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Abstract: Interferometric Synthetic Aperture (INSAR) time series measurements are widely used to
monitor a variety of processes including subsidence, landslides, and volcanic activity. However,
interpreting large INSAR datasets can be difficult due to the volume of data generated, requiring
sophisticated signal-processing techniques to extract meaningful information. We propose a novel
framework for interpreting the large number of ground displacement measurements derived from
InSAR time series techniques using a three-step process: (1) dimensionality reduction of the displace-
ment time series from an InNSAR data stack; (2) clustering of the reduced dataset; and (3) detecting and
quantifying accelerations and decelerations of deforming areas using a change detection method. The
displacement rates, spatial variation, and the spatio-temporal nature of displacement accelerations
and decelerations are used to investigate the physical behaviour of the deforming ground by linking
the timing and location of changes in displacement rates to potential causal and triggering factors.
We tested the method over the Bandung Basin in Indonesia using Sentinel-1 data processed with the
small baseline subset INSAR time series technique. The results showed widespread subsidence in the
central basin with rates up to 18.7 cm/yr. We identified 12 main clusters of subsidence, of which three
covering a total area of 22 km? show accelerating subsidence, four clusters over 52 km? show a linear
trend, and five show decelerating subsidence over an area of 22 km?. This approach provides an
objective way to monitor and interpret ground movements, and is a valuable tool for understanding
the physical behaviour of large deforming areas.

Keywords: land subsidence; INSAR; time series analysis; clustering; Bandung

1. Introduction

Interferometric Synthetic Aperture Radar (InSAR) is a commonly used technique
for measuring surface deformation with millimetric accuracy [1]. The output of InNSAR
processing is a collection of time series representing the ground displacements of Measure-
ment Points (MPs) on the surface during the observed period. INSAR has been used for
monitoring natural hazards such as landslides, earthquakes, volcanic activity, and ground
subsidence [2], as well as for monitoring man-made structures such as dams, buildings [3],
and bridges [4], and anthropogenic activities such as the pumping or injection of fluids.
Under certain geological conditions, if groundwater abstraction exceeds groundwater
recharge for a long duration over a large area, the subsurface can compact and result in
land subsidence. In several areas around the world where the subsurface materials are
composed of relatively recent alluvial, marine, or lacustrine deposits composed of alter-
nating coarse-grained water-bearing strata with fine-grained compressible layers, land
subsidence has been generated by unsustainably extracting groundwater from underlying
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aquifers [5]. In such conditions, INSAR has been used as a tool for monitoring groundwater
storage changes and analyzing land subsidence or uplift in large urban areas caused by
groundwater extraction or injection [6-9].

InSAR analysis of a stack of synthetic aperture radar (SAR) images provides a one-
dimensional projection of displacement along the Line of Sight (LOS) of a satellite; however,
the actual surface motions resulting from subsurface deformation processes typically
occurs in three dimensions (i.e., east-west, north-south, and up-down) [10]. Consequently,
interpreting and conveying LOS measurements to stakeholders who are unfamiliar with
the notion of a viewing geometry confined to a single dimension can be challenging [11]. As
a solution, some studies have simply interpreted INSAR LOS solely as vertical deformation
and assumed the horizontal component to be negligible [12,13], which could lead to
inaccuracies in the interpretation of the data if a horizontal component exists in the original
LOS dataset. To overcome this constraint, when displacement measurements from both the
ascending and descending geometries are available, it has become increasingly common in
InSAR studies to combine the two viewing geometries to extract the east-west and vertical
components of motion [14-16]. Performing this task allows for better estimation of the
magnitude and direction of surface motions [17].

Recently, the combination of an increase in the volume of SAR data, driven by the
development of new satellite missions with high temporal coverage, and the improvements
in InSAR processing and satellite data storage capabilities, has allowed scientists to move
from using InSAR data from opportunistic science to routine monitoring [18]. These
changes have led to an increase in the amount of information that can be extracted from
these datasets and have resulted in a more comprehensive understanding of the evolution
of the Earth’s surface and subsurface processes. However, until a few years ago InNSAR
interpretation was mainly limited to analysis of the average displacement rates [19], but
advances in innovative big data analysis methods change this and enable exploitation of
the full displacement time series [20-22]

In the case of large INSAR datasets, traditional manual analysis is a complex and time-
consuming process and more automated techniques are necessary. Previous work has used a
variety of methods to help interpret INSAR time series, ranging from semi-automatic [21,23,24]
and automatic statistical approaches [25], to the use of supervised [26,27] and unsuper-
vised [20,28,29] machine learning algorithms. These studies have aggregated MPs based on
their average velocities [27] but inevitably fail to identify non-linear movements. Exploiting
the full displacement time series enables us to better explore the INSAR dataset and gain a
much deeper understanding of the deformation kinematics: for example, how landslide
velocity responds to rainfall [30]. Additionally, clustering has been extended to the spatial
distribution of principal components extracted from InSAR time series datasets [6,31].
However, the Principal Component Analysis used to estimate the principal components
assumes linearity in the data which may not be appropriate for analyzing large, complex
InSAR datasets since non-linear data relationships would be neglected.

To overcome these limitations, this paper presents a novel INSAR data mining approach
that exploits displacement time series to gain a more comprehensive understanding of
the deformation patterns over a large area. We implemented an unsupervised clustering
technique to identify patterns and features in the data that may not be visible by traditional
clustering methods: our approach involves the use of Uniform Manifold Approximation
and Projection (UMAP) [32] for dimensionality reduction followed by the Hierarchical
Density-based Spatial Clustering of Applications with Noise (HDBSCAN) [33] algorithm.
Our study expands on a recent application of this approach [29] in two ways: (1) combining
both ascending and descending satellite observation geometries to retrieve the vertical
and east-west displacement time series to get a more accurate estimation of the vertical
movement, and (2) introducing a change detection method to determine when and in
which manner the deformation trend changes over time to aid in further interpretation
of the data. It is often the case that a single linear model cannot adequately describe the
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evolution of displacement over time; instead, multiple linear/polynomial relationships
applying to different time spans may be more appropriate [34-37].

We applied our time series data mining method to an InSAR data stack over the
Bandung Basin in Indonesia where land subsidence is an ongoing phenomenon [38-42]. A
deeper understanding behind dynamics of the ground movement is required to disentangle
the contribution of triggering factors throughout the basin. Improved knowledge of the
causal factors will support local authorities (e.g., Indonesia’s Ministry of Public Works and
Housing) in the management and prevention of the associated risks such as increasing
flooding and damage to buildings, bridges, and roads [38,39]. The detailed abbreviations
and definitions used in the paper are listed in Table 1.

Table 1. List of abbreviations used in this paper.

Abbreviation Explanation

DBCV Density-Based Clustering Validation

ESDM Office of Mineral and Energy Resources
GNSS Global Navigation Satellite System
HDBSCAN Hierarchical Density-Based Clustering
InSAR Interferometric Synthetic Aperture Radar
K-S test Kolmogorov-Smirnov test

LOS Line of Sight

MintPy Miami INsar Time-series software in Python
MPs Measuring Points

PCA Principal Component Analysis

SAR Synthetic Aperture Radar

UMAP Uniform Manifold Approximation and Projection

2. Bandung Basin

As a rapidly growing urban region, the Bandung metropolis in West Java, Indonesia
is home to over eight million inhabitants and is one of the most important centres for
political, economic, and social activity in Indonesia [40]. In recent decades, this area has
experienced a rapid increase in population and urban expansion which has been driven by
growth of its industrial sector [40]. The city lies within the Bandung Basin which is a large
intra-montane (Figure 1) basin encircled by a range of mountains and volcanic highlands
covering an area of 2300 km? where the Citarum River along with its tributaries forms the
main drainage system of the basin catchment. Deposits in the basin consist of a notably
thick series of Holocene age lake deposits consisting of uncompacted claystone, siltstone,
and sandstone belonging to the Kosambi Formation, Late Pleistocene-Holocene age vol-
canic breccias and tuffs of the Cibeureum Formation, and the Cikapundung Formation
which consists of Early Pleistocene conglomerate and compact breccias, tuff, and andesitic
lava [43]. The unconsolidated Holocene clayey lake deposits render the area prone to land
subsidence, which previous InNSAR studies attributed to excessive groundwater pumping
from a deep, confined aquifer [41-44]. Additional factors contributing to the subsidence
are the compaction of alluvium soil [45], settlement of highly compressible soils induced
by surficial loads such as new residential settlements, or the development of industrial
buildings [39,42].

Considering the dynamic setting of the Bandung area and the multitude of factors that
can contribute to subsidence movements at various rates and patterns, this location offers a
great opportunity to test our data analysis approach.
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Figure 1. Location and aerial view (left), along with the geological map of the Bandung Basin
(right—modified from [45]). The red triangles indicate the location of the Global Navigation Satellite
System (GNSS) stations used for validation of the InNSAR results.

3. InSAR Data

In this study, we processed 344 Sentinel-1A /B radar images acquired in C-band (wave-
length 5.6 cm) between January 2015 and December 2020 over the Bandung Basin, Indonesia
(Table 2). We produced interferograms with every two consecutive pairs of images using
the Interferometric synthetic aperture radar Scientific Computing Environment (ISCE)
software [46,47]. The resulting small baseline interferogram stack was processed using
the Miami INsar Time-series software in Python (MintPy) [47] to produce line-of-sight
(LOS) displacement time series for every pixel in the dataset, for both the ascending and
descending satellite geometries. The reference point was selected in a mountainous area
located in the north of the study area that is believed to be relatively stable in terms of
displacement. To obtain reliable INSAR time-series datasets, a temporal coherence mask of
0.7 was applied to the resulting MPs.

Table 2. Information on the Sentinel-1 parameters and the InNSAR results.

SAR Satellite
Parameters
S-1A&B * S-1A&B *
Satellite orbit Ascending Descending
Track 98 149
Time span 4 January 2015-27 December 2020 7 January 2015-30 December 2020
Mean incidence angle (°) 48 43
Number of images 190 154
Number of acquisitions 153 146
Number of MPs 650,863 735,333
MP density (MP/km?) 680 769

* Sentinel-1 B data collection commenced in September 2016.

4. Data Mining Methods

Our approach followed three main steps: (1) Combination of ascending and descend-
ing displacement time series to retrieve the vertical and east-west displacement time series;
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(2) Time series clustering via UMAP and HDBSCAN] and (3) Cluster time series change
detection using piecewise linear functions—-PWLF (Figure 2).

Ascending TS

Descending TS

East-West TS

Vertical TS

Process

1. Dimensionality Reduction

Trustworthiness metric

HDBSCAN
DBCV metric

2. Clustering

2a. Calculate cluster
barycenter

2b. Merge corrolated clustors Kendell's v

PWLF

3. Trend change detection

3a. Breakpoint(s) retrieval Iterative SSR optimisation

3b. Validate slope change Confidence intervals

9144

Determine deformation trends

Figure 2. Workflow of the proposed approach.

4.1. Retrieval of Vertical and East-West Deformation Fields

For each satellite orbit, the retrieved deformation time series are one-dimensional
projections onto the satellite’s Line of Sight (LOS). When both ascending and descending
InSAR datasets are available, combining the datasets is a common approach to retrieve the
vertical and east-west deformation fields [48,49]. The combination is performed under the
assumption that the contribution of north-south horizontal movements is negligible, which
is a typical assumption in INSAR studies due to the poor sensitivity to this motion [50].

For Bandung, the LOS datasets were resampled both in time and space. Regarding
the time interpolation, since the time series datasets retrieved from the ascending and
descending satellite orbits were at different acquisition dates, consistent time steps were
imposed by implementing a frequency conversion and resampling both time series datasets
to equivalent lengths with a consistent 7-day time step. For the spatial interpolation,
the point-wise datasets were resampled to a regular 30 m x 30 m grid. In the instance
that both ascending and descending measurements were available at the same grid cell,
the combination was performed using the known values of the LOS displacement in the
ascending (Da) and descending (Dd) orbit within each grid cell i, the vertical component
(Dv) and east-west component (De) were estimated using the following equation (adapted
from [51]):

_ Eai X Dgi — Egi X Dg;

D, =
T Egi X Ug — Egi x Uy,

)
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Egi X Dgi — Egi X Dy;
Egi X Ugi — Egi X Uy,

where E, N, and U are the east-west, north—south, and vertical directional cosines that
define the three-dimensional orientation of the satellite Sentinel-1 Interferometric Wide
swath mode LOS. The directional cosines depend on the incidence angle 0, and the heading
angle « of the satellite flight direction. At each location, the direction cosines are estimated
as: E = —cosa x sin0 and U = cos0 (Figure 3). For this work, an averaged value of 0 across
the study area for each orbit was used (Table 2).

Dei =

2

N U U
(Jr) cos())

4 sin(a ;)sin(d;)
E
41 +)
& < N

1s(ex )sin(8))
0\ %

@ (b) ©) (©

Figure 3. Representation of the satellite descending LOS (a) in the horizontal plane, (b) in 3D, and
(c) the displacement vector projected along the LOS. Modified from [51].

4.2. Clustering Workflow

The following section details the use of UMAP [32] as a dimensionality reduction
method to transform the interferometric data, and in doing so, increases the effectiveness
of clustering implemented with the HDBSCAN [33] algorithm.

4.2.1. Dimensionality Reduction with UMAP

Dimensionality reduction is widely used in big data analytics to help analyze large,
high-dimensional datasets [52]. UMAP is a non-linear, neighbor-based dimensionality
reduction technique used for high-dimensional data [53]. The algorithm functions by
extracting the relationship between data points in the original high-dimensional space
(Figure 4), capturing the underlying structure of the data, and then using manifold learning
to project the graph into a lower-dimensional space. UMAP maps the data points in the
high-dimensional space onto a simpler, lower-dimensional space while preserving the
relationships between them, thus capturing the global and local structure of the data [53].

(a) A graph representation of the high (b) A low dimensional embedding is learned
dimensional dataset is computed that preserves the structure of the graph

Figure 4. Visual overview of how UMAP functions: (a) initially, a graph representation of the high-
dimensional input data is computed; (b) next, a low-dimensional embedding is learned so that the
structure of the graph is preserved. Image modified from [54].

This dimensionality reduction step performed with UMAP is necessary to cluster
the data effectively and support the density-based clustering algorithms, since standard
clustering techniques on high-dimensional datasets often result in unsatisfying results due
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to the high dimensionality [55]. When too many features are present, observations are
harder to cluster, or each cluster can include heterogeneous features in the same class [32].
The UMAP algorithm was implemented in this study using the official Python package
umap-learn [32]. Table 3 summarizes the hyperparameters and the evaluation metrics used
in this study. The min_dis hyperparameter of UMAP sets the minimum distance apart that
points are allowed to be in the low-dimensional representation, controlling how tightly the
points are packed together in the resulting embedding. In this work, min_dis was set to
zero to ensure that the MPs were packed together densely to encourage clearer separation
of the clusters by the clustering algorithm.

Table 3. Hyperparameters and metrics of the machine learning algorithms used in this study.

ML . Model Evaluation
Algorithm Hyperparameter Parameter Definition Metric
n_neighbors size of the local neighborhood .
. - Trustworthiness
UMAP L minimum distance
min_dis .
between points

minimum number of
neighbors to a core point
min_cluster_size minimum size of a final cluster

Density-Based
Clustering Validation

min_samples

HDBSCAN

To validate the lower dimensional embedding output by UMAP, we exploited a metric
called trustworthiness (Equation (14) [56]), which is a measure of how well the structure
of the dataset is preserved after dimensionality reduction [57]. The value of trustworthi-
ness ranges from zero to one and represents the degree to which the low-dimensional
embedding preserves the pairwise distances of the high-dimensional data, with zero rep-
resenting no preservation in the data and one reflecting total data conservation in the
lower dimensional embedding. To evaluate the trustworthiness, we measured the distance
of each sample in high-dimensional space against its closest neighbors using rank order,
and evaluated the extent to which each rank changed in the low-dimensional embedding.
We reduced the computational time and increased the performance by performing the
trustworthiness validation on a representative random subset of the dataset (10% of the
total MPs). We ensured equivalency between the subset and the original dataset using
the Kolmogorov—-Smirnov test (K-S test). The K-S test is a nonparametric goodness-of-fit
test that determines whether two independent sample distributions are statistically differ-
ent [57]. The test works under the null hypothesis (Hy) that two samples have the same
distribution. We used a standard significance level of 0.05, which allowed us to accept
the results within a 5% margin of error. When comparing the total INSAR dataset with a
random subset, the subset was deemed as similar to the complete dataset and therefore,
significantly representative, if the p-value was greater than 0.05. We implemented the K-S
test in Python using the scipy.stats.ks_2samp function.

Using the nearest neighbor method, the UMAP-produced map is considered trustwor-
thy if these neighbors are also placed close to the respective sample in the low-dimensional
space. The trustworthiness scores range between zero and one, with higher scores in-
dicating that more of the local structure of the original dataset is retained in the UMAP
embedding. In order to achieve the best fitting embedding, the n_neighbors UMAP parame-
ter was optimized using the randomized search method which selects and tests 100 random
combination of hyperparameters. The n_neighbors hyperparameter controls how UMAP
balances local versus global structure in the data by determining the number of nearest
neighbors to consider while constructing the low-dimensional embedding. A larger value
for n_neighbors results in a more global view of the data, while a smaller value results in a
more local view. The embedding with the highest trustworthiness score was selected as the
most reliable model to be used in the downstream clustering process.
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4.2.2. Time Series Clustering with HDBSCAN

The input for this step is the low-dimensional embedding created by UMAP. We
implemented the Hierarchical Density-Based Spatial Clustering of Applications with Noise
(HDBSCAN) [33] algorithm to detect and group together time series with similar displace-
ment behavior, even though they may not be in close spatial proximity. The HDBSCAN
algorithm was implemented in this study using the hdbscan Python package [58]. In
order to achieve the best clustering outcome, the clustering algorithm was optimized
by exploiting the relative_validity function of HDBSCAN. This is a metric known as the
Density-Based Clustering Validation (DBCV), which works for density-based clustering
algorithms since it takes noise into account and captures the shape property of clusters
via densities instead of distances. To optimize the results, we tuned two HDBSCAN hy-
perparameters: min_samples and min_cluster_size. The min_samples parameter is used
to control the number of samples in a cluster. The key concept in HDBSCAN is density
reachability, which is a measure of how close a sample point is to a cluster. This parameter
is used to control the density reachability threshold, and it affects the granularity of the
clustering. A lower value will result in more clusters being identified, while a higher value
will result in fewer clusters. The min_cluster_size parameter determines the minimum
number of points that a dense region must contain for the algorithm to consider it a valid
cluster. A low value may enable HDBSCAN to identify many small clusters, even if they
only contain a few data points, while a high value may result in clusters that contain a large
number of data points, which could miss smaller clusters. Multiple combinations of these
two parameters were run via a random search of 100 different parameter combinations to
find a result that generated the highest relative_validity score, while penalizing models
with low coverage (the extent to which all the data points are assigned to a cluster or noise).

For further analysis, we calculated the Euclidean barycenter within each cluster, which
is simply the arithmetic mean for each time step, minimizing the summed Euclidean
distance. Similar clusters were then merged by calculating the Kendall rank correlation
T [59] between pairs of extracted cluster barycenter time series. The Kendall rank correlation
coefficient T measure is used to determine the degree of association between variables
based on the ranks of the data. Kendall’s T is obtained with the following equation:

P—Q

T /ProrD (ProrU) ©)

where P is the number of concordant pairs, Q the number of discordant pairs, T the number
of ties in the first data series ranking, and U the number of ties in the second series ranking.
The two series can be considered as statistically correlated when the null hypothesis (Hy)
of an absence of association is rejected. In this work, we considered a significance level
of 0.05 and rejected the null hypothesis when the p-value was lower than 0.05, thereby
concluding that the time series were correlated. Additionally, a T coefficient higher than
0.9 was selected to merge highly correlated cluster time series. T was computed in Python
using the scipy.stats.kendalltau function.

4.3. Cluster Gradient Change Detection

We identified changes in the displacement rates through application of a piecewise-
linear function model to each cluster barycenter using the PWLF Python package [60].
PWLE fits continuous piecewise linear functions to a set of data points. The package
requires the number of breakpoints to be specified in advance, meaning that the number of
linear segments in the piecewise linear function is fixed. Multiple linear segments were
fitted to the cumulative deformation time series of each cluster centroid, with each linear
segment representing a constant rate. The specific time at which the slope (i.e., velocity) of
the linear segment changes is identified as a breakpoint, and these breakpoints represent
the times when an acceleration or deceleration of displacement occurs.
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Fitting the cluster barycenters to piecewise linear functions was based on an iterative
least squares procedure. The number of breakpoints was a discrete parameter used in
the modelling process with the optimal value obtained by minimizing the sum of the
squared residuals for each piecewise function. The number of breakpoints within each
cluster barycenter time series was unknown at the beginning of the modelling procedure.
To determine the optimal number of breakpoints, the model was initialized with zero
breakpoints, and then incrementally increased for each model run. The iteration ceased
when the sum of the squared residuals of the fitted piecewise model no longer achieved an
improvement greater than 15%, which was selected to avoid overfitting of the model. The
breakpoint selection was then checked by computing the confidence interval of adjacent
slopes to check that significant differences occurred on either side of the detected breakpoint,
confirming that a change in displacement velocity did occur. Assuming that the parameters
followed a normal distribution we estimate the 95% confidence interval of a particular slope
as £1.96 times the standard error of the slope estimated by the model [61]. A significant
change in slope indicated a deceleration or acceleration point that was identified when the
confidence intervals of two consecutive slopes did not overlap.

The ©dentification of changes in the deformation provides valuable insights into the
land movement dynamics of Bandung that has not been analyzed so far. Investigating
these displacement changes along with ancillary information such as groundwater ex-
traction/injection variations, precipitation changes, and changes in land use, can reveal
insights into the causes of the observed deformation.

5. Results

This section presents the results obtained from application of the proposed time series
clustering and change detection procedure for detecting locations with similar deformation
behaviour and identifying the timing of when gradient changes occur over Bandung.

5.1. Decomposition of Vertical and Horizontal Displacement Fields

The LOS deformation velocity maps derived from the InNSAR processing in the Ban-
dung Basin are displayed in Figure 5. Similar velocity rates were detected within the study
area by the different orbits, ranging from —11.8 cm/y to 7.8 cm/y from the ascending orbit
and —10.3 cm/y to 5.6 cm/y from the descending orbit.

The vertical and horizontal displacements derived following the methodology de-
scribed in Section 4.1 are shown in Figure 5¢,d. The ground displacement was predom-
inately in the vertical direction, which is comparable to results from a previous Global
Navigation Satellite System (GNSS) campaign [41], and shows a similar deformation distri-
bution to the LOS velocity maps. The main subsidence features were located within the
central portion of the basin with observed rates as high as 16.2 cm/y. Uplift is perceived
at rates up to 4.8 cm/y at the northern and southern boundaries of the study area. The
estimated horizontal displacements (Figure 5d) were within the order of the noise of the
InSAR signal, indicating that there was no significant horizontal motion with respect to
the reference point. The small horizontal displacements, along with the focus of the work
(characterizing the subsidence process), are the reasons why we focus solely on the vertical
component of movement.

The high uplift rates (up to 4.8 cm/y) can be attributed to the location of the reference
point used during the InNSAR processing (shown in Figure 5a,b) which was initially thought
to be located in a stable area (no GNSS data were made available to us at the time of
InSAR processing). Instead, it is apparent that this area is actually underdoing subsidence.
Since all of the MP displacement measurements are referenced to this point, the movement
experienced by the reference point will be reflected in the entire displacement time series
dataset and as a result, MPs that are subsiding at slower rates than the reference point will
appear to be uplifting, and areas of subsidence will be underestimated.
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Figure 5. InSAR displacement rates along the (a) LOS ascending orbit, (b) LOS descending orbit,
(c) vertical Vy direction, and (d) east-west Vg direction. Positive values represent the areas moving
toward the sensor along the LOS while negative values indicate areas moving away from the satellite
along the LOS. The location of the reference point is indicated by the red star in (a,b), the GNSS
station locations are given by the red triangles in (a), and the black line outlines the extent of the
Bandung Basin. The base map is a hillshade map produced from the 5 m resolution National Digital
Elevation Model (Seamless DEM dan Batimetri Nasional—DEMNAS).

To correct for this reference issue, a continuous GNSS station was located within
the study area (the location is shown by the red triangle in Figure 6) and compared
with the mean deformation time series of the MPs within a 100 m buffer of the sta-
tion. The analysis with the GNSS data reveals a discrepancy between the displace-
ment measurements, with the INSAR displacements undergoing an apparent constant
uplift while the GNSS measurements show slight subsidence at a rate of —0.41 cm/y
(Figure S1 in the Supplementary Material).

The following steps are implemented to re-reference the displacement measurements
using the GNSS measurements in order to correct for the bias imposed by the original
reference point:

1.  Both the GNSS and InSAR displacement time series are resampled using a 7 day
moving average so that the dates of the displacement measurements from both
sources coincide.

2. Linear regression is used to approximate the displacement time series of both the
GNSS and the InNSAR measurements.

3. The difference between the linear models is subtracted from the INSAR time series
measurements of all MPs to reference the displacement dataset to this point.

4. We note that the GNSS reference location is also subsiding at a rate of —0.41 cm/y,
so the broader subsidence pattern remains underestimated by this amount. Thus,
0.41 cm/y is subtracted from the InNSAR vertical displacement rates.
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Figure 6. InNSAR vertical displacement rates following reference correction using measurements from
a continuous GNSS station (geographic location indicated by the red triangle). The black line outlines
the extent of the Bandung basin. The base map is a hillshade map produced from the 5 m resolution
National Digital Elevation Model (Seamless DEM dan Batimetri Nasional—DEMNAS).

Figure S2 in the Supplementary Material shows the improvement in the corrected
InSAR time series when compared to the continuous GNSS measurements. This procedure
was applied to all of the MPs within the study area and the resulting vertical displacement
rate map is shown in Figure 6. The re-referenced displacement pattern remains similar
to the un-corrected map (Figure 5c); however, the range of velocity values have changed
and now reflect more realistic displacement estimates with a maximum subsidence rate
of —18.7 cm/y and an uplift rate of 2.3 cm/y, which is more or less stable given that the
standard deviation for the re-referenced InSAR velocity results is 3.1 cm/y. These values
are more in line with previous InSAR results [62-64].

We validated the reference corrected vertical INSAR measurements with additional
GNSS observations from 12 stations located throughout the basin (the locations are shown
in Figure 5a and the data are provided in Table S1 in the Supplementary Material) produced
during a campaign that was carried out from 2016 to 2019 by students from the Institute of
Technology Bandung. The correlation between the GNSS and InSAR velocities are shown
in the scatterplots in Figure 7with the comparison before the reference correction on the
left and the analysis with the corrected values on the right. The correlation coefficient
improved from 0.78 to 0.84 by implementing the reference correction, and the issue of the
InSAR data underestimating the subsidence rates was mitigated.
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Figure 7. Comparisons of the GNSS and InSAR vertical velocities calculated for each GNSS site before
(left) and after (right) the reference correction. InSAR velocities are calculated by averaging the
velocities of the MPs located within a 100 m buffer of each GNSS site. The corresponding coefficient
of determination is labeled in the plot. The geographical locations of the 12 GNSS stations are shown
in Figure 5a.

5.2. Time Series Clustering
5.2.1. UMAP Dimensionality Reduction

Extracting features using the UMAP algorithm allowed for the transformation of the
high-dimensional displacement time series dataset into a low-dimensional latent space.
The input to the UMAP algorithm was a matrix in which the columns corresponded to the
time and the rows represented the point-wise vertical displacement time series. The input
data consisted of 312 dimensions, corresponding to the length of the time series, which
are treated as independent samples by UMAP. Following transformation, the time series
dataset was reduced to two dimensions, reflecting the number of informative features. The
optimal value of the n_neighbors parameter used for the dimension reduction was selected
as the value at which the maximum trustworthiness score plateaued, which was at a value
of 100 (Figure 8). The high trustworthiness score of 0.994 indicates that the local structure
of the original dataset was well preserved in the low-dimensional embedding.

0.9954

0.9933

0.9912

0.9891

Trustworthiness

0.987
0 50 100 150 200 250

n_neighbors parameter

Figure 8. UMAP trustworthiness analysis to determine the optimal value of n_neighbors. The black
circle indicates the value used in the optimized UMAP model for the vertical displacement dataset.
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5.2.2. HDBSCAN Time Series Clustering

The inputs for this step were the low-dimensional features learned by UMAP. The
UMAP algorithm placed the data in relative proximity to one another based on their
temporal similarity, and HDBSCAN clustered these points based on their relative densities.
Following the hyperparameter optimisation process described in Section 4.2.2, the tuned
min_samples and min_cluster_size hyperparameters used in the final HDBSCAN model
were 80 and 350 respectively, which resulted in 37 initial clusters.

To inspect the result, we mapped the geographical coordinates of each MP time series
along with the cluster label assigned by HDBSCAN. Initially, HDBSCAN successfully
clustered the southern and western portions of the basin but identified the central and
northern portions as a single cluster, as shown by the purple colour in Figure 9a. The
displacement time series for this cluster (Figure 9a) showed a high level of variability
amongst the clustered MPs that needed to be further decomposed. In order to extract
this information, we recursively applied the HDBSCAN algorithm to this single cluster,
allowing the algorithm to distinguish features within this group. In total, 64 clusters were
extracted from the vertical displacement dataset after this re-clustering procedure. The
spatial distribution of the extracted clusters is shown in Figure 9b.

After extracting the clusters using HDBSCAN, we computed the barycenter displace-
ment time series for each cluster and merged clusters that had correlated barycenters. This
process resulted in a total of 36 vertical displacement clusters. Figure 9c shows the spatial
distribution of the resulting clusters. The distribution of the extracted clusters shows that a
small number of clusters dominate movement in the northern and southern borders of the
basin, while the central portion of the basin, with a larger number of clusters, experiences
more variation in deformation over time.

Table 4 lists the properties of the extracted clusters that demonstrated subsidence
behaviour. Cluster 18 and cluster 25 had the highest values of cluster-averaged cumulative
displacement (—21.7 cm and —22.3 cm, respectively) and were assigned the majority of
subsiding MPs (61% between the two clusters).

Table 4. Properties of the main subsidence clusters extracted from the vertical interferometric dataset.

Relative N° Average

Clusoter N° of of Subsiding Areza (;umulative Time of Detected

N MPs MPs (%) (km®) Displacement Change
(cm)
18 15,968 41 35.3 -21.7 NA
25 7759 20 18.2 -223 April 2017
19 4585 12 12.1 —0.5 NA
14 3972 10 11.3 -35 September 2017
23 1211 3 3.7 -171 January 2020
36 1135 3 3.0 -1.2 NA
February 2017 &

17 1101 3 2.7 —-16.3 September 2018
12 776 2 2.1 -1.2 July 2017
21 766 2 2.6 -9.5 August 2016
24 707 2 2.0 —-10.5 January 2020
20 482 1 1.7 -9.8 NA
34 246 <1 0.9 -7.0 NA

NA: Not Applicable—no change point detected.
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Figure 9. Map of the cluster distribution, with each color representing a different cluster, for the
vertical interferometric displacement dataset: (a) Resulting from the initial application of HDBSCAN;
(b) Resulting from the re-application of HDBSCAN clustering to the purple cluster in (a); (c) Resulting
from merging correlated clusters.

5.3. Cluster Gradient Change Detection

Instead of simply estimating the average velocity for each cluster over the INSAR
period by fitting a linear function to the whole displacement time series, we fit a piecewise
linear model to identify sudden changes in the deformation rate or breaks in the trend. If
different trends in the deformation behaviour occur due to variabilities in the triggering
factors over time, then piecewise linear regression is an effective means to detect these
changes [65]. The adopted strategy has allowed us to efficiently identify the underlying
displacement patterns and detect when deformation changes occurred in an InSAR dataset.
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We used PWLF to identify a total of 12 barycenter cluster time series in the vertical
dataset, 11 of which had a single breakpoint and one (cluster 17) which had two break-
points, corresponding to three main subsidence patterns: (1) constant linear subsidence,
(2) subsidence with an acceleration, and (3) subsidence with a deceleration. Figure 10 shows
the spatial distribution of the identified subsidence trends and the percentage distribution
of the subsiding MPs. The timings of the identified breakpoints for each cluster are given
in Table 4.
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Figure 10. Map of the spatial distribution of the subsidence trend clusters extracted from the vertical

displacement dataset.

The areas of subsidence are predominantly confined to the central portion of the
basin. Additionally, a localized subsiding area in the southwest of the study area was
evident. A linear trend dominates the subsidence signal across the basin, encompassing
57% (22,170 MPs) of the total subsiding MPs, followed by an accelerated subsidence signal
(23%; 8771 MPs), and a decelerating subsidence trend (20%; 7767 MPs).

The cluster displacement time series with the fitted piecewise models belonging to
each of the identified subsidence trend groups are shown in Figure 11.

Clusters 18 and 20 exhibit a strong, linear subsidence pattern (Figure 11a). According
to [44], there are two plausible explanations for the observed constant subsidence: (1) It
is possible that water extraction primarily occurs from confined aquifers, which are less
influenced by seasonal recharge; (2) During the rainy season, water extraction rates may be
higher, compensating for the recharge in the shallow, unconfined aquifer. However, since
stress changes in unconfined aquifers are lower, it is unlikely that substantial subsidence
rates, such as those observed in clusters 18 and 20, would result from compaction of the
unconfined aquifer. For this reason, the authors concluded that industrial water usage from
confined aquifers was likely the primary factor contributing to subsidence in the urban area
of Bandung [44]. This inference is further corroborated by the fact that only the deep wells
used for industrial purposes tap into the groundwater resources of the confined aquifer
underlying Bandung [66]. The lower rates of subsidence in clusters 19 and 36 (Figure 11a)
could reflect a difference in the type of groundwater usage. In these locations, the industrial
land coverage is less significant, and is instead dominated by residential areas. Thus,
it is possible that the lower but constant subsidence rates reflects the lack of industrial
water extraction in these areas and instead could be representative of residential extraction,
which coincides with the findings of [67] who investigated the subsidence phenomenon
in Bandung at different spatial scales. In Bandung, extraction from the shallow aquifer
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for household purposes is entirely permissible and unconstrained [66]. Unfortunately,
there is no monitoring program in place to track the amount of domestic groundwater
extracted [66], and therefore it is not currently feasible to quantitatively assess the role that
residential shallow groundwater extraction has on the subsidence in these areas.

Cluster 18

(a)Linear

2018
Cluster 19

Cluster 20

__ Cluster 21

R %
f // 7 u) @ 0|
&5 2615 we o0 o1 015 200 w00
G Cluster 25
A { center
4 e

2015 2006 2017 2018 2019 2020 2021
Cluster 34

2015 016 2017 018 2019 2620 2031

Cluster 12

2015 2016 2017 2018 2019 2020 201
Cluster 14

A

2015 2016 2017 2008 2019 2020 2021
Cluster 17

eol i - g
2015 2016 2017 2010 2010 2020 2021
Cluster 23

Cluster 24

Figure 11. Map of the cluster location (left) and displacement time series (right) for each of the
identified subsidence trends: (a) linear, (b) acceleration, (c) deceleration. The black line represents
the cluster barycenter, the shaded grey area represents the 10% and 90% quantiles of MP time series
within the cluster, the colored lines reflect the linear segments of the fitted piecewise model, the
vertical dashed grey line indicates where a breakpoint is identified (right) and the corresponding
color is mapped to show their spatial distribution (left).
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Cluster 17, belonging to the decelerating subsidence group, represented the area
with the highest subsidence rates over the studied period. The spatial distribution of this
cluster is highlighted in Figure 12a and the displacement time series is shown in Figure 12c.
Analysis of the cluster barycenter reveals an initial subsidence rate of —6.2 cm/y in January
2015, which decreases to —3.0 cm/y at the beginning of 2017, and further decelerates down
to zero towards the end of 2018. Satellite imagery from Google Earth (Figure 12b) shows
the presence of a large industrial complex surrounded by residential buildings in this area
prior to 2010. Additional buildings were constructed during 2010-2015, followed by even
more buildings and a highway during the InSAR observation period (2015-2020). This
high-subsidence zone is in the western portion of the basin, within the Kosambi Formation
where borehole logs in this area indicated that the clay thickness ranges from 47 m to
87 m [68].
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Figure 12. (a) Map of the decelerating subsidence clusters highlighting the location of cluster 17 with
the highest average subsidence rate. (b) Satellite imagery (from Google Earth, www.google.com/
earth, accessed on 8 February 2023) of the cluster 17 area from 2010, 2015, and 2020. (c) Cluster 17
displacement time series where the solid black line represents the cluster barycenter, the shaded
grey area represents the 10% and 90% quantiles of MP time series within the cluster, the purple line
represents the linear segments of the fitted piecewise model, and the black dotted lines indicate the
detected breakpoints. The shaded blue area represents the time period for which measurements of
groundwater pumping volumes are available. (d) Average volume of groundwater extracted from
nearby pumping wells.

Subsidence at this location may result from natural compaction due to the consolida-
tion of young, soft sediments, as well as the added load of new buildings (i.e., settlement
of highly compressible soil). Groundwater extraction may have also played a role in the
observed subsidence. Pumping volume measurements of some nearby industrial pumping
wells obtained from the Office of Mineral and Energy Resources (ESDM) of West Java
Province show an increase in the volume of groundwater extracted during 2017 until Au-
gust 2018 (Figure 12d). The volume of groundwater extracted showed a declining trend for
the remainder of 2018. Unfortunately, no measurements were made during 2019, nor were
groundwater levels monitored in this area. Therefore, the breakpoint detected in June 2019
marking a deceleration in subsidence cannot with certainty be attributed to lower rates of
groundwater pumping. However, it is possible that decreased pumping from late-2018 and
into 2019 could explain the stable ground conditions observed at this time.
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Clusters 21 and 25 identified a large area of accelerating subsidence in the middle
portion of the basin (Figure 11b). The average subsidence rates within these clusters
increased from 1.6 cm/y to 4.7 cm/y, with the change occurring in late 2016. The land
cover in this area was mostly residential with several large industrial complexes. From
analyzing aerial photographs, we found no major land use change during the studied
period that could explain the acceleration in subsidence. The accelerated rate might be
due to increased groundwater usage. Unfortunately, no data on the groundwater levels or
pumping volumes were available from this time to compare the water table variation with
the observed changes in deformation behavior.

In contrast, the eastern portion of the basin principally shows a deceleration subsidence
pattern. Unfortunately, this is a predominantly agricultural area where decorrelation due to
vegetation and seasonal inundation degrades the interferometric coherence. The available
MPs in this area are principally represented by cluster 14 (Figure 11c). The MPs within
this cluster show an averaged subsidence rate of —1.72 cm/y from January 2015 until
September 2017, after which the ground reached a stabilized condition. The coherent
MPs coincide with residential settlements. The lack of industrialization could explain the
low displacement rates at this location since groundwater is not heavily extracted by any
industry and several sources [69,70] acknowledge that the use of groundwater as a source
of irrigation is not a common practice in Bandung. Instead, the initial low rate of subsidence
observed in this area could be associated with consolidation due to surficial loading of the
residential settlements. It is possible that the initial subsidence started prior to 2015, and
that the InNSAR results used in this study spanning the period 2015 to 2020 captured the
secondary consolidation phase where the subsidence rate declined and the ground began
to stabilize.

6. Discussion

InSAR data derived from Sentinel-1 Synthetic Aperture Radar (SAR) images enables
the extraction of ground movement measurements over a large area such as the Bandung
Basin. However, interpreting a large number of points, each associated with a unique time
series, is not intuitive. Machine-learning techniques can be a more effective way to quickly
interpret the vast amount of information contained within large InNSAR datasets. In this
work, we resolved the vertical component of displacement by combining the ascending
and descending satellite orbits, allowing for a more accurate determination of the actual
displacement of the ground surface. The outlined data mining approach can also be
applied to single LOS ground deformation time series when both viewing geometries are
not available for combination. However, interpreting the extracted clusters must consider
that the one-dimensional LOS displacement may not necessarily capture the full magnitude
of the motion.

Dimensionality reduction is often performed on big data sets to extract informative
features, which can serve as a pre-processing step to help downstream clustering algo-
rithms perform better. Previous InNSAR studies have used Principal Component Analysis
(PCA) as a data reduction method to identify the dominant patterns of deformation by
finding the directions of maximum variance in the data [71,72]. However, PCA is a linear
decomposition method, which limits its usefulness in complex domains where non-linear
structure exists. UMAP is an improvement over PCA because it allows for non-linear
relationships between the high and low dimensions and so the data can be represented in
a lower-dimensional space without losing too much information and without assuming
any linearity. Additionally, if the dataset is too large and complex, PCA results may lead to
misinterpretation [73]. Therefore, UMAP is more suitable as a pre-processing step when
clustering large, complex InSAR datasets. Additionally, UMAP scales well with large
datasets [29] and is able to find the best clusterable embedding given that the algorithm is
able to preserve both the local and global structure of data [74].

Traditional clustering algorithms, such as K-means, may perform poorly during
exploratory data analysis tasks as they are often designed to partition data into a prede-
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termined number of clusters based on a given similarity measure. However, the number
of clusters and the appropriate similarity measures are not always clear, and may need
to be iteratively refined. These algorithms face common challenges, such as difficulties in
selecting parameters, lack of robustness to data noise, and reliance on assumptions about
cluster distributions [33]. To address these issues, this work is one of the first applications of
a hierarchical clustering algorithm. We chose the HDBSCAN algorithm to cluster the InNSAR
time series data due to: (1) its efficient performance with large datasets, (2) robustness to
data noise [75], an issue common with InNSAR data, and (3) its ability to handle clusters
of variable densities where traditional clustering algorithms that assume uniform density
within clusters (e.g., k-means clustering) struggle. HSBSCAN is a density-based algorithm
that identifies densely packed regions of data, so it does not require that every data point
is assigned to a cluster. Data points not assigned to a cluster are considered as outliers
or noise. HDBSCAN does not need the number of clusters specified beforehand, and is
able to discover clusters of varying densities, whereas K-means will only work well with
clusters that have similar densities. Therefore, HDBSCAN is more robust to noise and
outliers, whereas K-means clustering forces all MPs into a pre-defined number of clusters.
The procedure implemented in this study effectively reduces the noise level and increases
the reliability of the deformation data. Ultimately, HDBSCAN can adapt to the structure of
the data, making it a useful tool for uncovering hidden patterns and relationships.

Although we did not impose the spatial position of each MP during this analysis,
we assumed that points in close proximity experienced the same geological condition
and/or triggering factor and thus would move similarly. Indeed, when the location of
each cluster was also considered (Figure 11), it was evident that HDBSCAN successfully
identified and grouped nearby MPs solely based on their similar displacement profiles. In
the temporal domain, the displacement time series associated with the subsidence clusters
showed that the MPs within each cluster were aggregated according to their displacement
magnitude and movement direction (Figure 11). We interpreted the clusters by computing
the barycenter displacement time series, through which we fit a piecewise linear function
to evaluate trend variations (accelerations or decelerations) in the deformation evolution.

The proposed method identified breakpoints in the deformation behaviour in the
Bandung Basin that highlight considerable differences in the rates of vertical ground
deformation and also in their spatial patterns. A total of four linear clusters over an
area of 20 km?, three accelerating clusters (8 km?), and five decelerating displacement
clusters (7 km?) were identified within the subsidence trends. The subsidence is confined
to the central basin where Late Quaternary aged alluvium and fluvial sediments are
widespread and thick. Linear displacement trends were observed in certain locations,
indicating continuous underlying processes. In the south-western portion of Bandung
city, subsidence followed a dominantly linear pattern, with cluster 18 encompassing the
greatest number of subsiding MPs (42%) over an approximate 40 km? area. The cumulative
subsidence for this cluster was one of the highest (21.7 cm) over the studied period. The
average subsidence rate of MPs within this cluster was —4.9 cm/y, with a maximum rate of
—10 cm/y. This coincides with previous studies, which observed an extensive subsidence
feature encompassing the area of Margaarish Town, Bandung City with displacement
rates of —10 cm/yr to —2 cm/yr between 2014 to 2017 [62]. Another study, which used
Sentinel-1 and ALOS-2 images acquired from September 2014 to July 2017, found that the
mean velocity of this subsidence centre was —11.2 cm/y, covering an area of 14.3 km? [67].
The authors showed that the land use in this area was predominately residential (77%),
followed by industrial (14%), and concluded that subsidence was primarily induced by
groundwater pumping for residential and industrial usages. The consistency observed
with our displacement rates and recent studies highlights the occurrence of subsidence in
this area mainly associated with excessive groundwater withdrawal for residential and
industrial purposes [67].

This study allows us to infer that changes in subsidence rates identified by decom-
posing the cluster barycenters with piecewise functions may be induced by groundwater
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abstraction within industrial areas, or the consolidation of soft soils due to infrastructural
loading. Previous studies on subsidence processes in the Bandung Basin using InNSAR
analysis either relied on the average annual deformation [42,62,76] or analyzed a small
number of INSAR MPs to examine the displacement behaviour over time [44,70]. Both
methods imply linear movement, which we have shown to be an inaccurate assumption.
It is often the case that a single linear model cannot adequately describe the evolution of
displacement over time; instead, multiple linear relationships applying to different time
spans may be more accurate. Therefore, instead of simply estimating the average velocity
for each cluster over the INSAR period by fitting a linear function to the displacement time
series, we fit a piecewise linear model to identify sudden changes in the deformation rate
or breaks in the trend. Assuming that different trends in the deformation behaviour occur
due to variabilities in the triggering factors over time, piecewise linear regression is an
effective means to detect these changes [77].

Our method overcomes the issues of traditional INSAR analysis methods by consider-
ing all of the available MPs, providing a more comprehensive way to analyze the InNSAR
data and detect changes in the displacement behaviour for each MP scattered throughout
the basin. This provides us with both local and large-scale information to gain further in-
sight into the processes driving subsidence which is particularly important in a data-scarce
area such as Bandung where information on possible triggering factors is limited both
spatially and temporally. For example, we were able to identify an area, represented by
clusters 23 and 24 (Figure 11c), where a change occurred in the deformation pattern. Within
these clusters, subsidence was initially detected at an average rate between 3—4 cm/y until
January 2020 when the ground movement became stabilised. We infer that this change in
deformation behaviour may have been a result of less groundwater being pumped from
the underlying aquifer in this area towards the end of 2019. Through application of the
proposed method, an indication of the groundwater usage is inferred, which otherwise
would not have been possible since groundwater levels and abstraction volumes were
unavailable in this area.

Cluster 17 (Figure 12) is an area of known subsidence where previous INSAR mea-
surements revealed a localized region of subsidence that coincided with an industrial
complex [44]. Vertical displacement time series from this area showed rapid subsidence
at a rate of —10.8 cm/y with a generally linear subsidence trend from 2007 to 2009, which
the authors attributed to groundwater extraction for industrial purposes [44]. However, in
this study, the displacement time series of cluster 17 showed a change in the displacement
behaviour at this location (Figure 13). An initial linear subsidence rate coinciding with the
earlier results was followed by a period of deceleration ending in stabilization of the ground
motion at this location. This important change in displacement behaviour would have gone
undetected by simply analyzing the linear velocity map, which highlights the importance
of leveraging the displacement time series data when interpreting InNSAR results.

Subsidence in Bandung has commonly been attributed to over-extraction of groundwa-
ter from a confined aquifer [44]. However, we identified a possible additional contribution
to subsidence, particularly in the eastern portion of the basin. In recent years, the ur-
ban expansion in this region in the form of newly developed residential areas and major
roads may have resulted in additional loading of the ground, leading to compaction of
the compressible Holocene sediments. During the initial phase of monitoring, moderate
and decelerating subsidence rates were detected in this region (i.e., secondary consolida-
tion), followed by eventual stabilization of movement during the final year of monitoring,
implying the end of the consolidation process.
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Figure 13. Evolution of the vertical displacement velocity from 2007 to 2020 at the location of
cluster 17.

The deformation behaviour in the Bandung Basin is complex and influenced by various
factors. It is clear that high-quality and reliable ancillary data such as the lithological
condition of the subsurface, measurements of groundwater levels, and land use changes
are essential when interpreting the displacement time series. Further in-depth analysis
is required to better understand the subsidence-triggering factors related to groundwater
extraction. This can be achieved by integrating InNSAR data with numerical groundwater
and geomechanical models, which is part of our ongoing research and out of the scope of
this paper.

A possible limitation of the developed method is defining what “relevant” changes are.
The PWLF technique was shown to be a simple yet robust way to characterize the principal
changes that occurred in the analyzed cluster time series, which typically corresponded
with a notable change in the displacement velocity. However, changes that occur gradually
over time rather than abruptly could go undetected using this change detection method.
When fitting the PWLF model to the clustered time series, a 15% improvement of the sum
of squared residuals of the resulting model was chosen in order to capture the overall
displacement behaviour, but also to avoid overfitting the model. This number may need to
be adjusted depending on the displacement behaviour (i.e., seasonal behaviour or slowly
deforming areas) or the quality of the InNSAR dataset (i.e., noisy datasets) to detect relevant
deformation changes.

7. Conclusions

In this study, we developed an innovative method to characterize INSAR displacement
time series by clustering the time series, and then automatically analyzing changes in
those timeseries. Our proposed workflow uses unsupervised data mining techniques
to efficiently extract meaningful insights from large INSAR datasets exploiting the full
displacement time histories. The method applies data-dimensionality reduction with
UMAP and clustering with HDBSCAN, and can automatically detect changes in INSAR
time series by applying the piecewise linear function analysis. This work represents the
first peer-reviewed application of a UMAP + HDBSCAN pipeline to analyze InSAR time
series. Most existing InNSAR studies generally identify and classify ground motion based on
time-averaged displacement trends. Even the most recent clustering methods on InSAR
time series are not able to capture both the spatial and temporal changes of ground motion
and require the users to manually identify the number of clusters and remove noisy signals.
Compared to existing INSAR clustering approaches, our proposed method reduced the
noise in the dataset, and automatically identified the number of clusters through the use of
the novel application of UMAP + HDBSCAN.
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Our InSAR analysis over the Bandung Basin revealed a maximum subsidence velocity
of —18.7 cm/y averaged over the observation period between January 2015 to December
2020. We applied our clustering method to this dataset and identified deforming areas with
various patterns of accelerations and decelerations. We show that the clustering approach
is able to detect and cluster time series into groups with similar temporal behavior. We
identified 12 clusters of subsidence, of which three experienced accelerating subsidence
over an area of 22 km?, four linear clusters covering a total of area of 52 km?, and five
clusters of decelerating subsidence over an area of 22 km?. The regions with the most
rapidly accelerating subsidence experienced a rate change of —0.03 cm/y to —2.40 cm/y
(cluster 21) and —3.1 cm/y to —4.5 cm/y (cluster 25) during the observation period of
January 2015 to December 2020, while the regions with the most rapidly decelerating
subsidence experienced a rate change of —5.81 cm/y to —0.55 cm/y (cluster 17) and
—3.72 cm/y t0 0.62 cm/y (cluster 23) during the same observation time. The maximum total
subsidence of 18 cm occurred in cluster 18 over an area of approximately 35 km?. If such
subsidence is predominantly due to groundwater extraction, then our measurements have
important implications for groundwater sustainability and long-term aquifer sustainability
within the Bandung Basin.

Our approach improves the identification of ground displacement changes by pro-
viding an objective and comprehensive analysis of surface dynamics over a large area.
By precisely determining the temporal and spatial variations of displacement changes,
we significantly advance the understanding of large deforming regions which can aid in
disentangling deformation signals arising from various triggering factors. Unlike existing
InSAR clustering methods, our approach minimizes user involvement and harnesses the
power of open-source Python packages, making it easily adaptable to different regions
for studying various phenomena. This uniqueness allows us to systematically investigate
ground movements at both local and regional scales, ensuring the replicability and reli-
ability of our analysis. This increased insight empowers us to interpret ground motion
patterns more effectively and identify their root causes. The successful implementation
of our novel approach in the urban region of Bandung demonstrates its potential as an
automated technique capable of supporting risk assessments for a wide range of geological
hazards caused by both natural events and human activities.
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