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Abstract: Investigating the propagation and influencing mechanism that transitions a meteorologi-
cal drought to a hydrological drought in a changing environment is crucial for understanding the
formation process and mechanism of hydrological drought. Furthermore, it is essential to establish
an effective hydrological drought warning system based on meteorological drought. To assess the
dynamic changes in the spread of meteorological drought to hydrological drought during various
seasons, this study employs the Standardized Precipitation Index (SPI), Standardized Runoff In-
dex (SRI), and Normalized Vegetation Index (NDVI) to represent meteorological, hydrological, and
vegetation droughts, respectively, in the Ganjiang River Basin (GRB) from 2002 to 2020. Consid-
ering that meteorological drought can be caused not only by insufficient precipitation but also by
excessive evaporation, an additional index, namely the Evaporative Demand Drought Index (EDDI),
is constructed to quantify meteorological drought resulting from evaporation factors. The article
analyzes the characteristics of the spatiotemporal evolution of meteorological, hydrological, and
vegetation drought. The Spearman rank correlation coefficient is employed to calculate the propa-
gation time of different seasons from meteorological drought to hydrological/vegetation drought
and from hydrological drought to vegetation drought. Furthermore, we examine the propagation
relationship among meteorological, hydrological, and vegetation drought in the time-frequency
domain through cross-wavelet analysis and explore the key factors and physical mechanisms that in-
fluence the propagation of drought in various seasons. The result shows: The propagation time from
meteorological to hydrological drought (SPI-SRI) is shortest in spring, extended during summer and
autumn, and longest in winter. The meteorological drought arising from excessive evapotranspiration
in autumn has the most substantial impact on hydrological drought. Vegetation drought and meteo-
rological/hydrological drought exhibit significant intermittent resonance periods in 0~6 months and
significant stable resonance periods in 7~15 months.

Keywords: meteorological drought; hydrological drought; agricultural drought; dynamic evolution;
drought propagation

1. Introduction

Drought is a common and costly natural disaster [1–3] that frequently arises from wa-
ter shortage and profoundly impacts agriculture, ecosystems, water supply, and the social
economy through transmission within the hydrological cycle. In general, there are four
typical types of drought [2,4]: hydrological drought, meteorological drought, agricultural
drought, and socio-economic drought. These four types of drought are interconnected in
terms of water and energy, and the dissemination of water loss signals between different

Remote Sens. 2023, 15, 3848. https://doi.org/10.3390/rs15153848 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/article/10.3390/rs15153848?type=check_update&version=1
https://doi.org/10.3390/rs15153848
https://doi.org/10.3390/rs15153848
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0003-1737-8344
https://doi.org/10.3390/rs15153848
https://www.mdpi.com/journal/remotesensing


Remote Sens. 2023, 15, 3848 2 of 28

drought types is known as drought propagation [5–7]. During a drought, the interplay
of various portions of the water cycle and the land-atmosphere feedback processes exac-
erbate the progression of drought [8]. To enhance drought prevention and mitigate its
detrimental impacts, it is imperative to conduct comprehensive and extensive research on
drought transmission.

The selection of an appropriate drought index is crucial for accurately describing
and assessing drought conditions. Numerous drought indicators have been developed
and extensively employed to accurately assess the impact of drought [9]. Meteorological
drought, primarily influenced by precipitation and evapotranspiration, is typically evalu-
ated by indices such as the Standardized Precipitation Index (SPI; Mc Kee et al., 1993 [10]),
the Standardized Precipitation Evapotranspiration Index (SPEI; Vicente-Serrano et al.,
2010 [11]) and the Evaporative Demand Drought Index (EDDI; Hobbins et al., 2016 [12]).
SPI is extensively employed as a precipitation-based drought indicator to evaluate drought
characteristics such as the severity of drought. While easy for computation and capable of
capturing drought variations across various temporal scales [13,14], SPI does not consider
the influential role of temperature, a crucial climatic factor. With the gradual warming
of the global climate, surface temperatures rise abnormally, accelerating water evapora-
tion [15,16]. Consequently, evaporation demand becomes a factor that cannot be ignored
for drought assessment. Therefore, Vicente Serrano et al. expanded the consideration
of Potential Evapotranspiration (PET) by incorporating it alongside precipitation in their
proposition of SPEI. The responsiveness of SPEI to fluctuations in evaporation demand, as
well as its multiscale properties, has made it a widely utilized tool in contemporary drought
research [17,18]. Nevertheless, research has demonstrated that the impact of evaporation
demand on SPEI is considerably smaller compared to precipitation among the climate
variables influencing SPEI [19]. Following that, Hobbins et al. introduced EDDI, which
exclusively relies on evaporation demand. EDDI is a drought index with a physical basis,
encompassing multiple scales and displaying efficient capability in identifying both abrupt
and prolonged droughts [12,20]. In comparison to SPEI and SPI, EDDI demonstrates a
higher capacity to capture drought events of greater intensity and longer duration [19].
It also serves as a valuable tool for early warning for agricultural drought, hydrological
drought, and fire weather risks. Yao et al. have recently examined the applicability of EDDI
in China and reported positive findings [21]. However, there remains a scarcity of studies
that utilize EDDI for drought assessment and analysis in China. Hydrological drought
often occurs after meteorological drought [22], resulting in a significant reduction in surface
water and groundwater reserves due to insufficient supply of water resources. It can
be characterized and quantified by standardized indices based on different hydrological
variables, including runoff, groundwater level, lake level, etc. Runoff holds particular
significance in the hydrological cycle and is of primary concern to water managers. Its
ease of observation and simulation makes it the most frequently studied hydrological
variable [23,24]. Shukla and Wood developed a multiscale Standardized Runoff Index
(SRI) based on simulated runoff, which is designed to identify runoff deficits [25]. This
index directly describes the impact of climate anomalies on current hydrological condi-
tions controlled by surface physical processes. Persistent meteorological and hydrological
drought will result in inadequate water supply for the necessary soil moisture required
for crop growth. This is further compounded by continuous crop transpiration leading to
water loss, ultimately resulting in agricultural drought [26,27]. The drought index based
on in-situ measurements is currently the most commonly utilized effective method to
assess the severity of agricultural drought. The Palmer Drought Severity Index (PDSI),
proposed by Palmer [28], is the most typical one. It is capable of effectively simulating
the entire process of drought occurrence, development and conclusion. However, this
indicator demands substantial data and involves a cumbersome calculation process [29]. It
is precisely because of the dependence on on-site data that the spatial coverage of drought
indices becomes limited in regions with sparse sampling points. With the maturity and
widespread application of remote sensing technology in drought monitoring, this has been
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effectively improved [30]. The Normalized Difference Vegetation Index (NDVI) [31] is a
frequently utilized remote sensing index primarily employed in the monitoring of agri-
cultural/vegetation drought [32,33]. NDVI offers the advantage of monitoring long-term
changes in vegetation vitality. Studies have demonstrated its effectiveness in indicating the
severity of vegetation stress caused by water shortage [34].

Scholars have conducted pioneering research on drought propagation based on the
theoretical basis of water balance and energy balance in the water cycle, mostly focusing on
the spread of meteorological drought to hydrological [35–37]/agricultural drought [3,38,39].
These studies summarized two methods for quantitative study of drought propagation:
hydrological modeling and statistical analysis. At regional and global scales, large-scale
hydrological and meteorological models have been constructed to capture drought charac-
teristics, reproduce drought propagation characteristics, and successfully simulate general
propagation processes between different types of droughts [40–43]. Hydrological modeling
approaches are also employed for assessing and quantifying the influence of physical
and climatic factors on drought spread. Drought propagation is closely related to climatic
factors, including but not limited to climate type, seasonality, and precipitation time [44–46].
The physical factors present in the geographic area, including cover type, topography and
hydrological conditions, will also affect the drought propagation mechanism [47]. How-
ever, the accuracy of simulation results based on a hydrological model may be affected by
the uncertainty of model parameters and imperfect model structure. On the other hand,
data-based statistical analysis methods, such as correlation analysis, response function
analysis, and machine learning, are extensively employed to investigate the connection
and synchronicity between various types of droughts [1]. Correlation analysis focuses
on the description of drought propagation by analyzing the response relationship among
different types of droughts. The correlation coefficient method is predominantly used in
correlation analysis as an effective means to unveil the propagation of dry and wet signals.
Studies have shown that the propagation time between different droughts in different
climatic regions of China has obvious seasonal patterns [48]. It has been revealed that in the
majority of regions within the Yangtze River Basin, the tightest relationship was observed
between meteorological and hydrological drought, followed by the relationship between
meteorological and agricultural drought [49,50].

Wavelet-based correlation analysis has become increasingly popular for studying
drought propagation, surpassing the limitations of the correlation coefficient method
regarding the periodicity of propagation time. Researchers have employed various tech-
niques, including cross-wavelet analysis, wavelet coherence, and wavelet cross-correlation,
to investigate drought propagation mechanisms in different basins throughout China.
The findings have consistently indicated that the transmission time from meteorological
drought to hydrological drought is evidently seasonal, as well as hydrological droughts
are significantly positively correlated with meteorological drought on different periodic
scales [36,51]. Li et al. supplemented agricultural drought and used cross-wavelet analysis
to quantify the time-lag relationship of different droughts in the Yangtze River Basin, but
their seasonal studies were not involved [52]. The response function method plays a crucial
role in statistically examining drought propagation. It emphasizes providing statistical
relationships between drSoughts by considering the attributes of different drought types,
encompassing functions such as linear functions [53], nonlinear regression functions [54]
and probability functions [55]. Researchers have employed probability function-based
models, such as copula methods, to explore the dependencies between different types of
drought features and the thresholds that trigger drought propagation [37,55]. Although
the seasonality of drought propagation has been confirmed in many studies, variations in
precipitation and evapotranspiration across different seasons will have a certain impact on
the seasonal propagation time of drought, necessitating further study and quantification.

The propagation time of drought is a significant characteristic of its spread. Currently,
extensive research has been conducted on various driving factors affecting drought propa-
gation time. Huang et al. discovered that the El Niño Southern and Arctic Oscillations are
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strongly correlated with actual evaporation and have a greater impact on the propagation
time from meteorological droughts to hydrological droughts [51]. Van et al. suggested
that the connection between meteorological and hydrological droughts may be highly
influenced by watershed and local climatic characteristics [42]. Li et al. determined that
high-potential evapotranspiration expedites the spread of meteorological drought to agri-
cultural drought, while adequate soil moisture provides relief [56]. Xu et al. stated that
anthropogenic activities, including agricultural activities, domestic water supply, and urban
expansion, can affect the spread time from meteorological to hydrological droughts [57].
Wu et al. believed that modifications in land utilization and coverage, particularly vari-
ations in forest or pasture areas, would have an impact on drought spread [58]. These
studies highlight the significant influence exerted by meteorological factors, underlying
surface conditions, and human activities on drought propagation time. However, these
studies mainly examine drought propagation time on an annual scale. The propagation
time between droughts varies across different seasons, with corresponding variations in
influencing factors. Current research on drought propagation lacks investigation into
seasonal variations and fails to reveal the dynamic characteristics of drought spread in
different seasons under changing environmental conditions.

This field primarily focuses on the spread of meteorological drought to hydrological or
agricultural drought, with limited research on the complete chain of drought propagation.
Furthermore, there are several areas that require improvement. For instance, there has
been insufficient investigation of drought propagation between seasons, as most stud-
ies concentrate solely on the annual scale. Although the temporal relationship between
droughts has been extensively explored, minimal consideration has been given to potential
spatial connections. Moreover, given the rapid increase in global surface temperature, it
is crucial to recognize that precipitation alone does not fully encompass the essence of
drought. When studying the propagation of drought, it is imperative to acknowledge
the critical role of evapotranspiration, which links the water, energy, and carbon cycles in
terrestrial ecosystems.

This study focuses on investigating the spread of meteorological, hydrological and
agricultural droughts across various seasons. It explores the dynamic characteristics
of these droughts and conducts quantitative analysis to identify the factors influencing
drought propagation. This research will contribute to our understanding of the formation
process and mechanism of drought, ultimately enhancing the accuracy of hydrological and
agricultural drought forecasting. In a changing environment, studying the dynamics of
drought propagation and analyzing changes in the regional water cycle pose significant
challenges. If the water cycle accelerates, it indicates a higher frequency of meteorological
drought disasters, resulting in shorter response times for drought emergencies and a greater
need for establishing an accurate early warning system for droughts.

2. Materials and Methods
2.1. Study Area

The Ganjiang River (Figure 1) serves as a significant tributary of the Yangtze River,
spanning a total length of 766 km and encompassing a drainage area of 83,500 square
kilometers. The GRB possesses abundant water resources, with surface water amounting
to 70.289 billion cubic meters and groundwater reserves of 18.84 billion cubic meters.
Over the years (1956–2000), the average total water resources remain at approximately
68.7 billion cubic meters. The area of agricultural land in the GRB accounts for 90.4%,
while construction land accounts for 4.5%, and unused land accounts for 5%. Among the
agricultural land, forestry land covers 5.514 million square hectares, representing 71.5%
of the agricultural land area and 64.7% of the regional land area. The GRB spans across
four latitudes, and the natural fall of the main stream is 937 m, resulting in significant
climate variations between the northern and southern regions. These differences are mainly
manifested in:
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1. Temperature

The annual average temperature difference between the northern and southern regions
is approximately 3 ◦C, with the average temperature in the basin being 17.8 ◦C. The northern
region generally experiences higher temperatures.

2. Precipitation

It is noteworthy that the middle reaches of the GRB constitute the low-precipitation
region within the basin. The average annual precipitation is merely 1413.2 mm, which is
247.7 mm below the basin average. The lowest precipitation during the rainy season (April
to June) occurs in the middle part of the basin, reaching 619.9 mm, which is 403.7 mm lower
than the maximum recorded precipitation.

3. Solar Radiation and Sunshine Hours

In the upstream area, solar radiation and sunshine hours are generally high, making it
one of the areas with high values in the entire basin. Additionally, the eastern area of the
middle and lower reaches experiences higher levels of solar radiation and sunshine hours
compared to the western region.

4. Ecological Environment

The environmental conditions within the GRB are generally conducive to ecological
well-being, with higher forest coverage compared to the average level in the Poyang Lake
Basin. However, certain issues exist regarding forest quality and structural imbalances. The
stand structure is unreasonable, with a high proportion of coniferous forest and a small
proportion of broad-leaved forest. The distribution of forest ages is characterized by an
unbalanced structure, predominantly consisting of young and middle-aged forests with
a lower percentage of mature and over-mature forests. Additionally, there are concerns
regarding low forest canopy density, low-standing timber volume, and inadequate forest
protection function. The issue of soil and water loss remains significant in the GRB, with
the upper reaches accounting for 22% of the affected area, the middle reaches 16.7%, and
the lower reaches 21.6%. Although soil and water conservation measures in the middle
reaches are effective, it is prone to drought, making it a high-frequency drought region.

2.2. Data Description
2.2.1. Digital Elevation Model (DEM) Data

The required DEM data for this research was acquired from the geospatial data
cloud (http://www.gscloud.cn/, accessed on 2 March 2022), with a spatial resolution of
30 m × 30 m. Initially, the original data are obtained through online calculation. Subse-
quently, the DEM data for the study area was extracted using the cutting–embedding–
reprojection steps techniques based on the boundaries of the GRB. DEM serves as one
of the fundamental data requirements for constructing the Soil and Water Assessment
Tool (SWAT) model. SWAT is a semi-distributed hydrological model based on process
and physical principles, which is well-suited for long-term simulation of hydrological
and related processes. Utilizing the DEM data, the SWAT model is capable of employing
moisture analysis tools to set reasonable thresholds to perform river network extraction,
sub-basin division and slope analysis of the watershed. In this study, the precipitation,
evapotranspiration, and runoff data used for calculating the drought index, as well as the
NDVI data, are obtained for each sub-basin delineated by the SWAT model.

2.2.2. Land Use Data

Historical land use data (2005 and 2015) utilized in the study is sourced from the
Resource and Environmental Science Data Center of the Chinese Academy of Sciences
(http://www.resdc.cn, accessed on 2 March 2022), generated through manual visual inter-
pretation of Landsat8 remote sensing images. The resolution is 1 km × 1 km. According
to the land use classification method, land use types can be classified into six first-level
classifications of cultivated land, forest land, grassland, water area, residential land, and

http://www.gscloud.cn/
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unused land, as well as 25 second-level classifications. The first-level types are mainly di-
vided based on land resources and their utilization attributes, while the second-level types
are mainly divided based on the natural attributes of land resources. In order to conform to
the land use type classification standard of the SWAT model, the collected land use type
data (in secondary form) needs to undergo reclassification using the ArcGIS reclassification
function. This reclassification assigns the land use types to their corresponding first-level
categories and generates the appropriate SWAT land use type codes. This process ensures
that the land use types can be properly recognized by the SWAT model. The land use type
map after reclassification is shown in Figure 2.
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2.2.3. Soil Data

The soil data used in this study comes from the World Soil Database (HWSD) with
a spatial resolution of 30 m × 30 m. Soil, as a crucial component of the watershed’s
underlying surface, significantly influences the runoff and infiltration processes in the
hydrological cycle. Therefore, the accuracy of the simulated outcomes of the model are
heavily reliant on the precision of each soil type parameter. The soil data in the GRB
provided by the HWSD include soil spatial data and a soil attribute database.

2.2.4. Precipitation Data

The precipitation data for this research was derived from the China meteorological
forcing dataset (CMFD). The CMFD is a reanalysis dataset of near-surface meteorological
and environmental conditions offered by the Institute of Tibetan Plateau Research at the
Chinese Academy of Science [59]. The dataset is formatted in NETCDF, with a temporal
resolution of 3 h and 1 month, a horizontal spatial resolution of 0.1◦, and a time span
covering the years between 1979 to 2018. In this paper, the 3 h CMFD is mainly used for
runoff simulation, and the monthly CMFD can be used to calculate the meteorological
drought index. Since the applicability and reliability of CMFD have been verified in many
experiments [60], this dataset has found extensive applications in hydrometeorological
forecasting and hydrological investigations [61]. The precision level of this dataset ranges
between the observational data of the Meteorological Bureau and the satellite remote
sensing data, surpassing the accuracy of the reanalyzed data already available in the world.

2.2.5. Evapotranspiration Data

Evapotranspiration (ET) refers to the process of water entering the atmosphere from
the surface [62]. It includes both surface soil evaporation and plant transpiration and plays
a crucial role in the energy and water exchange of the soil-vegetation-atmosphere system. In
this study, Penman–Monteith–Leuning Version 2 (PML_V2) model was utilized to simulate
ET data. The simplicity of its estimation structure does not compromise on reasonable
biophysical significance. Furthermore, PML_V2 only necessitates daily meteorological and
remote sensing forcing data, making it suitable for regional and global applications [63].
The accuracy and performance of this product surpass that of ground observation data
and most existing ET products on a global scale [64,65]. While focusing on the regional
scale, PML _ V2 still has room for improvement. For example, PML _ V2 uses MODIS and
GLDAS data as input data to simulate ET. However, as a result of insufficient ground-based
observation data in China, the accuracy and applicability of GLDAS data in China need to
be improved [66]. This study replaces GLDAS data with CMFD to enhance the accuracy
of regional simulation outcomes in China. The produced ET data has a time resolution
of 8 days and a horizontal spatial resolution of 500 m, covering the years between 2002
and 2020.

2.2.6. Runoff Data

The rainfall and evaporation data obtained by remote sensing are evenly distributed
in space. This type of data provides detailed descriptions of the spatial and temporal
characteristics of regional drought. Runoff data is crucial for measuring hydrological
drought. However, runoff data is typically only available at flow stations located in river
channels, while other areas lack such data. Remote sensing is limited in capturing more
precise runoff data. In order to study the spatial characteristics of hydrological drought
and correlate it with evaporation and precipitation data, this study employs the SWAT
model for simulating spatially distributed runoff data. The model has demonstrated
good performance in simulating runoff in the Yangtze River Basin [67]. The data driving
the hydrological model includes daily rainfall and monthly runoff data from the GRB
Exit Control Station Waizhou Station (28.63◦N, 115.84◦E). The monthly runoff covers the
period from 2002 to 2020. The coefficient of determination (R2) was used to evaluate the
applicability of the model.
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2.2.7. NDVI Data

The NDVI data utilized in this research is obtained from the MOD13Q1 remote sens-
ing satellite dataset, which originates from the National Aeronautics and Space Admin-
istration (NASA) EOS/MODIS data product (https://modis.gsfc.nasa.gov/, accessed on
23 April 2022), with a spatial resolution of 250 m × 250 m and a temporal resolution of
16 d. This product effectively reflects the vitality and growth status of vegetation and
is commonly employed for long-term monitoring of vegetation coverage. In this paper,
MODIS Reprojection Tool (MRT) is used to transform and reproject the remote sensing
data, and the NDVI data of the GRB area is obtained by batch clipping with ArcPython
programming. The NDVI data may exhibit fluctuations due to the complex terrain and
weather factors in the GRB. To obtain noise-free and smooth NDVI data, we apply the SG
filtering method (Savitzky–Golay Filter) [68]. Subsequently, we perform batch removal of
negative values and vector boundary clipping in ENVI software. In the study, the 16-day
NDVI was synthesized into monthly NDVI data, and finally, the NDVI image data of
2002–2020 with a spatial resolution of 250 m and a time resolution of a month was obtained.

2.3. Methods

The technical flow chart provides an overview of the main ideas of this study (Figure 3).
SPI and EDDI were employed to identify meteorological drought caused by insufficient
rainfall and excessive evapotranspiration, respectively. SRI based on simulated runoff and
NDVI were used to characterize hydrological drought and vegetation drought. To capture
the progression and characteristics of drought development, a three-dimensional spatiotem-
poral clustering method was employed to extract meteorological and hydrological drought
events and their corresponding characteristics based on SPI3, nEDDI3 and SRI3. In order to
examine the relationship between different types of drought, the Spearman rank correlation
coefficients of SPIn and SRIn, nEDDIn and SRIn, SPIn/nEDDIn/SRIn and NDVI (where n
represents the time scale) were calculated. Afterward, the maximum correlation coefficient
(MCC) between different drought types was determined to obtain the propagation times.
Based on the MCC, we selected the SPI/nEDDI-SRI and SPI/nEDDI/SRI-NDVI time series
with corresponding scales for conducting cross-wavelet and wavelet correlation analysis.
This allowed us to assess the propagation relationship among various droughts within the
time-frequency realm.
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2.3.1. HRU and Runoff Simulation

The SWAT model, developed by the Agricultural Research Center of the United
States Department of Agriculture [69], has a robust physical foundation that makes it
suitable for complex watersheds with diverse soil types and land types. The model is
segregated into the land surface hydrological process and the water surface process. The
land surface hydrological process consists of eight modules: hydrology, climate, sediment,
soil temperature, crop growth, nutrients and agricultural chemicals. The SWAT model
is widely used in runoff simulation, soil erosion simulation, non-point source pollution
simulation, transpiration and evaporation simulation [70]. It is compatible with the ArcGIS
software, which enhances data processing efficiency, parameter adjustment, and analysis
and interpretation of results in the model [71]. The hydrological response unit (HRU) is
the basic unit of SWAT model calculation. It divides the basin into several sub-basins with
multiple slopes, land use types and soil types. Each sub-basin is further divided into HRUs.
Each HRU has a set of parameters to describe its hydrological characteristics and operates
independently with no mutual influence. In this study, we defined a HRU of less than
600 km2 as a small basin.

The construction and operation of the SWAT model involve the following steps:
loading DEM data, extracting river network, sub-watershed division, loading land use
and soil type data, dividing HRU, inputting meteorological data, inputting model data file,
and operating model. Meteorological data should have a temporal resolution equal to or
less than daily, and in this study, we obtained the data from the CMFD with a temporal
resolution of 3 h. The hydrological model includes the daily rainfall and monthly runoff
data from Waizhou Station, the export control station of the GRB.

2.3.2. Drought Index

In this study, the characterization of meteorological drought resulting from insufficient
precipitation is accomplished using SPI. The SPI calculation is based on the principle of
converting rainfall data into a normal distribution using the Gamma probability distribu-
tion [72]. The specific SPI solution computer program can be obtained on the website of the
National Drought Mitigation Center (http://drought.unl.edu/, accessed on 5 April 2022).

SPI’s remarkable flexibility and multiscale feature make it a versatile tool for quantita-
tive research of different types of drought. SPI with a time scale of 1–3 months effectively
captures the short-term and medium-term water status [73]. Specifically, selecting the
growing season of vegetation and the seasonal period of crops contributes to a better
understanding of agricultural drought. The longer time scale SPI provides insights into
meteorological drought over a relatively long period and reveals the prolonged impact of
drought events on water resources, considering precipitation variations. SPI with a time
scale of 6–24 months can reflect changes in groundwater levels [74], while the 12-month
SPI is commonly used for monitoring long-term runoff, reservoirs, and groundwater levels.
In this study, the 1, 3, 6, and 12-month SPIs were calculated for 172 sub-basins in the GRB,
enabling further exploration of the response relationships between multi-time scale SPI
and other indexes in the region.

The characterization of meteorological drought resulting from the atmosphere’s exces-
sive water demand was accomplished in this study by employing EDDI. EDDI is a drought
index that uses E0 as its foundation, created in response to the recent surge of attention
towards evapotranspiration [12]. EDDI has undergone evaluations in multiple regions for
its application in drought monitoring [20,21].

After calculating the appropriate probability distribution for each of the 12-time
series configured on a monthly basis, the cumulative probability value is transformed
through the utilization of the probability distribution of each time series. Subsequently, the
converted cumulative probability value is ascribed a Z-value based on the standard normal
distribution, representing SPI\EDDI.

http://drought.unl.edu/
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The calculation formula of SPI and EDDI at different scales is:

f (x) =
1

αβΓ(β)
xβ−1e−(x/α) (1)

where x represents the moving average of monthly precipitation or E0 time series on
the timescale, α and β represent the scale parameter and shape parameter, respectively,
which are estimated by the probability weighted moment method for each time scale
and each pixel. Γ(β) represents a gamma function. SPI and EDDI, obtained via the same
method, exhibit opposing drought conditions, with SPI indicating severity through negative
values, while EDDI denotes intensity using positive values. To enable a direct comparison
between these indices, this study employs negative EDDI (nEDDI) during actual analysis
by attaching (-) sign to EDDI.

This study utilizes SRI to characterize hydrological drought, which is a widely used
multiscalar drought index in hydrological drought monitoring. We choose the same Γ
distribution as SPI to calculate the SRI. The SPI, nEDDI and SRI time series on the 1, 3, 6
and 12-month time scale from 2002 to 2020 were calculated. According to the classification
of meteorological droughts based on Nalbantis and Tsakiris [75], SPI, nEDDI and SRI are
divided into five grades, and the corresponding thresholds are determined. The levels are
shown in Table 1.

Table 1. Drought severity classification in China.

Drought Category SPI Value nEDDI Value SRI Value Probability (%)

Wet SPI > −0.50 nEDDI > −0.50 SRI > −0.50 50.0
Mild drought −1.00 < SPI ≤ −0.50 −1.00 < nEDDI ≤ −0.50 −1.00 < SRI ≤ −0.50 34.1

Moderate drought −1.50 < SPI ≤ −1.00 −1.50 < nEDDI ≤ −1.00 −1.50 < SRI ≤ −1.00 9.2
Severe drought −2.00 < SPI ≤ −1.50 −2.00 < nEDDI ≤ −1.50 −2.00 < SRI ≤ −1.50 4.4

Extreme drought SPI ≤ −2.00 nEDDI ≤ −2.00 SRI ≤ −2.00 2.3

2.3.3. NDVI

This study employed NDVI to characterize vegetation drought. The vegetation grow-
ing season in the GRB spans from March to October, during which the imbalance between
potential evaporation and precipitation often results in drought, impacting the growth of
vegetation. Given the sensitivity of the growing season to drought, our analysis focused
on NDVI from March to October each year to examine the spatial–temporal features of
vegetation in the GRB and its response to meteorological and hydrological drought.

2.3.4. Identification and Characterization of 3D Drought Events

Drought events typically exhibit certain durations and scopes of influence, displaying
the characteristics of being multi-factor, multi-attribute and multiscale in nature. Addi-
tionally, various factors, multiple attributes and spatial–temporal scales are interconnected,
collectively shaping the spatial–temporal variation characteristics of drought event de-
velopment processes. This study employed the method proposed by Wen et al. [76] to
extract drought events, construct three-dimensional(time, longitude and latitude) drought
structures and simulate the evolution process of drought. The identified 3D drought event
requires its drought state to be connected in both time and space dimensions. Initially,
for each month, sub-watersheds with SPI/nEDDI/SRI values below the specified thresh-
old (−0.5 in this study) were identified as being in a drought state. Spatial clustering
is applied to group adjacent drought sub-watersheds in the same month into 2D spatial
drought patches. If the drought patches from adjacent months spatially overlap, they
are sequentially connected in series to form a 3D drought event. Finally, based on the
multi-dimensional grid data sequence (including latitude and longitude, time and drought
index), the point data are meshed and interpolated by the inverse distance weighting (IDW)
method to generate a continuous spacetime field. The threshold isosurface of the drought
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index is then created, and the 3D structure of the drought body is constructed to visualize
all three-dimensional drought events.

Then, five parameters are calculated to characterize the identified drought events.
Their definitions are as follows:

• Drought duration (DD) is characterized as the period between the onset and cessation
of a drought event, measured in months.

• A drought area (DA) can be described as the area that has been impacted by a drought
event, defined as the union of affected areas per month.

DA = area(1)
⋃

. . .
⋃

area(i)
⋃

. . .
⋃

area(n) (2)

In the formula, n denotes the duration of drought events, and area(i) denotes the
drought area determined in the month of i.

• Drought severity (DS) measures the intensity of drought events, which reflects the
cumulative absolute deviation between the drought index and the normal state thresh-
old T (−0.5) in the sub-watershed involved in the entire drought duration. It is
expressed as:

DS = ∑n
i=1 ∑k

j=1

∣∣DIij − T
∣∣ (3)

where k represents the number of sub-basins affected by drought, DIij represents the
drought index value of the ith month (i = 1, 2, . . . , n) and the jth drought sub-basin
(j = 1, 2, . . . , k) in the drought event, and the drought index value is SPI\nEDDI\SRI value.

• Drought density (Dρ) is given by the proportion of drought intensity to the mul-
tiplication of drought duration and area to measure the density of drought events.

Dρ =
DS

DD ∗ DA
(4)

• Drought centroid (DC) is utilized to denote the center location of the 2D drought patch
during the drought event. The centroid coordinates are determined by the weighted
drought index value and are expressed as follows:

Xm =
∑k

i=1 DImixi

∑k
i=1 DIi

(5)

Ym =
∑k

i=1 DImiyi

∑k
i=1 DIi

(6)

where (xi, yi) represents the latitude and longitude coordinates of the centroid of the
ith drought-affected sub-watershed, and DImi represents the drought index of the ith
drought affected sub-watershed in m months.

In light of the aforementioned drought characteristics, this study employs Mann–Kendall
(M-K) trend test and weighted kernel density estimation method to analyze its spatial
and temporal evolution characteristics. The M-K trend test, a non-parametric statistical
method widely used in environmental and climate change research [77–79], provides a
reliable approach for assessing trends in time series data. In this study, the M-K trend test is
employed to analyze the annual variation trends of drought characteristics. Regarding the
statistical value Z, which serves as the measurement index of the trend test, if Z is greater
than 0, it indicates an increasing trend, whereas if it is less than 0, it suggests a decreasing
trend. The significance test is considered passed when the absolute value of Z exceeds the
thresholds of 1.64, 1.96, and 2.58, corresponding to confidence levels of 0.1, 0.05, and 0.01,
respectively. The Kernel Density Estimation (KDE) is a non-parametric method [80]. This
method examines the distribution characteristics of data based on the data sample itself
and is widely employed in regional difference analysis [81,82]. Hence, it is suitable for
studying the probability density of the drought centroid. To accomplish this, a fourth-order
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kernel function is selected as the kernel function, and the standard distance is weighted,
taking into account the area attribute of the drought patch.

2.3.5. Analysis of Drought Propagation Relationship

Cross-Wavelet Transform (XWT) was developed by Hudgins et al. [83] as a useful
technique to explore the joint statistical characteristics and correlation between two time
series in time-frequency domain. XWT identifies the region of high common power region
and phase relationship between the two signals, but it is limited in determining the low
common power region. In response, wavelet coherence (WTC) has addressed this limitation
and is widely utilized to examine the consistency between two sequences. In the field of
meteorology and hydrology, the utilization of Spearman rank correlation coefficient (Rs) is
common in measuring the correlation between two variables, whether they are linear or
non-linear [54,84].

In this study, SPI-n, nEDDI-n, SRI-n (n = 1, 3, 6, 12) and NDVI were used to calcu-
late the drought propagation time between meteorological, hydrological and vegetation
droughts based on the Spearman rank correlation coefficient method. Taking SPI and SRI
as examples, the Rs can be calculated as follows:

Rs =
cov(rgSRIi

, rgSPI j
)

σrgSRIi
σrgSPIj

, 1 ≤ i, j ≤ n (7)

SRIi and SPI j are time series of SRI at a time scale for i months and SPI at a time scale

for j months, respectively. cov
(

rgSRIi
, rgSPI j

)
is the covariance of rank variables, σrgSRIi

and
σrgSPIj

are the standard deviation of rank variables. The time scale of SPI with the MCC will

be regarded as the drought propagation time. The p-value of the statistic is calculated based
on the permutation test method. When the p-value is less than 0.1, the null hypothesis can
be rejected, indicating a significant difference or relationship.

This study investigated the phase shift and correlation among SPI, nEDDI, SRI, and
NDVI time series in both high and low-frequency resonance regions using the XWT and
WTC techniques. The cross wavelet transform operation involves two time series, xn and
yn, can be represented as Wxy = WxWy*

, where * denotes the complex conjugate. This
operation yields the corresponding cross-wavelet power spectrum, expressed as

∣∣WXY
∣∣.

Notably, the complex parameter arg
(
WXY) provides valuable information regarding the

local relative phase of xn and yn. The theoretical distribution of the cross-wavelet power
and its background power spectrum PX

k and PY
k [85] are expressed as the following relation:

D

((∣∣WX
n (s)WY

n (s)
∣∣

σXσY

)
< P

)
=

(
Zv(p)

v

)√
PX

k PY
k (8)

In the formula, σX and σY are the standard deviation of X and Y, respectively. The
level of confidence for probability p is represented by Zv(p), where v denotes the degree
of freedom.

The coherence degree of the wavelet transforms between two time series xn and yn,
can be expressed as:

R2
n(s) =

∣∣S(s−1WXY
n (s)

)∣∣2
S
(

s−1|WX
n (s)|2

)
∗ S
(

s−1|WY
n (s)|

2
) (9)

where S is a smooth operator. The range of R2
n(s) value is from 0 to 1, with a value of 0

indicating no local cross-correlation and a value of 1 indicating a strong correlation between
the two sequences.
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The lag time of two time series is represented by phase difference, which is quantified
by wavelet phase angle:

am = arg(X, Y) = arg

[
n

∑
i=1

cos(ai),
n

∑
i=1

sin(ai)

]
(10)

where am is the phase relationship of time series X and Y in time-frequency space, and the
unit is radian, which can be further quantified according to time scale and periodic scale.

In this study, cross-wavelet transform and wavelet coherence analysis are carried out
using the MATLAB toolbox developed by Grinsted et al. [86].

3. Results
3.1. Evaluation of Small Basin Scale Runoff

Following the division of the GRB into 172 sub-watersheds using the slope runoff
simulation algorithm, ET and runoff in each sub-watershed were simulated using the
PML_V2 and SWAT models, respectively. The accuracy of runoff and ET simulation was
then verified and evaluated. To validate the runoff simulation, the simulation results from
Waizhou station were fitted to the measured monthly runoff data during the parameter
calibration period. The fitting accuracy was evaluated by calculating the R2 between the
simulated and measured values, which was found to be 0.88. The overall fitting accuracy
suggests the reliability of the runoff simulation results.

3.2. Spatial-Temporal Distribution of Three-Dimensional Drought Events

The meteorological and hydrological drought events in the GRB from 2002 to 2020 were
extracted from the SPI3, nEDDI3, and SRI3 values from the long time series, respectively.
The spatial–temporal distribution of the 3D drought structure, along with the start and
end dates of the drought events, is illustrated in Figure 4. The number of identified
precipitation-deficient meteorological drought events, evapotranspiration meteorological
drought events, and hydrological drought events were 20, 20, and 15, respectively. In
Figure 4a, severe and extreme drought events occurred frequently from 2002 to 2010. The
drought events that started in January 2003, November 2007, and July 2010 were the
most severe, extensive, and prolonged. From 2011 to 2020, the occurrence of extreme
drought events increased, although most drought events were of short-term and medium-
term nature with scattered spatial and temporal distribution. The most severe drought
events were recorded in February 2013 and February 2019. Figure 4b depicts two extreme
droughts during the period from 2002 to 2010, occurring in November 2002 and June 2006,
respectively. In comparison to the drought events identified by SPI3 in the same period, the
intensity of drought events identified by nEDDI3 was relatively lower, and the temporal
distribution of drought events was more scattered. After 2010, the frequency of drought
disasters increased. Specifically, three extreme droughts were observed in March 2013,
February 2018, and March 2019. In Figure 4c, extreme drought events occurred frequently
from 2002 to 2010, with medium and long-term droughts being the prevalent types and
longer intervals between droughts. After 2010, there was an increase in the occurrence
rate of drought events, but the overall intensity of droughts decreased. Throughout this
period, extreme drought events only occurred in April 2017. The most severe droughts
were registered in June 2003, December 2006, July 2010, March 2013, and April 2017. These
findings concur with previous studies [87–89].

In terms of drought frequency, meteorological droughts occurred more frequently
than hydrological droughts. However, the situation is reversed when considering the
average duration and severity. Multiple meteorological drought events may continue to
impact the same hydrological drought, resulting in an increase in its duration, severity and
spatial extent.
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3.3. Spatial-Temporal Characteristics of Drought Events

The temporal variation and trends of drought characteristics extracted from meteo-
rological and hydrological drought events in the GRB from 2002 to 2020 are depicted in
Figure 5. And the spatial distribution of drought centroids is shown in Figure 6. For meteo-
rological drought events identified by SPI3, the past 19 years have witnessed a downward
trend in both the number of drought months and coverage area. Conversely, the drought
severity and density showed an increasing trend, indicating an intensification of drought
conditions in the basin despite the decrease in overall drought volume. Additionally, the
drought events identified by nEDDI3 demonstrate a declining trend in the number of
drought months, while other indicators exhibit an upward trend. This suggests a potential
development of the drought model towards shorter-term, larger-scale and higher-intensity
conditions. The longitude and latitude of the drought centroid exhibited opposite trends,
with the longitude decreasing and the latitude increasing. The statistical significance of both
trends was confirmed through the M-K analysis at a 95% confidence level. This suggests
a potential movement of the drought towards the northwest of the basin, indicating an
increased likelihood of more frequent drought events in the northwest region. In regards
to the hydrological droughts identified through SRI3, a decreasing trend is observed in
the number of drought months, extent, and severity. However, there is a gradual and
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consistent increase in drought density. This finding indicates a decrease in the overall
volume of hydrological drought events in the GRB, with no significant alteration in the
drought intensity. Notably, there is a substantial reduction in the latitude of the drought
centroid, implying a potential southward migration of hydrological droughts, which may
result in an increased frequency of drought events in the southern region.
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3.4. Response Characteristics of Meteorological Drought, Hydrological Drought and Vegetation
3.4.1. Response Time of Hydrological Drought to Meteorological Drought

Figure 7 presents the monthly correlations of SRI-SPI/nEDDI and NDVI-SPI/nEDDI/SRI
at different scales from 2002 to 2020. In Figure 7a,b, the correlation results of SRI-SPI
and SRI-nEDDI indicate the highest correlation coefficients of 0.96 and 0.57, respectively.
The high correlation group of SRI-SPI generally exhibits significantly higher correlation
coefficients compared to the high correlation group of SRI-nEDDI. This finding highlights
that the correlation between hydrological drought and meteorological drought caused by
insufficient precipitation in the GRB is substantially stronger than the correlation resulting
from high temperature.
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Furthermore, it is evident that the response time of hydrological drought and meteo-
rological drought varies across different seasons. In Figure 7a, the proportion of SRI-SPI
correlation surpassing the 90% significance level test exceeded 48.9%, indicating a strong
correlation between meteorological drought and hydrological drought caused by precipi-
tation in the GRB. In spring (March–May), the response time of SRI to SPI was 1 month
at the short-term scale and 12 months at the medium and long-term scale. The monthly
response time is reduced from 12 months to 1 month. This reduction is attributed to the
long-term winter rainfall scarcity in the GRB, resulting in insufficient surface water avail-
ability during early spring. As the rainy season commences in mid-March, precipitation
intensity progressively increases, facilitating soil water and groundwater recharge and
the formation of runoff. Considering that the MCC of SRI-SPI indicates the value at the
1-month scale in spring, the response time of spring is 1 month. In Figure 7b, the gradual
increase in surface evapotranspiration associated with rising spring temperature initiates
the vegetation growth period and contributes to an increase in vegetation evapotranspi-
ration. This leads to a gradual increase in the correlation of SRI-nEDDI, which becomes
significant in May. The response time for this period is 1 month. In summer (June–August),
the response time of SRI to SPI is 6 months on the short-term scale, 12 months on the
long-term scale. The response time of summer is 6 months. This longer response time is
attributed to the peak vegetation growth and increased water consumption during this
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period. The influence of subtropical high-pressure weather in July and August, character-
ized by high temperatures and limited rainfall, reduces soil moisture and groundwater,
resulting in an extended response time from meteorological drought caused by insufficient
precipitation to hydrological drought. The annual peak evapotranspiration in the basin,
driven by subtropical high-pressure weather, accelerates surface and soil moisture loss
due to vigorous vegetation transpiration. Thus, there is a significant relationship between
hydrological drought and meteorological drought attributed to evapotranspiration during
summer, with a response time of 6 months. In autumn and winter, the decreased precipita-
tion extends the propagation time from meteorological drought to hydrological drought,
increasing from 6 months in autumn to 12 months in winter. The continuous limited rainfall
in autumn not only fails to replenish surface and soil moisture depleted by summer’s high
temperatures and evapotranspiration but also coincides with increased sunshine duration
and evaporation capacity. Under the combined effect, there was a significant correlation
observed between SRI and nEDDI in autumn, with a higher proportion of correlations
exceeding the 95% significance level compared to summer. The monthly response time
was extended from 3 months to 12 months, with a response time of 3 months for autumn.
Although rainfall remains limited in winter, the sharp decrease in temperature leads to
reduced evapotranspiration. However, the lack of surface and soil moisture replenishment
in summer and autumn keeps the riverbed of the lower reaches of the GRB often barren in
winter. As a result, the correlation between SRI and nEDDI in winter continues to decrease,
and the response time of winter extends to 12 months.
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Figure 7. The correlation coefficients of SRI-n and SPI-n/nEDDI-n, monthly NDVI and SPI-n/nEDDI-
n/ SRI-n (n= 1, 3, 6, 12) from 2002 to 2020 in the GRB. *, **, *** represent that the correlation passes the
significance level test of 90%, 95% and 99%, respectively. (a–e) represents the correlation coefficients
of SRI-SPI, SRI-nEDDI, NDVI-SPI, NDVI-nEDDI and NDVI-SRI, respectively.

The propagation time from SPI-based and nEDDI-based meteorological drought to
hydrological drought, as indicated by SRI, ranges from 1 to 6 months, taking into account
the different seasons in the GRB. The correlation coefficients and the proportion of corre-
lations reaching the 90% significance level of SRI-SPI are significantly higher than those
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of SRI-nEDDI. This suggests that hydrological drought in the GRB is more responsive to
meteorological drought driven by precipitation compared to drought caused by evapotran-
spiration. The seasonal response time of hydrological drought and meteorological drought
shows consistency in spring, summer, and winter.

3.4.2. Response Time of Vegetation Drought to Meteorological and Hydrological Drought

Figure 7c–e illustrates the correlation coefficient of NDVI-SPI/nEDDI/SRI at different
scales (1, 3, 6, and 12 months) for each month of the vegetation growing season. In Figure 7c,
with the onset of the rainy season in March, precipitation continues and intensity increases,
reaching its peak in May. This abundant rainfall compensates for the soil moisture deficit
caused by water scarcity in winter and saturates the soil moisture content, meeting the water
requirements for accelerated vegetation growth as the vegetation growth period begins.
As a result, the correlation coefficient between NDVI and SPI changed from negative to
positive in May. From July to August, influenced by subtropical high pressure, vegetation
evaporation demand for soil moisture reaches its peak, but the lack of precipitation leads
to the loss of surface and soil moisture, resulting in inadequate water supply for vegetation
growth. Consequently, the growth rate of vegetation slows down, and the correlation
coefficient between NDVI and SPI exhibits a gradual increment from July to August,
showing a significant correlation during this period. The response time for the vegetation
growing season is 3 months.

In Figure 7d, NDVI and nEDDI exhibit a negative correlation throughout the entire
vegetation growth period, with significant negative correlations in June and September. In
June, as the temperature rapidly rises, vegetation evapotranspiration increases. However,
since June is also the peak of annual precipitation, the soil is adequately moist, allowing
it to compensate for vegetation evapotranspiration and meet the water requirements for
vegetation growth. In September, the evapotranspiration is lower compared to August,
resulting in slightly weakened vegetation transpiration. However, the soil moisture deficit
caused by the influence of subtropical high-pressure weather remains unaddressed, leading
to water scarcity for vegetation. These observations suggest that vegetation growth is
highly responsive to precipitation rather than evapotranspiration.

In Figure 7e, the correlation coefficients between NDVI and SRI during the vegetation
growing season did not pass the significance test. The MCC of NDVI-SRI appeared in
April, significantly decreased in June, and continues to decline after a slight rebound in
July and August. The response time is 6 months. These findings can be attributed to
April being in the rainy season and the early stage of vegetation growth. Precipitation
is intercepted by vegetation to satisfy the water requirements for vegetation growth and
evapotranspiration, and then infiltrates into the soil to compensate for the long-term deficit
of soil water caused by inadequate rainfall in winter. In June, the precipitation intensity
reaches its peak, leading to near-saturation of surface water, while the growth rate of
vegetation coverage experiences a slowdown. As a result, there is a reduction in the
fraction of vegetation changes affecting hydrological processes. In July and August, there
is a significant decrease in precipitation. However, the gradual expansion of plant coverage
leads to an increase in evapotranspiration and precipitation interception, resulting in a
decrease in runoff. Consequently, the correlation between NDVI and SRI increases in July
and August. The notable decrease of NDVI from September to October leads to a decrease
in the proportion of vegetation changes affecting hydrological processes.

3.4.3. Spatial Distribution Characteristics of Hydrological Response to Meteorological Drought

By calculating the correlation of SRI-SPI/nEDDI at multiple time scales, the MCC of
each sub-basin is illustrated in Figure 8a,b. The corresponding seasons for the MCC are
counted as shown in Figure 8c,d. The MCC between SPI and SRI ranges from 0.84 to 0.98
and passes the significance test at a 95% confidence level. In Figure 8b, the area with MCC
in spring, summer, autumn, and winter account for 20%, 22%, 19%, and 39% of the total
basin area, respectively. The results demonstrate that the meteorological drought resulting
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from insufficient precipitation has the strongest impact on runoff in winter, and the impact
area is mainly concentrated in the mountainous and hilly regions in the middle and upper
basin sections.
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The MCC between nEDDI and SRI exhibits a range of −0.82 to 0.81. The downstream
region displays a notable concentration of negative MCC values, likely attributed to its
smaller basin area and lower water levels. Conversely, positive MCC values are observed
in the middle and upper reaches. Figure 8d depicts the distribution of MCC in different
seasons, highlighting that the autumn MCC area encompasses 41% of the total basin area,
followed by 25% in spring, 20% in winter, and 14% in summer. Notably, autumn contributes
the most significantly among the seasons, with the region exhibiting the highest MCCs
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closely aligning with this area. These results indicate that meteorological drought induced
by autumn evapotranspiration poses the greatest threat to runoff in the GRB.

3.4.4. Spatial Distribution Characteristics of Vegetation Response to Meteorological and
Hydrological Drought

Figure 9a–f illustrate the spatial distribution of the MCCs of NDVI-SPI/nEDDI/SRI
and the monthly distribution of MCC. The MCCs of NDVI-SPI/nEDDI/SRI in the GRB are
between −0.65 and 0.68, −0.8 and 0.67, and −0.72 and 0.69, respectively.
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The MCC between NDVI and SPI predominantly occurred in August, covering ap-
proximately 27% of the total basin area, followed by May, accounting for 20%. The August
MCC area is mainly situated in the midstream and downstream regions, aligning with
the region exhibiting the maximum MCC. In contrast, the May MCC area is scattered
throughout the basin. The results suggest that the vegetation in the middle and lower
sections of the basin, influenced by the subtropical high-pressure weather in August, is
most susceptible to meteorological drought. Additionally, vegetation growth in the basin
in May is significantly affected by precipitation.

The negative MCC between NDVI and nEDDI encompasses 69% of the total basin
area. The positive MCC is distributed in the middle reaches and the western side of the
downstream, consistent with the area where the MCC appeared in July. It is apparent that
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the vegetation in the plain area of the lower reaches of the basin is highly sensitive to the
summer subtropical high-pressure weather.

The positive MCC between NDVI and SRI is primarily distributed in the midwest
of the upstream and the mideast of the downstream, with scattered occurrences in the
middle reaches. The area with the MCC in May and July both account for 19% of the total
basin area. This distribution pattern aligns closely with the distribution of the positive
MCC, indicating that the hydrological drought in May and July will exert a greater impact
on vegetation.

3.5. Dynamic Relationship among Meteorology, Hydrology and Vegetation Drought

As the revealed correlation results between SRI, SPI, nEDDI and NDVI in Figure 7,
the index pairs with the MCC were selected for XWT and WTC analysis to determine the
propagation relationship between different droughts in time-frequency space.

3.5.1. Cross-Wavelet Transform and Wavelet Coherence between the SRI and the SPI/EDDI

In Figure 10, the XWT and WTC results between SRI and SPI/nEDDI, with the highest
correlation in the GRB from 2002 to 2020, are presented. From the XWT results of SRI
and SPI in Figure 10a–d, it is observed that from April 2008 to January 2015, SRI1 and
SPI1 exhibited resonance with a period of 20–50 months. The duration of the resonance
prolongs as the SRI time scale increases. Moreover, intermittent short-term resonances
between SRI and SPI occur within the 0–10 month period. At each time scale, SRI and SPI
display a significant in-phase relationship across various periodic scales, with SRI generally
lagging behind SPI by 3 to 118 days. Figure 10e–h display the WTC results for SRI and
SPI. Compared to the XWT analysis, SRI and SPI demonstrate a pronounced in-phase
relationship in most regions, particularly at the 12-month scale. The resonance period
spans from 0 to 72 months. These findings indicate that the strong correlation between SRI
and SPI can also be detected in the low-frequency domain. This further emphasizes the
significant and consistent correlation between meteorological drought and hydrological
drought caused by water shortage in the GRB.

Figure 10i–l presents the XWT results of SRI and nEDDI. The analysis indicates a
significant correlation between SRI and nEDDI, primarily manifested in the resonance
of SRI1 and nEDDI1 over a period of 20–31 months from January 2007 to June 2011.
The duration of this resonance also increases with the scaling up of SRI. In addition,
there are intermittent quasi-periodic resonances in the period of 0–5 months. At each
periodic scale, SRI exhibits a significant in-phase relationship with nEDDI, with a lag time
between 2–224 days. In Figure 10m–p, which displays the WTC results for SRI and nEDDI,
intermittent resonance dominates with a period ranging from 0 to 16 months, revealing a
significant in-phase relationship. These findings indicate that a high coherence can also be
detected between SRI and nEDDI in the low-frequency domain. However, it is important
to note that the relationship between these two indices is not stable. Based on the XWT
and WTC results of SRI and nEDDI, it is evident that the meteorological drought caused by
evapotranspiration acts as the driving factor of hydrological drought in the GRB, but the
relationship between these two types of drought is comparatively more unstable than the
relationship between meteorological drought caused by insufficient precipitation.

3.5.2. Cross-Wavelet Transform and Wavelet Coherence between the NDVI and the
SPI/EDDI/SRI

Figure 11a–f show the cross-wavelet spectrum and wavelet coherence of monthly
NDVI with SPI/nEDDI/SRI in the GRB from 2002 to 2020. In Figure 11a–c, a significant
correlation exists between changes in vegetation cover and meteorological/hydrological
drought in the GRB. This observation is supported by the presence of a resonance region
with a significance level of 95%, which spans 7 to 15 months for NDVI and its correlations
with SPI3, nEDDI1, and SRI6. The time periods showcasing the resonance region for
NDVI and SPI3 at this periodic scale range from May 2005 to January 2007, March 2011
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to February 2013, and June 2016 to September 2019. At this periodic scale, the resonance
between NDVI and nEDDI1 is more concentrated, spanning from August 2003 to March
2015. The resonance periods for NDVI and SRI6 at this periodic scale last from January
2003 to May 2010 and from January 2011 to May 2019, respectively. An intermittent short-
term resonance between NDVI and the three indices occurs within the 0–6 month period.
NDVI exhibited time lags of 1–208 days, 12–163 days, and 1–172 days with respect to SPI3,
nEDDI1, and SRI6. Figure 11d–f reveal intermittent resonances, with a significance level
of 95% between NDVI and SPI3/nEDDI1/SRI6 in the 0–14 month period. These findings
support the presence of a significant correlation between changes in vegetation cover and
meteorological/hydrological drought in the low-frequency domain, but this correlation
may be affected by seasonal and other factors, introducing potential instability.
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Figure 10. Cross-wavelet power spectrum and wavelet coherence of SRIn (n = 1, 3, 6, 12) with
SPI and nEDDI in the GRB from 2002 to 2020. (a–d) XWT of SRI with SPI, (e–h) WTC of SRI with
SPI, (i–l) XWT of SRI with nEDDI, (m–p) WTC of SRI with nEDDI. The black contour represents
the significant power region for the red noise at the 95% confidence level. The influence cone COI
(black curve) represents the region without edge effect. The power value from dark blue to deep red
indicates low power to high power. The arrow indicates the phase information in the time-frequency
domain, and the direction of the arrow indicates the phase difference.
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of NDVI with SPI3, nEDDI1, and SRI6.

4. Discussion

Thorough and meticulous research in drought monitoring plays a crucial role in
acquiring accurate and comprehensive information necessary for effective drought response
and reliable data support. It also aids in assessing drought mechanisms and understanding
ecological environments. While statistical probability-based indices are widely used in
drought monitoring, they primarily rely on site-specific data and may overlook the impact
of regional factors and complex interactions among various physical components [90,91].
To address this limitation, integrating drought indices with distributed hydrological models
has emerged as a more robust methodology for comprehensive understanding and effective
monitoring of drought [92,93]. In this study, the GRB was divided into 172 sub-watersheds
using a slope runoff simulation algorithm. Hydrometeorology and multi-source data were
utilized to simulate the ET and runoff of each sub-watershed employing PML _ V2 and
SWAT model. To validate the reliability of the model simulation, the simulated ET and
runoff were compared with the field data, confirming their accuracy. Subsequently, drought
indices, including SPI, EDDI, SRI, and NDVI, were calculated for each sub-basin. This
approach stands as a valuable reference for obtaining drought indices that closely align
with actual conditions in non-stationary areas or when additional physical factors need to
be considered.

With increasing accessibility to data, there has been a growing emphasis on study-
ing the entire chain of drought propagation. The scope of drought propagation research
has expanded beyond meteorological to hydrological (or agricultural) drought. Notably,
scholars have investigated the propagation patterns and features of meteorological, hy-
drological, and agricultural droughts in various climatic regions and major river basins in
China [48,50]. Some studies have even utilized Gravity Recovery and Climate Experiment
(GRACE) data to further explore hydrological droughts by categorizing them into surface
runoff droughts and groundwater droughts [49,94]. In consideration of the trend of climate
warming, this study investigated the response time and propagation relationships between
meteorological drought caused by various factors to hydrological/vegetation droughts,
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as well as the propagation of hydrological drought to vegetation drought. The findings
significantly contribute to the early identification of drought propagation occurrences. The
variability in drought response time, influenced by seasonal factors, enables a quantitative
assessment of risks and vulnerabilities associated with drought propagation across different
regions and seasons. This analysis also provides critical information for predicting and
evaluating the impact of drought, especially on crop yield, the ecological vitality of forests
and wetlands, and overall biodiversity resilience. As a result of data limitations, this paper
does not conduct in-depth research on the spread of groundwater drought. Nevertheless, it
is noteworthy to acknowledge that groundwater plays a crucial role in recharging surface
water during the dry season in the GRB. The availability of groundwater significantly
impacts vegetation and soil moisture in the basin. Hence, future research endeavors will
encompass the collection of GRACE data and in-situ groundwater data to investigate the
relationship between groundwater drought and other types of drought.

Furthermore, we address the spatial–temporal coupling of drought by implementing
a robust three-dimensional clustering method. This approach allows us to extract 3D
drought events and their drought characteristics (duration, area, severity, centroid, etc.) [95].
Utilizing this method offers advantages in describing and quantifying the development
and evolution characteristics of drought events, eliminating the dependence on subjective
regional thresholds that previous studies relied on [76]. Given the constraints of this article,
we have not explicitly examined the relationship between the drought characteristics of
different drought types. In future research, we propose utilizing a response function
model such as the copula model to investigate the propagation relationship between
drought characteristics, facilitating the exploration of the propagation mechanism from the
standpoint of drought propagation probabilities.

Drought spreads through the interrelated land-atmosphere system and hydrological
cycle process and evolves into different types of drought in different geographical locations
and time periods. This progression often initiates with meteorological drought, which is
virtually impossible to prevent. However, through a systematic understanding of drought
response mechanisms, proactive measures can be implemented to prevent or mitigate
the spread of meteorological drought to agricultural, hydrological, and socio-economic
drought, thereby reducing its detrimental impact and preventing further expansion of
the spread process. In the case of the GRB, a notable correlation is observed between the
nEDDI and SRI in the central region during autumn. During episodes of persistent high
evaporation in autumn, it is crucial for the aforementioned areas to focus on timely water
storage within the basin.

5. Conclusions

This study introduces the use of SPI, EDDI, SRI, and NDVI to analyze and evaluate the
spatial–temporal evolution characteristics of meteorological, hydrological and vegetation
drought in the GRB from 2002 to 2020, as well as their variations across different seasons.
The investigation focuses on examining the spatial–temporal response of hydrological
drought to meteorological drought and vegetation drought to meteorological/hydrological
drought at various time scales using methods such as MCC and Cross-Wavelet transform.
The main conclusions of this study are as follows:

(1) From 2002 to 2020, the SPI-based meteorological drought and hydrological drought
in the GRB exhibited a decelerating tendency, particularly in terms of drought frequency
and extent, while the overall development trend of EDDI-based meteorological drought
was severe. SPI drought generally gathers in the central region, and SRI drought tends to
migrate towards the south. EDDI drought has a tendency to migrate northwestward.

(2) Meteorological and hydrological drought in the GRB are closely related, especially
the meteorological drought caused by precipitation. The propagation time exhibits obvious
seasonal differences. The propagation time of SPI-SRI was the shortest in spring, extended
in summer and autumn, and the longest in winter. The SPI drought in winter had the
strongest impact on hydrological drought, and the affected areas were predominantly
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located in the mountainous and hilly areas in the middle and upper reaches of the basin.
The propagation time of EDDI-SRI was consistent with SPI-SRI in spring, summer and
winter, while the propagation time in autumn was slightly less than that in summer. The
EDDI drought in autumn had the strongest impact on hydrological drought, and the
affected areas were widely distributed in the basin.

(3) The correlation between vegetation drought and meteorological drought caused by
precipitation in the GRB is the highest. During the growing season, NDVI and SPI had the
highest correlation in August, and the affected areas were widely distributed in the middle
and upper reaches of the basin. The areas with high correlation between NDVI and SRI are
distributed in the northwest and southeast of the basin. The correlation between NDVI and
EDDI is typically weak within the basin, indicating that meteorological drought caused by
high evapotranspiration is not the main factor affecting vegetation growth.

(4) There are similar periodic variation patterns among meteorological, hydrological,
and vegetation drought in the GRB. The SPI and SRI have significant resonance periods
in 0–10 months and 20–50 months, and the lag time is between 3–118 days. The EDDI
and SRI have significant resonance periods in 0–5 months and 20–31 months, and the
lag time is between 2–224 days. The short-term resonance period is intermittent, while
the long-term is stable. Similarly, vegetation drought and meteorological/hydrological
drought have significant intermittent resonance periods in 0~6 months and significant
stable resonance periods in 7~15 months. NDVI lagged behind SPI, EDDI and SRI by
1–208 days, 12–163 days and 1–172 days, respectively.
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