising with Probabilistic Patch-Based Weights.
IEEE Trans. Image Process. 2009, 18, 2661–2672. [CrossRef]

10. Martino, G.D.; Simone, A.D.; Iodice, A.; Poggi, G.; Riccio, D.; Verdoliva, L. Scattering-Based SARBM3D. IEEE J. Sel. Top. Appl.
Earth Obs. Remote Sens. 2016, 9, 2131–2144. [CrossRef]

11. Martino, G.D.; Poderico, M.; Poggi, G.; Riccio, D.; Verdoliva, L. Benchmarking Framework for SAR Despeckling. IEEE Trans.
Geosci. Remote Sens. 2014, 52, 1596–1615. [CrossRef]

12. Hinton, G.E.; Salakhutdinov, R.R. Reducing the Dimensionality of Data with Neural Networks. Science 2006, 313, 504–507.
[CrossRef]

13. Diao, W.; Sun, X.; Zheng, X.; Dou, F.; Wang, H.; Fu, K. Efficient Saliency-Based Object Detection in Remote Sensing Images Using
Deep Belief Networks. IEEE Geosci. Remote Sens. Lett. 2016, 13, 137–141. [CrossRef]

14. Zhang, K.; Zuo, W.; Chen, Y.; Meng, D.; Zhang, L. Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image
Denoising. IEEE Trans. Image Process. 2017, 26, 3142–3155. [CrossRef]

15. Shi, W.; Caballero, J.; Huszár, F.; Totz, J.; Aitken, A.P.; Bishop, R.; Rueckert, D.; Wang, Z. Real-Time Single Image and Video
Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 1874–1883.

16. Dong, C.; Loy, C.C.; He, K.; Tang, X. Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach.
Intell. 2016, 38, 295–307. [CrossRef] [PubMed]

17. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. arXiv 2016, arXiv:1512.03385.
18. Ioffe, S.; Szegedy, C.B.N. Accelerating Deep Network Training by Reducing Internal Covariate Shift. arXiv 2016, arXiv:1502.03167.
19. Chierchia, G.; Cozzolino, D.; Poggi, G.; Verdoliva, L. SAR image despeckling through convolutional neural networks. In

Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA,
23–28 July 2017; pp. 5438–5441.

20. Wang, P.; Zhang, H.; Patel, V. SAR Image Despeckling Using a Convolutional Neural Network. arXiv 2017, arXiv:1706.00552v2.
21. Zhang, Q.; Yang, Z.; Yuan, Q.; Li, J.; Ma, X.; Shen, H.; Zhang, L. Learning a Dilated Residual Network for SAR Image Despeckling.

arXiv 2017, arXiv:1709.02898.
22. Lattari, F.; Leon, B.G.; Asaro, F.; Rucci, A.; Prati, C.; Matteucci, M. Deep Learning for SAR Image Despeckling. Remote Sens. 2019,

11, 1532. [CrossRef]
23. Cozzolino, D.; Verdoliva, L.; Scarpa, G.; Poggi, G. Nonlocal CNN SAR Image Despeckling. Remote Sens. 2020, 12, 1006. [CrossRef]
24. Liu, G.; Kang, H.; Wang, Q.; Tian, Y.; Wan, B. Contourlet-CNN for SAR Image Despeckling. Remote Sens. 2021, 13, 764. [CrossRef]
25. Mullissa, A.G.; Persello, C.; Reiche, J. Despeckling Polarimetric SAR Data Using a Multi-Stream Complex-Valued Fully

Convolutional Network. arXiv 2021, arXiv:2103.07394.
26. Wang, F.; Jiang, M.; Qian, C.; Yang, S.; Li, C.; Zhang, H.; Wang, X.; Tang, X. Residual Attention Network for Image Classification.

In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July
2017; pp. 6450–6458. [CrossRef]

http://doi.org/10.1109/MGRS.2013.2277512
http://dx.doi.org/10.1109/TPAMI.1980.4766994
http://dx.doi.org/10.1109/TPAMI.1985.4767641
http://www.ncbi.nlm.nih.gov/pubmed/21869255
http://dx.doi.org/10.1109/TPAMI.1982.4767223
http://www.ncbi.nlm.nih.gov/pubmed/21869022
http://dx.doi.org/10.1109/TGRS.2011.2169679
http://dx.doi.org/10.1109/LGRS.2011.2158798
http://dx.doi.org/10.1109/TGRS.2011.2161586
http://dx.doi.org/10.1109/TIP.2009.2029593
http://dx.doi.org/10.1109/JSTARS.2016.2543303
http://dx.doi.org/10.1109/TGRS.2013.2252907
http://dx.doi.org/10.1126/science.1127647
http://dx.doi.org/10.1109/LGRS.2015.2498644
http://dx.doi.org/10.1109/TIP.2017.2662206
http://dx.doi.org/10.1109/TPAMI.2015.2439281
http://www.ncbi.nlm.nih.gov/pubmed/26761735
http://dx.doi.org/10.3390/rs11131532
http://dx.doi.org/10.3390/rs12061006
http://dx.doi.org/10.3390/rs13040764
http://dx.doi.org/10.1109/CVPR.2017.683


Remote Sens. 2023, 15, 3698 25 of 25

27. Dai, T.; Cai, J.; Zhang, Y.; Xia, S.T.; Zhang, L. Second-Order Attention Network for Single Image Super-Resolution. In Proceedings
of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019;
pp. 11057–11066. [CrossRef]

28. Li, J.; Li, Y.; Xiao, Y.; Bai, Y. HDRANet: Hybrid Dilated Residual Attention Network for SAR Image Despeckling. Remote Sens.
2019, 11, 2921. [CrossRef]

29. Liu, Z.; Lai, R.; Guan, J. Spatial and Transform Domain CNN for SAR Image Despeckling. IEEE Geosci. Remote Sens. Lett. 2022,
19, 4002005. [CrossRef]

30. Liu, S.; Lei, Y.; Zhang, L.; Li, B.; Hu, W.; Zhang, Y.D. MRDDANet: A Multiscale Residual Dense Dual Attention Network for SAR
Image Denoising. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5214213. [CrossRef]

31. Shen, H.; Zhou, C.; Li, J.; Yuan, Q. SAR Image Despeckling Employing a Recursive Deep CNN Prior. IEEE Trans. Geosci. Remote
Sens. 2021, 59, 273–286. [CrossRef]

32. Wu, W.; Huang, X.; Shao, Z.; Teng, J.; Li, D. SAR-DRDNet: A SAR image despeckling network with detail recovery. Neurocomputing
2022, 493, 253–267. [CrossRef]

33. Singh, P.; Shankar, A.; Diwakar, M. MSPB: Intelligent SAR despeckling using wavelet thresholding and bilateral filter for big
visual radar data restoration and provisioning quality of experience in real-time remote sensing. In Environment, Development and
Sustainability; Springer: Berlin/Heidelberg, Germany, 2022; pp. 1573–2975.

34. Perera, M.V.; Nair, N.G.; Bandara, W.G.C.; Patel, V.M. SAR Despeckling Using a Denoising Diffusion Probabilistic Model. IEEE
Geosci. Remote Sens. Lett. 2023, 20, 4005305. [CrossRef]

35. Perera, M.V.; Bandara, W.G.C.; Valanarasu, J.M.J.; Patel, V.M. SAR Despeckling Using Overcomplete Convolutional Networks.
arXiv 2022, arXiv:2205.15906

36. Perera, M.V.; Bandara, W.G.C.; Valanarasu, J.M.J.; Patel, V.M. Transformer-based SAR Image Despeckling. arXiv 2022,
arXiv:2201.09355.

37. Ko, J.; Lee, S. SAR Image Despeckling Using Continuous Attention Module. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022,
15, 3–19. [CrossRef]

38. Yuan, Y.; Wu, Y.; Tang, C.; Fu, Y.; Wu, Y.; Jiang, Y.; Zhao, Y. Self-calibrated dilated convolutional neural networks for SAR image
despeckling. Int. J. Remote Sens. 2022, 43, 6483–6508. [CrossRef]

39. Wang, C.; Yin, Z.; Ma, X.; Yang, Z. SAR Image Despeckling Based on Block-Matching and Noise-Referenced Deep Learning
Method. Remote Sens. 2022, 14, 931. [CrossRef]

40. Goodman, J. Some fundamental properties of speckle. J. Opt. Soc. Am. 1976, 66, 1145–1150. [CrossRef]
41. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980.
42. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the In-

ternational Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015;
pp. 234–241.

43. Bromley, J.; Guyon, I.; Lecun, Y.; Säckinger, E.; Shah, R. Signature verification using a siamese time delay neural network. Int. J.
Pattern Recognit. Artif. Intell. 1993, 7, 217–222. [CrossRef]

44. Wang, Q.; Wu, B.; Zhu, P.F.; Li, P.; Zuo, W.; Hu, Q. ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks.
In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA,
13–19 June 2020 ; pp. 11531–11539.

45. Zhao, H.; Gallo, O.; Frosio, I.; Kautz, J. Loss Functions for Image Restoration With Neural Networks. IEEE Trans. Comput. Imaging
2017, 3, 47–57. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/CVPR.2019.01132
http://dx.doi.org/10.3390/rs11242921
http://dx.doi.org/10.1109/LGRS.2020.3022804
http://dx.doi.org/10.1109/TGRS.2021.3106764
http://dx.doi.org/10.1109/TGRS.2020.2993319
http://dx.doi.org/10.1016/j.neucom.2022.04.066
http://dx.doi.org/10.1109/LGRS.2023.3270799
http://dx.doi.org/10.1109/JSTARS.2021.3132027
http://dx.doi.org/10.1080/01431161.2022.2142076
http://dx.doi.org/10.3390/rs14040931
http://dx.doi.org/10.1364/JOSA.66.001145
http://dx.doi.org/10.1142/S0218001493000339
http://dx.doi.org/10.1109/TCI.2016.2644865

	Introduction
	Related Works
	Gaussian Denoiser
	SAR Dilated Residual Network
	U-Shaped Denoising Network

	The Proposed Deep Despeckling Architecture
	The Proposed Architecture of the Siamese-Based Dilated Deep CNN
	Loss Function
	Training the Designed CNN

	The Proposed Architecture of the Dilated Deep CNN with an Attention Mechanism

	Experimental Results
	Experimental Settings for the SNN Method
	Synthetic Example
	Homogeneous Area
	Square Image
	Building
	Corner Reflector

	DEM
	Real SAR Images

	Discussion
	Conclusions
	References

