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Abstract: Urbanization transforms simple two-dimensional natural spaces into complex three-
dimensional (3D) artificial spaces through intense land use. Hence, urbanization continuously
transforms vertical urban settings and the corresponding sky view area. As such, collecting data on
urban settings and their interactions with urban climate is important. In this study, LiDAR remote
sensing was applied to obtain finer-resolution footprints of urban-scale buildings and tree canopies
(TCs). Additionally, a related sky view factor (SVF) analysis was performed. The study site comprised
an area of Incheon Metropolitan City (501.5 km2). Results show that the proposed method can be
applied to update institutional land maps, enhance land use management, and implement optimized
and balanced urban settings.

Keywords: LiDAR; building; tree canopy; urban settings; footprint identification; sky view factor; in
situ survey; microclimate; digital twin

1. Introduction

During the urbanization process, urban facilities are sporadically and continuously
constructed, and trees are planted and grown in and around buildings, roads, and
parks [1–3]. Owing to an acceleration in global climate change, the development of cli-
matically adaptable urban settings has become a major planning and management target.
Indeed, the distribution of buildings and trees can impact urban ecosystems and citizens’
health [4,5]. Hence, various methodologies have been employed to investigate and estimate
their effects in urban climate-friendly utilization settings and for reallocation plans [6–10].
Remote sensing using satellite images and numerical model-based simulations attempts
to elucidate the relationship between the distribution of buildings and trees and their
environmental impacts on an urban scale [9,11].

Manually investigating individual buildings and trees throughout an entire urban
area is difficult [12]. Therefore, satellite and aerial images are widely used. However,
they are often limited in their ability to survey the vertical properties of buildings and
trees. Hence, three-dimensional point cloud (3DPC) data acquired using Light Detection
and Ranging (LiDAR) technology from aerial platforms are employed to cover an urban-
scale area, offering new technological survey possibilities for wide and complex urban
settings [13–15]. Such surveys provide an opportunity to further improve 3D spatial
management by transforming manual processes into automated ones. Consequently,
complete automation of continuous surveys and professional analyses is expected [16].
Hence, cartographers’ interest in LiDAR for mapping land use and cover is growing [17,18].
Vertical features are particularly interesting in urban studies as urbanization transforms
simple two-dimensional (2D) natural spaces into complex 3D artificial spaces through
intense land use [19].

Accordingly, the need for integrated urban-scale study tools supporting fine-resolution
urban-scale data is growing in urban climate studies. Many researchers have proposed
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solutions to optimize the identification of urban settings, as well as the simulation of their
effects. For instance, the parallelized Large-Eddy Simulation model for urban applications
(PALM-4U) and many similar models are widely used. Meanwhile, developmental tools,
which can digitalize urban features and provide prompt returns, offer viable solutions with
fine resolutions [20]. Nevertheless, their urban-scale support services are dependent on
computer resources. Hence, graphical user interfaces (GUIs) have garnered increasing
research attention. This has led to the proposals of conducting generally applicable and
promptly returnable urban climate analyses [6,9], employing the urban scale high-resolution
sky view factor (SVF) as an urban settings indicator [21], and performing user-friendly and
inspirable explorations [10,22,23]. However, since most cities are vast and complex, detailed
and accurate urban environment analysis data are needed to drive appropriate building and
tree management. Although urban digital twin technology will likely serve as a common
long-term strategy for identifying large urban settings and conducting interaction analysis,
more efficient tools, such as LiDAR remote sensing, are needed for urban-scale approaches.

Hence, the primary aim of this study is to develop a strategy for conducting urban-
scale high-resolution identification and analysis by using Airborne LiDAR remote sensing
data, with a particular focus on land cover footprint identification and SVF analysis.

2. Materials and Methods

This study proposes a methodology for processing LiDAR 3DPC data acquired from
extensive and complex urban-scale areas, enabling building and tree canopy (TC) footprint
extraction at various grid sampling resolutions using spatial probability (SP) calculations.
A methodology was also integrated based on SVF to analyze potential microclimate in-
duced by buildings or TC. Furthermore, to facilitate easy access to and application of the
proposed methodology, a GUI-based platform was developed. GUI-driven urban-scale
multi-resolution maps were utilized to address land use/land cover-based urban climate
management concerns.

Developed building/TC identification and SVF analysis were compared with land
use and land cover maps to verify their usability for current urban planning support.
Institutional land use and land cover maps for urban planning and management are
currently maintained. Moreover, urban-scale building and FC footprint identification and
subsequent SVF analysis results can be applied as auxiliary maps for tentative climate
condition diagnoses. For instance, a specific urban region that is relatively vulnerable to a
potential extreme heat wave event could be spatially discernable from the whole urban area.
Subsequently, an in situ site survey can compare field-based SVF values with LiDAR-based
SVF values to measure site microclimate conditions. Although portable instrument-based
in situ microclimate attribute measurements typically have low accuracy and, thus, provide
limited confidence, they can provide an affordable means to support data interpretation
and perform limited verification. Figure 1 presents the overall workflow of this study.

2.1. Airborne Laser Survey (ALS) LiDAR-Based 3DPC Classification

As shown in Figure 1, the first step involved ALS LiDAR 3DPC classification. Building
or TC 3DPC object classification requires knowledge about laser return attributes, ground
morphology, and land surface phenology. With the laser as a light source, the first return
indicates the height of all features, while the last return captures objects lower in the
permeable surface, such as the TC [24], under the assumption that TC objects are partially
previous in comparison with non-spurious building objects. The morphology of ALS
LiDAR 3DPCs was also considered for classification into specific land covers, namely,
ground, buildings, or TC. A rule-based automatic classification and manual classification
were performed with quality assessment and quality control (QA/QC) to enhance the
reliability of the 3DPC classification, after which the verified 3DPCs were entered.
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Figure 1. Study workflow. Airborne laser survey (ALS) LiDAR-based 3DPC classification was
performed; subsequently, graphical user interface (GUI) development for building/tree canopy (TC)
identification and sky view factor (SVF) analysis was performed. LiDAR-based Urban scale maps
were generated, and visual/statistical comparisons were made, followed by an in situ survey.

2.2. GUI Development for Footprint Identification and SVF Analysis

The second step (Figure 1b) involved GUI development for footprint identification
and SVF analysis. The two methods and algorithms proposed by An et al. [13] and
Yi and An [25] were integrated into a single GUI. SP-based building and TC footprint
identification require specification interfaces, such as setting user-defined spatial sampling
and SP thresholds for identification. SVF analysis also requires an interface, such as setting
spatial sampling, SVF analysis configurations, including ground with other land cover class
composites, hemispherical grid resolving power, and the maximum search distance of the
classified 3DPCs from each cell center (observation location). Qt and Microsoft Foundation
Class libraries were used to develop an integrated GUI to meet the required development
goal. Qt is a cross-platform application-programming framework for GUI and non-GUI
applications. The 3DPC format input and output (I/O) development is referred to as the
LAS specification version 1.4-R15 [26].
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2.2.1. Land Cover Identification

Yi and An [25] proposed a cell-based SP calculation for building and sequential
footprint identification methods from classified LiDAR 3DPCs. The major change applied
in the current study regarding conversion to rasterized footprints was the expansion of
land cover to buildings and TC. The Monte Carlo Integration (MCI) technique was applied
for 3DPC base SP calculations. In this method, random numbers are applied as a technical
solution [27] by obtaining a probabilistic approximation from a mathematical equation or
model [28]. This was applied to convert land cover class 3DPCs from a user-specified cell
into an SP value; that is, a cell is not considered a determined space but rather a space
to be determined probabilistically. Hence, MCI-based SP calculations represent a specific
land cover area ratio per cell as relative shares per cell area. The SP in each cell area was
calculated from the classified building or TC 3DPCs using Equations (1)–(4). Notably, these
equations are coded to batch the standardized LiDAR files through GUI (Figure 2a).

r =

√
Ap1

π
(1)

where r is the interactive search distance variable applied according to the spatial density
of each 3DPC cell dataset. Meanwhile, r is applied to enumerate randomly generated
points in a cell and is dependent on Ap1 (the length is shorter than the cell sampling size
(Figure 2c). Logically, the number of classified 3DPCs is less than the number of randomly
generated points. For instance, Figure 2c shows 5 LiDAR points classified as building
and 33 randomly generated points in a cell. Moreover, r should consider Airborne LiDAR
irregular 3DPC distribution and heterogeneous real land cover; there were few LiDAR
points in the water area. Hence, Ap1 is introduced to exclude empty cells and calculate r
reflecting the empty cell distribution in the whole array. That is, Ap1 (unit: m2) represents
the effective cell area excluding empty cells (the average cell area over the available cells)
and is calculated as follows:

Ap1 =

(
cellx × celly

)
− mcell

np
, (2)

where cellx and celly are the array numbers of cells along the horizontal and vertical
boundaries, respectively; mcell is the number of empty cells (e.g., water area cells in Figure 2);
and np is the total number of 3DPCs generated in the cell. SP represents the spatial
probability of the cell and is calculated as follows:

SP =
∫

f(x)dx ∼=
1
N∑n

i=1 ρ(xi, yi), (3)

where f(x) is a function composed of the interactive search distances and the coordinates
(xLIDAR, yLIDAR) of each LIDAR point; xLIDAR is the x-coordinate of the LiDAR point, and
yLIDAR is the y-coordinate of the LiDAR point; N is the number of random points generated
in cell (xi, yi); xi is the x-coordinate of random point i; and yi is the y-coordinate of random
point i. A computationally economical and efficient number of random points (33 random
points per cell area) was used to calculate SP. The more random points are generated,
the more reliable SP is, and the longer the calculation time to obtain results. The function
ρ(xi, yi) detects the presence or absence of a specific land cover 3DPC at the 33 randomly
generated points (Figure 2c) and is obtained using the following formula:

ρ(xi, yi) =

{
1

√
(xLIDAR − xi)

2 + (yLIDAR − yi)
2 ≤ r

0 otherwise
, (4)
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Figure 2. Concept of LiDAR 3DPC-based graphical user interface (GUI) allocation for land cover
identification and sky view factor (SVF) analysis. (a) Square domain indexing and grid-based cell
array setting. (b) Cell-based SVF calculation; red line covers the ground or building, and the green
line covers the tree canopy (Source: An et al. [13]); empty cells like water area are excluded when
Ap1 is calculated. (c) Cell-based SP calculation; rectangle represents a cell, identified points appear in
the red circles (generated from purple LiDAR points and search distance) and the other blue points
outside circles (Source: Yi and An [25]).

2.2.2. SVF Analysis

The SVF measures the shielding amount of all objects visible in the sky view above
a certain location to estimate the sky (diffuse) radiation reaching that location from a
virtual sky hemisphere. Hence, it is a dimension-reduced urban canopy parameter that
captures 3D forms through horizon limitation fractions [29]. An et al. [13] reviewed the
SVF calculation method and proposed a 3DPC-based SVF calculation for specialized TC
analysis, expecting that all related processes will soon be automated (Equation (5)).

SVF3DPC = 1 − Obstacle Grid Ratio, (5)

The LiDAR 3DPC object detects virtual obstacles that are oblique, such as a building,
and partly transparent, such as a TC [30]. In accordance with the classified LiDAR 3DPCs,
An et al. [13] proposed a virtual hemisphere for the projected sustaining disk, particularly
for 3DPC-based SVF calculations. The 2D sustaining disk consists of polar matrices (array
of cells), and each cell count classifies 3DPCs as a shielding obstacle from the hemisphere’s
origin (observing point); Equation (6) shows Obstacle Grid Ratio (0–1).

Obstacle Grid Ratio =
∑ i ∑ j · ρ(i, j) · S(i, j)

∑ i∑ j · S(i, j)
, (6)
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where ∑ i∑ j · S(i, j) is the total area of the sustaining disk and S(i, j) is the projected area
of each hemispherical grid cell. The sustaining disk had three layers to separately calculate
the three classified 3DPCs (ground, building, and TC). When three classified 3DPCs were
detected in each cell on a sustaining disk, the cell was considered opaque (Figure 2b).

ρ(i, j)(ground,Building,Tree Canopy) =

{
1 N(i, j) > 0
0 otherwise

, (7)

where ρ is the conditional function that determines whether the classified 3DPC is in the
grid; N(i, j) is the number of points that lie on cells (i, j); i is the index of the longitudinal
unit angle; and j is the index of the latitude unit angle. In addition, when the conditional
cell value relating to ground or building class 3DPC was calculated as the oblique ( ρ = 0),
all other vertical cells below the oblique cell were identified as the oblique (Figure 2b).
Equations (5)–(7) are coded to batch the standardized LiDAR files through GUI (Figure 2a).

2.3. Application of Urban-Scale LiDAR 3DPCs
2.3.1. Study Area

The area for the urban-scale LiDAR 3DPC application study was Incheon Metropolitan
City. Incheon is located in the northwestern region of South Korea, bordering the Seoul
and Gyeonggi provinces (Figure 3a,b). The study area covers the primary regions of
Incheon Metropolitan City, encompassing 501.5 km2, excluding Ganghwa and Ongjin.
This includes four administrative districts, including inland areas and islands, such as
Yeongjong Island (Figure 3c). Incheon was a rapidly growing urbanized city. However, the
population is slowly decreasing [31]. In 1883, the population of Incheon was approximately
5000, whereas the current urban area is home to approximately three million residents,
making it the third most populous city in South Korea, after Seoul and Busan. Intensive
urban-scale land use was employed to capitalize on its natural advantages of being a
coastal city and its proximity to the capital area for growth. Incheon operates the Incheon
International Airport and Incheon Port, positioning itself as a crucial transportation hub
in Northeast Asia. Furthermore, since 2003, Incheon has been promoting extensive urban
land development as a large-scale smart free economic zone, the Incheon Free Economic
Zone [32]. The urban settings and sky view area of Inchon continue to change.
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Figure 3. Study area, Incheon, South Korea. (a) The geographical location of the Incheon
Metropolitan City “http://www.maphill.com/korea-south/inchon/location-maps/political-map/
(accessed on 8 June 2023)”; (b) Administrative area, including inland, two large islands, and other
islands “https://www.google.com/maps/place/Incheon (accessed on 8 June 2023)”; (c) Area where
LiDAR 3DPCs were employed; 1© and 2© are in situ site survey sites.

http://www.maphill.com/korea-south/inchon/location-maps/political-map/
https://www.google.com/maps/place/Incheon
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2.3.2. Data Collection

Table 1 lists the datasets used in the study. As the key input of this study, the LiDAR
3DPCs were acquired from the ALS project, which is a part of the National Geographic
Information Institute (NGII) survey program. From 2002 to 2021, NGII performed ALS
surveys to build LiDAR 3DPCs that cover the entire urban area of Korea. Informal rules
are driven by iterative testing and refinement for the automated building or TC classifi-
cation. Subsequently, a quality control method developed by NGII was applied. Other
GIS datasets, such as land use (zone) and land cover, were also used for overlay-based
statistical comparisons or visual comparisons as an auxiliary reference.

Table 1. The data input applied in this study.

Data Provider Use Purposed

Airborne LiDAR Map (3DPC) NGII Buildings and tree canopy (TC) footprint
identification and SVF analysis

Administrative Area MOLIT Study Area Extraction

3DPC Index Map User-defined LiDAR 3DPCs Data Partitioning and
Integration (Mosaic)

Digital Ortho Photo Map NGII Superficial comparison and
visual interpretation

Land Cover ME TC footprint reference, overlay analysis
Land Use (Zone) MOLIT Land use overlay analysis

Building NGII Building footprint reference,
overlay analysis

ME: Ministry of Environment (https://egis.me.go.kr, accessed on 8 June 2023); MOLIT: Ministry of Land,
Infrastructure, and Transport; NGII: National Geographic Information Institute (https://map.ngii.go.kr, accessed
on 8 June 2023).

Processing the LiDAR data of the study area proved challenging as the 3DPC dataset
covers an area of over 500 km2, making it difficult to manipulate as a workbench input.
Hence, distributed processing with a parallel calculator that supports a GUI was required
for efficient manipulation. A 3DPC Index Map was constructed manually to segment the
massive 3DPC data provided by NGII (approximately 2.7 km × 2.7 km, 1:5000 scale) into
smaller data (1.2 km × 1.2 km) and re-allocate the non-rectangular domain to a square
domain (Figure 2a). TerraScan and TerraModel V.009.001, MicroStation V8-based third-
party commercial software, were used. Consequently, 750 3DPC files with equal domain
areas were generated using the 3DPC Index Map. Digital ortho photo maps provided by
NGII were available for Incheon as a supporting dataset and were incorporated into the
classification. These did not contain a near-infrared band, and only visible RGB bands
were available. High-resolution ortho-imagery (0.25 m) acquired in 2012, 2014, and 2016
were used for visual interpretation. Additionally, thematic land cover maps provided by
the Ministry of Environment (ME) and Land Use (zone) maps (Table 2) provided by the
Ministry of Land, Infrastructure, and Transport (MOLIT) were used to derive an overlay
analysis based on zonal statistical comparisons.

2.3.3. Urban-Scale LiDAR 3DPCs Processing

The development of an integrated GUI is not only for integration but also for expan-
sion, enhancing the function with an upgraded menu from the previous GUI [13,25]. After
validating the developed GUI, all 750 3DPC files were input as bundles into the GUI for
iterative batch processing to calculate the 3DPC class SP. As shown in Figure 1c, 750 classi-
fied 3DPC files were sequentially processed for footprint identification and SVF analysis.
All classified 3DPCs were allocated to each cell in the sampling grid by referencing the
coordinates and applying the equations. Following the GUI specification, all data I/Os
were processed using the visualized GUI.

https://egis.me.go.kr
https://map.ngii.go.kr
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Table 2. Land use (zone) map data properties and coverage area in the study site.

Class 1 Class 2 Class 3 Code Land Use Purpose Area
(km2)

Urban
areas

Residential Class I exclusive UQA111 Protect residential environments for
independent housing 1.18

Class II exclusive UQA112 Protect residential environments for
multi-unit housing 1.77

Class I general UQA121 Create convenient residential
environments for low-floor housing 14.6

Class II general UQA122 Create convenient residential
environments for mid-floor housing 47.55

Class III general UQA123 Create convenient residential
environments for mid/high housing 46.21

Quasi-residential UQA130 Provide commercial environments to
residential areas 21.44

Commercial Central UQA210 Expand the commercial functions in the
center/sub-center 3.6

General UQA220 Provide general commercial and
business functions 22.41

Neighboring UQA230 Supply the daily necessities and services
in the neighboring area 0.43

Circulative UQA240 Increase the circulation function in the
city and between the areas 1.04

Industrial Exclusive UQA310 Admit the heavy chemical industry,
pollutive industries, etc. 0.07

General UQA320 Allocate industries not impeditive to
the environment 36.04

Quasi-industrial UQA330

Admit light industry and other
industries, but in need of
supplementing the residential and
commercial functions

25.83

Green Conservation UQA410 Protect natural environment and green
areas in the city 45.18

Agricultural UQA420 Reserve an area for
agricultural production 3.9

Natural UQA430 Secure green area space and supply of
future city sites 232.73

Management areas
Conservation and management UQB300 Protect, but hard to designate as

conservation areas 1.01

Agricultural and management UQB200 Reserves for agriculture and forestry 0.17
Development and management UQB100 Incorporate to future urban areas 12.37

Agricultural areas UQC001 Protect forestry and promote agriculture 5.93

Natural environment conservation areas UQD001 Protect natural environment 0

Source: OECD [33].

The first step was identification processing. The building and TC footprints were
identified when the calculated SP value was higher than the threshold value specified by
the user in the GUI. Using the GUI, various resolving powers of the cell size (1, 4, 10, and
30 m) and SP-based identification threshold limits (over 0, 25, 50, and 75) were applied.
Consequently, GUI-specified identification footprint datasets were obtained. Iteratively
yielded 2D raster footprint identification datasets (ASCII format) were accumulated to the
specific directory of the mosaic, and the yielded results were compared according to the
resolving power of the cell (1–30 m) and the SP threshold (0–100). The building and TC
footprint identification datasets were mosaiced onto an urban-scale 2D raster. However,
footprint cells can be identified not only as buildings but also as TC. In this case, as a
rule, even though the building SP was smaller than the TC SP, the building class was
prioritized to avoid losing building identification due to the few and sparsely distributed
building footprints. The rule is typically applied to map generalization for buildings as
identification of buildings is important for conventional map use. However, although it
is computationally applicable for a monotonous land cover cell, problems can arise in a
heterogeneous land cover cell owing to the one-sided decision. In footprint identification
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computation, each cell is allocated from the user-specified spatial sampling resolutions
(1, 2, 4, 10, 20, and 30 m) as a grid array and measured. To compare the identified building
and TC footprint areas derived from different spatial sampling resolutions and minimum
thresholds (P0, P25, P50, and P75), the identified values were registered in the specified
grid aster files. Directory-based batch processing enabled the sequential iterative yield of
the identified building and TC footprint raster files from the classified 3DPC files created in
the optional cases named directory.

The second step was SVF analysis processing, which quantifies the effect of a spa-
tially distributed urban-scale TC on the SVF as a climate indicator. Hence, two sets of
classified 3DPCs were prepared as composites by the GUI specification: one set included
the ground and buildings, and the other included the ground, buildings, and TC. The
center of each cell is the location of the input land cover observation, and the user-defined
maximum search distance determines the radius of the virtual hemisphere. An et al. [13]
suggested that a maximum search distance-based buffer masking area longer than 60 m
was required to remove errors and yield numerous pixels of SVF analysis grid data. Ide-
ally, the SVF analysis should include all geometrically visible 3DPCs to consider all ob-
stacles as far away as possible. In this study, the SVF analysis domain coverage was
1.2 km × 1.2 km (Figure 2a,b). Hence, a maximum search distance of 100 m was applied,
considering various urban topographies and vertical urban environments. Two sets of
classified 3DPC composites were projected onto a 3D hemisphere and re-projected onto
a 2D sustaining disk for area-based calculations. Computationally, two types of the SVF
value were derived using Equations (5)–(7), and each cell composing a user-specified
grid array was measured. To compare the presence (GBH) or absence (GB) of the TC per
3DPC file, these values were registered into two raster format (ASCII) files. In addition,
directory-based batch processing enabled the sequential iterative yield of SVF raster files
from differently specified 3DPC files. From the GUI, the specified resolving power of the
cell size (1, 4, 10, and 30 m) was applied to the classified 3DPCS bundle files, and several
sets of SVF analysis 2D raster data were obtained iteratively and accumulated into the
specified directory.

2.4. Visual and Statistical Comparison

The visual and statistical comparison experiments have two purposes: to describe
the specified GUI application results and determine the applicability and challenges of
the urban-scale fine-resolution methodology employed with massive LiDAR 3DPC data.
Hence, each of the 750 raster grid files was mosaiced onto urban-scale map images for
visual and statistical comparison. Each mosaic was created using a Python script-based
ESRI ArcGIS geospatial function (raster mosaic) batch. The identified footprint mosaic
iteratively yielded six different sampling resolutions and four minimum thresholds based
on raster imagery files that were mosaiced into the urban-scale high-resolution building
and TC footprint maps. The SVF mosaic iteratively yielded four = sampling resolutions
(1, 4, 10, and 20 m) and three analysis types (TC presence, TC absence, and SVF difference).
The raster imagery files were mosaiced into urban-scale high-resolution SVF maps. Two
types of urban-scale SVF analysis imagery (TC vs. TC excluded) were applied as inputs
to the subtraction function to measure the SVF difference and quantify the TC effect. This
showed an additional decrease in the SVF value owing to the presence of the TC in the
urban environment as a quantitative view of the sky.

The mosaiced urban-scale building and TC footprint maps made from different reso-
lutions and SP thresholds, and the urban-scale SVF made from different resolutions and
vertical feature composites, were visually compared. In addition, Incheon Central Park
zoom-in visual verification and in situ field surveys were performed. Statistical com-
parisons using urban-scale mosaic map data overlay analysis with GIS maps (building
footprint digital map, land cover, and land use) were performed to derive quantitative
values of the identified vertical feature footprint areas and related TC SVF effects.
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2.5. In Situ Survey

An in situ survey was performed to compare the 3DPC SVF values (GBH, 1 m resolu-
tion) with others. The optical SVF measurements method was employed to conduct a field
survey for 26 locations during the hot and sunny period of July 2023 (Figure 4). Sky view
fish-eye images were captured at sunset (17:00–20:00) on 6 July 2023 with a Canon EOS 6D
MarkII camera with SIGMA 8 mm F3.5 circular fish-eye lens. Before taking fish-eye images,
the camera was mounted on a Manfrotto tripod, horizontally aligned, and oriented true
north using a portable level and electronic compass. Twenty-six fish-eye images (Figure 4a)
were converted from color to black and white by altering the brightness and contrast of each
image using the threshold control interface in SOLWEIG 1D v.1.0. Fish-eye image-driven
SVF indicates the degree of open sky area from an observation focal point 0.9 m above
ground level. The SVF is influenced by surrounding buildings, tree canopy cover, and
other street furniture objects. Additionally, microclimate measurements were performed at
11:30–13:30 on 7 July 2023 with three portable surveying instruments (Table 3). A hollowed
black sphere with a temperature sensor inside a portable instrument (SATO SK-170GT) mea-
sures air temperature (TA), relative humidity (RH), wet bulb globe temperature (WBGT),
and globe temperature (TG). The black globe was equilibrated to the measurement location
conditions for 3 min. FLIR TG267 was then used to capture surface temperature images
from the radiance of surrounding urban settings or landscapes. BOSCH GIS 500 and FLIR
TG 267 were used to measure ground surface temperatures. Additionally, we recorded
certain attribute values for the ground surface material type (wood, granite, loam, asphalt,
cement concrete), shadow condition at the time of measurement (shadowy, sunlit), canopy
type (open, tree, parasol), and land use zone codes.
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Table 3. Specification for the portable microclimate measurement instruments used in this study.

Climate Attributes Measurement Instrument Measurement Range (Accuracy)

Air Temperature (TA) SATO SK-170GT 0–50 ◦C (±0.6 ◦C)
Relative Humidity (RH) SATO SK-170GT 10–95% (±3.0%)

Wet Bulb Globe Temp. (WBGT) SATO SK-170GT 0–50 ◦C (±2.0 ◦C)
Globe Temperature (TG) SATO SK-170GT 20–60 ◦C (±1.2 ◦C)

Surface Temperature BOSCH GIS 500 −30–500 ◦C (±1.8 ◦C)
Surface Temperature Image FLIR TG 267 −25–380 ◦C (±3.0 ◦C)

3. Results
3.1. LiDAR 3DPCs Graphical User Interface

For the analysis of advanced urban-scale settings, the GUI developed LiDAR 3DPC
data for interactive virtual exploration and provided user-specified batch data via the
generation of simple windows (Figure 5a,b). In GUI, LiDAR data I/O were logged on an
independent console window (Figure 5c). Figure 5d shows snapshots of the uploading and
navigation screens of one LiDAR file (1.2 km × 1.2 km). Users can assign a hemispherical
origin on the ground, project 3DPCs onto a virtual hemisphere, and visualize during the
virtual 3DPCs space exploration. Although GUI facilitates the acquisition of information for
knowledge development, service functions are insufficient. As described by An et al. [13],
the rule for assigning 3DPCs (allocation) is not flexible; this results in the terrain being
assigned first, followed by the buildings and finally, the TC.
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Figure 5. Development of LiDAR 3DPC input and output (I/O) GUI. (a) I/O directory, sampling
resolution (cell size), land cover class, threshold (%), etc., for footprint identification. (b) User I/O
directory, sampling resolution (cell size), land cover class, threshold (%), etc., for SVF analysis.
(c) Console window view of the log according to user control. (d) Single LiDAR dataset can be
visualized on GUI to explore virtual 3DPC space. In addition, a virtual sky view projected on the
sustaining disk through the hemispher at the observation point is used as an auxiliary data.
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3.2. Urban-Scale Building and Tree Canopy Footprint

Urban-scale building and TC footprint identification results were successful as the
GUI-based workbench promptly produced urban-scale map data for a targeted resolution.
In total, 750 classified 3DPC files in the directory were affordable inputs for urban-scale
LiDAR 3DPC applications. Each SP was calculated from a GUI-specified resolution, and the
identified footprint was produced over several hours to a few days. As shown in Figure 6,
36 mosaiced urban-scale buildings and TC footprint maps, arrayed as a series of image
spreadsheets, were expressed with different visual information for the study area. The
superficial comparison results revealed that urban-scale outputs showed a gradual decrease
in identifiable footprints, demonstrating visually lowered clarity or blurred images as the
GUI specifies a higher SP threshold or finer resolution. Hence, finding optimized GUI
composite options to obtain the best area (km2) fitted building or TC footprint is challenging.
Typically, a true or reference value is required for the overall accuracy assessment of the
identified footprint area. Unfortunately, the true land cover footprint area of buildings or
TC is unclear due to difficulty in measuring the in situ footprint. This is primarily due to
the non-geometric forms of urban vertical features and complex urban settings. Hence, a
uniform threshold application should be avoided. Each file-based or LiDAR land cover
class-based threshold application can be recommended.

According to the building class national digital map of Korea (NCA_B0010000,
1/5000 scale) provided by the NGII, the total building footprint of the study area cov-
ers approximately 48.68 km2, which excludes many temporary buildings. Only overlaying
and comparing the manually digitalized building footprint (NCA_B0010000) with the
LiDAR 3DPC GUI-generated building footprint may be inappropriate as they have differ-
ent mapping rules and steps. NCA_B0010000 has unique and complicated classification
codes and was manually edited using in situ field survey auxiliary data. Building or TC
3DPCs were also manually classified; however, the classification was simple and skipped
in situ field surveys. In addition, most 3DPCs below 2 m above the ground were not used,
exacerbating the difference. Although these differences are significant, we roughly set the
true value zone of the building footprint for the study area as 40–100 km2. Additionally,
this study assumed that the true value of the TC footprint area was 80–160 km2, which
was referred from the forest class land cover area (89.23 km2) provided by the Ministry of
Environment (Table 4).

Table 4. Land cover map data properties by classification level and coverage area in the study site.

Level 1 Level 2 Level 3

Name Code Area
(km2) Name Code Area

(km2) Name Code Area
(km2)

Built-Up Land 100 175.70 Residential 110 20.68 Single-Family Units 111 10.10
Multi-Family Units 112 10.58

Industrial 120 15.23 Industrial 121 15.23
Commercial 130 15.96 Commercial 131 15.92

Complexes 132 0.04
Communication 140 2.08 Communication 141 2.08
Transportation 150 113.12 Airport 151 0.70

Harbor 152 3.73
Railroad 153 1.10

Road 154 107.54
Other 155 0.05

Public Utilities 160 8.64 Environmental 161 0.50
Educational 162 2.42

Other 163 5.72

Agricultural Land 200 44.50 Paddy Field 210 18.07 Readjustment 211 8.64
Non-Readjustment 212 9.43

Non-Irrigated Land 220 20.98 Readjustment 221 1.42
Non-Readjustment 222 19.56

Protected Cultivation 230 2.83 Protected Cultivation 231 2.83
Orchard 240 1.15 Orchard 241 1.15

Other Cropland 250 1.47 Ranch or Farm 251 0.20
Other 252 1.27

Forested Land 300 82.93 Deciduous Forest Land 310 51.95 Deciduous Forest Land 311 51.95
Coniferous Forest Land 320 19.01 Coniferous Forest Land 321 19.01

Mixed Forest Land 330 11.98 Mixed Forest Land 331 11.98
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Table 4. Cont.

Level 1 Level 2 Level 3

Name Code Area
(km2) Name Code Area

(km2) Name Code Area
(km2)

Grassland 400 73.93 Natural Grassland 410 0.86 Natural Grassland 411 0.86
Non-Natural Grassland 420 73.07 Golf Course 421 4.25

Cemetery 422 2.86
Other 423 65.96

Wetland 500 23.56 Inland Wetland
(Wetland Vegetation) 510 15.11 Inland Wetland

(Wetland Vegetation) 511 15.11

Coastal Wetland 520 8.46 Tidal Flat 521 7.68
Salt Field 522 0.77

Barren Land 600 82.98 Natural Barren Land 610 1.88 Beach 611 1.23
Riverside 612 0.26

Exposed Rock 613 0.39
Non-Natural Barren Land 620 81.09 Quarry 621 0.20

Playground 622 2.34
Other 623 78.56

Water 700 19.50 Inland Water 710 13.76 Stream and Canal 711 5.33
Lake and Reservoir 712 8.44

Seawater 720 5.74 Seawater 721 5.74

Source: NGII [34].

Despite the true value zone wide range set, many identified footprint area values
have exceeded the range significantly (Figure 7 and Table 5). As shown in Figure 7a, the
chart of the 36 urban-scale building footprint area (km2) values derived from the GUI and
applied to the classified LiDAR 3DPCS demonstrates the difficulty in identifying building
footprints. Limited parts of the urban-scale building footprint area (km2) P0 and P25 values
were in the true value zone, whereas none of the P50 and P75 values reached the true
value zone. In the P0 case, the 2 m- and 4 m-based area values were within the true value
zone. Both underestimation (1 m) and overestimation with steep linear trends were evident,
indicating that the P0 building footprint area values were sensitive to resolution variation.
However, in the P25 case, the 10 m-, 20 m-, and 30 m-based values were in the true value
zone. Both underestimations (1, 2, and 4 m) were evident. However, the P25 building
footprint area values were less sensitive as the resolution became coarser. Hence, we can
conclude that when using the given classified building 3DPCs and GUI, P0 is appropriate
for finer resolution (2 and 4 m), and P25 is appropriate for 10 m or coarser resolution
urban-scale building footprint identification. Meanwhile, GUI options at 1 m resolution or
P0 and P75 are not recommended.

Table 5. Urban-scale mosaic raster data size and identified building and TC footprint area (km2).

Probability Density
Over 0 (P0) Over 25 (P25) Over 50 (P50) Over 75 (P75)

Building TC Building TC Building TC Building TC

1 m
(40,615 × 34,000) 16.5 41.0 2.2 25.0 1.2 18.4 0.9 14.4

2 m
(20,308 × 17,000) 52.6 111.3 10.2 83.3 5.4 63.1 3.9 49.1

4 m
(10,154 × 850) 69.4 132.6 23.8 114.7 13.2 97.6 8.2 79.0

10 m
(4062 × 3400) 101.7 164.0 43.7 141.2 22.2 118.3 12.5 88.1

20 m
(2031 × 1700) 136.0 179.3 59.3 156.2 26.0 112.7 11.6 59.7

30 m
(1354 × 1134) 159.8 181.7 66.8 157.2 23.1 96.2 12.2 32.4

Building footprint area true value zone: 40–100 km2; tree canopy (TC) footprint area true value zone: 80–160 km2.



Remote Sens. 2023, 15, 3910 14 of 30Remote Sens. 2023, 15, x FOR PEER REVIEW 13 of 32 
 

 

 
Figure 6. Urban-scale visual comparison of the identified building and tree canopy (TC) footprint 
generated from the six sampling resolutions (a–f) 1, 2, 4, 10, 20, and 30 m, respectively, and four 
different SP thresholds (P0, P25, P50, and P75). 

According to the building class national digital map of Korea (NCA_B0010000, 1/5000 
scale) provided by the NGII, the total building footprint of the study area covers approx-
imately 48.68 km2, which excludes many temporary buildings. Only overlaying and com-
paring the manually digitalized building footprint (NCA_B0010000) with the LiDAR 
3DPC GUI-generated building footprint may be inappropriate as they have different map-
ping rules and steps. NCA_B0010000 has unique and complicated classification codes and 
was manually edited using in situ field survey auxiliary data. Building or TC 3DPCs were 
also manually classified; however, the classification was simple and skipped in situ field 
surveys. In addition, most 3DPCs below 2 m above the ground were not used, exacerbat-
ing the difference. Although these differences are significant, we roughly set the true value 

Figure 6. Urban-scale visual comparison of the identified building and tree canopy (TC) footprint
generated from the six sampling resolutions (a–f) 1, 2, 4, 10, 20, and 30 m, respectively, and four
different SP thresholds (P0, P25, P50, and P75).

In contrast, many major portions of the urban-scale TC footprint area (km2) values
for P0, P25, and P50 were in the true value zone, although a few were outside (Figure 7b).
In the P0 and P25 cases, all values except for 1 m resolution were in the true value zone
and were not overestimated with a parabolic curve trend, indicating that the P0 and P25
TC footprint area values were less sensitive to the resolution variation than the building
footprint. Underestimation became stronger as the resolution became finer or the SP
threshold increased. However, at coarser resolutions (20 and 30 m), the TC footprint area
significantly decreased, particularly at higher SP threshold resolutions (P50 and P75). This
is primarily due to priority being given to building footprints when footprint competition
occurs between the building and TC (Figures 6 and 7); the coarser the resolution applied
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in the study area, the smaller the TC footprint area return due to the one-sided building
footprint allocation priority. That is, the reason for the improvement does not appear to
be the increased TC footprint identification accuracy but rather the positive and negative
errors offsetting each other. Indeed, the weakness is more apparent when the TC land
cover heterogeneity in a cell increases. Hence, caution must be exercised when land cover
heterogeneity increases due to coarse cell resolution to prevent TC and other land cover
footprint areas from being assigned to building footprints.
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Figure 7. Statistical comparison of the identified urban-scale building and TC footprint area with different
resolutions (1, 2, 4, 10, 20, and 30 m) and SP thresholds (P0, P25, P50, and P75). (a) Building footprint
identified area variance by resolution compared to the true value zone (Yellow; 40–100 km2). (b) Tree
canopy identified area variance by resolution compared to the true value zone (Blue; 80–160 km2).

In comparison with the identified building or TC footprints, the multiresolution urban-
scale SVF maps and averaged statistics exhibited considerably more consistent results.
However, unlike the identification process, the 750 3DPC file batch required huge storage
and a much longer time as the sampling resolution became finer (Table 6). However,
post-work, including mosaic or map algebra processing times, did not show significant
differences. Four DIF maps were calculated from eight mosaiced SVF maps by applying
simple map algebra (Figure 8d), which had different data sizes and were completed in
a maximum of 1 h (Table 6). A superficial comparison reveals that the three types of
SVF maps (GB, GBH, and DIF) were visually consistent. Despite four different sampling
resolutions, the average SVF values for GB, GBH, and DIF were statistically consistent.
These visual consistencies were also confirmed by the urban-scale-averaged SVF statistics.
As shown in Figure 7 and Table 6, unlike the significant variations among the identified
building and TC footprint areas, minimal variations were detected in the mean, maximum,
and standard deviation of SVF DIF. The urban-scale SVF–DIF map measures the range of
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TC-induced values across the entire study area. According to the resolution variation, the
urban-scale mean SVF DIF range was 0.685–0.687, indicating that the difference between the
highest and lowest SVF values was small (0.002). This suggests that a resolution of 1–30 m
did not significantly alter the SVF maps and values. Unlike LiDAR footprint identification,
the SVF value consistency was offset between the positive and negative errors.
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Figure 8. Urban-scale visual and statistical comparisons of the SVF generated from the four sampling
resolutions (1, 4, 10, and 30 m). (a) TC presence (GB) sky view factor (SVF); (b) TC absence (GBH)
SVF; (c) SVF difference (DIF); (d) Statistical comparison of the max and mean values for the SVF DIF.

The primary reasons for the observed visual difference (Figure 6 vs. Figure 8a–c) and
statistical difference (Figure 7 vs. Figure 8d) were the number of classified 3DPCs used by
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search distance types, interactive random point search distance for footprint identification,
and maximum search distance for SVF analysis. Footprint identification by interactive
random point search distance used a few LiDAR points located in the cell; hence, the
SP value was affected by the distribution of the points. However, SVF by maximum
search distance used sufficient LiDAR points located inside or outside the cells, making
the SVF value more continuous for surrounding cells and less sensitive to resolution
variations. For instance, according to the 100 m maximum search distance and the ALS
LiDAR acquisition guideline standard (2.5 pt/m2), the cell center-oriented usable number
of 3DPCs was approximately 78,500 points, which made SVF values less sensitive to the
resolution variance (1, 4, 10, and 30 m). In contrast, the maximum number of usable
points for a 1 m resolution cell SP calculation would be 2.5, and a 30 m resolution cell SP
calculation would be 2250, according to the guideline standard. In addition, the density
classified as a building or TC was <2.5 pt/m2. Hence, the finer the grid cell resolution, the
fewer usable points for footprint identification. Consequently, the difference in the number
of usable points exacerbates the visual and statistical differences.

Table 6. Urban-scale sky view factor (SVF) mosaic raster data size and statistics.

SVF Mosaic Data Size Columns × Rows Min Max Mean Std

GBH_30 m 5.86 MB 1354 × 1134 0.013 1.000 0.739 0.218
GBH_10 m 52.68 MB 4062 × 3400 0.005 1.000 0.712 0.215
GBH_4 m 329.24 MB 10,154 × 8500 0.005 1.000 0.693 0.215
GBH_1 m 5.14 GB 40,615 × 34,000 0.000 1.000 0.679 0.213
GB_30 m 5.86 MB 1354 × 1134 0.013 1.000 0.829 0.179
GB_10 m 52.68 MB 4062 × 3400 0.006 1.000 0.800 0.178
GB_4 m 329.24 MB 10,154 × 8500 0.006 1.000 0.781 0.182
GB_1 m 5.14 GB 40,615 × 34,000 0.000 1.000 0.765 0.185

DIF_30 m 5.86 MB 1354 × 1134 0.000 0.685 0.090 0.125
DIF_10 m 52.68 MB 4062 × 3400 0.000 0.686 0.088 0.122
DIF_4 m 329.24 MB 10,154 × 8500 0.000 0.687 0.087 0.121
DIF_1 m 5.14 GB 40,615 × 34,000 0.000 0.686 0.085 0.119

A visually magnified check focusing on Incheon Central Park (Figure 9) and an in situ
site survey (Figure 10) showed the abovementioned differences, as well as more complicated
issues during the proposed method comparison with the in situ survey measurement.
That is, applying a coarser resolution increased the aboveground feature footprint area
(>2 m). A building or TC footprint encroached and occupied an in situ footprint of
ground surface land cover types, such as water, grassland, barren land, and transportation
(road). The identified building accession footprint occupation in the case of a very low SP
(0P) was outstanding due to the coarser resolution (Figure 9a). With low SP and coarse
resolution, building footprints significantly encroached on the ground surface feature
footprints and TC footprints, which produced a parabolic curve trend (Figure 7b). A
one-sided rule that assigns building footprints a higher priority than TC or other ground
surface footprints will induce unbalanced and intolerable land cover areal proportions,
especially coarser resolutions, such as in the 30 m case in this study. However, we also
found that applying a finer resolution forced the building footprint to abandon over-
occupied space. As the study area was divided into finer cell spaces, when the resolution
was extremely fine (e.g., 1 m or sub-meter), the space in many cells registered as building
footprints under coarse resolution was mostly recategorized as empty or TC footprint
space (Figure 9a). The extremely fine sampling resolution-induced issue was also observed
in the SVF analysis due to the lack of building-class 3DPCs. However, the associated
significance was much lower than that of footprint identification. Hence, as an ALS-based
solution, more densely classified building 3DPCs are required for finer-resolution building
footprint identification. Accordingly, the ALS survey should undergo a lower altitude flight
to obtain denser LiDAR 3DPCs. As shown in the Incheon Culture & Art Center vertical
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wall-sided footprint (Figure 9a,c(1)), which had relatively dense building class points, the
space building footprints were relatively robust by high SP and resolution variation.
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canopies impact urban microclimate attributes. As shown in Figure 10 and Table 7, the 26 
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settings, resulting in a difference in measurements between fish-eye SVF and LiDAR SVF 
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Figure 9. Incheon Central Park magnified visual comparison of the identified building and TC footprints
and SVF. (a) Six resolutions (1, 2, 4, 10, 20, and 30 m) and four SP thresholds (P0, P25, P50, and P75).
(b) Four resolutions (1, 4, 10, and 30 m) and three analysis types (GB, GBH, and DIF). (c) In situ
photographs taken from Incheon Culture & Art Center (1) and Incheon Central Park tree canopy belt (2).
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In contrast, a magnified image of the SVF (GB, GBH, DIF) spatial distribution in and
around the Incheon Culture & Art Center showed strong visual consistency despite the sig-
nificant resolution variations. Nevertheless, differences were apparent between statistical
SVF reliability and place-based SVF accuracy. For instance, it is difficult to distinguish a
small gap between small buildings in a 2 m resolution SVF map; meanwhile, a resolution
coarser than 10 m distorts the original appearance of small or medium size buildings. How-
ever, constant or similar visual contexts were maintained across the resolution variation.
The analysis of additional TC effects on SVF requires more consideration. The brighter
belt area of SVF DIF (Figure 9b) indicates the additional sky view area encroaching due
to the TC, which is an important urban setting design component for the screen-level
urban climate and human health [5,35]. The SVF DIF distribution pattern was spatially
continuous in comparison with the discrete footprint distribution, which can be useful for
green axis planning.

The data collected during summer days in the July 2023 field survey provide verifica-
tion of the LiDAR SVF (Figure 9b GBH_1m), as well as data regarding how large urban
canopies impact urban microclimate attributes. As shown in Figure 10 and Table 7, the
26 in situ locations in real urban settings were more complex than digitized virtual urban
settings, resulting in a difference in measurements between fish-eye SVF and LiDAR SVF
(GBH, 1 m). Generally, the averaged SVF difference mean was small (0.03), while varia-
tions in the fish-eye SVF values were relatively higher than point-based GBH SVF values
(Figure 11a). This was due to the fish-eye images capturing real sky areas in detail and many
urban furniture and features taller than 0.9 m. Meanwhile, in the captured point-based
sky view area and obstacle area, street furniture, low vegetation, and temporary obstacles
shorter than 2 m are excluded.

Table 7. In situ survey site SVF comparison (fish-eye photography vs. LiDAR 3DPC (GBH. 1 m)) and
measured microclimate attributes.

No
SVF TA

(%)
RH
(%)

WBGT
(%)

Surface Temp. (◦C) Material
Type

Shadow
/Sunlit

Canopy
Type

Zone
CodeFisheye GBH Diff SATO Bosh FLIR

1 0.83 0.51 0.24 34.6 36.9 30.2 45.6 57.2 55.9 wood sunlit open UQA430
2 0.9 0.56 0.13 34.6 42.6 32.6 45.3 42.3 44.3 granite sunlit open UQA430
3 0.47 0.42 −0.04 33.2 45.4 29.9 44.2 30.8 31.2 granite shadow tree UQA430
4 0.49 0.46 −0.1 32.3 48.5 28.6 28.8 29.6 29.2 granite shadow tree UQA430
5 0.61 0.36 −0.26 36.3 43.8 29.7 40.2 40.4 38.6 granite sunlit open UQA430
6 0.62 0.48 −0.21 34.2 42.1 29.6 42.6 41.3 39.6 granite sunlit open UQA430
7 0.11 0.34 0.32 31.8 45.8 26.9 35.4 30.4 29.1 granite shadow tree UQA430
8 0.35 0.41 0.34 32.8 44.6 29.2 42.6 28.3 26.2 granite shadow tree UQA430
9 0.74 0.55 0.25 34.6 36.8 27.1 37.1 41.4 39.5 granite sunlit open UQA430
10 0.66 0.48 0.14 32.2 42.1 27.9 40.3 24.5 23.3 granite sunlit open UQA430
11 0.45 0.46 0.19 31.4 44.4 26.1 34.3 27.5 26.0 granite shadow open UQA430
12 0.13 0.51 0.18 29.7 48.5 24.9 32.2 26.6 23.8 loam shadow tree UQA430
13 0.86 0.58 −0.01 33.2 41.0 29.5 43.8 40.7 50.0 granite sunlit open UQA430
14 0.08 0.43 0.28 30.8 45.6 26.8 36.8 24.9 25.1 loam shadow tree UQA430
15 0.05 0.46 0.18 31.6 46.8 26.7 34.4 24.8 24.5 loam shadow tree UQA430
16 0.06 0.43 −0.24 32 39.6 27.3 38.7 29.1 28.0 cement shadow Tree UQA430
17 0.78 0.6 −0.24 39.6 32.8 33.6 50.9 45.7 46.0 granite sunlit open UQA430
18 0.19 0.4 −0.32 32.3 41.4 26.2 34.2 30.9 31.2 granite shadow parasol UQA220
19 0.29 0.53 0.05 32.8 40.0 26.5 34.7 35.1 34.0 granite shadow parasol UQA430
20 0.32 0.56 0.03 31.2 44.5 26.8 36.3 35.8 35.0 granite shadow parasol UQA430
21 0.21 0.53 −0.23 31.7 42.2 26.1 35.7 33.5 32.0 granite shadow parasol UQA430
22 0.21 0.47 −0.06 32.2 44.0 27.0 35.7 35.0 34.4 granite shadow parasol UQA130
23 0.58 0.34 −0.38 33.2 40.8 27.8 37.4 45.3 45.7 asphalt sunlit open UQA122
24 0.43 0.3 −0.35 33.6 41.2 27.9 36.9 48.1 47.5 asphalt sunlit open UQA122
25 0.17 0.21 −0.41 34.3 38.3 28.7 35.6 35.1 36.2 cement sunlit open UQA130
26 0.07 0.17 −0.37 32.5 45.6 27.3 35.9 28.8 28.3 cement shadow open UQA130

Mean 0.41 0.44 −0.03 33.0 42.5 28.1 38.3 35.1 34.3 - - - -
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Figure 11. In situ survey site SVF and microclimate. (a) A 26-point SVF value comparison (fish-eye
photography vs. LiDAR 3DPC (GBH. 1 m)). (b) Land-use-based mean SVF value comparison (inside
park zone vs. outside park zone). (c) Measured air temperature (AT) and relative humidity (RH)
variation according to the sunlight environment, ground material, and urban canopy.
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As in many other studies, the link between land use plans and sky view area is
demonstrated in Figure 10. Building setting patterns caused by land use zone designation
differentiates the SVF values. The SVF mean of the Urban/Green/ Natural zone (UQA430)
appeared twice bigger than the outside park area (UQA122, UQA130, UQA220) SVF mean
(Figure 11b). Moreover, several public buildings in Inchon central park and east side high-
rise buildings encroach on the sky view area. However, they have minimal effects on the
Urban/Green/Natural zone (park area) SVF. In contrast, the TC significantly encroaches
on the SVF in the park area. Although the TC area is not abundant outside the park area,
interestingly, foldable solar parasols exhibit a canopy role in the open street. According to
the solar path drawn from the SOLWEIG1D model, parasols can typically cast shade in the
central area from 10:00 to 15:00; the shorter the parasol height, the longer the time to cast
the shade (Figure 4a).

The field survey demonstrated that many other factors can also affect in situ obser-
vations. As shown in Table 7 and Figure 11, the measured microclimate attribute values
imply that multiple interactions can occur between weather and urban settings. Although
the measurement instruments had low accuracy, AT and RH values reasonably varied
according to composite variations in the material type, shade/sunlit, and canopy type,
reasonably (Figure 11c). For instance, the sunlit/granite/open area showed the highest
AT (39.6 ◦C) and lowest RH (32.8%), whereas the shade/loam/tree area had the lowest
AT (29.7 ◦C) and highest RH (48.5%); other microclimate variations were distributed in
between. Moreover, various unmeasured factors in the survey could affect the measure-
ment results. For instance, during the short ~2 h field measurement period, the wind speed
and cloud cover changed significantly, which could have affected measured microclimate
attribute values. Nevertheless, the importance of the urban natural and artificial canopies
is reflected in the measured values, highlighting their role in in situ urban microclimate.

4. Discussion

The integrated urban-scale land cover footprint and SVF analysis maps from LiDAR
3DPC exhibited various limitations and research imperfections. However, they also proved
that evaluating a climatically resilient and adaptive urban setting is feasible. Moreover, the
results of this study support the application of big data, such as LiDAR, in urban-scale plan-
ning approaches. Hence, constructing a wider urban scale with improved resolving power
is feasible to generate and manage big data. Nevertheless, the proposed methodology and
results are immature and further research is required to address the remaining challenges.

4.1. Applicability for Urban-Scale Studies
4.1.1. Institutional Land Cover or Land Use Map Update

The proposed method can be applied for institutional land cover and land use map
updates. To date, land use and land cover maps have commonly been used as major
datasets for urban-scale studies [3,36]. Over decades of urbanization, buildings have been
continuously constructed or destroyed, vertically changing urban settings with TC. Urban
trees in streets and parks show greater variability than buildings due to their biological
growth and the relative ease with which they can be removed. Accordingly, street trees
are occasionally regarded as urban furniture. Land cover or land use map updates require
information about building and TC footprints and their vertical and versatile attributes.
LiDAR 3DPCs can support these updates.

Collaboration with models will support land use plans that can access and explore
future land cover changes [36]. In the Republic of Korea, the best available, quality-
controlled, large-scale, and detailed institutional land cover map is provided by ME (L3),
and institutional land use maps are provided by MOCT (Table 1); however, these do not
include urban-scale data but rather national-scale data. Meanwhile, the building and TC
footprints (2 m resolution) can support land cover (L3) updates; areal or vertical attributes
are useful to update auxiliaries (Figure 12 and Table 8). For instance, when a transition
from deciduous forest land cover to multifamily units occurs, the resulting change could
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potentially be detected from the time series composite of building and land cover footprints.
Current institutional land cover has been updated from the visual interpretation and
manual digitization using 1 m or sub-meter resolution satellite remote sensing, and ME
announced a plan to further update these resources. However, the associated manual work
will require a significant amount of time to complete. Hence, a foundation for advanced
solutions is also needed. Martins et al. [37] suggested that advancements in technology,
such as machine learning, would enable more precise and accurate urban setting mapping
and updates. This could enhance LiDAR 3DPC application for context interpretation and
decision support.
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Table 8. Ministry of Environment (ME) land cover (L3) area and its corresponding building and the
TC footprint area.

ME Land Cover LiDAR 3DPC

L3 Name L3 Code L3 Area Building
(km2)

Building/
L3 Area

(%)

Tree
(km2)

Tree/
L3 Area

(%)

Single-Family Units 111 10.1 6.21 61.49 1.88 18.61
Multi-Family Units 112 10.58 6.99 13.30 1.14 10.78
Industrial 121 15.23 11.85 22.50 1.07 7.03
Commercial 131 15.92 10.44 19.80 1.82 11.43
Complexes 132 0.04 0.01 0.00 0 0.00
Communication 141 2.08 0.33 0.60 0.23 11.06
Airport 151 0.7 0.62 1.20 0.01 1.43
Harbor 152 3.73 0.43 0.80 0.15 4.02
Railroad 153 1.1 0.04 0.10 0.06 5.45
Road 154 107.54 6.35 12.10 11.37 10.57
Other_T 155 0.05 0.02 0.00 0 0.00
Environmental 161 0.5 0.12 0.20 0.04 8.00
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Table 8. Cont.

ME Land Cover LiDAR 3DPC

L3 Name L3 Code L3 Area Building
(km2)

Building/
L3 Area

(%)

Tree
(km2)

Tree/
L3 Area

(%)

Educational 162 2.42 1.56 3.00 0.28 11.57
Other_P 163 5.72 1.49 2.80 0.4 6.99
Readjustment 211 8.64 0 0.00 0.01 0.12
Non-Readjustment 212 9.43 0.01 0.00 0.05 0.53
Readjustment 221 1.42 0 0.00 0.03 2.11
Non-Readjustment 222 19.56 0.22 0.40 1.57 8.03
Protected Cultivation 231 2.83 0.1 0.20 0.27 9.54
Orchard 241 1.15 0.03 0.10 0.22 19.13
Ranch or Farm 251 0.2 0.06 0.10 0.04 20.00
Other_C 252 1.27 0.02 0.00 0.24 18.90
Deciduous Forest Land 311 51.95 0.59 1.10 44.45 85.56
Coniferous Forest Land 321 19.01 0.16 0.30 16.05 84.43
Mixed Forest Land 331 11.98 0.12 0.20 9.59 80.05
Natural Grassland 411 0.86 0.01 0.00 0.18 20.93
Golf Course 421 4.25 0 0.00 0.11 2.59
Cemetery 422 2.86 0.01 0.00 0.54 18.88
Other_G 423 65.96 2.67 5.10 12.26 18.59
Inland Wetland (Vegetation) 511 15.11 0.03 0.10 0.21 1.39
Tidal Flat 521 7.68 0.01 0.00 0.01 0.13
Salt Field 522 0.77 0 0.00 0 0.00
Beach 611 1.23 0 0.00 0.05 4.07
Riverside 612 0.26 0 0.00 0 0.00
Exposed Rock 613 0.39 0 0.00 0.09 23.08
Quarry 621 0.2 0 0.00 0.01 5.00
Playground 622 2.34 0.04 0.10 0.11 4.70
Other_B 623 78.56 2.04 3.90 6.59 8.39
Stream and Canal 711 5.33 0 0.00 0.07 1.31
Lake and Reservoir 712 8.44 0.01 0.00 0.03 0.36
Seawater 721 5.74 0.01 0.00 0.01 0.00

Total - - 52.64 - 111.27 -

4.1.2. Enhanced Urban-Scale Land Use Management

Fundamentally, one of the goals of urban planning is to optimize the reallocation of
complex urban settings. In this context, while diagnosing the current situation is important,
planning future urban settings typically garners more attention and is evaluated via the
current institutional land use map. Traditional land use maps primarily focus on zoning
for buildings related to residential planning. However, global climate change increasingly
motivates concerns about other urban settings, including the tree canopy. Currently,
urban environment assessments are based on changes in the institutional land cover.
Meanwhile, ultimately, building and TC footprints and their functional information will
be required to make land use designation decisions. Accordingly, numerous essential
indicators of sustainable urban settings will be introduced, requiring the implementation
of various auxiliary indicators, including LiDAR. Hence, developed urban-scale high-
resolution LiDAR footprints and SVF analysis must be applied for Urban/Green/Natural
zone (UQA430) planning.

As shown in Figure 13 and Table 9, the Urban/Green/Natural zone has outstanding
coverage in the study area (55.65 km2), and its additional SVF DIF due to the presence of the
TC in the urban environment is considerably good (SVF DIF: 0.10); this can be applied as
an auxiliary indicator to assess its heat island mitigation function (Figure 13c). In contrast,
the Urban/Green/Conservation zone (UQA410) has outstanding SVF DIF (0.24), and its
coverage in the study area is considerably good (10.96 km2). The information derived from
the raster map overlay using the land use zone (Figure 13a) and SVF DIF (Figure 13b) is
useful and expandable. However, it would take more time and effort to support more
efficient land use management. LiDAR 3DPC-based analysis methods and applications
are emerging; however, other novel strategies are needed to optimize the balance between
individual interest and entire land use sustainability. Enhanced urban-scale land use
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applications will support the development of advanced strategies to ensure urban settings
are spatially balanced and functionally optimized.
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zone type. (a) Land use of the study area. (b) SVF DIF of the study area. (c) Land use area of the
study site (km2; orange bar) and SVF DIF zonal mean value of each land use zone type (blue lines).

4.1.3. Digital Twin (DT)

Urban settings have changed rapidly since the birth of the city and will continue
to evolve more quickly. However, due to climate change acceleration, city members’
demands for rapidly, spatially, and functionally transitioning into an urban setting have
also increased. Hence, a digital twin (DT) is comprehensively discussed for the first time to
reduce the occurrence risk of a rapid transformation of urban settings. DT is defined as a
virtual model of national infrastructure, which monitors infrastructure in real-time and has
predictive capabilities [38].

The alterability of urban-scale settings significantly depends on the monitoring of
complexities, such as vertical variation. The need for building or TC DTs will increase with
advances in urban surveying technologies [20,31]. However, currently being developed,
DTs for buildings and TC are insufficient; data mismatch cases are abundant up to now. For
instance, building footprints and areas is fundamental information for urban monitoring,
but many maps provide different values owing to the different surveying periods, classifica-
tion rules, and applications of mapping workbenches. As seen in Table 10, the map overlay
comparison between the building footprint of the digital map (1/5000, 48.68 km2) and
the LiDAR 3DPC-based building footprint (2 m, P0, 52.6 km2) showed 72.1% (35.08 km2)
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locational matches, but 28.1% (13.6 km2) of the digital map footprint area did not have a
building footprint. A similar mismatch was derived from the opposite.

Table 9. SVF difference (DIF) zonal mean values of each land use zone type.

Code Land Use Zone Name Count Area
(km2) SVF Dif

UQB200 Agricultural and management 10,717 0.04 0.32
UQB300 Conservation and management 62,622 0.25 0.27
UQA410 Urban/Green/Conservation 2,740,837 10.96 0.24
UQC001 Agricultural areas 370,061 1.48 0.18
UQA310 Urban/Industrial/Exclusive 4210 0.02 0.16
UQA112 Urban/Residential/Class II exclusive 110,745 0.44 0.12
UQA430 Urban/Green/Natural 13,911,797 55.65 0.1
UQA121 Urban/Residential/Class I general 833,660 3.33 0.08
UQA111 Urban/Residential/Class I exclusive 73,533 0.29 0.07
UQA123 Urban/Residential/Class III general 2,663,943 10.66 0.05
UQA230 Urban/Commercial/Neighboring 23,645 0.09 0.05
UQA210 Urban/Commercial/Central 218,788 0.88 0.04
UQA122 Urban/Residential/Class II general 2,482,510 9.93 0.04
UQA130 Urban/Residential/Quasi-residential 1,142,661 4.57 0.04
UQA330 Urban/Industrial/Quasi-industrial 1,525,095 6.1 0.03
UQB100 Development and management 768,796 3.08 0.03
UQA220 Urban/Commercial/General 1,182,845 4.73 0.03
UQA420 Urban/Green/Agricultural 200,291 0.8 0.02
UQA320 Urban/Industrial/General 2,131,985 8.53 0.02
UQA240 Urban/Commercial/Circulative 65,194 0.26 0.01

Table 10. Digital map building footprint and LiDAR-driven building footprint (2 m, P0) map
overlay comparison.

LiDAR 3DPC-Based Building Footprint LiDAR 3DPC

NGII Digital Map
(NCA_B0010000)

Building Type (KIND)
Code Count

ea (%)
Sum Area
[km2 (%)]

Mean Area
[m3]

Identified
[km2/%]

Unclassified BDK000 13,015 (4.8) 1.22 (2.5) 93.5 0.75 (61.4)
Single-family house BDK001 77,004 (28.2) 6.00 (12.3) 77.9 4.49 (74.8)

Townhouse BDK002 26,538 (9.7) 4.16 (8.5) 156.7 2.93 (70.4)
Apartment BDK003 7980 (2.9) 4.90 (10.1) 613.9 3.60 (73.6)

Non-residential BDK004 99,979 (36.6) 29.24 (60.1) 292.5 21.88 (74.8)
Wall-less/Open BDK005 38,951 (14.3) 2.21 (4.5) 56.7 1.04 (47.2)

Greenhouse BDK006 1069 (0.4) 0.16 (0.3) 146.7 0.03 (19.1)
Under construction BDK007 214 (0.1) 0.29 (0.6) 1331.8 0.08 (27.1)

Temporary BDK008 8495 (3.1) 0.51 (1.1) 60.5 0.28 (54.8)

Total 273,245 (100.0) 48.68 (100.0) 35.08 (72.1)

In Korea, a plan to support the national spatial data-based DT (NDT) has been com-
prehensively discussed, leading to the implementation of NDT policy-based projects. From
the perspective of urban settings, spatial information development has considered smart
cities (Figure 12a). Hence, the NGII survey program has been constructing annual aerial
photo orthoimage databases (DBs) of the entire country as a data-supporting foundation
to realize NDT. Twenty years ago, the expected update cycle for building information on
digital maps was 10 y, while the tree update cycle has not yet been discussed. However,
based on the LiDAR ALS experience from 2002 to 2021 (Figure 14b), the NGII launched
a new program to generate airborne LiDAR 3DPC data covering the entire urban area
every 2 y, the southern regions for odd years and the northern regions for even years
(Figure 14c). Indeed, many urban models are dependent on the NDT data. Recently,
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thermal environment analyses and evaluation studies have considered DT platforms and
models to support climate change adaptation and mitigation [20]. Many models use SVF as
a spatial attribute for model enhancement [35,39,40] by applying it as a spatial data source
for urban-scale thermal environment analysis or assessment. It is currently being utilized
to develop various urban climate analysis models, such as perceived temperature. Hence,
seamless SP and SVF calculations will accelerate urban setting DT platforms. Buildings,
TC, and artificial canopies, such as parasols, are important urban setting components for
DT-based planning or risk management (Figure 14d).
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4.2. Challenges and Further Works
4.2.1. Applying Classified LiDAR 3DPCs to the NDT

Geospatial data, technologies, and services are critical components of a nation’s digital
infrastructure, including low-carbon cities [42,43]. Similar to the Federal Geographic
Data Committee in the USA, the 7th Korea national spatial data infrastructure (NSDI)
plan, which will be published soon, primarily focuses on the NDT. Unfortunately, the
discussion on LiDAR remote sensing has not been highlighted in the NSDI plan and will
proceed as a sub-plan for the digital elevation model (DEM) update. LiDAR ALS is a
component of the 3D spatial data infrastructure mission, while DTs in urban settings are not
included. This is primarily due to the difficulty of QA/QC and the budget; labor devoted
to manual corrections typically requires 25% or more of the total budget. According to
O’Neil-Dunne et al. [44], these types of mapping projects, covering huge urban areas,
require considerable effort and budgets ranging from tens to hundreds of billions. Hence,
LiDAR 3DPC application-based urban setting DTs should consider urban society demands,
and benefit/cost (B/C) efficiency should be addressed in the next NSDI plan. As a future
direction for LiDAR DT, LiDAR application processing automation is needed. Instructional
guidelines or a user guide should be prepared similar to that provided by the UK [45] for
LiDAR 3DPC application-based urban setting DTs.
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4.2.2. GUI as a General and Global Application

The GUI results highlighted future works for general and global use, as follows:

(1) Cell-based footprint identification improvement for various urban settings. The tradi-
tional mapping and modeling process selects and determines only one by generaliza-
tion [36,46,47]. Hence, building and TC footprints identified by uniform thresholds
induce a significant mismatch (Figure 9). The coarser the resolution, the more hetero-
geneous urban settings are expected in the cell. Uniform thresholds will increase the
uncertainty of the identification. If cell resolution is fine, less uncertainty is expected
as urban settings in the cell are relatively monotonous [48]. In situ survey results
revealed that urban settings are complex and heterogeneous. Hence, inadequate in
situ urban settings reflection could lead to inadequate evaluation and management
directions. From this perspective, the current grid allows only one type of identifi-
cation per cell and is no longer sustainable. Traditional deterministic 2D land cover
mapping systems will no longer apply to NDT, and eventually, advanced land use
models [36] will emerge. Recent LiDAR 3DPC studies have pioneered a new mapping
system with the goal of fully automated processing based on big data and machine
learning. In addition, AI-related research is of interest in remote sensing [49,50]. A
fundamentally improved approach is needed for cell-based urban settings exploration
and selection (identification).

(2) SVF analysis improvement. An et al. [13] developed a LiDAR 3DPC application method
by manipulative definition for experimental use; however, it requires further improve-
ment for advanced urban setting approaches. As seen in Figure 14d, a one-sided rule
that assigns building footprints higher priority than TC footprints is also applied to the
virtual hemisphere. Although the in situ TC was closer to the observation point than
the building, when overlap occurred, the building prevailed and was virtually fronted.
Various methods have been proposed as solutions, including a 3D model-based SVF
analysis. In this regard, the algorithm for quantifying the interactions between buildings
and TC must be further improved as urban buildings become more vertical and trees
grow densely in various locations around them. From this perspective, improvement to
evaluate the interrelation among urban settings is urgent.

(3) GUI improvement. As shown in Figures 6, 8 and 9, urban-scale footprint maps,
arrayed as a series of image spreadsheets, are expressed with different visual informa-
tion. These do not have interactive functions but play the same role [22,51,52]. The
contribution of the visual comparison of different alternatives is evident. Unifying the
view size with an automated array and common viewpoints allows users to compare
the results driven by their intended choices. Returning to the proposed motivation,
knowing where something happens can be critically important to obtaining urban set-
ting knowledge, ranging from form to function. Immersive visualization and virtual
reality can facilitate next-generation urban settings development collaboration [44].
The advanced GUI will expand the user experience and enhance visual analytics
capabilities [53].

5. Conclusions

Urbanization continuously transforms vertical urban settings and sky-view areas;
thus, evaluating building and TC footprints will continue to garner interest in urban-scale
and fine-resolution remote sensing studies. Identification and analysis of urban-scale
virtual settings based on comprehensive knowledge development, scientific data-driven
urban setting optimization, and balanced planning and implementation are feasible. This
study proposed a LiDAR remote sensing application approach, which was validated
experimentally to identify the associated challenges and limitations. Consequently, the
following conclusions were established:

First, LiDAR remote sensing-based data are utilized for urban-scale building and
TC footprint identification. Second, an SVF analysis, which produces results with finer
resolutions and wide urban coverage, is performed.
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Finally, the proposed method is still in its infancy, and further development via DT
technology should be considered for achieving more advanced urban setting management.
DT of Buildings, TC, and other artificial canopies, such as parasols, should be promoted to
lessen the risks associated with rapid and unknown urban setting transitions.
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