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Abstract: The accuracy of temperature and relative humidity (RH) profiles retrieved by the ground-
based microwave radiometer (MWR) is crucial for meteorological research. In this study, the four-year
measurements of brightness temperature measured by the microwave radiometer from Huangpu me-
teorological station in Guangzhou, China, and the radiosonde data from the Qingyuan meteorological
station (70 km northwest of Huangpu station) during the years from 2018 to 2021 are compared with
the sonde data. To make a detailed comparison on the performance of machine learning models in
retrieving the temperature and RH profiles, four machine learning algorithms, namely Deep Learn-
ing (DL), Gradient Boosting Machine (GBM), Extreme Gradient Boosting (XGBoost) and Random
Forest (RF), are employed and verified. The results show that the DL model performs the best in
temperature retrieval (with the root-mean-square error and the correlation coefficient of 2.36 and
0.98, respectively), while the RH of the four machine learning methods shows different excellence
at different altitude levels. The integrated machine learning (ML) RH method is proposed here, in
which a certain method with the minimum RMSE is selected from the four methods of DL, GBM,
XGBoost and RF for a certain altitude level. Two cases on 29 January 2021 and on 10 February 2021
are used for illustration. The case on 29 January 2021 illustrates that the DL model is suitable for
temperature retrieval and the ML model is suitable for RH retrieval in Guangzhou. The case on
10 February 2021 shows that the ML RH method reaches over 85% before precipitation, implying the
application of the ML RH method in pre-precipitation warnings.

Keywords: microwave radiometer; radiosonde; temperature and humidity profiles; machine learning

1. Introduction

Atmospheric temperature and relative humidity (RH) are important parameters of
the atmosphere and environment. Temperature and RH profiles with refined vertical
resolution play an important role in urban meteorological forecasting [1–5]. The coastal
city of Guangzhou is frequently hit by medium- and small-scale short-term weather events
(such as torrential rains, typhoons and thunderstorms), which are extremely destructive
and catastrophic despite the short activity time [6]. Accurate observation of the atmospheric
vertical profile is fundamental for meteorological studies.

Although the traditional radiosonde data have high representativeness and relia-
bility, the traditional observations are expensive and lack spatiotemporal resolution [7].
Ground-based microwave radiometers (MWRs) with passive remote sensing technology
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can overcome these shortcomings [8]. Since an MWR has the advantages of reliable calibra-
tion method, high resolution, unmanned continuous observation and simple operation, it
is becoming an important instrument for remote sensing of atmospheric vertical profiles [9].
The MWR can continuously observe temperature, relative humidity and liquid water con-
tent within 0–10 km. In recent years, these data, combined with wind profile data, have
gradually become an important reference for short-impending weather forecasting [9]. It
is of high scientific importance and potential value to study the inversion of atmospheric
temperature and humidity profile using microwave radiometer data [10]. However, the
brightness temperature (BT) data from different channels of the MWR are disturbed by
precipitation and cloud factors, resulting in abnormal values [11–13]. Meanwhile, when the
sun is in the observation direction of the MWR, the BT data will be abnormally increased
due to the influence of solar radiation, especially those used in low latitudes [14]. Therefore,
it is essential to control the quality of the MWR observation data for a better forecast [15–17].

With the development of the ground-based MWR network, it has been widely applied
to the detection of atmospheric vertical profiles in the boundary layer. Improving the
reliability and accuracy of MWR observations is the priority for a refined atmospheric
vertical profile. Meteorologists have proposed various methods to improve the accuracy
of retrieval data, such as the linear statistical method [18], the best estimate method [19],
neural networks [20,21] and machine learning [22,23]. Among these methods, the neural
network performs well in solving the nonlinear relationship in the model. For example,
Bao et al. [24,25] used the back-propagation neural network to retrieve the atmospheric
temperature and RH profiles after the quality control of the first-level data. However,
the traditional back-propagation neural network is time-consuming and requires a huge
amount of data [26].

With the continuous development of artificial intelligence technology, the machine
learning model has been increasingly applied in the field of microwave remote sensing,
especially in atmospheric profile inversion. Gregori et al. [27] used the Gradient Boosting
Machine (GBM) regression tree in a machine learning algorithm to estimate the boundary
layer height using the MWR data and confirmed the excellent performance of machine
learning in terms of training speed and retrieval accuracy. Jia [28] used the Extreme
Gradient Boosting (XGBoost) machine learning model to predict the non-monsoonal winter
precipitation over Eurasia. The results show that the XGBoost model performs significantly
better than the traditional linear regression model. Liu [29] used the XGBoost model to
correct the daily land surface temperature, where the rapidly increasing trend after the
correction indicates an effective correction of the inhomogeneous land surface temperature
in China. Recent studies have shown that the XGBoost model has great potential to improve
climate prediction. The Random Forest (RF) algorithm has been applied to atmospheric
environmental research in recent years [30,31]. Jiang et al. [32] used the RF machine learning
model to establish an aerosol optical depth (AOD) dataset in the cloudy Sichuan Basin.
GBM, XGBoost and RF all use boosting learning. The disadvantage of boosting learning
is that there is a serial relationship between its base learners, and it is difficult to train
data in parallel. The Deep Learning (DL) model is a machine learning algorithm that
uses multi-layer artificial neural networks to achieve state-of-the-art accuracy in many
tasks [33,34]. Similar to traditional machine learning algorithms, the DL model can model
complex nonlinear systems. Moreover, it performs better in extracting the advantageous
features with deeper network layers [35]. Recently, the performance of the DL model has
been proven to be comparable to that of human experts [34].

In this study, four machine learning algorithms, namely the GBM, XGBoost algorithm,
RF algorithm and DL algorithm, are used to compare with the MWR-derived first-level BT
data. Based on this, the best machine learning method to improve the retrieval accuracy
of profiles from the MWR data will be found. We try to give the evolution of RH profile
transfer information, such as in which layer the water content could surge to a certain
level, as an indicator of the coming precipitation. The techniques are only tested over a
small region in Guangzhou, China. The rest of this paper is organized as follows. Section 2
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describes the four machine learning algorithms, the datasets, the study region and the
data preprocessing procedures. The comparison between the results of the four machine
learning algorithms and the radiosonde data are presented in Section 3, where typical cases
are also analyzed. Finally, the conclusion and discussion are presented in Section 4.

2. Data and Methods

The microwave radiometer BT data and the sonde data are observed from 2018 to 2021
in Huangpu and Qingyuan, respectively. Machine learning-based models are applied to
retrieve temperature and relative humidity using the brightness temperature measured by
the microwave radiometer based on the channel from 22.24 GHz to 31.4 GHz, 51.0 GHz to
58.0 GHz. The 2018–2020 dataset is used as the training sample, while the 2021 dataset is
used as the validation sample.

2.1. Location of Observation Stations

The location of the observation stations is shown in Figure 1. The MWR data are
observed from Huangpu station, while the radiosonde data are observed from the Qingyuan
station. The distance between Huangpu station (113.29◦N, 23.13◦E) and Qingyuan station
(113.05◦N, 23.43◦E) is about 70 km. The altitudes of Qingyuan station and Huangpu station
are 79.2 m and 70.7 m, respectively. The two stations have similar underlying surface
conditions, and there is no mountain barrier between them. The radiosonde data observed
at Qingyuan station are well matched with the MWR BT data, which can be applied to train
the machine learning algorithms in this study.

Remote Sens. 2023, 15, 3838 3 of 18 
 

 

In this study, four machine learning algorithms, namely the GBM, XGBoost algo-
rithm, RF algorithm and DL algorithm, are used to compare with the MWR-derived first-
level BT data. Based on this, the best machine learning method to improve the retrieval 
accuracy of profiles from the MWR data will be found. We try to give the evolution of RH 
profile transfer information, such as in which layer the water content could surge to a 
certain level, as an indicator of the coming precipitation. The techniques are only tested 
over a small region in Guangzhou, China. The rest of this paper is organized as follows. 
Section 2 describes the four machine learning algorithms, the datasets, the study region 
and the data preprocessing procedures. The comparison between the results of the four 
machine learning algorithms and the radiosonde data are presented in Section 3, where 
typical cases are also analyzed. Finally, the conclusion and discussion are presented in 
Section 4. 

2. Data and Methods 
The microwave radiometer BT data and the sonde data are observed from 2018 to 

2021 in Huangpu and Qingyuan, respectively. Machine learning-based models are ap-
plied to retrieve temperature and relative humidity using the brightness temperature 
measured by the microwave radiometer based on the channel from 22.24 GHz to 31.4 
GHz, 51.0 GHz to 58.0 GHz. The 2018–2020 dataset is used as the training sample, while 
the 2021 dataset is used as the validation sample. 

2.1. Location of Observation Stations 
The location of the observation stations is shown in Figure 1. The MWR data are ob-

served from Huangpu station, while the radiosonde data are observed from the Qingyuan 
station. The distance between Huangpu station (113.29°N, 23.13°E) and Qingyuan station 
(113.05°N, 23.43°E) is about 70 km. The altitudes of Qingyuan station and Huangpu sta-
tion are 79.2 m and 70.7 m, respectively. The two stations have similar underlying surface 
conditions, and there is no mountain barrier between them. The radiosonde data observed 
at Qingyuan station are well matched with the MWR BT data, which can be applied to 
train the machine learning algorithms in this study. 

 
Figure 1. The location of observation stations. (The microwave radiometer data are observed from 
Huangpu station, while the radiosonde data are observed from the Qingyuan station). 

2.2. Datasets 
Two datasets, namely the MWR BT dataset and radiosonde dataset are used in this 

paper. The BT data are measured by an MWR located at the Huangpu station. The MWR 
uses the RPG-HATRPO-G3 from the Radiometer Physics GmbH in Germany, which is a 
14-channel ground-based passive MWR with seven water vapor absorption channels (K-
band) from 22.24 GHz to 31.40 GHz and seven oxygen absorption channels (V-band) from 
51.00 GHz to 58.00 GHz [21,36]. The radiosonde data of temperature and RH are measured 

Figure 1. The location of observation stations. (The microwave radiometer data are observed from
Huangpu station, while the radiosonde data are observed from the Qingyuan station).

2.2. Datasets

Two datasets, namely the MWR BT dataset and radiosonde dataset are used in this
paper. The BT data are measured by an MWR located at the Huangpu station. The MWR
uses the RPG-HATRPO-G3 from the Radiometer Physics GmbH in Germany, which is
a 14-channel ground-based passive MWR with seven water vapor absorption channels
(K-band) from 22.24 GHz to 31.40 GHz and seven oxygen absorption channels (V-band)
from 51.00 GHz to 58.00 GHz [21,36]. The radiosonde data of temperature and RH are
measured by an L-land GTS1 digital radiosonde at the Qingyuan station, which is launched
twice daily at 11:00 and 23:00 UTC, respectively.
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2.3. Data Preprocessing

The quality control of the BT data is performed before the training of four ma-
chine learning methods, in order to obtain better prediction results. The datasets during
2018–2021 are matched according to the principle of time consistency. There is a certain law
of the time series variation in brightness temperature [20], and the transformation observed
by each frequency channel of the MWR within 3 min should be continuous. First, the MWR
BT samples are excluded if they do not meet the above conditions. Second, the MWR BT
samples are further excluded if they are with large fluctuations, which may be errors of the
instrument. After these two sample screening steps, the radiosonde data, temperature and
RH are averaged by altitude. The interval altitude for a given level is set to be in the range
of every 25 hPa and 50 hPa for below and above 700 hPa, respectively. In this way, the BT
data are matched to the radiosonde level values. The matched samples are then classified
into three categories based on RH values: clear sky, cloudy sky and rainy conditions. The
inversion effect for MWR data is generally better under clear-sky conditions than under
cloudy and rainy weather conditions [37–39]. The radiosonde data are processed according
to the approach of Yan et al. [21] to determine the weather conditions and estimate cloud
parameters. Theoretically, when a cloud forms, the RH at the corresponding height reaches
100%. However, due to factors such as condensation nuclei, the RH in the cloud layer is
slightly lower than the theoretical value [40,41]. Therefore, 85% RH is used as the threshold
value in the radiosonde data to determine the altitude level. The specific determination
criteria are as follows:

(1) The measured data are classified as rainy-day data if the RH is greater than 85% from
the ground to the height of 600 m.

(2) The data are classified as cloudy-sky data if the RH is less than 85% near the surface
but greater than 85% in the upper atmosphere [20].

(3) The data are classified as clear-sky data if the RH is always less than 85% from the
ground to any altitude level.

Thereafter, a total of 2461 quality-assured MWR data samples matched to the radiosonde
sounding data from January 2018 to July 2020 are used for training, and 1321 quality-assured
test samples during 2021 are used for validation. Due to the cloudy condition, 52% of the
three years of data cannot be used.

2.4. Methods
2.4.1. Deep Learning (DL)

DL is an advanced machine learning architecture based on neural networks [42]. It
aims to bridge the gap between machine learning and artificial intelligence by incorporating
powerful learning capabilities and a wide range of applications. Compared to RF, GBM and
XGBoost, DL shows superior adaptability. However, DL’s performance is highly dependent
on the available data, and it tends to excel when provided with a larger volume of data [42].
Recent research indicates that DL exhibits promising results in temperature retrieval [43,44].
The DL model in the study consists of two hidden layers, each containing 200 neurons. The
activation function employed in the first hidden layer is relu, as it has been observed to
provide superior results compared to other functions [45]. The second hidden layer and
the output layer default to using linear activation functions by default. The entire model is
trained using the Adam optimizer with the mean square error serving as the loss function.

2.4.2. Gradient Boosting Machine (GBM)

GBM is a boosting algorithm that uses different weights to linearly combine the base
learners to reuse the learner with excellent performance [46]. The GBM algorithm calculates
the pseudo-residuals according to the initial model. Then, it builds a base learner to
interpret the pseudo-residuals, which can reduce the residuals in the gradient direction.
Then, the base learner is multiplied by the weight coefficient and linearly combined with
the original model to form a new model. The learning rate of the base learner is set to
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0.1. The goal of the GBM is to find a model that minimizes the expectation of the loss
function [47].

2.4.3. Extreme Gradient Boosting (XGBoost)

XGBoost is a gradient boosting-based integrated learning algorithm proposed by
Chen and Guestrin [48]. The XGBoost [48] has been gradually applied in the atmospheric
environment prediction. A second-order Taylor expansion is introduced in XGBoost, which
increases the accuracy and enables loss functions to be customized via gradient descent.
It adds the complexity of the tree model to the regularization term in order to prevent
overfitting and, as a result, performs better in generalization [49]. However, the applications
of the XGBoost machine learning method for the retrieval of meteorological profiles using
MWRs are still few [21]. In this study, each tree is constructed using a learning rate of
0.3, a maximum tree depth of 6, a regularization weight of 10 and a total of 50 weak
learners (trees).

2.4.4. Random Forest (RF)

RF is an integrated machine learning method that uses the random resampling tech-
nique bootstrap and the random node splitting technique to build multiple decision trees
by Breiman [50]. A splitting technique with 50 random nodes is used to build the model.
RF can be used for classification, clustering and regression data applications [51]. The RF
model can analyze the classification features of complex interactions and has good robust-
ness to data with noise and missing values. Meanwhile, it has a fast learning speed. The
variable importance measure can be used as a feature selection tool for high-dimensional
data [52]. Random forests are generally more effective at solving classification problems
than regression problems. This is because random forests produce discrete outputs for
classification tasks, rather than continuous outputs for regression tasks. In regression,
the Random Forest model is limited in its ability to predict values beyond the range of
the training set data. Therefore, when performing regression with a Random Forest, it is
important to be aware that predictions may be limited within the range of the training data.

2.4.5. A 10-Fold Cross-Validation Method

Cross-validation is a common approach to model building and model parameter
verification in machine learning, which is used to estimate the skill of a machine learning
model [53]. In k-fold cross-validation [54,55], it is first randomly divided into k mutually
exclusive subsets of similar size, i.e., k − 1 is randomly selected as the training set each
time, and the remaining 1 is used as the test set. When this round is completed, k copies
are again randomly selected to train the data. After several rounds (less than k), the loss
function is selected to evaluate the optimal model and parameters. In this study, k is set
to 10. The four machine learning models are trained using 70% of the training samples,
following standard training procedures, while the remaining 30% of the samples are used
for validation. In addition, 10-fold cross-validation [32] is used for all four models.

3. Results and Case Illustration

The study first performs a 10-fold cross-verification analysis of training samples to
verify the feasibility of the models. Second, the most appropriate methods of temperature
and RH are found by analyzing the total scatter density, errors and RMSEs of different
height layers of four machine learning methods with sonde data verification. Third, two
cases are used to illustrate the results.

3.1. A 10-Fold Cross-Validation with Training Samples

In order to evaluate the performances of the four methods on the training dataset
for temperature and RH, we use the 10-fold cross-validation method for verification, and
the results are shown in Table 1. For temperature, the root-mean-square errors (RMSEs)
of the DL, GBM, XGBoost and RF models are 2.32, 2.33, 2.49 and 3.07, respectively. The
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temperatures of the 10-fold cross-validation correlation coefficient (CV-R2) of four methods
is above 0.97. For RH, the RMSEs of the RF, XGBoost, GBM and DL models are 13.70, 13.72,
14.96 and 17.96, respectively. RH by the RF model shows the highest accuracy, with the
sample-based 10-fold cross-validation CV-R2 being 0.72. The results show the performance
evaluation of the four machine methods, where the temperature performs better than RH.
Compared with other methods, DL is suitable for MWR temperature and RF is better for
RH retrieval. In general, the performance of the training result for RH is not so good.

Table 1. The 10-fold cross-validation results for four methods in terms of temperature and relative
humidity (RH).

Method RMSE CV-R2 MAE

DL 2.32 0.98 1.73
Temperature (◦C) GBM 2.33 0.98 1.80

XGBoost 2.49 0.98 1.81
RF 3.07 0.97 2.17

DL 17.96 0.53 14.04
RH (%) GBM 14.96 0.67 11.09

XGBoost 13.72 0.72 9.49
RF 13.70 0.72 9.92

RMSE: root-mean-square error; CV-R2: cross-validation correlation coefficient; and MAE: mean average error.

3.2. Validation of Four Models with the Radiosonde Data
3.2.1. Scatter Density Variation

Radiosonde data are also used for comparison with the four model retrievals. The
temperatures of the four models as a function of the radiosonde measurements from all
22 atmospheric vertical layers from 250 hPa to 1000 hPa are shown in Figure 2. The
regression equations and coefficients of determination (R2) are given, as well as the number
of data points (N = 1321) and the RMSEs. Figure 2a shows that the linear regression
relationship between the DL temperature and radiosonde temperature has a slope of 1.0, a
y-intercept of 0.17 and minimal fluctuation around the regression line, with an R2 of 0.98
and the lowest RMSE of 2.36 among the four models. As shown in Figure 2b, the linear
regression relationship between the GBM temperature and the radiosonde temperature
exhibits a slope of 0.99. The R2 is 0.98, and the RMSE is 2.53. Figure 2c shows that the
XGBoost model has a slope of 1.0, an R2 of 0.97 and an RMSE of 3.07. The RF model has a
slope of 0.95, an R2 of 0.97 and an RMSE of 3.04, as shown in Figure 2d. The results show
that the DL model has a high retrieval capability for temperature with an RMSE of 2.36 ◦C
and an R2 of 0.98.

Similarly, the RH of the four models as a function of the radiosonde measurements
from all 22 atmospheric vertical layers is shown in Figure 3. The RMSEs of the DL,
GBM, XGBoost and RF models are 20.08, 19.45, 19.72 and 19.07, respectively. The lack of
independent cloud-related information may contribute to the deviations. The conditions
with an RH less than 85% are considered clear-sky conditions in the study. However, in real
atmospheric conditions, clouds may form due to the presence of cloud condensation nuclei
when RH reaches around 85% [40]. In general, the RMSEs of RH are relatively greater
compared with that of temperature.
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3.2.2. Bias and RMSEs Variation with Altitude

The temperature profile retrieval biases of the four models are shown in Figure 4. The
red dotted lines represent the mean value of the biases, and the blue lines inside the box
represent the median values. The blue shading indicates ±1 ◦C temperature biases. The left
and right borders of the box contain the values from the first quartile to the third quartile.
The blue dotted lines extend from each quartile to the minimum or maximum bias. In
Figure 4a, the DL temperature bias is within ±1 ◦C for most of the pressure levels from
700 hPa to 1000 hPa, indicating high accuracy in retrieving temperature profiles in lower
levels. From 250 hPa to 650 hPa, the box length for the DL model is shorter than that of the
GBM, XGBoost and RF models, indicating that the temperature biases of the DL model are
more concentrated around the mean and median values. Furthermore, most of the mean
and median values of the temperature biases by the DL model are very close, indicating
that the temperature biases of the DL model are more uniform and concentrated. The
temperature bias from 250 hPa to 1000 hPa shows that the mean temperature bias measured
by the DL model is negative near the surface and then becomes positive at 850 hPa with
the increasing altitude. However, it turns negative again at 350 hPa with the increasing
altitude. That is, the temperature bias from the DL model shows a distribution of “low at
both ends and high in the middle”. In contrast, the temperature biases by the RF model
show a large fluctuation from left to right and are not stable enough at all levels (Figure 4d),
which is similar to the trend of Yan et al. [21].
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The RH profile retrieval biases of the four models are shown in Figure 5. The red dotted
lines and the blue lines are the same as in Figure 4, but the blue shadows show the biases
ranging from −10% to +10%. In the four methods, the mean bias is usually close to the
median in the lower-altitude layer, but deviates significantly from the median from 600 hPa
to 800 hPa. The reason for the large deviation is the loss of the cloud information [18].
Figure 5d shows that the bias of the RF machine learning method remains within ±10%
from the surface to 800 hPa, and its box length is almost the smallest among the four models
from 800 hPa to 1000 hPa. As for GBM and XGBoost (Figure 5b,c), their bias also remains
in the range of ±10% near the surface, but the interquartile range is much larger than the
interquartile range of RF and the maximum bias exceeds 40%. Thus, the RF RH shows
better retrieval near the surface than the other three methods.
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At the same time, we also compare and analyze the RMSEs of the four methods in
different altitude layers in order to find the differences in the performance of the four
methods on temperature and RH in different altitude layers. The RMSEs of the temperature
and RH profiles of DL, GMB, XGBoost and RF at 22 height layers are shown in Figure 6.
For temperature, the DL model shows a smaller RMSE than XGBoost, GBM and RF in
the layers from 250 hPa to 1000 hPa. In particular, the DL RMSE is less than 1.5 ◦C in the
layers from 775 hPa to 1000 hPa. For the RH, the RMSE of RH is larger than the RMSE
of the temperature, and the RMSEs of the four machine learning methods from 600 hPa
to 750 hPa are 20% to 30%; moreover, the RMSEs for all four methods generally increase
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with the altitude within this range, and the maximum deviation appears above the level
of 700 hPa. This variation characteristic is similar to [20,21]. However, as we can see in
the low-level RMSEs performance, the RMSEs of RF are between 10% and 15%. Therefore,
from the overall characteristics of the RMSE of the two variables, the temperature RMSE
is mainly concentrated in the upper layer, and the high RMSE of RH mainly occurs in the
middle layer, which is in accordance with the situation found by Cimini et al. [8]. The
results show that the DL temperature from 250 hPa to 1000 hPa performs better than the
temperature of the other three methods, and the RF RH performs better in the low layers.
In general, the performance of the training result for four machine learning methods is not
so good.
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Figure 6. RMSEs for retrieval of temperature (a), and RH (b) profiles relative to the radiosonde data
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The performance of the four models for RH retrieval at different levels is shown in
Table 2. From 900 hPa to 1000 hPa, DL and RF demonstrate better accuracies in terms of
R2 (0.62 and 0.60), and the RF model performs better in terms of the RMSE (11.14) and the
mean average error (8.83) compared with the DL model (12.93 and 8.84), indicating that
the RF RH performs best from 900 hPa to 1000 hPa. From 775 hPa to 875 hPa, the XGBoost
model shows better accuracies in terms of an RMSE of 14.97. From 600 hPa to 750 hPa, the
RMSEs of the four methods are large. Above 550 hPa, RF performs well for RH retrieval,
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with an RMSE of 19.50. According to Table 2, the RF model achieves better retrieval ability
from 900 hPa to 1000 hPa and above 550 hPa. From 775 hPa to 875 hPa, the XGBoost model
achieves better retrieval ability. The DL model performs well for RH retrieval from 600 hPa
to 750 hPa.

Table 2. Comparisons among different methods in terms of their performance at different levels.

Height Method RMSE R2 MAE

250–550 hPa

DL 19.69 0.34 15.09
GBM 20.09 0.34 15.91

XGBoost 20.71 0.29 16.20
RF 19.50 0.36 15.44

700–750 hPa

DL 24.79 0.27 20.65
GBM 26.07 0.18 21.48

XGBoost 26.80 0.21 21.62
RF 26.22 0.18 21.48

775–875 hPa

DL 20.99 0.18 17.73
GBM 16.27 0.44 12.50

XGBoost 14.97 0.53 11.38
RF 15.55 0.47 11.99

900–1000 hPa

DL 12.93 0.62 8.84
GBM 11.67 0.59 9.00

XGBoost 12.19 0.56 9.43
RF 11.14 0.60 8.83

Since the RHs of the four machine learning methods show different excellence at
different height levels, a new integrated machine learning (ML) RH method is proposed
here. The machine learning RH is to select the RH profiles by integrating the four methods
of DL, GBM, XGBoost and RF, where the result of the method with the minimum RMSE for
a certain level is adopted. The RMSE is 15.00 and R2 is 0.64 by comparison of radiosonde
RH and ML RH from all 22 atmospheric vertical levels.

3.3. Case Illustration

Based on the analysis in Section 3.2, DL (RMSE = 2.36, R2 = 0.98) is the most suitable
for temperature retrieval and ML (RMSE = 15.00, R2 = 0.64) is the most suitable for RH
retrieval. A case on 29 January 2021 is used for illustration. Another case with precipitation
on 10 February 2021 is used to explain the changes in RH before the entire precipitation.

3.3.1. Case Analysis for DL Temperature and Machine Learning RH

Figure 7a shows the temperature profiles from the DL and radiosonde data. At
7:15 a.m. on 29 January 2021 (Beijing time, same below), the DL retrieval shows only a
small difference with the radiosonde data from 775 hPa to 1000 hPa. In particular, the DL
model agrees well with the radiosonde data at levels from 850 hPa to 900 hPa. However,
the difference increases from 250 hPa to 700 hPa. Figure 7b shows the RH profiles by ML.
Overall, the difference between the retrieved RH profile and the radiosonde data is greater
than that of the temperature profile. The RH obtained from ML and radiosonde data show
some agreement with the changing altitude. The integrated ML method performs better
for RH from the layers 700 hPa to 875 hPa, with an RH bias lower than 10% compared with
other altitudes.
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Figure 7. Comparison of (a) temperature profiles generated using the DL model and radiosonde data,
and (b) RH profiles generated by integrating machine learning and the radiosonde data at 07:15 on
29 January 2021.

3.3.2. ML RH for Application before Precipitation

Another case on 10 February 2021 is used to explain the changes in ML RH before the
entire precipitation process. The vertical profiles of RH predicted from 600 hPa to 1000 hPa
levels and the observed data being the liquid water path (LWP) and the hourly surface
precipitation histogram before and during a precipitation event are all shown in Figure 8.
The precipitation started at 16:00 on 9 February 2021 and ended at 00:00 on 11 February 2021
(Figure 8a). The surface hourly precipitation reached the maximum value (6.9 mm) at 04:00
on 10 February 2021. Two phases of RH changes that occurred before 16:00 on 9 February
2021 are shown in Figure 8. In the first stage, Figure 8a shows the initial peak in the liquid
water path (LWP) with a maximum value of 1319.60 g/m2, while Figure 8b shows a gradual
increase in RH at the lower levels. In the second stage, three consecutive peaks in the LWP
(352.60 g/m2, 1157.20 g/m2 and 885.90 g/m2) were observed, accompanied by an overall
increase in RH at all levels. Notably, RH exceeded 85% from 750 hPa to 900 hPa prior to
the onset of precipitation. The LWP has four peaks, indicating the continuous moisture
transport and humidification process prior to precipitation. It also consists of the RH
increase in Figure 8b. The RH increase obtained by the integrated ML method shows good
agreement with the pre-precipitation LWP variation curve, indicating that the machine
learning-based RH profiles successfully captured the significant increase in humidity before
precipitation, which may provide some indication for precipitation forecasting.
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4. Discussion and Conclusions

The microwave radiometer (MWR) is widely used in meteorological observations, and
the accuracy of temperature and relative humidity (RH) measurements can be affected
by retrieval methods, weather conditions and environmental factors. In this study, we
compared the Deep Learning (DL), Gradient Boosting Machine (GBM), Extreme Gradient
Boosting (XGBoost) and Random Forest (RF) methods in retrieving temperature and RH
profiles from 1000 hPa to 250 hPa using the MWR data and radiosonde data from 2018 to
2021, with the aim of improving the profile retrieval accuracy of the MWR.

Validation with radiosonde measurements shows that the DL model has better re-
trieval capability for temperature with a root-mean-square error (RMSE) of 2.07 ◦C and a
correlation coefficient (R2) of 0.98. Most of the temperature biases in the DL and XGBoost
model are within ±1 ◦C from 700 hPa to 1000 hPa, and the RMSEs of the temperature
profile using the DL model are less than 2.5 ◦C from 750 hPa to 1000 hPa. The RF model
performs the best in retrieving the RH with the least bias near the surface, an RMSE around
12.5% and an interquartile range nearly the smallest among the four models.

A new integrated machine learning (ML) RH method is used to select the RH profiles
by integrating the four models of DL, GBM, XGBoost and RF, where the result of the model
with the minimum RMSE for a certain level is adopted. The RMSE is 15.00 and R2 is 0.64 by
comparison of radiosonde RH and ML RH from all 22 atmospheric vertical levels. We use
the DL temperature and the ML RH to analyze two cases. A case on 29 January 2021 shows
that DL is suitable for temperature retrieval and ML is suitable for RH retrieval. We apply
the ML data to a precipitation case on 10 February 2021, and the results show that the change
in ML RH shows a close correlation with the liquid water path before 16:00 on 9 February
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2021. The ML RH reaches over 85% before 16:00 on February 9, indicating that the machine
learning-based RH profiles successfully captured the significant increase in humidity prior
to precipitation, which may provide some guidance for precipitation forecasting.

In conclusion, our study provides new insights into the performance of DL, GBM,
XGBoost and RF in temperature and RH retrieval using MWR data. DL (RMSE = 2.36,
R2 = 0.98) shows superiority in temperature retrieval because the deep neural network
architecture allows it to capture complex temperature patterns effectively [33,34]. Similar
to traditional machine learning algorithms, DL can model complex nonlinear systems [35].
For the R2 of the temperature, DL and GBM are both 0.98, which is 0.01 higher than that of
the RF and XGBoost models. When comparing DL with GBM, the RMSE of temperature
decreases from 2.53 to 2.36. The performance of the four models for RH retrieval at different
levels is shown in Table 2. The RF model achieves better retrieval ability from 900 hPa to
1000 hPa and above 550 hPa. From 775 hPa to 875 hPa, the XGBoost model achieves better
performance. The DL model performs well for RH retrieval from 600 hPa to 750 hPa. An
integrated ML (RMSE = 15.00, R2 = 0.64) approach improves RH retrieval because the ML
method integrates the advantages of multiple methods.

It is important to note that our training datasets were obtained under clear-sky condi-
tions without considering the data from cloudy conditions, which has certain limitations.
Due to cloudy conditions, 52% of the three years of data cannot be used. A total of
2461 quality-assured MWR data samples matched to the radiosonde sounding data from
January 2018 to July 2020 are used for training, and 1321 quality-assured test samples
during 2021 are used for validation. Although 52% of the data cannot be used, the amount
of available data based on observations is enough to represent the Guangzhou area. When
applying these machine learning models in another region, it is critical to consider the
region-specific characteristics and climatic conditions. The performance of the models
may vary due to the differences in atmospheric dynamics, topographies and local weather
patterns. Therefore, further investigation and validation specific to the target region would
be necessary to assess the suitability and performance of the models. Our stations are
only representative of the Guangzhou region. However, the models can be applied in
other regions upon the observation available. Yan et al. [21] used microwave radiometer
bright temperature data combined with DL, RF and XGBoost to invert the temperature
and humidity profile under clear-sky conditions in Beijing. Bao et al. [24] used MWR BT
data with a neural network to invert the temperature and humidity profile under clear-sky
conditions in Nanjing. The lack of cloud information led to larger errors in RH in the
middle layer from 700 hPa to 750 hPa. As shown in Li et al. [17] and Bao et al. [24], the
correlation between the RH derived from the MWR and radiosonde data is much smaller
than the correlation of temperature. This also proves our conclusion that the temperature
inversion results are better than the RH inversion results. In addition, the distribution
of the RMSE for all four models from 1000 hPa to 250 hPa is similar to the results of
Che et al. [20], which showed that the RH RMSE tends to increase with height and the
maximum deviation occurs in the middle atmosphere. Therefore, in this study, the ML
method after the fusion of four models is proposed to reduce the influence of nonlinear
relations on RH inversion. When the predicted hourly RH reaches the threshold of 85%,
the warning information is provided to the forecasters. Consideration of region-specific
characteristics is essential, and future research should explore cloud-related analysis. The
suitability of DL for temperature retrieval and the effectiveness of ML for RH retrieval can
be attributed to their respective model architectures and approaches. Future research will
explore more in-depth cloud-associated analyses to address these limitations.
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