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Abstract: Crop residue burning produces a lot of polluting gases and fine particles, endangering
human health, damaging soil structure, and causing fire accidents. In addition to the impact of
residue burning on the local environment, pollutants can spread with the wind to more distant areas
and impact their air quality. Nevertheless, a comparative analysis of the impact of two common
residue burning parameters, the number of residue fire points, and residue burned area on urban air
quality indicators has not been reported. In this study, the correlation between these two different
residue burning parameters on air quality in Daqing City (Western Heilongjiang Province, China)
was investigated comparatively using the Visible Infrared Imaging Radiometer Suite (VIIRS) fire
point product, the Moderate-resolution Imaging Spectroradiometer (MODIS) burned area product,
and buffer zone analysis. The association between MODIS burned area products and air quality index
(AQI) was found to be around 0.8. Meanwhile, it was found that the correlation between the number
of residue fire points extracted from the VIIRS active fire products and air quality was above 0.6, again
with a maximum of 0.75 at a buffer radius of 50 km. Within other levels of buffer zones, the correlation
between residue burned area and AQI was consistently higher than that between residue fire points
and AQI. By comparing the correlation between VIIRS fire points, MODIS burned area, and the
concentration of each AQI pollutant, it can be found that the correlation between the concentration
of each AQI pollutant and the residue burned area was higher than that and the fire points number.
MODIS burned area monitoring, on the other hand, detects changes in the time series of images taken
by satellite at two transit moments to obtain a new burned area and cumulative burned area during
this period, allowing the monitoring of fire traces caused by fire points at non-transit moments. From
analyzing the correlation between residue fire points, residue burned area, and the concentration
of each pollutant (PM2.5, PM10, CO, NO2, SO2, and O3), we found significant correlations between
residue burning and PM2.5, PM10, CO, and NO2 concentrations, with the highest correlation (R2) of
0.81 for PM2.5. Moreover, the correlation between residue burned area and PM2.5, PM10, CO, and
NO2 concentrations was significantly higher than that between the number of residue fire points and
their concentrations.

Keywords: residue fire points; residue burned area; AQI; buffer zone analysis

1. Introduction

Crop residue burning is the process of eliminating residue left in fields by fire after crop
harvesting, in which a large number of pollutants such as Carbon Monoxide (CO), Carbon
Dioxide (CO2), Nitrogen Dioxide (NO2), Sulfur Dioxide (SO2), Ammonia (NH3), Methane
(CH4), Ozone (O3), and dust are produced [1–4] and emitted into the atmosphere [5,6]. The
practice endangers human health, affects traffic, and causes fire accidents [7]. Also, crop
residue burning severely damages soil structure and microflora for agricultural production,
causing soil fertility to decline [8,9]. In addition to the impact of residue burning on the local
environment, pollutants can spread with the wind to more distant areas and impact the air
quality of surrounding areas, especially cities [10,11], which show a random and scattered
spatial distribution. Crop residue burning in northeast China is mainly concentrated in late
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October (the harvest season) to May before the following year’s plowing [12] and shows
a random and scattered spatial distribution. In addition, the process is complicated by
crop residue burning being significantly affected by the weather. Furthermore, farmers
usually burn crop residue under good atmospheric diffusion conditions to burn it more
fully and better for subsequent cultivation operations [13]. Because of the spatial–temporal
heterogeneity of crop residue burning, manual monitoring is not the best approach because
it requires much time and human and financial resources.

With the development of satellite remote sensing, many research scholars began to no-
tice the efficiency of remote sensing satellite images for residue fire points monitoring [14–16].
These studies found that remote sensing technology can provide dynamic macro monitor-
ing of residue fire information. Using remote sensing images with high spatio-temporal
resolution, we can accurately obtain crop residue burning information such as the spatial
information of residue fire points [17] and burned area [18]. Schroeder et al. provide a
new active fire detection method for the Visible Infrared Imaging Radiometer Suite (VIIRS)
that is primarily generated by 375 m thermal infrared remotely sensed data. Increased
performance was achieved by utilizing the 375 m active fire data in comparison to the VIIRS
750 m baseline fire product, resulting in 3-fold and 25-fold increases in the absolute number
of fire pixels recorded using daytime and nighttime data, respectively. The VIIRS 375 m fire
data demonstrated much higher mapping capabilities compared to the original MODIS fire
detection product [19]. Vadrevu et al. compared the performance of several methodologies
for predicting total particulate matter emissions based on the VIIRS 375 m active fire product
and the MODIS 1 km fire product. Compared to the MODIS Aqua and Terra sensors, the
number of fires observed by the VIIRS was 4.8 times greater. Additionally, VIIRS recorded
6.5 times as many fires as Aqua [20].

At the same time, many scholars have also started to study the impact of crop residue
burning on urban air quality. Jain et al. studied the emissions of pollutants from crop
residue burning and the effect on the rate of change of air pollutant emissions [21]. Using
ground observation and MODIS active fire data, Zhuang et al. investigated the fluc-
tuations and characteristics of PM10 (particulate matter with an aerodynamic diameter
of less than 10 µm) and PM2.5 (particulate matter with an aerodynamic diameter of less than
2.5 µm) [22,23] concentrations and the associations with variations in crop residue
burning [24]. Li et al. investigated crop residue open burning emissions in central China us-
ing a statistical technique. Using the VIIRS 375 m active fire product and observed emission
factors, the open burning proportion of residue was utilized to improve the precision of
estimated emissions [25]. The MODIS products MOD14A1/MYD14A1 were employed to
better understand the long-term spatial and temporal variations of crop residue burning in
China [26]. There have been many studies on the positive correlation between the number
of residue-burning fires and air quality. However, because satellite remote sensing can only
monitor residue-burning fires at the moment of transit, and not when the satellite is not in
transit, there is a significant limitation in its usage. In contrast, no such limitation exists in
studying the correlation between residue burned area extracted by satellite and in situ air
quality.

Based on remote sensing images taken by satellites at two transit times, the time-series
change in burning index is detected to extract a new residue burned area. Based on remote
sensing images taken during satellite transit, a new residue burned area was extracted
using time series change detection from the burning index [26,27]. Roteta et al. built a
locally adapted multitemporal two-phase burned area method employing Sentinel-2 short-
and near-infrared waveband data and MODIS active fire products [27]. When 13 remotely
sensed indices were compared based on ranked correlations, the Normalized Burn Ratio
(NBR) was highest for both the post-burn and pre-/post-burn approaches. In addition,
according to research by Epting et al., high correlations existed between the NBR and
field-based Composite Burn Index values [28]. These burned area extraction methods
provide a solid foundation for establishing the relationship between residue burning and
air quality. Nevertheless, a comparative analysis of the impact of two common residue
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burning parameters, the number of residue fire points, and residue burned area on urban
air quality indicators has not been reported.

Yang et al. integrated satellite and in situ observations with regional spatial quality to
construct a model for assessing the impact of open-air biomass burning on surface PM2.5
concentrations in the context of severe haze in northeast China. Simulation outcomes
revealed that open-air biomass burning accounted for 52.7% of PM2.5 concentrations in
northeast China [29]. Li et al. conducted an analysis of air quality pollution characteristics,
causes of haze formation, and the effects of the straw burning ban on local air quality in
Suihua City, utilizing air quality data, aerosol optical depth (AOD) data, and fire point
products. The findings revealed that seasonal crop residue burning was a significant
contributor to air pollution in Suihua City during late autumn and early spring [30].
Cui et al. examined the spatial and temporal patterns of straw burning in northeast China
between 2013 and 2017. The research demonstrated that the gaseous emissions resulting
from the combustion of straw had a noteworthy effect on the quality of air, particularly
during the autumn and winter periods. A strong correlation was observed between PM2.5
and straw burning, with a statistical significance of p < 0.05 [17].

To address the problems raised in previous studies on the correlation between fire
points and urban air quality, the objectives of the present research were (i) to analyze the
correlation among the number of residue fire points, residue burned area, air quality index
(AQI), and the concentration of each pollutant (PM2.5, PM10, SO2, CO, NO2, and O3) using
the fire point product of VIIRS/MODIS and the area burned product of MOD64; and (ii) to
discuss the effects of crop residue burning on the air quality of typical industrial cities in
northeast China using wind direction data.

2. Methods
2.1. Overview of the Study Area

In this study, Daqing City and its surrounding areas in Heilongjiang Province were
used as the study area. Daqing City is located in the middle of the Songnen Plain in
northeast China, in western Heilongjiang Province, adjacent to Jilin Province in the south,
connected to Suihua City in the east, and connected to Qiqihar City in the west and
north, with a geographical range of 45◦46′ to 46◦55′N latitude and 124◦19′ to 125◦12′E
longitude (as shown in Figure 1). Daqing is located in the north temperate continental
monsoon climate zone. Influenced by the cold air inland from Inner Mongolia and the
warm monsoon from the ocean, the average annual precipitation is about 600 mm. The
average temperature in winter is−16.3 ◦C, and the average temperature in summer is about
20.5 ◦C [31]. Consequently, the four seasons are distinct, with a windy spring and autumn, a
cold winter, and summer bringing the bulk of the rainfall. There is a significant temperature
difference between day and night, and a short frost-free period throughout the year, with
rain and heat in the same season. Daqing, one of the typical industrial cities in Heilongjiang
Province, is the tenth largest oil field in the world and the base of China’s most significant
oil production and petrochemical products industries, with annual crude oil production
reaching over 40 million tons. Meanwhile, Daqing is also a sizeable food-producing city
in Heilongjiang Province, with 621,800 hectares of farmland in 2019, accounting for 29.3%
of the land area. The crops planted in Daqing are mainly corn, rice, soybeans, and other
crops, of which maize dominates the grain crops, with a planting area of 412,800 hectares,
accounting for 66.4% of the total farmland area. The total grain production in 2019 was also
as high as 4.5 million tons, so a large amount of residue will inevitably be produced in the
agricultural process [32]. According to the air quality historical data, Daqing City has had
a higher AQI in February–March in the last decade, which may be related to crop residue
burning in its surrounding area, so we take February–March 2019 as an example for the
crop residue burning study.
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Figure 1. Topographic map of Daqing City: (a) Saltu District, (b) Longfeng District, (c) Janhulu
District, (d) Honggang District, (e) Datong District, (f) Zhaozhou County, (g) Zhaoyuan County,
(h) Lindian County, and (i) Dorbud County.

2.2. Data Acquisition
2.2.1. MODIS and VIIRS Data

MODIS is one of the sensors on board the Terra and Aqua satellites developed by
NASA. MODIS has 36 bands with a spectral range of 0.4–14.4 µm and a high temporal
resolution of 1–2 days to complete global observations. The MCD64A1 [33] burned area
product was estimated from the 500 m MODIS surface reflectance and 1 km active fire
observation products [34]. The MCD64A1 product contains five data layers (Burn Date,
Burn Date Uncertainty, QA, First Day, and Last Day). We only need the Burn Date data
layer and then can extract the area burned within each day for the time range of 1 February
to 31 March 2019.

VIIRS is one of the sensors of the SUOMI National Polar-orbiting Partnership (NPP)
satellite system. The VIIRS sensor has 22 spectral bands in the 0.41–12.5 µm wavelength
range, with a broader radiation detection range. It provides more than 20 environmental
products, including cloudiness, ocean surface temperature, polar winds, vegetation index,
aerosols, fire, ice, snow, and vegetation. This study uses the latest fire monitoring product
from the VIIRS active fire product: Fire Information for Resource Management System
(FIRMS) [35], whose algorithm is based on an improved MODIS Fire and Thermal Anomaly
(MOD14/MYD14) algorithm. The higher spatial resolution of the VIIRS active fire data
product (375 m, higher than MODIS) not only enhances the monitoring capability of smaller
fire-burned areas but also strengthens the ability to monitor dynamic changes in fires. It also
reduces the possibility of misclassifying false fire points with similar spectral characteristics.
The data are available from (https://firms.modaps.eosdis.nasa.gov/map/, accessed on
11 July 2023) [36] and were downloaded for this study from 1 February to 31 March 2019.

https://firms.modaps.eosdis.nasa.gov/map/
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Based on the VIIRS fire point data product and 30 m land cover data (http://www.
resdc.cn/, accessed on 11 July 2023) [37], the Clip function module in ArcGIS 10.1 was used
to extract information on residue fire points from farmland. In addition, the Zonal Statistics
module was employed to estimate the number of residue fire points in the surrounding
areas of Daqing City daily. For the MODIS burned area data, we first needed to convert
the projection coordinates and image stitching and resampling with the help of the MRT
processing tool. Then, ArcGIS 10.1 and the land cover data were applied to extract the
residue burned area.

2.2.2. Air Quality Data

To accurately analyze the air pollution conditions caused by residue burning, we
compiled the daily average AQI for the study area using the website of the Air Quality His-
torical Data Query (https://www.aqistudy.cn/historydata/, accessed on 11 July 2023) [38].
AQI is a dimensionless index that quantifies air quality conditions and is suitable for
indicating short-term air quality conditions and trends in cities. As Figure 1 shows, the
Daqing air monitoring station belongs to the national air quality/meteorological observing
station network; its location is 125.08◦ longitude and 46.34◦ latitude, and the altitude of
the observation point is 147.20 m above sea level. This study’s air quality monitoring
method is the β-ray absorption method or the micro-oscillation balance method specified
in the Chinese Specifications and Test Procedures for Ambient Air Quality Continuous
Automated Monitoring System for PM10 and PM2.5 (HJ653-2013). AQI is calculated from
six criteria for air pollutants: fine particulate matter, respirable particulate matter, SO2,
NO2, CO, and O3. Therefore, the higher the AQI value, the worse the corresponding air
quality, indicating more severe air pollution. The spatial position of the air quality site
coincided with the meteorological station located in the center area of Daqing City, as
shown in Figure 2.

2.2.3. Land Cover Data

Land cover is essential information for climate change studies and ecological assess-
ments. The cropland data used in this study are the Global 30 m Fine Land Cover 2020
product (GLC_FCS30-2020) [39], which contains 30 surface coverage types and provides
practical data support for global fine ground cover applications. It is based on the Global
Fine Land Cover 2015 product (GLC_FCS30-2015), 2019–2020 time series Landsat surface
reflectance data, Sentinel-1 SAR data, DEM data, global thematic auxiliary datasets, and a
priori knowledge datasets to generate the product. In addition, the product’s accuracy
was assessed using the globally integrated multi-source validation dataset (containing
45,000 validation sample points). The results showed that the overall accuracy of GLC_FCS30-
2015 was 82.5% with a kappa coefficient of 0.78 under the validation system consisting of
10 primary classes and 68.7% with a kappa coefficient of 0.68 under the validation system
consisting of 24 fine classes. Therefore, these data are sufficient for the needs of this study.

2.2.4. Meteorological Data

Meteorological data are an essential factor influencing pollutant dispersion. There-
fore, meteorological data in the study area needed to be collected. The location of the air
monitoring site in Daqing is 125.08◦ longitude and 46.34◦ latitude. The dataset of daily
values of Chinese surface climate information used in this study was obtained from the
China Meteorological Data Network (http://data.cma.cn, accessed on 11 July 2023) [40].
This dataset is derived from each province’s national daily ground surface data by the
National Meteorological Information Center (NMIC) of the China Meteorological Adminis-
tration [41]. We selected data that affect the dispersion of pollutants, including the average
wind speed and prevailing wind direction. These data were quality controlled by the
National Meteorological Administration, and changes were made to the records where
errors were identified. According to the National Meteorological Administration statistics,

http://www.resdc.cn/
http://www.resdc.cn/
https://www.aqistudy.cn/historydata/
http://data.cma.cn
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the average error rate of wind direction and wind speed was 1.6%, and the data reliability
was high enough to meet the requirements of this experiment.
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2.3. Research Methods

A city’s air quality can be affected not only by factors such as production and daily life
within the city but also by the input of air pollutants from its surrounding regions. Further-
more, the diffusion and spread of atmospheric pollutants are affected by meteorological
factors such as wind direction, wind speed, humidity, atmosphere boundary layer height,
and precipitation. Therefore, it is necessary to analyze the correlation between the number
of residual fires in different buffer zones centered in the city and the burned area and the
AQI of the city to discuss the influence of residue burning on AQI. In this study, the air
quality monitoring station of Daqing City was taken as the center of the buffer zone. First,
buffer zones with radii of 25 km, 50 km, 75 km, and 100 km were defined. Then the number
of residue fire points and burned area in each buffer zone layer were measured separately
using the statistic tool in ArcGIS 10.1.

Based on the remote sensing monitoring information of residue burning, we conducted
correlation analysis between it and air quality using SPSS25 software. First, we used the
Pearson analysis module in SPSS25 to investigate the correlations between the number
of residue fire points, burned area, and AQI and the concentrations of six pollutants,
respectively. In addition, we divided wind direction into 16 directions to investigate how
they affected the concentration of the six possible air pollutants (PM2.5, PM10, SO2, CO,
NO2, and O3) from residue burning.

The Pearson product-moment correlation coefficient (PPMCC) quantifies the degree
of correlation between two variables, with a range between −1 and 1 [42]. In general, the
correlation strength of variables is determined by the following correlation coefficient value
ranges: 0.8–1.0 for a very high correlation; 0.6–0.8 for a strong correlation; 0.4–0.6 for a
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moderate correlation; 0.2–0.4 for a weak correlation; and 0.0–0.2 for a very weak correlation.

PX,Y =
∑
(

X− X
)(

Y−Y
)

√
∑
(

X− X
)2

∑
(

Y−Y
)2

(1)

3. Results
3.1. Spatial—Temporal Distribution Characteristics of Fire Points and Burned Area of
Crop Residue

By processing with the VIIRS active fire product and MCD64A1 burned area product,
we obtained the spatial–temporal distribution of fire points and burned area of crop residue
around Daqing City in February–March 2019, as shown in Figure 2. Based on geometric
analysis, we found that the spatial–temporal distribution characteristics of fire points and
burned area of crop residue are the same and mainly concentrated in Zhaozhou County,
Zhaoyuan County, Dorbud County, and Lindian County, as shown in Table 1.

Table 1. Statistics of farmland area, residue fire points, and residue burned area in Daqing City
(1 February–31 March 2019).

Farmland Area
(km2)

Residue Burning
Fire Point

Residue Burned
Area (km2)

Zhaoyuan District 2530 584 631.74
Dorbud County 2505 538 218.46
Lindian County 1250 374 128.27
Datong District 1091 150 75.99

Zhaozhou County 667 633 47.7
Honggang District 359 1 0.09

Ranghu District 331 53 1.58
Saltu District 226 13 0

Longfeng District 173 3 0.09
Total 9132 ** 2349 ** 1103.92 **

Where ** means that a t test with a significance of 0.05 is passed.

Zonal statistics of the VIIRS fire point data, MODIS burned area data using the Zonal
Statistics module, and the land cover data in ArcGIS 10.1 are shown in Table 1. It can be
concluded that the areas in Daqing where there is more residue burning are Zhaozhou
County, Zhaoyuan County, Dorbud County, and Lindian County, where the number of
residue fire points is greater than 100 and the burned area is greater than 40 km2. The
number of residue fire points in Zhaozhou County is the highest at 633, followed by 584 in
Zhaoyuan County and 538 and 374 in Dorbud County and Lindian County. In contrast, the
number of residue fire points in other areas is minimal. The spatial distribution of residue
burned area is the same as the residue fire point. Among them, the residue burned area
is larger in Zhaoyuan County, Zhaozhou County, Dorbud County, and Lindian County.
The residue burned area in Zhaoyuan County reached 631.74 km2, followed by 218.46 km2

in Dorbud County, whereas the residue burned area in Lindian County, Datong District,
and Zhaozhou County reached 128.27 km2, 75.99 km2, and 47.70 km2, respectively. With
residue fire points showing the same spatial distribution characteristics, the area of crop
residue burning is also minimal in those urban areas of Honggang District, Saltu District,
Longfeng District, and Ranghu District.

To further study the correlation between residue burning information and farmland
area, we conducted a Pearson correlation analysis between farmland area and the number
of residue fire points and burned area in each county, as shown in Table 2. The results
showed a significant correlation (p < 0.05) of 0.75 between residue fire points and farmland
area, whereas a highly significant correlation (p < 0.01) of 0.85 was found between residue
burned area and farmland area. These results indicated that there was indeed a significant
correlation between residue fire points and burned area and the area of farmland, and the
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correlation between residue burned area and farmland area was higher than that between
the number of residue fire points and farmland area.

Table 2. Correlation between farmland area and crop residue burning in each county and district of
Daqing City.

Residue Fire Points Residue Burned Area

Farmland area Pearson correlation 0.75 * 0.85 **
sig. (two-tailed) 0.02 0.00

N 9 9
Note: * Significant correlation at a confidence level (two-tailed) of 0.05 and ** significant correlation at a confidence
level (two-tailed) of 0.01.

3.2. Correlation Analysis between Residue Burning Indicators and Air Pollutant Concentration
3.2.1. Correlation Analysis between Residue Burning Indicators and AQI

According to the Air Quality Historical Data Query website (https://www.aqistudy.
cn/istorydata/, accessed on 2 August 2023) [38], AQI reached 221 on 26 February 2019 and
PM2.5 content reached 171 µg/m3 on that day, whereas AQI reached 250 on 27 February
2019, the highest in February 2019, and PM2.5 content reached 200 µg/m3. Both days
reached heavy pollution levels according to Ambient Air Quality Standards. In order
to further analyze the pollution characteristics, a statistics tool in ArcGIS 10.1 was used
to extract information such as residue fire points number and burned area, respectively.
Through geostatistical analysis, we found that the number of residue fire points within
the 100 km buffer zone reached 845 and 332 on 26 February and 27 February, and the
corresponding burned areas were 256 km2 and 336 km2, respectively. We analyzed the
correlation between AQI, the number of residue fire points, and the area burned in Daqing
on a daily time scale from February to March, as shown in Figures 3 and 4. We found that
the number of residue fire points, burned area, and AQI showed a good correlation in the
time series within each layer buffer zone in Daqing. The number of residue fires points
and burned area were high between 20 February and 1 March, and the corresponding AQI
was also significantly higher, most likely due to the severe air pollution caused by residue
burning during this period.
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In this study, the correlation between the number of residue fire points, burned area,
and AQI in February and March of 2019 was analyzed on a daily scale using the Pearson
correlation module in SPSS, as shown in Table 3. The correlation coefficients between the
number of residue fire spots and AQI in different buffer zones in Daqing were significant
at a confidence level of less than 0.01 on both sides, with correlation coefficients above
0.6 (0.61–0.75). The correlation between residue burned area and AQI was significant at
a confidence level of less than 0.01 on both sides, with correlation coefficients above 0.7
(0.75–0.82). The correlation between residue burn area and AQI was significantly higher
than that between the number of residue fire points and AQI, but the trends were the same.
The correlation coefficients were highest at a radius of 50 km, and then the correlation
coefficients decreased as the radius increased. Clearly, the impact of residue burning
on urban air quality was more substantial within the 50 km zone, and then the impact
decreased. However, the correlation coefficient between residue fire points and AQI was
still above 0.6 when the buffer zone radius reached 100 km, indicating that the impact is
still strong in the 100 km range. At the same time, further research is needed to determine
at what buffer zone radius residue fire has almost no impact on AQI.

Table 3. Correlation analysis of the number of residue fire points, burned area, and AQI in each
buffer zone of Daqing City.

25 km Buffer 50 km Buffer 75 km Buffer 100 km Buffer

Buffer zone fire points Pearson correlation 0.64 ** 0.75 ** 0.61 ** 0.61 **
sig. (two-tailed) 0.00 0.00 0.00 0.00

Buffer zone burned area
Pearson correlation 0.79 ** 0.82 ** 0.80 ** 0.75 **

sig. (two-tailed) 0.00 0.00 0.00 0.00
N 59 59 59 59

Note: ** Significant correlation at a confidence level (two-tailed) of 0.01.

Through the statistical analysis in the above paragraph, we found that the correlation
between residue burned area and AQI was significantly higher than that between the
number of residue fire points and AQI. Because satellites have a specific revisit cycle, in
the case of the VIIRS sensor carried on the NPP Earth observation satellite, the revisit
frequency is twice per day—once during the day and once during the night—passing the



Remote Sens. 2023, 15, 3911 10 of 16

target monitoring area. Therefore, if there is a residue fire during the non-transit time of
the satellite, it will not be able to monitor the fire. For burned area monitoring, we used
the remote sensing images before and after the residue fire through the time series change
monitoring method to obtain the newly burned area during this period, even if the residue
burning occurred during the satellite non-transit period and does not show in the satellite
monitoring results. However, the spatial resolutions of residue fire points and burned
area data are 375 m and 500 m, respectively, and monitoring omission will occur for some
small areas of residue burning. At the same time, Daqing is an industrial city that emits
many pollutants every day, affecting AQI. Together with the transmission of pollutants
from surrounding areas, these factors have led to the correlation between residue burning
and AQI being lower than expected. However, the correlation between AQI and residue
burned area is significantly higher than that between AQI and the number of residue fire
points. This result also indicates that the effect of residue burning can be studied using the
residue burned area instead of the number of residue fire points.

3.2.2. Correlation Analysis between Residue Burning Indicators and
Pollutant Concentration

As a measure of air pollution, the primary pollutants involved in AQI for air quality
evaluation include PM2.5, PM10, CO, NO2, O3, and SO2. Residue burning usually produces
some polluting toxic and harmful gases. The correlation between the number of residue
fire points and the concentration of each pollutant extracted from MODIS remote sensing
data was established by Zhuang et al. [26]. Li et al. estimated the source intensity of
PM10 and CO of residue burning in Harbin City based on meteorological data, real-time
ground measurements of pollutants, and satellite fire distribution. As a result, they vali-
dated the effect of residue burning on PM10 and CO levels [43]. The Pearson correlation
coefficient was used in this study to compare the degree of correlation between residue
burning and the concentration of various pollutants and thus determine which pollutant
concentration is mainly increased by residue burning. Table 4 shows correlation analysis
between the number of residue fire points; burned area; and PM2.5, PM10, CO, NO2, O3, and
SO2 concentrations within different buffer zones in Daqing City in February–March 2019.
Through correlation analysis, we found that the number of residue fire points and burned
area within each buffer zone were highly significantly correlated with PM2.5, PM10, CO,
and NO2.

Table 4. Correlation analysis of the number of residue fires and the concentration of PM2.5, PM10,
CO, NO2, O3, and SO2 in the buffer zones of Daqing City.

25 km Buffer 50 km Buffer 75 km Buffer 100 km Buffer

PM2.5
Pearson correlation 0.56 ** 0.68 ** 0.59 ** 0.59 **

sig. (two-tailed) 0.00 0.00 0.00 0.00

PM10
Pearson correlation 0.49 ** 0.53 ** 0.45 ** 0.44 **

sig. (two-tailed) 0.00 0.00 0.00 0.00

CO
Pearson correlation 0.44 ** 0.49 ** 0.44 ** 0.49 **

sig. (two-tailed) 0.00 0.00 0.00 0.00

NO2
Pearson correlation 0.43 ** 0.48 ** 0.40 ** 0.39 **

sig. (two-tailed) 0.00 0.00 0.00 0.00

O3
Pearson correlation 0.16 0.19 0.16 0.12

sig. (two-tailed) 0.23 0.15 0.23 0.364

SO2
Pearson correlation 0.06 0.14 0.09 0.09

sig. (two-tailed) 0.67 0.31 0.49 0.49
N 59 59 59 59

Note: ** Significant correlation at a confidence level (two-tailed) of 0.01.

In contrast, the confidence levels with O3 and SO2 did not reach significant correlation
levels above 0.01. The correlation between the concentration of each pollutant and the
number of residue fire points and burned area first increased with an increase in buffer zone
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radius. The correlation was best when the buffer zone radius reached 50 km and gradually
decreased when the buffer zone radius exceeded 50 km. Among all the indicators, PM2.5
had the highest correlation with the number of residue fire points and burned area, with
correlation coefficients reaching 0.68 and 0.81, respectively, followed by PM10, CO, NO2, O3,
and SO2 in descending order of correlation. For all the pollution indicators, the correlation
between residue burned area and pollutant concentration was significantly higher than the
correlation between the number of residue fire points and pollutant concentration. This
result illustrates the use of residue burned area to study the effect on the concentration of
each pollutant more precisely. Because residue fire points are not monitored at non-transit
moments by satellite, this would result in a lower correlation between the number of
residue fire points and pollutant concentrations. However, this problem does not exist for
the burned area. Therefore, the results show that the correlation between residue burning
and each pollutant by residue fire points is limited, and the study of residue burned area is
more accurate.

In terms of the chemical composition of residue, it is primarily organic carbohydrates,
consisting of elements such as C, H, and O. Residue burning produces a large amount
of smoke, which is generally composed of small-diameter particles, carbon oxides, nitro-
gen oxides, and water [1,33]. Therefore, residue burning is significantly associated with
PM2.5, PM10, CO, and NO2. In comparison, sulfides are generally produced mainly in
industrial processes. Daqing, a big industrial city, is the largest oil producer in China
annually. Therefore, there is no correlation between residue burning and SO2. Ozone is
usually a secondary pollutant produced under the photochemical reaction of atmospheric
nitrogen oxides (NOx) and volatile organic compounds (VOCs) by UV irradiation when
the temperature is high and UV irradiation from sunlight is relatively strong [34,35]. The
temperature in February and March in northeast China is generally below 0 ◦C, and the UV
intensity is weak. Therefore, although residue burning produces NOx but does not reach
the conditions to produce O3, there is no significant correlation between residue burning
and O3.

4. Discussion

Yang et al. compared the effects of geographical, pollution, and meteorological condi-
tions on the spatial and temporal distribution of PM2.5 concentrations over China [44]. In
response to the results above, we added wind direction to analyze its effect on the number
of residue fire points, residue burn area, and AQI. The main effect of wind direction on
air pollution is the direction of horizontal transport of pollutants, where the direction
downwind of the pollution source is the pollution area and the wind direction and wind
speed determine the extent and intensity of the appearance of air pollution [44]. To discuss
the role of wind direction on atmospheric pollutant transport, in this study, we divided
the wind direction into 16 directions, namely, N, NNE, NE, ENE, E, ESE, SE, SSE, S, SSW,
SW, WSW, W, WNW, NW, and NNW. Figure 5 shows the wind direction distribution in
Daqing City from 1 to 8 March 2019, where the circle’s radius represents the wind speed
magnitude. We found that the wind in Daqing is mainly from the west–northwest, west,
and southwest, with an average wind speed of 6–9 m/s.

The concentration distributions of PM2.5, PM10, CO, NO2, O3, and SO2 in each wind
direction are shown in Figure 6, which were generated in Origin 2018 using meteorological
data and air pollution monitoring data [45]. The distribution of atmospheric pollutant
concentrations showed an almost identical consistent spatial distribution of each pollutant,
but there were extreme values of pollutant concentrations in particular wind directions. The
distributions of PM2.5 and PM10 were similar, with the highest concentrations occurring in
the wind direction of WNW, followed by higher concentrations in the wind directions of
SE and SSW. NO2 and CO also showed concentration maxima in the WNW wind direction,
followed by higher concentrations in the SE wind direction, which may be related to the
diffusion of pollutants in the surrounding areas.
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As a primary driver of air pollutant dispersion, it is widely accepted that wind di-
rection can strongly influence the direction of air pollutant dispersion. Different wind
directions can lead to different urban areas being polluted by crop residue burning. In
this study, the effect of wind direction on AQI was considered. We conducted correlation
analyses using the number of residue fire points and burned area in the upwind buffer
zone with urban AQI, respectively, as shown in Table 5. Comparing Tables 3 and 6, we
found that the correlation between the number of fire points and AQI in each buffer zone
upwind of Daqing was higher than that without considering the wind correlation, and
the correlation coefficients were all above 0.6 (0.66, 0.77, 0.66, and 0.64 at 25, 50, 75, and
100 km buffer, respectively). The correlation coefficient between the burned area and AQI
in the adjoining wind direction also improved, reaching over 0.8 except for the 100 km
buffer, with the 50 km buffer having the highest correlation coefficient of 0.88. These results
may be due to only areas in the downwind path of the burned area being affected by crop
residue burning. In contrast, urban areas in the other directions are rarely affected. Similar
to Section 3.2, the correlation coefficient between the residue burned area and the air quality
index in each buffer zone upwind of Daqing was higher than that between the number of
fire points and the air quality index, as shown in Tables 4 and 5. Nonetheless, there are
numerous causes for their correlation not reaching higher levels.

Table 5. Correlation analysis of straw burning area and the concentration of PM2.5, PM10, CO, NO2,
O3, and SO2 in the buffer zone of Daqing City.

25 km Buffer 50 km Buffer 75 km Buffer 100 km Buffer

PM2.5
Pearson correlation 0.79 ** 0.81 ** 0.80 ** 0.75 **

sig. (two-tailed) 0.00 0.00 0.00 0.00

PM10
Pearson correlation 0.64 ** 0.67 ** 0.67 ** 0.63 **

sig. (two-tailed) 0.00 0.00 0.00 0.00

CO
Pearson correlation 0.54 ** 0.59 ** 0.54 ** 0.51 **

sig. (two-tailed) 0.00 0.00 0.00 0.00

NO2
Pearson correlation 0.49 ** 0.54 ** 0.49 ** 0.45 **

sig. (two-tailed) 0.00 0.00 0.00 0.00

O3
Pearson correlation 0.10 0.15 0.14 0.07

sig. (two-tailed) 0.44 0.27 0.29 0.61

SO2
Pearson correlation 0.20 0.22 0.17 0.15

sig. (two-tailed) 0.14 0.10 0.20 0.25
N 59 59 59 59

Note: ** Significant correlation at a confidence level (two-tailed) of 0.01.

Table 6. Correlation analysis of the number of residue fire points, burned area, and AQI in the buffer
zones of Daqing City.

25 km Buffer 50 km Buffer 75 km Buffer 100 km Buffer

Buffer zone fire
point

Pearson correlation 0.66 ** 0.77 ** 0.66 ** 0.64 **
sig. (two-tailed) 0.00 0.00 0.00 0.00

Buffer zone area
Pearson correlation 0.83 ** 0.88 ** 0.84 ** 0.79 **

sig. (two-tailed) 0.00 0.00 0.00 0.00

Note: ** Significant correlation at a confidence level (two-tailed) of 0.01.

As an industrial city, industrial emissions in Daqing also account for a significant
proportion of all atmospheric pollutants, resulting in air pollution from industrial emissions
as well as residue burning. In addition, meteorological conditions including wind speed,
temperature, humidity, rainfall, and air pressure all affect air pollution caused by residue
burning [46–48]. According to Zhang et al., a reduction in PM10 was found to occur
under stronger wind and higher precipitation conditions [49]. In addition, emissions from
residue burning vary depending on the residue type and moisture content, and the phase
of burning [50]. The effect of various combinations of meteorological conditions on air
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pollution is complex, so the impact of residue burning on air quality in industrial cities
needs further analysis.

5. Conclusions

In this study, the correlation between different residue burning parameters on air
quality in Daqing City was investigated comparatively using the VIIRS active fire point
product, the MODIS burned area product, and buffer zone analysis. The association
between MODIS burned area products and AQI was found to be around 0.8, with a
maximum of 0.82 at a buffer zone radius of 50 km. Meanwhile, it was found that the
correlation between the number of residue fire points extracted from VIIRS active fire
products and air quality was above 0.6, again with a maximum of 0.75 at a buffer radius of
50 km. Within other levels of buffer zones, the correlation between residue burned area
and AQI was consistently higher than that between residue fire points and AQI.

By comparing the correlation between VIIRS fire points, MODIS burned area, and
AQI and the concentration of each pollutant, we found that the correlation between residue
burned area and AQI and the concentration of each pollutant is higher than that between
the number of residue fire points and AQI and the concentration of each pollutant. MODIS
burned area monitoring, on the other hand, detects changes in the time series of images
taken by satellite at two transit moments to obtain the new burned area and cumulative
burned area during this period, allowing the monitoring of fire traces caused by fire points
at non-transit moments.

From analyzing the correlation between residue fire points, residue burned area,
and the concentration of each pollutant (PM2.5, PM10, CO, NO2, SO2, and O3), we found
significant correlations between crop residue burning and PM2.5, PM10, CO, and NO2
concentrations, with the highest correlation seen with PM2.5 at an R2 of 0.81. Moreover, the
correlation between residue burned area and PM2.5, PM10, CO, and NO2 concentrations
was significantly higher than the correlation between the number of residue fire points and
their concentrations.

In this study, the correlation between straw fire point and burned area and AQI are
mainly determined by using the fire point product of VIIRS/MODIS and the area burned
product of MOD64. However, in the future, there is a desire to use geostationary satellites
to establish the correlation between straw fire points, burned area, and AQI at a lower
temporal resolution to find further better indicators to characterize the impact of straw
burning on the surrounding regional air quality.
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