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Abstract: Reasonable allocation of space-based radar resources is a crucial aspect of improving the
accuracy of space multi-target tracking and enhancing spatial awareness. The conventional resource
allocation algorithm fails to exploit the high dynamic radar cross-section (RCS) characteristics,
resulting in poor tracking robustness, tracking divergence, or even loss of tracking. However, the RCS
of space targets fluctuates considerably in actual tracking scenarios, which cannot be disregarded
for space target tracking tasks. To address this issue, we propose an adaptive allocation method that
considers the dynamic RCS fluctuation characteristic for space-based radar tracking assignments. The
proposed method exploits the predictable orbital information of space target to calculate the real-time
observation angle of radar, and then obtains the multi-target dynamic RCS through the target RCS
dataset. By combining the obtained RCS sequence, radar power, and bandwidth, an optimal model
for radar tracking accuracy is established based on the multi-target posterior Cramér–Rao lower
bound (PCRLB) to evaluate the tracking performance. By resolving the aforementioned multivariance
optimization problem, we eventually acquire the results of power and bandwidth pre-allocation
for tracking multiple space targets. Simulation results validate that, compared with the traditional
methods, the proposed joint dynamic RCS power and bandwidth allocation (JRPBA) method can
achieve superior tracking accuracy and minimize instances of missed tracking.

Keywords: space multi-target tracking; joint power and bandwidth resource allocation method;
posterior Cramér–Rao lower bound (PCRLB); space-based radar; dynamic radar cross section (RCS)

1. Introduction
1.1. Background and Problem Statement

With the growing exploration of space activities, effective tracking, monitoring, and
protection technology for various space targets has brought significant attention to the
field of space situational awareness (SSA) region. In [1–3], an analysis is conducted on
the number of space targets launched by the United States, Europe, the Soviet Union, and
China in recent years, as well as the evolving trend of additional space debris generated.

Therefore, sparing no efforts on space resource development, space security and
space control [4,5] is indeed necessary for enhancing the SSA ability of a nation. Many
countries and regions have developed ground-based equipment for the SSA task. For
instance, the European Incoherent Scatter Scientific Association (EISCAT) has developed
three incoherent scatter radar systems, and the operating frequency of the two radars
located in northern Scandinavia are 224 MHz and 931 MHz, while the other one in Svalbard
operates at 500 MHz. The operating frequency of the Italian Bi-static Radar for LEO
Tracking (BIRALET) system ranges from 410 to 415 MHz [6]. The Tracking and Imaging
Radar (TIRA) in Germany is a system devoted to detailed studies of satellites and space
debris, and contributes to European SSA [7]. The United States Space Surveillance Network
(SSN), operated by the United States Strategic Command (USSTRATCOM), consists of a
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worldwide network of 29 space surveillance radars and optical telescopes [8]. The French
air force has operated the GRAVES bistatic radar system since 2005 [9].

However, it should be noted that the space-based radar system is superior to both
ground-based equipment and space-based optical systems. Unlike other systems, it can
monitor space targets of interest in all weather conditions, regardless of the Earth’s cur-
vature or weather constraints. Therefore, we focus on implementing a space-based radar
system to track multiple space targets in this paper. It is worth emphasizing that enhancing
the accuracy and efficiency of multi-target tracking using space-based radar has been a
significant research topic in recent years.

Space-based radars can accomplish simultaneous multi-beam tracking of space targets
by carrying a collocated multiple input multiple output (C-MIMO) radar payload. As a
new system radar, C-MIMO radar launches different beams to multiple targets by means of
transmitting waveform diversity, which can accomplish simultaneous multi-beam tracking
of space targets [10–14]. The technology addresses the limitations of traditional phased
array radar (PAR) time-sharing tracking and is extensively applied in multi-target detection
and tracking. Nevertheless, due to the reliance on solar panels for energy supply and hard-
ware design constraints, the power and bandwidth of space-based radar are more restricted
compared to their ground-based counterparts. Space targets can achieve relative velocities
ranging from several to tens of Mach, causing rapid changes in the azimuth and elevation
angles observed by space-based radar. Moreover, the structures of space targets are complex
and different. During the tracking process of space-based radar, the radar cross section
(RCS) of the space targets exhibits high dynamic variation characteristics. These factors
will result in unstable tracking performance of space-based radar. The above-mentioned
problems in the field of space-based C-MIMO radar resource allocation research to allocate
the limited total transmit power and bandwidth to each transmit beam reasonably are in
urgent need of solving, so as to obtain higher space target tracking accuracy.

At present, most research mainly focuses on the tracking resource scheduling of
ground-based radar to airmobile targets. Ref. [15] carried out research on the selection and
optimization of MIMO radar parameters for multi-target detection and tracking. Ref. [16],
the target detection and tracking under the framework of cognitive radar was studied.
Refs. [17–19] established a cost function based on Bayesian Cramér–Rao lower bound, and
used the gradient projection algorithm to obtain the optimal power scheduling results of a
radar system for multi-target tracking under different motion parameters. A joint strategy
of power and bandwidth scheduling for maneuvering multi-target tracking (MMTT) was
proposed in [20] and utilized a relaxation method to obtain the optimized allocation scheme
by solving the nonconvex optimization problem. Refs. [21–23] studied the resource alloca-
tion method for air target tracking for the two institutional configurations of distributed
MIMO radar and collocated MIMO radar. Based on the sum of PCRLB of multiple batches
of targets, the adaptive allocation scheme of radar resource was realized. Refs. [24–26]
studied the differentiated tracking resource scheduling scheme, considering the system
constraints and external factors comprehensively, they proposed the joint beam and power
scheduling (JBPS) method, and realized the global objective function design and solution.
The authors of [27] studied the antenna selection or power allocation problem. Most of
the existing algorithms are aimed at radar resource scheduling for tracking air target tasks,
while the stable space targets have obvious semi-cooperative characteristics which can be
further exploited [28]. For instance, the orbit of the space target can be predicted relatively
accurately, and its orientation mode is often fixed. So, it is necessary to study the resource
scheduling scheme which is more suitable for space multi-target tracking.

In addition, Ref. [29] studied the power allocation scheme of C-MIMO radar for RCS
non-fluctuation models and RCS fluctuated models, and verified the effectiveness of the
adaptive power optimal allocation algorithm. Similarly, Ref. [30] aims at the problem of
C-MIMO radar resource scheduling, the influence factors of distance, RCS, and motion
model error are studied, respectively, and the decision-making effect of each factor on radar
resource allocation is discussed comprehensively. Ref. [31] studied the low-Earth-orbit



Remote Sens. 2023, 15, 3971 3 of 22

(LEO) satellite detection techniques and analyzed the detection capability of various walker
constellation space-based radar deployment schemes for space targets. However, the
above works only discuss the detection ability of space-based radar with different walker
constellations and ignore the target RCS fluctuation characteristic in the radar resource
scheduling tasks. The existing works and algorithms simply construct the target RCS
as the non-fluctuation model or give RCS simple time-varying characteristic and these
assumptions are inaccurate in actual scenarios, which fail to be eligible for the actual high
dynamic RCS space target tracking requirements.

1.2. Problem Analysis and Contributions

The existing works have provided a rich theoretical and technical basis for the ground-
based radar resource scheduling problem and improved its comprehensive application
efficiency. However, this research rarely considers the radar resource allocation problem
of space-based radar tracking multiple space targets and does not comprehensively con-
sider factors such as the orbital motion characteristics or dynamic RCS characteristic of
space targets.

Bayesian theory points out that prior information can improve the accuracy of pa-
rameter estimation. Inspired by this, we can model the on-orbit space target and obtain
its full-angle static RCS database and orbit information, which can be introduced into the
resource allocation framework as a priori information to solve the above problems. In this
paper, we propose an adaptive joint dynamic RCS power and bandwidth allocation (JRPBA)
method for multiple space target tracking via space-based radar. The main contributions of
the paper are given as follows.

(1) The space satellite target is different from the aircraft target in the air. It mainly moves
around the Earth due to the gravity of the Earth. Considering that the space target
orientation model is usually fixed, this means that the motion attitude of the space
target can be calculated more accurately. Can this semi-cooperative characteristic of
space targets be utilized in space-based radar resource allocation to improve tracking
accuracy? For space surveillance systems, the space target information database
is often continuously constructed and expanded. In this paper, we introduce the
space target information database as a priori information into the resource allocation
framework. The purpose is to utilize the target information to adopt appropriate
signal processing methods for different satellites and take various characteristics
of space targets into account in the actual target tracking process to obtain higher
multi-target tracking accuracy.

(2) In the actual radar tracking scene, the radar line of sight (RLOS) has a great influence
on the target RCS characteristics. Specifically, the RCS sequence of the target shows
high dynamic fluctuation characteristics. However, the existing radar resource alloca-
tion method does not take into account the dynamic RCS characteristics of the targets,
which leads to the fact that the previous radar resource allocation scheme cannot
be fully adapted to the actual tracking scene and eventually leads to tracking diver-
gence or even mistracking. In this paper, an adaptive joint dynamic RCS power and
bandwidth allocation (JRPBA) method for space-based C-MIMO radar is proposed.
The core idea is to reasonably allocate the limited power and bandwidth resources of
C-MIMO radar in multi-target high dynamic RCS tracking scenarios by utilizing the
semi-cooperative characteristic of space targets and the predictable characteristics of
orbit. The mismatched problem between the radar resource allocation scheme and the
actual tracking scene is solved and the multi-target tracking accuracy and efficiency
of the space-based radar system are improved.

The rest of this paper is organized as follows. Section 2 presents a space target motion
model and space-based radar observation model. Section 3 derives the multi-target tracking
PCRLB. Furthermore, the dynamic RCS sequence mapping method and the adaptive joint
dynamic RCS power and bandwidth allocation method is given in Section 4. Simulation
results and conclusions are given in Sections 5 and 6, respectively.
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2. Space Target Observation System Model
2.1. Space Target Motion Model

The schematic diagram of space-based radar observation for space targets tracking
is depicted in Figure 1. Note that we assume that space-based radar is able to track space
targets in the observation region continuously.

Figure 1. Schematic diagram of space-based radar observation for space targets tracking.

For the sake of simplicity, assuming that there are Q distinguishable space targets
in the three-dimensional observation scene and the targets kinemics motion obeys the
constant velocity (CV) mode, the motion model of the q-th target at the k-th sample interval
is defined as follows:

xq
k = Fqxq

k−1 + uq
k−1 (1)

where xq
k= [xq

Tk,
.
xq

Tk, yq
Tk,

.
yq

Tk, zq
Tk,

.
zq

Tk]
T denotes the target state. (xq

Tk, yq
Tk, zq

Tk) and
(

.
xq

Tk,
.
yq

Tk,
.
zq

Tk) represent the range and velocity of the q-th target at the k-th sample interval
in the Cartesian coordinate system. Fq represents the state transition matrix of q-th target.

Fq =

[
1 ∆T
0 1

]
⊗ I3 (2)

where ⊗ and ∆T represent the Kronecker operator and sample interval of adjacent tracking
moments, respectively. The matrix I3 denotes the 3 × 3 identity matrix. In the above
motion model, the matrix uq

k−1 is modeled as a multidimensional Gaussian distribution
with zero-mean and the covariance Qq

k−1, which is used to represent the random error or
fluctuation of the target motion state. Its covariance is expressed as [32]:

Qq
k−1 =

[∫ ∆T
0 t× tdt

∫ ∆T
0 1× tdt∫ ∆T

0 t× 1dt
∫ ∆T

0 1× 1 dt

]
⊗ eqI3 =

[
1
3 ∆T3 1

2 ∆T2

1
2 ∆T2 ∆T

]
⊗ eqI3 (3)

where eq is the process noise coefficient that has the ability to adjust the size of Qq
k−1.

2.2. Space-Based Observation Model

Assume that the C-MIMO radar with coordinates of (xk, yk, zk) tracks multiple space
targets with the simultaneous multi-beam mode. After all the radar echo signals are prepro-
cessed by pulse compression and moving target detection, a series of radar measurements
are formed. At the k-th sample interval, the radar tracks Q distinguishable space targets.
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The relation between the nonlinear observation vector of the q-th target zq,k and the target
state vector is as follows:

zq,k = hq,k(x
q
k) + vq,k (4)

where vq,k ∼ N (0, Ξq,k) is the measurement noise of the system at the k-th sample interval
for the q-th target. hq,k(•) denotes the nonlinear transformation between the target state
and the radar measurement, which includes distance Rq,k, azimuth angle θq,k and elevation
angle ϕq,k.

The three-dimensional measurements are expressed as
Rq,k(x

q
k) =

√
(xq

Tk−xk)
2
+ (yq

Tk−yk)
2
+ (zq

Tk−zk)
2

θq,k(x
q
k) = arctan2((yq

Tk−yk)/(x
q
Tk−xk))

ϕq,k(x
q
k) = arctan2((zq

Tk−zk)/
√
(xq

Tk−xk)
2
+ (yq

Tk−yk)
2
)

(5)

The covariance matrix of measurement noise vq,k ∼ N (0, Ξq,k

)
is shown as follows:

Ξq,k =

Ξ2
Rq,k

0 0

0 Ξ2
θq,k

0

0 0 Ξ2
ϕq,k

 ∝


(SNRq

kTq
k β2

q,k)
−1

0 0

0 (SNRq
kTq

k /Bw)
−1

0

0 0 (SNRq
kTq

k /Bw)
−1

 (6)

where Ξ2
Rq,k

,Ξ2
θq,k

, and Ξ2
ϕq,k

represent noise covariance of Rq,k, θq,k, and ϕq,k, respectively [33].
Equation (6) can be further arranged as

Ξ2
Rq,k

∝ (αq,kPq,k|σ
q
k |

2Tq
k β2

q,k)
−1

Ξ2
θq,k

∝ (αq,kPq,k|σ
q
k |

2Tq
k /Bw)

−1

Ξ2
ϕq,k

∝ (αq,kPq,k|σ
q
k |

2Tq
k /Bw)

−1

(7)

where αq,k is the attenuation coefficient which is inversely proportional to the fourth power
of the distance at the k-th sample interval for the q-th target, Pq,k is the assigned transmit
power, σ

q
k is the RCS, which depends on the characteristics of the target itself and the RLOS,

Tq
k is the beam dwell time, and βq,k and Bw are the effective bandwidth of the transmit

signal and the width of the receiving beam, respectively.
As seen from Equation (7), the space-based radar measurement covariance is related

to σ
q
k and the radar transmit parameters in the tracking process. Due to the observation that

the angle of space-based radar to the space target changes greatly in the process of space
intersection, the RCS of space moving targets shows dramatic fluctuation characteristics.
Adding the dynamic RCS sequence to target real-time tracking scenes a priori information
can further improve the accuracy of space multi-target tracking.

3. Multi-Target Tracking PCRLB Recursion

Considering the limitation of radar power and bandwidth in the actual space surveil-
lance task, space targets of different orbits fall into different monitoring regions. As a
consequence, the dynamic RCS of different targets changes as the RLOS varies, which
affects the tracking performance of the space-based radar simultaneously.

According to the measurement model in Equation (4), we constrain the unbiased
estimate x̂q

k|k

(
zq,k

)
and the target state as follows:

F−1
(

xq
k

)
≺Exq

k , zq,k

{
[x̂q

k|k

(
zq,k

)
− xq

k][x̂
q
k|k

(
zq,k

)
− xq

k]
T
}

(8)
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where zq,k is the radar measurement, Exq
k , zq,k

(•) represents the expectation operation of the

target state and the radar measurement, and F−1
(

xq
k

)
represents the PCRLB.

Then the Bayesian Fisher information matrix (BFIM) F
(

xq
k

)
corresponding to the q-th

target can be obtained by

F
(

xq
k

)
= −Exq

k ,zq
k

[
∇xq

k
xq

k
ln p(zq

k, xq
k)

]
(9)

where the notation ∇xq
k

xq
k

is the second order partial derivative vectors and ∇κ
η is equal

to ∇η∇κ
T.

Next, the joint probability density function (PDF) p(zq
k, xq

k) is given by

p(zq
k, xq

k) = p(xq
k)p(zq

k|x
q
k) (10)

where p(xq
k) is the PDF of the space target state and the p(zq

k|x
q
k) is the joint conditional PDF.

The BFIM F
(

xq
k

)
can be factorized into the prior information FIM FP

(
xq

k

)
and the

data FIM FZ

(
xq

k

)
, which can be calculated as



FP

(
xq

k

)
= −Exq

k

[
∇xq

k
xq

k
ln p(xq

k)

]
= D22

k−1 −D21
k−1

(
FP

(
xq

k−1

)
+ D11

k−1

)−1
D12

k−1

FZ

(
xq

k

)
= −Exq

k ,zq
k

[
∇xq

k
xq

k
ln p(zq

k|x
q
k)

] (11)

where 

D11
k−1 = −Exq

k−1,xq
k

[
∇xq

k−1

xq
k−1

ln p(xq
k|x

q
k−1)

]
D12

k−1 = −Exq
k−1,xq

k

[
∇xq

k−1

xq
k

ln p(xq
k|x

q
k−1)

]
=
(
D12

k−1
)T

D22
k−1 = −Exq

k−1,xq
k

[
∇xq

k
xq

k
ln p(xq

k|x
q
k−1)

] (12)

By substituting the motion model of targets into (18) and simplifying the expectation
calculation, the following can be obtained:

D11
k−1 = FTQ−1F

D12
k−1 = −FTQ−1

D22
k−1 = Q−1

(13)

Finally, the BFIM F
(

xq
k

)
yields

F
(

xq
k

)
= FP

(
xq

k

)
+FZ

(
xq

k

)
=
[
Qq

k−1 + FqF−1
(

xq
k−1

)
FT

q

]−1

︸ ︷︷ ︸
FP(x

q
k)

+E
[
HT

q,k(Ξq,k)
−1Hq,k

]
︸ ︷︷ ︸

FZ(x
q
k)

≈
[
Qq

k−1 + FqF−1
(

xq
k−1

)
FT

q

]−1
+ HT

q,k(Ξ̂q,k)
−1Hq,k

(14)
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where xq
k|k−1 represents the predicted state vector of the q-th target,

Ξ̂q,k = Ξq,k(Pq,k, βq,k, xq
k, σq,k) represents the measurement covariance matrix of xq

k|k−1, HT
q,k

is the Jacobian matrix of the measurement function hq,k(•) with respect to the target state
xq

k, and HT
q,k can be expressed as

HT
q,k =

[
∇xq

k
Rq,k,∇xq

k
θq,k,∇xq

k
ϕq,k

]
(15)

where

∇xq
k
Rq,k =



xq
Tk−xk

[(xq
Tk−xk)

2
+(yq

Tk−yk)
2
+(zq

Tk−zk)
2
]
1
/

2

0

yq
Tk−yk

[(xq
Tk−xk)

2
+(yq

Tk−yk)
2
+(zq

Tk−zk)
2
]
1
/

2

0

zq
Tk−zk

[(xq
Tk−xk)

2
+(yq

Tk−yk)
2
+(zq

Tk−zk)
2
]
1
/

2

0



(16)

∇xq
k
θq,k =



−(yq
Tk−yk)/[(x

q
Tk−xk)

2
+ (yq

Tk−yk)
2
]

0

(xq
Tk−xk)/[(x

q
Tk−xk)

2
+ (yq

Tk−yk)
2
]

0

0

0


(17)

∇xq
k
ϕq,k =



− (xq
Tk−xk)×(z

q
Tk−zk)/[(x

q
Tk−xk)

2
+(yq

Tk−yk)
2
]
1
/

2

(xq
Tk−xk)

2
+(yq

Tk−yk)
2
+(zq

Tk−zk)
2

0

− (yq
Tk−y0)×(z

q
Tk−zk)/[(x

q
Tk−xk)

2
+(yq

Tk−yk)
2
]
1
/

2

(xq
Tk−xk)

2
+(yq

Tk−yk)
2
+(zq

Tk−zk)
2

0

[(xq
Tk−xk)

2
+(yq

Tk−yk)
2
]
1
/

2

(xq
Tk−xk)

2
+(yq

Tk−yk)
2
+(zq

Tk−zk)
2

0



(18)

where ∇xq
k
(•) represents the first order partial derivative vector. By performing the inver-

sion operation on F
(

xq
k

)
, the PCRLB matrix of target state xq

k can be obtained.

MPCRLB(Pq,k, βq,k, xq
k, σ

q
k ) = F

−1
(

Pq,k, βq,k, xq
k, σ

q
k

)
(19)

where the diagonal elements of the MPCRLB(Pq,k, βq,k, xq
k , σ

q
k ) correspond to the lower bound

for the unbiased estimation variance of the target state vector.
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Considering that MPCRLB(Pq,k, βq,k, xq
k, σ

q
k ) is a function of radar transmit power, band-

width, RCS, and target state, the cost function can be given by

F(Pk, βk, σk) = max(
√

tr
{

MPCRLB(Pq,k, βq,k, xq
k, σ

q
k )
}

q=1,2,...,Q
) (20)

where at the k-th sample interval and for Q independent targets, Pk= [P1,k, Pq,k, . . . , PQ,k]
T,

βk= [β1,k, βq,k, . . . , βQ,k]
T, and σk= [σ1

k , σ2
k , . . . , σQ

k ]T represent the transmit power allocation
scheme, radar bandwidth allocation scheme, and the set of dynamic RCS of all space
targets, respectively, and F(Pk, βk, σk) denotes the PCRLB of the target with the worst radar
tracking accuracy.

4. Joint Dynamic RCS Power and Bandwidth Allocation Method
4.1. Dynamic RCS Sequence Mapping under Space-Based Observation

For the typical space targets in the satellite database, we can establish the target
full-angle static RCS database by computer-aided-design (CAD) modeling, grid meshing,
scattering characteristic computation, and post processing procedure. The RLOS has a great
influence on target RCS characteristics in the actual detection and tracking scenario. In
order to obtain the exact dynamic RCS sequence of the space targets through space-based
radar, the space target observation geometry transformation is derived in this section,
ensuring the correct RLOS.

Considering that the ECI (Earth-centered inertial) coordinate system is an inertial
coordinate system, this coordinate system has good performance and adaptability for
real-time target tracking, and can track moving targets more conveniently and accurately.
Therefore, this paper adopts the ECI coordinate system to describe the relative position
relationship between space-based radar and space targets. As illustrated in Figure 2, the
ECI coordinate system Oe − XeYeZe is marked in black lines. The center of the Earth is
the origin of the ECI coordinate system. The Ze axis points to the pole of the agreement
along the Earth’s rotation axis, and the Xe is located in the equatorial plane and points
to the equinox. The Ye axis conforms to the right-hand Cartesian coordinate system. The
satellite-based orbital RTN (radial, tangential, normal) coordinate system Ot − XtYtZt is
marked in red lines. For the space target of the Earth-oriented attitude stabilization mode,
the Xt axis points to the Earth’s center from the center of mass of the space target, the Yt
axis is in the orbit plane and constrained by the direction of the target velocity, and the Zt
axis is the normal of the orbit plane.

Figure 2. Schematic of the coordination systems transformation.
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The space targets orbit can be determined by the six orbital elements deriving from
a given two-line element (TLE). It can be expressed as a (semi-major axis), α (inclination),
Ω (right ascension of the ascending node), e (eccentricity), ω (argument of perigee), and θ
(true anomaly) [34–36]. Thereafter, the accurate RLOS can be obtained by calculating the
real-time position of space-based radar in the RTN coordinate system of the space target.
The derivation of RLOS is as follows:

(1) The positions of the space-based radar in the ECI coordinate system are given as

Ot2 ECI = RZ(Ω2)RX(α2)RZ(ω2)

×
[

a2
e2+cos θ2(k)

1+e2 cos θ2(k)
a2

(1−e2
2) sin θ2(k)

1+e2 cos θ2(k)
0
]T (21)

where RX and RZ represent the rotation matrix around the X axis and the Z axis, respec-
tively. Ω2, α2, ω2, e2, and θ2(k) are the orbital parameters of space-based radar at the k-th
sample interval.

(2) Then the coordinate transformation matrix between the ECI coordinate system and
the RTN coordinate system of space target can be expressed as

MECI−RTN(Ω1, α1, ω1, θ1(k)) = [RZ(Ω1)RX(α1)RZ(ω1 + θ1(k))]
−1

=



 cos Ω1 − sin Ω1 0
sin Ω1 cos Ω1 0

0 0 1


×

 1 0 0
0 cos α1 − sin α1
0 sin α1 cos α1


×

 cos(ω1 + θ1(k)) − sin(ω1 + θ1(k)) 0
sin(ω1 + θ1(k)) cos(ω1 + θ1(k)) 0

0 0 1





−1

(22)

where Ω1, α1, ω1, and θ1(k) are the orbital parameters of the space target at the k-th
sample interval.

(3) Thus, the position of space-based radar in the RTN coordinate system of the space
target can be derived as

Ot2RTN = MECI−RTN(Ω1, α1, ω1, θ1(k))Ot2 ECI (23)

(4) Finally, the RLOS, azimuth angle and elevation angle are calculated as

−−−−−→
RLOS(k) = Ot2 RTN = (xRLOS(k), yRLOS(k), zRLOS(k)) (24)

θRLOS(k) = arctan
(

xRLOS(k)
/

yRLOS(k)
)

(25)

ϕRLOS(k) = arctan
(

zRLOS(k)
/√

x2
RLOS(k) + y2

RLOS(k) + z2
RLOS(k)

)
(26)

where (xRLOS(k), yRLOS(k), zRLOS(k)) represents the RLOS in the space target RTN
coordinate system at the k-th sample interval. θRLOS(k) and ϕRLOS(k) are the azimuth

angle and elevation angle of the
−−−−−→
RLOS(k), respectively.

−−−−−→
RLOS(k) can be utilized to

calculate θRLOS(k) and ϕRLOS(k) to realize the dynamic RCS sequence mapping.

Considering the true anomaly can uniquely determine that the position of the space
target and the orbit of low Earth orbit (LEO) satellite is close to a circle. The true anomaly
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θ1(k) of space target and θ2(k) of space-based radar at the k-th sample interval can be
calculated by

θ1(k) = (θ1 + k∆T ×
√

µ
/

a1
) (27)

θ2(k) = (θ2 + k∆T ×
√

µ
/

a2
) (28)

where µ = 3.9861× 1014 (m3/s2) is the Kepler constant. θ1 and θ2 are the initial true
anomaly of the space target and space-based radar, respectively.

The dynamic RLOS can be given as

−−−−−→
RLOS(k) = MECI−RTN(Ω1, α1, ω1, θ1(k))Ot2 ECI(θ2(k)) (29)

Finally, the flowchart of dynamic RCS sequence mapping is shown in Figure 3.

Figure 3. Flowchart of the dynamic RCS sequence mapping.

4.2. Joint Dynamic RCS Power and Bandwidth Allocation Optimization Modeling

In this section, the Min-Max PCRLB (minimum maximum PCRLB) optimization
criterion is employed to solve the power and bandwidth allocation problem in limited
transmit resources of collocated MIMO radar. By fully utilizing the dynamic target RCS
fluctuation characteristics, the Min-Max PCRLB optimization model can be modeled as

min[F(Pk, βk, σ
q
k (θRLOS(k), ϕRLOS(k)))]

s.t. 1T
QPq,k = Ptotal, q = 1, 2, . . . , Q

Pmin ≤ Pq,k ≤ Pmax

1T
Qβq,k = βtotal, q = 1, 2, . . . , Q

βmin ≤ βq,k ≤ βmax

σ
q
k (θRLOS(k), ϕRLOS(k)) ∈

{
σQ}, q = 1, 2, . . . , Q

θRLOS(k) ∈ [0, 360◦]

ϕRLOS(k) ∈ [0, 180◦]

(30)

where Ptotal and βtotal are the total transmit power and bandwidth, respectively, Pmax, Pmin,
βmax, and βmin are the maximum power, the minimum power, the maximum bandwidth,
and the minimum bandwidth of a single tracking beam, respectively, 1T

Q is the vector of
size 1×Q whose total elements is 1, σQ represents the multi-target full-angle static RCS
database, and θRLOS(k) and ϕRLOS(k) are the azimuth angle and elevation angle of the
RLOS, respectively.
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4.3. Joint Dynamic RCS Power and Bandwidth Allocation Method

It can be seen from Equations (7) and (20) that the power and bandwidth variables of
space-based radar are coupled in the optimized objective function. Since the bandwidth is
applied to the optimization function by squaring, the adaptive joint power and bandwidth
allocation problem in this paper is a typical non-convex optimization problem. In order
to solve the above problem, the C-MIMO radar bandwidth is first allocated equally, and
the sub-optimal scheme of power allocation is obtained by using the convex optimization
algorithm. Then the bandwidth constraint is relaxed, and finally the cyclic minimization
method is used to obtain the optimal allocation results to solve the problem. The illustration
of the joint dynamic RCS power and bandwidth allocation (JRPBA) method is shown in
Figure 4. Additionally, the detailed process of the resource allocation method is shown in
Table 1.

Figure 4. Illustration of the proposed JRPBA method.

Table 1. JRPBA method steps.

Algorithmic Flowchart:

Step 1: Initializes k = 1, βk,opt = β0, β0 is the bandwidth uniformity allocation scheme.

Step 2:
Initializes Pk,opt = P0, P0 is the power uniformity allocation scheme.
According to the Pk,opt, the radar obtains the observation zq,k(Pk,opt) and estimates the target distance Rq,k , azimuth angle θq,k , and
elevation angle ϕq,k .

Step 3:
The dynamic RCS σ

q
k (θRLOS(k), ϕRLOS(k)) of the target is obtained by the one-step predicted motion state, and the variances Ξ2

Rq,k
, Ξ2

θq,k
,

and Ξ2
ϕq,k

of each observation are calculated according to Equation (7).
Step 4: Constructing the resource allocation optimization model according to Equation (30).
Step 5: Step 5-1: Calculating the power allocation scheme Pk,opt at the k-th sample interval.

Step 5-2:
Relaxing the constraints of bandwidth.
Introducing γk= [γ1

k , γ2
k , . . . , γQ

k ]
T = [|β1

k |2, |β2
k |2, . . . , |βQ

k |
2]T, λ1, and λ2.

Transforming the bandwidth optimization problem into a convex optimization problem.
Step 5-3: Calculating the bandwidth sub-optimal scheme βk,sub−opt at the k-th sample interval.

Step 5-4:

βk,sub−opt is utilized as the initial solution of the exact search algorithm (cyclic minimization method) to obtain the
optimal solution βk,opt. The algorithm flow of the cyclic minimization method is as follows:
Step 5-4-1: Set βl0 =βk,sub−opt, set the step size4β and algorithm termination condition ε.

Step 5-4-2:


βl = argmax

{
F(Pk , β+

l−1, σ
q
k (θRLOS(k), ϕRLOS(k)))− F(Pk , βl−1, σ

q
k (θRLOS(k), ϕRLOS(k)))

}
s.t.βmin ≤ β

q
k ≤ βmax

4βl = 4βl−1(1T
Qβl/1T

Qβl−1)

Step 5-4-3: while F(Pk , βl−1, σ
q
k (θRLOS(k), ϕRLOS(k)))− F(Pk , βl , σ

q
k (θRLOS(k), ϕRLOS(k))) > ε

do βMLE = βl−1,
end

Step 5-5: Feedback the allocation results βk,opt and Pk,opt to form the allocation scheme.
Step 6: Let k = k + 1, return to Step2.
Step 7: Achieve the JRPBA.
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5. Simulation and Performance Evaluation
5.1. Simulation Scenario and Parameters

In the given simulation scenario, Figure 5 represents a typical multi-target tracking
scenario with four space targets within the surveillance region. The space-based satellite in
this scenario utilizes a C-MIMO radar system to track these four space targets. The TLE
(two-line element) information [37] for the selected four space targets is depicted in Table 2.
Table 3 displays the six orbital elements of the space-based radar, and Table 4 provides the
radar system parameters in detail.

Figure 5. Multi-target tracking simulation.

Table 2. TLE information for the four space targets.

Targets TLE Information

Target 1 1 54109U 22137A 22313.89342876 .00018851 00000+0 32060-3 0 9998
2 54109 97.0764 33.6544 0008642 190.3376 169.7701 15.51428531 2950

Target 2 1 54148U 22138AM 22313.91668981 -.00038156 00000+0 -38369-2 0 9992
2 54148 87.3610 211.0069 0008503 225.5845 43.1975 14.91526080 1304

Target 3 1 54040U 22132F 22314.20664134 .00056903 00000+0 30279-2 0 9996
2 54040 97.1602 317.8748 0122535 126.4581 234.7794 15.08704769 4257

Target 4 1 37348U 11002A 22175.00479290 .00018492 00000-0 15645-3 0 9997
2 37348 97.8853 286.4946 0526835 125.0700 234.9893 14.81374348 3501

Table 3. Six orbital elements of space-based radar.

Orbital Elements Value

Semimajor Axis 6678.1 km
Inclination 98.5◦

Eccentricity 0
RAAN −20◦

Argument of perigee 0◦

True anomaly 245◦

Table 4. Radar system parameters.

Parameters λ Ptotal Pmin Pmax βtotal βmin βmax

Value 0.3 m 3000 W 300 W 2100 W 100 MHz 10 MHz 70 MHz
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In the simulation experiments, the UKF (unscented Kalman filter) recursion is em-
ployed for tracking space targets using one hundred frames of radar raw data [38], with a
data update rate of 1 s and 100 Monte Carlo trails. To provide a more intuitive comparison
of multi-target tracking performance and tracking accuracy, the root mean square error
(RMSE) of location and velocity are utilized and presented in this section.

RMSEk,q
position =

√√√√ 1
MC

MC

∑
i=1

[(xq
Tk − x̂q,i

Tk)
2
+ (yq

Tk − ŷq,i
Tk)

2
+ (zq

Tk − ẑq,i
Tk)

2
] (31)

RMSEk,q
velocity =

√√√√ 1
MC

MC

∑
i=1

[(
.
xq

Tk −
.̂
x

q,i
Tk)

2
+ (

.
yq

Tk −
.̂
y

q,i
Tk)

2
+ (

.
zq

Tk −
.̂
z

q,i
Tk)

2
] (32)

where MC represents the total Monte Carlo trials and (x̂q,i
Tk, ŷq,i

Tk, ẑq,i
Tk) and (

.̂
x

q,i
Tk,

.̂
y

q,i
Tk,

.̂
z

q,i
Tk)

are the estimated position and velocity of the i-th Monte Carlo simulation, respectively.

5.2. Dynamic RCS Sequence Mapping

In this section, the monostatic static RCS database of the space targets is calculated
using electromagnetic computing software, and the simulation results are depicted in
Figure 6a–d. To obtain the RLOS parameter sequences in practical applications, different
methods can be employed. Here, we determine the position of satellite targets using TLE
and calculate their relative position to the radar station using the SGP4 (simplified general
perturbations 4) model through aerospace orbit calculation software. The RLOS parameters
can then be computed using Equation (29). Finally, the dynamic RCS sequence results can
be obtained by combining the static full-angle RCS and the RLOS parameters.

Figure 6. Monostatic RCS of four typical space targets. (a) Static RCS of target 1. (b) Static RCS of
target 2. (c) Static RCS of target 3. (d) Static RCS of target 4.
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Figures 7 and 8 depict the full-angle monostatic RCS of four typical space targets and
the RLOS parameters of the four space targets, respectively. Figure 9 displays the dynamic
RCS sequence obtained through dynamic RLOS during tracking. Upon examining Figure 7,
it is evident that the fluctuation characteristics of the monostatic RCS differ among the four
typical space targets as the azimuth angle varies.
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Figure 7. Monostatic RCS of four typical space targets (azimuth degree varies from 0◦ to 360◦,
elevation degree is fixed at 90◦).

Remote Sens. 2023, 15, x FOR PEER REVIEW 16 of 24 
 

 

   

(a) (b) (c) 

Figure 8. Dynamic RLOS of four typical space targets. (a) Range of RLOS. (b) θ of RLOS. (c) φ of 

RLOS. 

 

Figure 9. Dynamic RCS sequence results. 

Notice that from Figure 9 it can be observed that the dynamic RCS of different targets 

varies to a significant degree. The dynamic RCS of target 1 and target 2 fluctuates in a 

large dynamic range, while target 3 generally has the smallest RCS among the four targets. 

In addition, the dynamic RCS of target 1, target 2, and target 4 overlapped with each other. 

Therefore, the real-time dynamic RCS results can be effectively utilized to enhance the 

accuracy of multi-target tracking. 

5.3. Joint Dynamic RCS Power and Bandwidth Allocation Method Results 

Figure 10a gives the multi-target tracking result of the space targets monitored by the 

space-based radar. As can be seen from Figure 10b–e, the C-MIMO radar achieves multi-

ple target tracking with simultaneous multi-beam mode. The image indicated by the ar-

row in Figure 10 b–e is a zoomed-in view of the region inside the red box. 

Figure 8. Dynamic RLOS of four typical space targets. (a) Range of RLOS. (b) θ of RLOS. (c) ϕ
of RLOS.

Notice that from Figure 9 it can be observed that the dynamic RCS of different targets
varies to a significant degree. The dynamic RCS of target 1 and target 2 fluctuates in a large
dynamic range, while target 3 generally has the smallest RCS among the four targets. In
addition, the dynamic RCS of target 1, target 2, and target 4 overlapped with each other.
Therefore, the real-time dynamic RCS results can be effectively utilized to enhance the
accuracy of multi-target tracking.
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Figure 9. Dynamic RCS sequence results.

5.3. Joint Dynamic RCS Power and Bandwidth Allocation Method Results

Figure 10a gives the multi-target tracking result of the space targets monitored by the
space-based radar. As can be seen from Figure 10b–e, the C-MIMO radar achieves multiple
target tracking with simultaneous multi-beam mode. The image indicated by the arrow in
Figure 10 b–e is a zoomed-in view of the region inside the red box.

Figure 10. Space targets tracking results. (a) Multi-target tracking. (b) Tracking result of target 1.
(c) Tracking result of target 2. (d) Tracking result of target 3. (e) Tracking result of target 4.

The Min-Max PCRLB criterion is employed in this paper to dynamically allocate the
power and bandwidth resource of the space-based radar. The core idea of the Min-Max
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PCRLB criterion is to optimize the target with the worst tracking accuracy. By solving
Equation (30), the proposed method calculates the joint allocation result of power and
bandwidth, as shown in Figure 11.

Figure 11. Adaptive joint power and bandwidth allocation result.

As can be seen from Figure 11, the dynamic RCS of four space targets is relatively close
at the tenth frame and the later tracking stage. The allocation of power and bandwidth
resources in the space-based radar is influenced by the distance between the targets and the
radar. As a result, targets that are located farther from the radar receive a higher allocation
of radar resources. From Figure 11, it can be seen that target 2 is the farthest from the radar
and the target 3 and target 4 have the closest distance. So, when the RCS of the four targets
is close, the largest power bandwidth resources is allocated to target 2 and the least radar
resources are allocated to target 3 and target 4.

Moreover, as the dynamic RCS of the space targets rapidly declines, the tracking
accuracy of the space-based radar on these targets decreases. In order to maintain the
original tracking accuracy, the proposed method allocates more system resources to the
specific space target. Specifically, space target 3 receives the largest allocation of radar
system resources. When tracking the 46th frame, the real-time dynamic RCS of target 3
is the smallest and to guarantee the tracking accuracy, more radar power and bandwidth
resources are allocated to target 3. When tracking the 46th frame to the 82nd frame, the
distance between the space-based radar and target 4 is the smallest and the dynamic RCS
of target 4 is the largest, and the power and bandwidth resources allocated to target 4 are
minimal. By analyzing the above simulation results, it can be seen that the distances and
observation angles between the space targets play vital roles in influencing the performance
of joint power and bandwidth allocation.

Figures 12 and 13 depict the RMSE curves and PCRLB of position and velocity of
100 Monte Carlo experiments during the whole tracking scenario. It can be seen from
Figures 12 and 13 that both the ideal PCRLB for position tracking accuracy and the ideal
PCRLB for velocity tracking accuracy experience a significant decrease starting from the
tenth frame. Considering that the Min-Max PCRLB criterion is utilized for multi-target joint
power bandwidth allocation, the PCRLB of position and the PCRLB of velocity for four
space targets have the same tendency. Since the Min-Max PCRLB criterion is employed for
the multi-target joint power band-width allocation, the PCRLBs for position and velocity of
all four space targets exhibit a similar trend.
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It can also be seen from Figures 12 and 13 that the RMSE of position and the RMSE
of velocity are affected by the dynamic target RCS. Notably, when the RCS of a target
decreases rapidly within a frame, the corresponding RMSE of the target’s position increases.
For instance, in the 45th frame, the dynamic RCS of target 3 decreases and its corresponding
tracking error increases. By optimizing the tracking performance of the target with the
worst tracking accuracy, the radar power and bandwidth resources are increased to be
allocated for target 3, so that the RMSE of the position estimation of target 3 decreases in
the later tracking process.

5.4. Joint Power and Bandwidth Allocation Scheme Mismatch Results

To compare the multi-target tracking accuracy under different RCS models, tracking
results of the traditional RCS fluctuation model and tracking results of the high dynamic
RCS fluctuation adaptive joint power and bandwidth allocation are compared in this paper.

Figure 14 displays the traditional RCS fluctuation model, while Figure 15 showcases
the joint power and bandwidth allocation results for multi-target tracking using this mod-el.
Notice that the overall tendency of the power bandwidth allocated to the four space targets
is mainly influenced by the distance between the space target and the space-based radar.
Since target 2 has the greatest distance from the radar, it receives the highest allocation
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of radar resources. Furthermore, the RCS of four space targets is intertwined, and the
radar resources obtained by the four space targets change at different times. However, the
change trend is irregular and the optimal allocation of radar power and bandwidth is not
formed according to the dynamic RCS fluctuation trend of space targets, which leads to the
divergence of tracking error or target missing problems.
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Figures 16 and 17 show the RMSE curves and PCRLBs of position and velocity with
the traditional RCS fluctuation model of 100 Monte Carlo experiments, respectively.
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It can be clearly seen from Figures 16 and 17 that while the dynamic RCS of target 3 de-
creases significantly at the 47th frame, the resource allocation scheme with the traditional
RCS model does not change the power and bandwidth allocation ratio simultaneously,
which leads to larger tracking errors for targets with smaller RCS. Under this condition,
the RMSE of the position and the RMSE of the speed of target 3 are much larger than the
other two targets. Consequently, it can be concluded that the traditional RCS model fails to
effectively incorporate the dynamic changes in multi-target RCSs, leading to suboptimal
radar power and bandwidth allocation schemes.

To show the effectiveness of the proposed method more intuitively, multi-target
tracking results are compared with the high dynamic RCS model and the traditional RCS
model. The comparison outcomes regarding the position RMSE and velocity RMSE are
displayed in Figures 18 and 19, respectively. From Figure 18, the position RMSE of target
3 is the largest, reaching 466.2 m in the 100th frame. As for the traditional RCS model,
target 3 also demonstrates the largest position tracking error, showing an RMSE of 590.7 m.
The proposed method shows an improved position estimation accuracy of 21.1% when
compared to the traditional RCS model.
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It can be seen from Figure 19 that the traditional RCS model algorithm has the largest
RMSE for target 3, reaching 21.1 m/s in the 100th frame. The RMSE of velocity obtained
by the proposed method is the largest in the later tracking stage of target 3 and the cor-
responding value is about 17.2 m/s. The velocity estimation accuracy is improved by
18.4%. In conclusion, under the criterion of Min-Max PCRLB, the proposed method can
effectively combine the real-time RCS dynamic characteristics of multiple targets in the
tracking process and improve the multi-target tracking performance of the radar system.

6. Conclusions

In this paper, an adaptive joint dynamic RCS power and bandwidth allocation (JRPBA)
method is proposed to solve the problem of radar tracking resources allocation in a space
multi-target intersection scenario. The proposed approach establishes a mapping method
between the space target motion model and the full-angle static RCS database, enabling
accurate retrieval of the dynamic RCS sequence. The high dynamic characteristics of RCS
are considered as prior information in the radar resource allocation framework. The opti-
mization model, considering space multi-target RCS, power, and bandwidth, is formulated
and solved using a convex relaxation method to obtain the optimal allocation scheme
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suitable for the actual tracking scenario. Simulation results demonstrate that compared
with the traditional RCS model radar resource allocation method, the proposed JRPBA
method enhances the space multi-target tracking performance and effectively resolves
mismatches between the allocation scheme and the actual tracking scenario. Further re-
search will focus on resource allocation in multi-target observation scenarios of space-based
networking radar.
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