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Abstract: With the popularization of positioning technology, more and more industries have begun
to pay attention to the application and demand of location information, and almost all industries
can benefit from low-cost and high-precision location information. This paper introduces a novel
three-dimensional (3D) low-cost, high-precision target perception algorithm that utilizes a Radio
Frequency Identification (RFID) mobile reader and double tags. Initially, the Received Signal Strength
(RSS) is employed to estimate the approximate position of the target along the length direction of the
shelf. Additionally, double tags are affixed to the target, enabling the perception of its approximate
height and depth through phase information measurements. Subsequently, the obtained rough
position serves as an initial value for calibration using the proposed algorithm, allowing for the
refinement of the target’s length information relative to the shelf. Simulation results demonstrate the
exceptional accuracy of the proposed method in perceiving the 3D position information of the target,
achieving centimeter-level sensing accuracy.

Keywords: RFID; object perception; RSS; phase information

1. Introduction

Radio Frequency Identification (RFID) technology has found wide-ranging applica-
tions in intelligent identification, sports tracking, logistics, library management, and storage
management [1–6]. However, current approaches often require multiple readers, resulting
in high deployment costs [7,8], while the fixed position of the reader [9,10] limits its overall
utility. Existing perception-based methods [11–13] mainly focus on two-dimensional (2D)
location information, relying on human movement or environmental changes. Additionally,
these methods exhibit limited accuracy in three-dimensional (3D) positioning. This paper
addresses the critical challenge of achieving cost-effective and highly accurate 3D target
positioning in RFID research.

Based on different RFID signal types, there are three distinct types: Received Signal
Strength (RSS)-based method, a phase-based method, and a hybrid method that combines
both RSS and phase information.

The commonly used location method, which is based on RSS measurement, utilizes
the transmission loss model of electromagnetic waves to achieve positioning. In [14], NI
et al. introduced the LANDMARC system as a pioneering approach for positioning. This
system deploys a series of RFID tags in the target areas and relies on the reader’s RSS mea-
surements for localization. However, due to its susceptibility to environmental interference,
RSS proves to be unstable, necessitating a higher density of reference tags for improved
positioning accuracy. In [11], Wang et al. presented a method for localization that is based
on changes in RSS time series as humans move. This approach requires the participation of
pedestrians, while the position of the reader remains fixed. Similarly, ref. [12] proposes a
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relative positioning method that utilizes RSS features. This method determines specific 2D
positions by employing an RSS ranging model, eliminating the need for reference tags.

Converting the phase difference of RFID into a difference in distance and using it
for localization is a popular research method [15–22]. By deploying two antennas and
measuring the phase difference between the tag and the antennas, an average positioning
accuracy of 12.8 cm was achieved by combining the distance difference [17]. Similarly, in
reference [20], the authors proposed using the Kalman filter to process the image sequence
captured by the camera to obtain the reader’s trajectory. This trajectory is then combined
with the phase difference measurement collected from the unknown location of the tag to
estimate the 3D position of the tag. In the literature [21], the phase information is used to
solve the nonlinear equation system by the least squares method, which requires a small
amount of calculation and can meet the high real-time requirements of mobile positioning.
The literature [22] considers the multipath problem in the actual scene, only selects the
line-of-sight signal in the actual algorithm, and constructs a set of hyperbolas based on
the virtual antenna to achieve positioning. In addition, the authors of [13] introduced
the Mobile RF-robot Localization (MRL) system. In this method, a reader equipped with
two vertically deployed antennas moves along a straight line in the warehouse channel to
obtain the phase difference and time information of tags placed on the shelf. The geometric
relationship between the antenna trajectory and the tags on the shelf is leveraged to achieve
high 2D accuracy. However, when the 3D MRL system is used to determine the location of
the target to be measured, the positioning accuracy in the y and z dimensions is low.

Combining phase and RSS [23–26] has emerged as a promising direction in RFID
localization. In reference [23], the utilization of RSS information is employed to swiftly
narrow down the potential area of the target tag, followed by the application of phase
information to enhance the accuracy of its position estimation. Nevertheless, this approach
demands a substantial deployment of readers and antenna arrays to achieve a finer grid,
enabling centimeter-level positioning accuracy. In reference [25], RSS and PDOA (Phase
Difference of Arrival) information are combined as joint fingerprint features, which are then
utilized in a deep convolution neural network-based localization method. Although this
technique outperforms traditional fingerprint recognition methods, it requires significant
time and effort for offline data collection.

This paper proposes an RFID positioning algorithm that combines RSS and phase
information measurements, taking advantage of the easy acquisition of RSS signals and the
high accuracy of the RFID phase-based positioning method. The algorithm utilizes a mobile
robot to carry the RFID reader, enabling positioning based on a single reader. To begin with,
the algorithm captures the height and depth information of the target relative to the shelf
by sensing the phase information of all the targets equipped with double tags on the shelf.
Subsequently, leveraging the path loss model and measured RSS, the algorithm determines
the position of the target relative to the shelf column. Furthermore, the estimated position in
the aforementioned three dimensions is utilized as the initial value, followed by calibration
using the proposed algorithm in this paper. This calibration process aims to obtain the 3D
high-precision position information of the target on the shelf. The main contributions of
this paper are summarized as follows:

• In the context of the shelf scenario, this paper introduces a double-tags phase model
and presents a closed-form solution for accurately determining the height and depth
of the target in relation to the shelf.

• This paper introduces a two-step positioning algorithm that combines RSS and signal
phase for enhanced accuracy. In the first step, the algorithm utilizes the RSS peak
information and the double-tags phase model to estimate the initial position. In
the second step, the mobile RFID reader and double-tags (MRRDT) algorithm is
employed for further calibration which achieves a final 3D position estimation error
of approximately 4 cm.
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• Compared to existing 3D positioning algorithms based on passive RFID tags, the
proposed method offers higher positioning accuracy while maintaining lower compu-
tational complexity.

The rest of this paper is organized as follows. Section 2 describes the system design
which includes an overview of the system architecture, the estimation of specific coarse
positions, and the fine calibration of the x-dimension using the MRRDT algorithm. Sim-
ulation results and corresponding analysis are discussed in Section 3. Finally, Section 4
concludes the paper.

2. System Desgin
2.1. System Architecture

Aiming at the perception problem of the location information of items placed on
a shelf, the system model built in this paper is shown in Figure 1. In this scenario, the
communication between the antenna and the tag is more inclined to LOS (line-of-sight)
transmission. Each target to be tested on the shelf is affixed with two passive RFID tags
(Ta, Tb), and the two tags are separated by a distance of da,b. According to the work of [22],
to effectively eliminate phase ambiguity, the distance da,b between two tags cannot exceed
1
4 wavelength (that is to say, da,b < 1

4 λ).

Figure 1. System architecture used by MRRDT.

Two tags appear in pairs for the same target to be tested, so they are named tag pairs.
In addition, a mobile robot is placed on the horizontal ground, loaded with a portable
computer and an RFID reader. The reader has two directional antennas, represented by A1
and A2. The two antennas are directly connected to the reader, and the two antennas face
the shelf and are vertically placed on the robot platform. The distance between the center
of the antenna is d1,2, and the distance between the lower antenna and the ground is hant.

First, the mobile robot moves at a fixed speed v from one end of the shelf to the
other. Next, the reader carried by the mobile robot sends signals through the antenna to
activate the passive tags pasted on the objects on the shelf and complete the backscattering.
Then the dual antennas of the reader collect the backscattering signals of the tags. Finally,
the portable computer stores and processes the collected signals and estimates the three-
dimensional position information of the targets on the shelf according to the algorithm
proposed in this paper.

At the beginning of robot motion, the projection of its center of gravity on the ground
is the origin O of coordinates. The motion direction of the robot is set as the x-axis, its
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direction perpendicular to the ground is set as the z-axis, and the y-axis is perpendicular to
the plane formed by xoz. According to the definition in Figure 1, the starting coordinates
of the upper and lower antennas of the reader can be expressed as (0, 0, hant + d1,2) and
(0, 0, hant), respectively.

The three-dimensional high-precision target perception algorithm proposed in this
paper is divided into two stages: rough estimation of three-dimensional target position and
x-dimension position calibration. The specific flow of the algorithm is shown in Figure 2.

Figure 2. System architecture used by MRRDT.

2.2. Estimation of Rough Position

After the RFID reader collects a set of RSS and phase information, due to measurement
error and noise, the RSS and phase information are filtered, respectively, at first. Then the
coarse position of the target to be measured is estimated according to the filtered data.

2.2.1. Perception of Rough Length

The total period of robot movement is sampled N times. Suppose the RSS value
obtained by the tag Ta and tag Tb at time tn (n ∈ [1, N]) from the ith antenna (i = 1,2,
respectively, correspond to the upper and lower antennas of the reader is rssa,i(tn) and
rssb,i(tn). Then the total movement time of the robot can be obtained, and all the RSS values
collected can be formed into the matrix as follows:

RSS =
[

rssa,1 rssb,1 rssa,2 rssb,2
]T (1)

where
rssg,i =

[
rssg,i(t1), . . . , rssg,i(tn), . . . , rssg,i(tN)

]
where g = a or b, correspond to the two tags pasted on the target, respectively.
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The conclusion in [12] shows that each tag has a unique RSS profile, and we can use
this uniqueness to distinguish different tags. Assume that the RSS received by the reader

from tag g at time tn is rssg(tn), then rssg,i(tn) =
1
S

S
∑

s=1
rssg,i(tn,s), where S represents the

sampling times and tn,s represents the RSS obtained at the sampling point s at time tn.
Define the RSS difference between tag a and tag b as disRSSa,b:

disRSSa,b =
N

∑
n=1
|rssa(tn)− rssb(tn)| (2)

In the actual environment, even if the RFID reader and the passive tag are both in a
static state, the RSS values received by the reader at different times from the same tag are
not constant. Noise or multipath effects in the communication environment may cause this
situation. Take the RSS signal of the upper tag of the target to be tested received by the
upper antenna of the reader at the fixed point as an example, as shown in the solid blue
line in Figure 3 below. The initial signal fluctuated significantly, with the mean value of
RSS being −41 dBm, the maximum value −37 dBm, and the minimum value −47 dBm,
with a difference of 10 dBm between the maximum and minimum values.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

time points(s)

-47

-46

-45

-44

-43

-42

-41

-40

-39

-38
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R
S

S
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B
m

)

Original values

The result of Gaussian filtering

The result of mean filtering

The result of median filtering

Figure 3. Changes in RSS measurements when the reader and tag position are fixed.

It can be seen that it is not necessarily accurate to directly use the mean value of these
values in the case of a small amount of sampled data. Therefore, in this case, it is necessary
to filter the RSS measurement signal, first remove the abnormal RSS measurement value,
and then take the mean of other RSS values collected at the same time as the RSS value
received by the antenna at that time from the tag to be tested.

Figure 3 also shows the effect of Gaussian filtering, mean filtering, and median filtering
to remove outliers for the measured RSS values. It can be observed from the figure that
the continuity of the signal obtained by Gaussian filtering is better and more details of the
initial signal are preserved to a great extent. Therefore, Gaussian filtering is used to filter
the original RSS measurements in the following sections.

First, Gaussian filtering is performed on the signal strength value rss(tn) collected at
the time tn in the matrix shown in Equation (1). Then, the average value of multiple groups
of values obtained simultaneously is taken to complete the smoothing processing. The
processed RSS matrix can be expressed as:

RSS′ =
[

rss′a,1 rss′b,1 rss′a,2 rss′b,2
]T (3)

where
rss′g,i =

[
rss′g,i(t1), . . . , rss′g,i(tn), . . . , rss′g,i(tN)

]
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where i = 1, 2 , corresponds to the upper and lower antennas of the reader, and g = a or b
correspond to the two tags pasted on the target, respectively. After observing the above
pretreated RSS signal, it is found that the closer the antenna is to the tag, the stronger the
RSS signal is. Therefore, the x-dimension coordinate of the tag under test can be estimated
by finding the peak value of the processed RSS signal. For example, three tags are placed
in positions (0.45, 0.6, 0.7), (1.56, 0.9, 1) and (2.83, 0.8, 0.5), respectively, the unit is m, and
the pre-processed RSS signal strength value is shown in Figure 4 below.
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tag3,A1

tag1,A2

tag2,A2

tag3,A2

Figure 4. The RSS peak time corresponding to different tags.

It can be seen from this figure that for these three tags, the peak value of the RSS
signal obtained by the upper antenna appears at 3 s, 8 s, and 14 s, respectively. The
peak value of the RSS signal received by the lower antenna appeared at 3 s, 7 s, and
15 s, respectively. Therefore, the x-dimension coordinates corresponding to the three
tags received by the antenna are, respectively, 0.6 m, 1.6 m, and 2.8 m. The x-dimension
coordinates corresponding to the three tags obtained by the antenna are, respectively,
0.6 m, 1.4 m, and 3 m. To sum up, the x-dimension coordinates of the three tags correspond-
ing to the RSS signal peak were 0.6 m, 1.5 m, and 2.9 m by averaging the above two groups
of results.

Therefore, the peak value of RSS′ in Equation (3) is set as ta,1, ta,2, tb,1 and tb,2. Let t⊥
represent the moment when the target is closest to the antenna, so

t⊥ =
1
4
(ta,1 + tb,1 + ta,2 + tb,2) (4)

Therefore, the estimated initial position value x̂ of the target to be measured in the
x-dimension can be expressed as

x̂ = vt⊥ (5)

where v represents the moving speed of the robot.

2.2.2. Perception of Rough Height and Depth

When the robot moves, the phase matrix Φ̃ of the backscattered signal from the tag
pair of the target to be sensed can be obtained

Φ̃ =
[

φ̃a,1 φ̃b,1 φ̃a,2 φ̃b,2
]T (6)

where
φ̃g,i =

[
ϕ̃g,i(t1), . . . , ϕ̃g,i(tn), . . . , ϕ̃g,i(tN)

]
where i = 1, 2 corresponds to the upper and lower antennas of the reader and g = a or
b corresponds to the two tags pasted on the target, respectively. However, due to phase
deflection caused by the multipath effect, environmental noise, and the difference between
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equipment and tag, the phase of the tag’s backscattered signal received by the antenna has
interference, so that δ represents the phase deflection caused by environment or equipment.
Thus, the phase acquired by the antenna Ai of the reader at time tn can be expressed as

ϕ̃g,i(tn) = mod (
4πdg,i(tn)

λ
+ δ, 2π) (7)

where dg,i(tn) represents the distance between antenna Ai and tag Tg at time tn. Since there
is no jump between the continuous phase values, outliers can be found to compensate for
whether the phase values jump in the adjacent moments so that the adjacent phase values
are continuous. Similar to the unwrap command [27], the phase ϕu

g,i(tn) after compensation
can be expressed as

ϕu
g,i(tn) = ϕ̃g,i(tn) + 2kπ (8)

Due to the ambiguity of phase ϕ̃g,i(tn) in Equation (8), and the k value periodic element
is used to restore the true phase. The phase compensation is carried out for N groups
of phases collected during the total movement time of the robot, and the phase matrix
obtained can be expressed as

Φu =
[

φu
a,1 φu

b,1 φu
a,2 φu

b,2

]T
(9)

where
φu

g,i =
[

ϕu
g,i(t1), . . . , ϕu

g,i(tn), . . . , ϕu
g,i(tN)

]
where i = 1, 2 corresponds to the upper and lower antennas of the reader and g = a or b
corresponds to the two tags pasted on the target, respectively.

In addition to the change in the distance leading to the change in phase, the phase
deflection δ caused by other factors has not been eliminated. Therefore, after the phase
unwrapping, this paper carries out phase value calibration similar to that in [28]. A tag
with a known position was selected as a reference tag. A mobile robot with a single
step length of 5 cm was used to measure the phase of the backscattered signal of the tag.
Each measurement lasted for 30 s. At time tn, the phase measurement value ϕtest

g,i (tn) was

unwrapped to obtain ϕu,test
g,i (tn), and the difference value Cg,i(tn) between the theoretical

value of phase ϕ
u,theroy
g,i (tn) and the test value ϕu,test

g,i (tn) after phase unwrapping is taken as
the phase correction value,

Cg,i(tn) = ϕ
u,theroy
g,i (tn)− ϕu,test

g,i (tn) (10)

Based on the correction value Cg,i(tn) shown in the above equation, the corrected
phase φu′

g,i can be obtained by further modifying Equation (9).

φu′
g,i = φu

g,i − [Cg,i(t1), . . . , Cg,i(tn), . . . , Cg,i(tN)]

= [ϕu′
g,i(t1), . . . , ϕu′

g,i(tn), . . . , ϕu′
g,i(tN)]

(11)

where i = 1, 2 , corresponds to the upper and lower antennas of the reader and g = a or b
correspond to the two tags pasted on the target, respectively.

After the phase matrix preprocessing is completed, because it is difficult to directly
estimate the position of the target to be measured in any dimension using a single tag [11,12],
this paper introduced the double-tags phase model algorithm to complete the position
estimation of the two dimensions. The double-tags phase model is shown in Figure 5. As
can be seen from this figure, the target to be tested is, respectively, pasted with the upper
and lower tags Ta and Tb, and the distance between the two tags is da,b. da,i(tn) and db,i(tn),
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respectively, indicate the distance between the ith antenna of the reader and tags Ta and Tb
at time tn, then

dg,i(tn) =
λϕu′

g,i(tn)

4π
(12)

where g = a or b, ϕu′
a,i(tn) and ϕu′

b,i(tn), respectively, represent the phase calibration values
between the tag Ta, Tb and the ith antenna of the reader at time tn. λ represents the
wavelength corresponding to the electromagnetic wave emitted by the reader. Therefore,
the distance vector da,i and db,i corresponding to tn of antenna Ai and tags Ta and Tb at
each time in the whole process can be expressed as

dg,i = [dg,i(t1), . . . , dg,i(tn), . . . , dg,i(tN)] (13)

Figure 5. Double-tags phase model.

In Figure 5, at time tn, the position of Ai is Ai(tn), and the crossing point at is the
vertical line of the tag Ta and Tb, which intersects with the point Gi. Then tag Ta, Ai(tn)
and Gi can form a right triangle, and tag Tb, Ai(tn) and Gi can also form a right triangle, so
the time tn satisfies

d2
a,i(tn)− (da,b + db,Gi

(tn))
2 = d2

b,i(tn)− d2
b,Gi

(tn) (14)

where db,Gi
(tn) represents the distance between tag Tb and projection point Gi at time tn.

According to Equation (14), we can obtain

db,Gi
(tn) =

d2
a,i(tn)− d2

b,i(tn)− d2
a,b

2da,b
(15)

According to the position relation of the target to be tested in Figure 5, it can be
concluded that the estimated zi(tn) of the target’s z-dimension position at this time satisfies

zi(tn) = db,Gi
(tn) +

1
2

da,b + hant (16)

By substituting db,Gi
(tn) obtained from Equation (15) into Equation (16), zi(tn) can be

obtained. Then, average the estimated value of z-dimension zi of the target to be measured
at all times, to satisfy

ẑi =
1
N

N

∑
n=1

zi(tn) (17)
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Meanwhile, in the right triangle formed by the tag Tb and Ai(tn) and Gi, to satisfy

dGi ,i(tn) =
√

d2
b,i(tn)− d2

b,Gi
(tn) (18)

where dGi ,i(tn) is the distance between point Gi at time tn and antenna Ai(tn). The dGi ,i(tn)
can be solved by substituting Equation (15). However, the true position of the y-dimension
can only be obtained when the antenna is perpendicular to the tag time t⊥, and the actual y
value is dGi ,i (t⊥). Now combing with the whole process to solve the corresponding y value
at time tn, to satisfy

yi(tn) =
√

d2
Gi ,i

(tn)− [v(tn − t⊥)]
2 (19)

where t⊥ can be obtained by Equation (4), and v represents the moving speed of the robot.
Then calculate the average ŷi of the whole process by y(tn) in Equation (19), and tn belongs
to t1 through tN , to satisfy:

ŷi =
1
N

N

∑
n=1

yi(tn) (20)

The double-tags phase model is described by a single antenna, but to obtain more
accurate results, the average value of the two groups of ŷi and ẑi ( i = 1, 2, respectively,
correspond to the upper and lower antennas) obtained by the antenna A1 and A2 is obtained{

ŷ = 1
2 (ŷ1 + ŷ2)

ẑ = 1
2 (ẑ1 + ẑ2)

(21)

By combining Equation (5) and Equation (21), the rough estimate of the initial position
of the target to be measured can be updated as MRRDT f irst and its result is (x̂, ŷ, ẑ).

2.3. Calibration for Refinement

Due to the interference and noise in the signal measurement process, the above initial
rough position estimation based on the measured value of the RSS signal has a large
error. Thus, an x-dimension calibration algorithm based on the Taylor series expansion
is proposed in this study to correct the target’s length information relative to the shelf as
shown in Equation (5), therefore enhancing the accuracy of the 3D position estimation. The
detailed calibration algorithm is shown in Figure 6.

Figure 6. Diagram of 3D calibration algorithm.

As can be seen from Figure 6, four different color lines are used to form four different
coordinate systems, respectively. The black bold coordinate systems have the same layout
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as the original 3-D coordinate system in Figure 1. The orange one represents the 2-D
coordinate system at the shortest distance between the antenna and the target. And the blue
and green coordinate systems are the 2-D coordinate systems based on the plane formed by
the origin and tag Ta at the initial time of the two antennas respectively. The whole time
process tN is evenly divided into three equally parts, namely [t1, . . . , tw], [tw+1, . . . , t2w] and
[t2w+1, . . . , tN ], where N = 3w. Let the position of antenna A1 corresponding to tn, tn+w,
and tn+2w be R1, E1 and J1, respectively, and the position of antenna A2 corresponding to
the same time be R2, E2 and J2, respectively. The calibration algorithm is used to calibrate
the 3D rough estimation of the measured target. The algorithm requires at least one tag
and two antennas of the reader. Taking tag Ta as an example, tag Ta, R1, E1 and J1 forms a
plane, as shown in Figure 7.

Figure 7. A two-dimensional plan of the calibration algorithm.

As shown in Figure 7, let the projection point of tag Ta on the line where the three
points of R1, E1 and J1 are located be M1. From the corresponding relation between phase
and distance of backscattering in tag Ta at different times, we can obtain

∆ϕ1 = ϕu′
a,1(tn)− ϕu′

a,1(tn+w)

=
4π

λ
(
∣∣∣−−→TaR1

∣∣∣−∣∣∣−−→TaE1

∣∣∣)
∆ϕ2 = ϕu′

a,1(tn+w)− ϕu′
a,1(tn+2w)

=
4π

λ
(
∣∣∣−−→TaE1

∣∣∣−∣∣∣−−→Ta J1

∣∣∣)
(22)

In addition, the three points of R1, E1 and J1 and the two points of tag Ta and M1,
respectively, form three right triangles RtR1Ta M1 , RtE1Ta M1 and RtJ1Ta M1 , so as to satisfy

−−→
TaR1 =

−−−→
Ta M1 +

−−→
M1R1−−→

TaE1 =
−−−→
Ta M1 +

−−−→
M1E1−−→

Ta J1 =
−−−→
Ta M1 +

−−→
M1 J1

(23)

In the Xa,1 A1(t1)Ya,1 plane, the position of tag Ta can be expressed as (xa,1, ya,1).
Combined with the position relation of the tag in the coordinate system of Figures 6 and 7,
we can obtain 

∣∣∣−−−−−−→A1(t1)M1

∣∣∣ = xa,1∣∣∣−−−→Ta M1

∣∣∣ = ya,1
(24)

In addition, since the velocity v and time points tn, tn+w and tn+2w are known, we
can obtain
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
∣∣∣−−−−−→A1(t1)R1

∣∣∣ = vtn∣∣∣−−−−−→A1(t1)E1

∣∣∣ = vtn+w∣∣∣−−−−−→A1(t1)J1

∣∣∣ = vtn+2w

(25)

According to the geometric relationship shown in Figure 7 and combining Equations (24)
and (25), we can obtain 

∣∣∣−−−→M1R1

∣∣∣ = ∣∣∣−−−−−−→A1(t1)M1

∣∣∣− ∣∣∣−−−−−→A1(t1)R1

∣∣∣∣∣∣−−−→M1E1

∣∣∣ = ∣∣∣−−−−−−→A1(t1)M1

∣∣∣− ∣∣∣−−−−−→A1(t1)E1

∣∣∣∣∣∣−−→M1 J1

∣∣∣ = ∣∣∣−−−−−−→A1(t1)M1

∣∣∣− ∣∣∣−−−−−→A1(t1)J1

∣∣∣
(26)

According to Equations (23) and (26), Equation (22) can be rewritten as

λ

4π
∆ϕ1 =

√
(xa,1 − v · tn)2 + y2

a,1

−
√
(xa,1 − v · tn+w)

2 + y2
a,1

λ

4π
∆ϕ2 =

√
(xa,1 − v · tn+w)

2 + y2
a,1

−
√
(xa,1 − v · tn+2w)

2 + y2
a,1

(27)

Since it is difficult to directly solve the nonlinear equations shown in the above equa-
tion, Taylor series expansion is carried out on the equation, and the rough estimate (x̂, ŷ) of
the x-dimension and y-dimension of the target to be measured obtained by Equation (5)
and Equation (21) is taken as the initial value, which can be obtained:

AX = B (28)

where

A =


x̂−vtn

(
∣∣∣−−→TaR1

∣∣∣)
0

− x̂−vtn+w

(
∣∣∣−−→TaE1

∣∣∣)
0

ŷ

(
∣∣∣−−→TaR1

∣∣∣)
0

− ŷ

(
∣∣∣−−→TaE1

∣∣∣)
0

x̂−vtn+w

(
∣∣∣−−→TaE1

∣∣∣)
0

− x̂−vtn+2w

(
∣∣∣−−→Ta J1

∣∣∣)
0

x̂
(
∣∣∣−−→TaE1

∣∣∣)
0

− x̂
(
∣∣∣−−→Ta J1

∣∣∣)
0


X =

[
xa,1 ya,1

]T
B =

 (

√
(
∣∣∣−−→TaE1

∣∣∣)
0
−
√
(
∣∣∣−−→TaR1

∣∣∣)
0
) + λ

4π ∆ϕ1 + A11 x̂ + A12ŷ

(

√
(
∣∣∣−−→Ta J1

∣∣∣)
0
−
√
(
∣∣∣−−→TaE1

∣∣∣)
0
) + λ

4π ∆ϕ2 + A21 x̂ + A22ŷ


and (

∣∣∣−−→TaR1

∣∣∣)
0
, (
∣∣∣−−→TaE1

∣∣∣)
0

and (
∣∣∣−−→Ta J1

∣∣∣)
0

represent the value obtained by substituting the
initial values of the estimated tags in Equations (5) and (21) into Equation (23), respec-

tively. That is to say,
(∣∣∣−−→TaR1

∣∣∣)
0
=
√
(x̂− vtn)

2 + ŷ2,
(∣∣∣−−→TaE1

∣∣∣)
0
=
√
(x̂− vtn+w)

2 + ŷ2

and
(∣∣∣−−→Ta J1

∣∣∣)
0
=
√
(x̂− vtn+2w)

2 + ŷ2.
So far, according to Equation (28), the Xa,1 axis and Ya,1 axis projections of tag Ta

on this plane are xa,1 and ya,1, respectively, corresponding to
∣∣∣−−−−−−→A1(t1)M1

∣∣∣ and
∣∣∣−−−→Ta M1

∣∣∣
respectively with

X = (AT A)−1 ATB (29)

For Figure 6,
∣∣∣−−−−−−→A1(t1)M1

∣∣∣ is the real x-axis position of tag Ta of the target to be tested,

while
∣∣∣−−−→Ta M1

∣∣∣ is the distance between antenna A1 and projection point M1.
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In the same way as obtaining
∣∣∣−−−−−−→A1(t1)M1

∣∣∣ and
∣∣∣−−−→Ta M1

∣∣∣, tag Ta, R2, E2 and J2 forms a

plane, and
∣∣∣−−−−−−→A2(t1)M2

∣∣∣ and
∣∣∣−−−→Ta M2

∣∣∣ can be obtained, where
∣∣∣−−−−−−→A2(t1)M2

∣∣∣ = xa,2. Now the xa,1

and xa,2 obtained by the two antennas, respectively, are the estimated position of the tag Ta
on the x-axis, and the mean value processing is

xa =
1
2
(xa,1 + xa,2) (30)

where
∣∣∣−−−−−−→A2(t1)M2

∣∣∣ = xa,2, xa is the real x-axis position estimate of tag Ta.
Let the line where M1 and M2 are projected to the x-axis intersect at point oM, take the

line where M1 and M2 are located as the zM axis, and the line parallel to the y axis through
the point oM is the yM axis. Therefore, the yMoMzM plane is shown in Figure 8.

Figure 8. Calibration algorithm yoz profile.

As shown in Figure 8, the projection point of tag Ta on the zM axis at this time is
denoted as P and M2 forming a right triangle with tag Ta, and P and M1 forming a right
triangle with tag Ta, so it can be obtained

∣∣∣−−−→Ta M1

∣∣∣ = √∣∣∣−−→PM1

∣∣∣2 + y2
a∣∣∣−−−→Ta M2

∣∣∣ = √(
∣∣∣−−→PM1

∣∣∣+ d1,2)
2
+ y2

a

(31)

where
∣∣∣−−→PM1

∣∣∣ is the distance between P and M1, which can be solved by

∣∣∣−−→PM1

∣∣∣ =
∣∣∣−−−→Ta M2

∣∣∣2 − ∣∣∣−−−→Ta M1

∣∣∣2 − d2
1,2

2d1,2
(32)

According to Equation (32), it can be obtained according to the position relation in
Figure 8  ya =

√∣∣∣−−−→Ta M1

∣∣∣2 − ∣∣∣−−→PM1

∣∣∣2
za =

∣∣∣−−→PM1

∣∣∣+ d1,2 + hant

(33)

By combining Equations (30) and (33), the three-dimensional coordinates (xa, ya, za) of
the tag Ta estimated based on the calibration method proposed in this paper can be obtained.
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The (xa, ya, za) obtained above are the three-dimensional coordinates of tag Ta obtained
by the calibration algorithm at time tn, tn+w and tn+2w. Since the time length is N = 3w, w
possible coordinate positions can be solved in the 3D position calibration stage.

Directly averaging the w positions usually does not achieve the best results. Therefore,
weight is introduced to optimize the positioning effect of the algorithm further. Take the
motion direction of the reader, i.e., the inverse of the variance of the estimated value of
the x-dimension 1

Var(xa)
as the weight to further calibrate the x-dimension coordinates,

and obtain

xa, f in =
w

∑
n=1

xa(tn)

 1
Var(xa(tn))

w
∑

n=1

1
Var(xa(tn))

 (34)

Similar to the above Equation (23) to Equation (34), the x-dimension coordinate of the
updated tag Tb is xb, f in. Therefore, the x-dimension coordinate of the target to be tested can
be updated to

x̂Tc =
1
2
(xa, f in + xb, f in) (35)

At the same time, ya, yb together with za and zb can also be obtained by treating
the y and z-dimension results obtained from Equation (33) in the same way as that from
Equations (34) and (35) in X-dimension. Since Y and Z are processed in the same way, it
will not be repeated here. At this point, the estimation of the target can be updated as
MRRDT f inal and its result is (x̂Tc, ŷTc, ẑTc).

2.4. Comparison of the above Two Results

Based on the same coordinate system as shown in Figure 1 above, we set up a set of
experiments to compare the results of MRRDT f irst and MRRDT f inal with the traditional
MRL method [13]. Change the y, z, and x-dimension coordinates of the target, respectively,
while keeping the other two coordinates unchanged. In this simulation, we divided the
target location into three groups according to the changes in three dimensions, namely
Groupy{(1.3, 0.6, 1.3), (1.3, 0.8, 1.3), (1.3, 1.0, 1.3)}, Groupz{(1.3, 0.8, 0.7), (1.3, 0.8, 1.3),
(1.3, 0.8, 1.9)} and Groupx{(0.7, 0.8, 1.3), (1.3, 0.8, 1.3), (1.9, 0.8, 1.3)}. To better highlight the
performance of these methods, we set a lower sampling rate of 10 Sa/s in this group of
comparison experiments, and other parameters are set as shown in Table 1. In addition, we
obtain a set of simulation results as shown in Table 2.

Table 1. Parameter settings.

Object Setting

Area size 4 m × 4 m × 2.5 m
Shelf size 2 m × 1 m × 2 m

Distance between tag pairs 5 cm
Distance between two antennas 0.2 m

Reader frequency 924.5 MHZ
Sampling rate 100 Sa/s

90% Gaussian noise 6 dBm
10% Gaussian noise 15 dBm
Robot moving speed 0.2 m/s

First, we analyze the positioning results in the x-axis position. As can be seen from
Table 2, the MRRDT f inal method provides more accurate length estimation compared to
the MRRDT f irst and MRL methods. Second, for the results of the y and z-axis position,
the MRRDT f irst method proposed in this paper achieves significant performance improve-
ments compared with the other two methods.

As a result, based on the above analysis of the simulation results in Table 2, the
utilization of the MRRDT f inal method yields the most accurate estimation of the x-axis
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position, while the implementation of the MRRDT f irst method provides the most precise
information regarding the y-axis and z-axis position. Therefore, this paper estimated using
MRRDT f inal in dimension x and MRRDT f irst in dimension y and z, i.e., the paper used
(x̂Tc, ŷ, ẑ) as the final output result of the shelf positioning system (It is worth noting that
if the robot does not reach the RSS peak in the moving process, the three-dimensional
position obtained by position calibration in this paper is more accurate. However, after
the robot achieves the RSS peak of the target tag, the accuracy of the position obtained by
rough estimation in y and z dimensions is improved). The average error of the estimation
of the target by the MRL method and the proposed MRRDT algorithm is shown in Figure 9.

Table 2. Comparison of position errors.

Group Targets (cm) Position Error(x, y, z)
of MRL in [13] (cm)

Position Error(x, y, z)
of MRRDT f irst (cm)

Position Error(x, y, z)
of MRRDT f inal (cm)

Groupy

(1.3, 0.6, 1.3) 3.34, 45.69, 68.86 14.47, 2.67, 0.05 3.16, 42.52, 62.23
(1.3, 0.8, 1.3) 3.30, 36.07, 62.85 15.19, 2.20, 0.06 3.20, 34.50, 55.48
(1.3, 1.0, 1.3) 3.10, 28.75, 56.15 16.23, 2.01, 0.06 3.17, 28.16, 48.92

Groupz

(1.3, 0.8, 0.7) 1.48, 7.30, 14.12 12.37, 1.36, 0.05 0.91, 5.32, 11.15
(1.3, 0.8, 1.3) 3.38, 36.31, 62.71 15.45, 2.28, 0.06 3.29, 34.51, 55.46
(1.3, 0.8, 1.9) 4.92, 66.92, 133.99 18.90, 3.59, 0.07 6.45, 69.44, 122.55

Groupx

(0.7, 0.8, 1.3) 6.74, 25.39, 42.53 14.93, 2.15, 0.07 4.70, 27.97, 49.03
(1.3, 0.8, 1.3) 3.34, 36.03, 63.64 14.81, 2.10, 0.06 3.10, 34.41, 56.03
(1.9, 0.8, 1.3) 9.39, 29.22, 40.17 15.80, 2.30, 0.06 9.09, 30.64, 31.97
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Figure 9. Three sets of target positioning errors.

From Figure 9, we can see that when only the depth, height, and length information of
the target on the shelf are altered while keeping the coordinates of the target unchanged in
the other two dimensions, the MRRDT method achieves centimeter-level 3-D positioning
accuracy, while the MRT method only achieves sub-meter-level 3-D positioning accuracy.

3. Simulation and Analysis

To verify the performance of the proposed MRRDT algorithm, a simulation test was
carried out in the range of 4 m × 4 m × 2.5 m, with the shelf length 2 m, height 2 m, and
depth 1 m. The placement of the target to be tested on the shelf is shown in Figure 1. In
addition, other default parameters are set as shown in Table 1. The 18 targets are placed
in three rows and six columns. All objects are placed in this distribution in general, but
the specific locations are obtained randomly on this basis. Each target is attached with two
tags, top and bottom, a total of 18 groups of tag pairs, and the spacing of tag pairs is 5 cm
(If there is no other explanation, the positioning effect of all tags on the shelves is taken as
the positioning effect of the system in this paper). In addition, according to the work in [29],
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the similar noise model we adopted contains two different Gaussian noises accounting
for 90% and 10%, respectively. This paper does not simulate the effect of multipath noise
because we can perform positioning based on LOS paths only according to the relevant
work in [22].

To evaluate the positioning performance of the proposed algorithm, the root mean
square error (RMSE) of positioning was used to evaluate

RMSE =

√
1
m

E
[∥∥P− P̂

∥∥2
F

]
(36)

where P sequence is the real position of m targets to be measured in this system and
P = [P1, P2, . . . , Pm]. The P̂ sequence is the estimated position of m targets to be measured
in this system, and P̂ = [P̂1, P̂2, . . . , P̂m].

3.1. The Positioning Performance of Targets

Figure 10 shows the cumulative distribution function (CDF) curve of the three-
dimensional position positioning error of the shelf target by the proposed method and the
MRL algorithm [13]. As can be seen from this figure, the average error of the proposed
algorithm in the x-axis, y-axis, and z-axis is 0.69 cm, 1.02 cm, and 0.05 cm, respectively,
and the three-dimensional average error of the shelf system is 1.34 cm. The positioning
performance of the z-axis is the best, followed by the x-axis and y-axis. The performance
of the MRL algorithm in x-dimension is close to that of the proposed algorithm and even
slightly better than the proposed algorithm in a certain range. However, in the y-dimension
and z-dimension, even the overall positioning performance of the target to be tested is
inferior to the proposed algorithm.
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Figure 10. Three-dimensional results of two methods for locating targets.

3.2. Analysis of Other Influencing Factors
3.2.1. Influence of Different Tags on Spacing and Positioning Performance

To estimate other factors affecting the positioning accuracy of the target to be posi-
tioned, different spacing distances between the tag pairs were set to observe the influence
of the spacing between the tag pairs on the 3D positioning accuracy of the target. Figure 11
illustrates the 3D root mean square positioning error diagram of the shelf target with tag
pairs with different spacing.

It can be seen from this figure that the change in the spacing between the tag pairs has
little influence on the positioning accuracy of the x and y dimensions of the measured target.
However, when the interval between tag pairs changed from 2 cm to 8 cm, the z-dimension
root mean square positioning error of the target to be measured decreased significantly. In
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addition, the positioning accuracy of the z-dimension has a good distribution in the total
positioning accuracy of the measured target.
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Figure 11. Influence of spacing between tag pairs on positioning accuracy.

3.2.2. Influence of Different Antenna Intervals on Positioning Performance

In addition, to estimate the influence of the spacing between antennas on positioning
accuracy, the height of the lower antenna is fixed at 0.3 m, and the height of the upper an-
tenna is determined by setting different antenna spacing distances, to observe the influence
of different antenna spacing on the positioning accuracy of the positioning algorithm in
this paper. Figure 12 shows the cumulative distribution function (CDF) curve of shelf target
positioning errors corresponding to different antenna intervals.
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Figure 12. Influence of MRRDT antenna interval on positioning accuracy.

As can be seen from Figure 12, the proposed algorithm has better positioning perfor-
mance than the MRL algorithm [13] when the antenna has the same spacing distance. The
positioning error of the algorithm proposed in this paper generally presents a downward
trend as the interval increases. When the interval increases to 70 cm, the average error
remains at about 2 cm. Of course, the positioning error of the MRL algorithm also continues
to decrease. The performance of the proposed algorithm is superior to that of the MRL
algorithm, but irregularities are found in the antenna spacing, and the antenna spacing will
be further subdivided into the following sections.
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3.2.3. Influence of Different Sampling Rate and Antenna Interval on
Positioning Performance

To discuss the influence of different antenna sampling rates and antenna spacing on
positioning accuracy, the lower antenna height is fixed at 0.3 m, and the upper antenna
height is determined according to the different antenna spacing distances used. In the same
sampling rate environment, different antenna intervals are set to determine the height of
the upper antenna to observe the influence of different antenna intervals on the positioning
accuracy of the positioning algorithm in this paper. In addition, different antenna sampling
rates are set to observe the influence of different sampling rates on positioning performance.
Figure 13 shows the simulation results.
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Figure 13. Influence of MRRDT antenna interval and sampling rate on positioning accuracy.

As can be seen from this figure, the larger the sampling rate is, the smaller the posi-
tioning error will be under the condition of the same airline interval. However, when the
sampling rate is fixed and the antenna interval is less than 70 cm, the system positioning
error decreases with the increase of the antenna interval. However, when the antenna
interval is larger than 80 cm, the system positioning error first increases with the increase
of the antenna interval. Meanwhile, the results of this figure satisfy the results shown in
Figure 12.

3.2.4. Influence of Different Speed and Noise on Positioning Performance

To discuss the influence of robot moving speed and environmental noise changes on
positioning accuracy, environmental noise is Gaussian white noise with a mean value of 0
and standard deviation σ. Then, the root mean square error of the positioning results of
the robot with different moving speeds and environmental noise is calculated. Figure 14
shows the root mean square error curve of the algorithm in [13] and the algorithm in this
paper under two different noise environments.

As can be seen from Figure 14, both algorithms will increase the positioning error
as the robot’s moving speed increases. In the same noise environment, when the robot’s
moving speed increases from 0.1 m/s to 1.5 m/s, the proposed algorithm has better
positioning performance than the MRL algorithm. However, when the robot’s moving
speed is greater than 0.9 m/s, the positioning performance of the algorithm in this paper
rapidly deteriorated due to the change in the robot’s moving speed, while the positioning
performance of the MRL algorithm is stable when the robot’s moving speed is less than
0.9 m/s. Finally, the performance of the two algorithms in the Gaussian noise environment
with a standard deviation σ of 0.2 is weaker than that in the noise environment with σ of
0.1. However, the algorithm in this paper still maintains good positioning performance in a
certain speed range under the condition that the noise increases.
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Figure 14. Influence of robot moving speed and ambient noise on positioning accuracy.

4. Conclusions

This paper proposes an MRRDT algorithm based on mobile double antennas and
double tags. The RSS and phase information of the signal reflected by the tag on the
target object is collected by the robot in the process of moving. First, the initial value of
the x-dimension of the target is estimated using the peak signal of RSS, and the y and
z-dimensions of the target are estimated using the double-tags phase model. Then, the 3D
MRL is used to calibrate the rough estimate of the target, and the 3D position information
of the target is obtained. Simulation results show that the proposed MRRDT system is 90%
more accurate than the MRL method [13]. Based on obtaining centimeter-level positioning
accuracy, it can effectively reduce deployment costs and improve equipment utilization.
Due to the limited range of normal work of the RFID system, the double tags may fall off
the tag, and the distance between the tag pairs will lead to the failure to match the smaller
target to be tested ( if directly reduced, it will cause strong electromagnetic interference,
resulting in reduced positioning accuracy ) and other problems. Therefore, the future
research direction will be to deal with the situation that the target to be tested is not in the
scope of the positioning system, the tag is damaged or missing to a certain tag, and the
adaptive positioning of the tag to the target to be tested with different spacing.
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