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Abstract: The change in land-use diversity is attributed to the anthropogenic factors sustaining life.
The surface water bodies and other crucial natural resources in the study area are being depleted
at an alarming rate. This study explored the implications of the changing land-use diversity on
surface water resources by using a random forest (RF) classifier machine-learning algorithm and
remote-sensing models in Gauteng Province, South Africa. Landsat datasets from 1993 to 2022 were
used and processed in the Google Earth Engine (GEE) platform, using the RF classifier. The results
indicate nine land-use diversity classes having increased and decreased tendencies, with high F-score
values ranging from 72.3% to 100%. In GP, the spatial coverage of BL has shrunk by 100.4 km2 every
year over the past three decades. Similarly, BuA exhibits an annual decreasing rate of 42.4 km2 due
to the effect of dense vegetation coverage within the same land use type. Meanwhile, water bodies,
marine quarries, arable lands, grasslands, shrublands, dense forests, and wetlands were expanded
annually by 1.3, 2.3, 2.9, 5.6, 11.2, 29.6, and 89.5 km2, respectively. The surface water content level
of the study area has been poor throughout the study years. The MNDWI and NDWI values have
a stronger Pearson correlation at a radius of 5 km (r = 0.60, p = 0.000, n = 87,260) than at 10 and
15 km. This research is essential to improve current land-use planning and surface water management
techniques to reduce the environmental impacts of land-use change.

Keywords: land-use diversity; GEE; RF; RS; GIS; Gauteng Province; South Africa

1. Introduction

Since the 1960s, the biophysical features of the earth’s surface have changed by an
average value of 720,000 kilometers square (km2) globally each year [1]. As a result,
potential natural resources (e.g., surface water bodies) have been significantly diminishing
occasionally. Consequently, knowledge of the real-time land-surface processes, diversity,
and change requires regular quantification, monitoring, modeling, analysis, and mapping
of the spatial and temporal dynamics of the land-use and land-cover change (LULCC).
LULCC describes the transition or alteration of one land-use and land-cover (e.g., water
bodies) type into another (e.g., wetlands). Contrarily, land-use diversity is defined as
the range of land-use types within a given area [2]. Studies indicate that humans are the
main triggering factors of LULCC and have altered about three-quarters of the earth’s
land surface in the past millennium. For instance, Winkler et al. [1] reported the loss of
global forest area by 0.8 million km2 and increases in global agriculture (i.e., cropland and
pasture/rangeland) by 1.0 and 0.9 million km2, respectively. The same authors have pointed
out that the loss is highly confined in developing countries because humans have produced
excessive amounts of charcoal and extracted firewood, resulting in high deforestation rates
and temperature change. Therefore, understanding the status of natural resources (e.g.,
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water resources; cold and warm grasses; and deciduous, coniferous, and tropical trees) is
critical [1,3] for natural-resource conservation. One of the most important reasons is that
less than 25% of earth’s ice-free territory shows signs of human habitation, and more than
75% of the land use has been significantly altered [4] due to the high demand for housing
construction even in the protected parks or forest areas (e.g., Zimbabwe National Park) [5].

The rapid expansion of human settlement has resulted in the loss of potential cropland
and water resources [6]. Additionally, the spatial extent of forest land has decreased
by 17% [7]. This challenge is quite common in most parts of African countries, e.g.,
Hugumburda State Forest in Tigray, Ethiopia [8]. As a result, the dynamics of LULCC
causes severe vegetation degradation, resulting in the loss of endemic biodiversity, air
quality, food supply, and plant species. It also decreases ecological services, intensifies
extreme climate, and affects the hydrological cycle, land–air interaction, and ecosystem
health [9]. This may continue as one of the regional and worldwide environmental issues
that have triggered social, economic, and political crises because of the dependency on
natural resources [9,10]. For instance, the decline of forest coverage because of LULCC may
reduce the capability of water retention and recharging.

Understanding the spatial patterns and processes will make it easier to predict where
and how quickly the land will change and improve the existing land-use planning [11].
Knowledge of land-use diversity is therefore essential for both management and conser-
vation practices, as well as for forecasting crop and biofuel output and the effects of land
conversion on rural infrastructure, including roads and water quality [12]. However, it
necessitates comprehensive earth observation data about the historical and existing land-
use diversity [13] to enhance the current land management and environmental monitoring
systems. For instance, Wulder et al. [14] pointed out that various local, national, and inter-
national natural resource management choices require land-use data. Researchers from all
over the globe have become interested in machine-learning-based analyses of LULCC and
its impacts because of the environmental changes taking place on a global scale [15]. By
collecting long-term, high-resolution earth observation (EO) data using orbiting platforms,
satellite remote sensing supports effective LULCC monitoring [6] and the analysis of its
impact on surface water resources.

Nonetheless, the remote-sensing literature lacks approaches to quantify regional
differences in LULCC [16]. Additionally, the ability to measure the spatial and temporal
dynamics of LULCC is highly constrained by the lack of high spatial resolution (e.g.,
IKONOS, GeoEye, and Rapid Eye images), frequently updated datasets for developing
countries, and familiarity with robust and up-to-date approaches of LULCC analysis, such
as machine learning. For instance, Yang and Huang [6] reported the high scarcity of
land-use diversity information produced using machine learning and moderately high-
resolution earth observation datasets. In most Sub-Saharan African countries, LULCC
and its impacts on surface water bodies have been a serious challenge because it impacts
negatively, resulting in severe water scarcity in the area.

For instance, Maviza and Ahmed [17] reported that dense woodland in the Upper
Mzingwane sub-catchment of the semiarid region of Matabeleland, South Zimbabwe, de-
creased by 441 km2 (43.57%), while shrubland, grassland, water bodies, and bare land grew
by 237 km2 (10.73%), 185 km2 (4.5%), 14 km2 (26.85%), and 6 km2 (15.09%), respectively. In
South Africa, grasslands (27.99%) and shrublands (26.34%) are the two dominant land-use
types [18]. In contrast, cropland (15%), barren land (11%), natural forests (16%), and built-
up areas (4%) cover comparatively small areas. The total land mass of South Africa is about
1,221,037 (one million two hundred twenty-one thousand and thirty-seven) km2. Most
of the LULCC has been triggered due to mining, e.g., in West Africa [19] and Southern
African countries. It is also driven by persistent drought, lack of land-use policy, population
growth, agricultural land intensification, urbanization, lack of employment, overgrazing,
and increasing energy and food demands, among other things [10,20]. Land tenure is also
considered an underlying driving force of LULCC [11]. As a result, the potential forest and
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water bodies have been shrinking from time to time. This might impact harmonizing the
local climate condition [8] and the livelihood system of the inhabitants.

An analysis of LULCC using machine learning is crucial for water resources evalua-
tion, monitoring, and mapping because its impact on the natural environment differs from
place to place [19,21]. Spectral differences between different land-use types are used in
the classification process. However, the classification and analysis of historical LULCC
remained challenging due to the lack of ground-truth data [5] and improved image classifi-
cation techniques. So far, many studies have focused on LULCC mapping using moderate
spatial resolution satellite data (e.g., Landsat 4, 5, 8, and 9; Sentinel; IKONOS; and SPOT).
Conversely, a better option for users from developing countries would be to use Land-
sat images because of their moderate–high spatial resolution, free accessibility, and high
temporal resolution. Most existing LULCC studies were analyzed using the supervised
maximum likelihood classification techniques in ENVI, ERDAS, ArcGIS, QGIS, and TerrSet,
among other geospatial software.

However, the classification and analysis of land-use diversity using a machine-learning
approach provides comprehensive information on the various land-use types of the natural
environment. For instance, Zurqani et al. [21] applied the RF classifier, one of the most
robust machine-learning models, for LULCC analysis in the Savannah River Basin, using
Google Earth Engine (GEE). The same authors reported that the major causes of LULCC
occurring in the Savannah River Basin were linked to deforestation and reforestation of
forest areas during the entire study period. Additionally, four primary limitations need
great attention in the existing global land-use maps, e.g., few land classes, absence of
temporal updates, coarser resolution, and lower accuracies (~77%) [13]. This topic has
received little research due to the challenges in producing high-resolution multitemporal
products on a large scale [6]. However, small-to-medium-sized catchments can be thor-
oughly examined because they have distinct and understandable land-use classes. For
comprehending and evaluating LULCC, accurate and up-to-date LULCC information is
needed for environmental resources evaluation, monitoring, and modeling. Additionally, it
is helpful for various stakeholders to assess future pathways of sustainable land use for
food production and nature conservation [22].

This challenge can be resolved using machine-learning models such as RF classifier
supported by Google Earth Engine (GEE), ESRI ArcGIS v.10.8.1 software, and the Modified
Normalized Difference Water Index (MNDWI). Spectral-index-based surface-water-bodies
mapping and analysis methods are robust approaches to discriminate from all non-water
bodies’ land-use types [23,24]. The spectral water index is a single value that results
from arithmetic operations on two or more bands [25]. This helps to carry out a detailed
investigation on the surface water content of all water bodies. For instance, the analysis
of land-use diversity and its changes strongly impacts regional species richness [2] and
water bodies. Therefore, using machine-learning algorithms is crucial for investigating the
implications of changing land-use diversity by identifying crucial features from satellite
images [26]. Feature selection determines the distinction between out-of-bag (OOB) errors
or estimates before and after feature variation. This method helps to focus on essential
features that can eliminate the difficulty of interpretation.

Aigbokhan et al. [27] compared the accuracy of four different machine-learning al-
gorithms for land-use diversity mapping, such as RF classifier, Support Vector Machine
(SVM), K-Nearest Neighbors (KNNs), and Gaussian Mixture Models (GMMs). The same
authors found that RF classified 23% of their study area as bare land, SVM 24%, KNN 24%
and GMM 30% for the same land-use type. However, the accuracy of RF was 0.9840, which
is higher than that of SVM (0.9780), KNN (0.9641), and GMM (0.9421) machine-learning
models. The RF is one of the robust and advanced machine-learning models trained by
bootstrapping for land-use diversity mapping using the ground-truth dataset [28]. On
GEE, RF java script is enabled to run the model. As a result, the GEE is becoming powerful
in identifying and analyzing features at the smallest pixel unit. The traditional per-scene
analysis is replaced by per-pixel analysis in GEE because it uses advanced algorithms [13].
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Therefore, adequate ground-truth data are needed to ensure the quality of image classifi-
cation in RF. For instance, Yang and Huang [6] created high-resolution LULC datasets for
China based on GEE, and they used a pixel-by-pixel temporal composite to analyze the
spectral, phenological, and topographical metrics. Following the covariate predictors, a
random subset of the training data is classified using numerous decision trees created by
the RF algorithm [29]. RF improves the quality of the image classification process and can
quickly manage many features without affecting overall accuracy [5,28]. Moreover, water
is an essential natural resource for both livestock and humans. However, it is a serious
challenge in the study area due to climate change, less rainfall availability, high population
growth, and urbanization, among other factors [30]. Martínez-Núñez et al. [2] analyzed the
land-use diversity and Normalized Difference Vegetation Index (NDVI) values for each
pixel in GEE. Findell et al. [3] investigated the impact of anthropogenic LULCC on regional
climate extremes to characterize the joint temperature–humidity response to land use.
Waterlogged areas were successfully extracted using the Modified Normalized Difference
Water Index (MNDWI); however, the Normalized Difference Water Index (NDWI) shows
the mixing of water with built-up features in the Sri Muktsar Sahib District of Punjab,
India [31].

Therefore, there is a need to (i) address research-based essential models for inves-
tigating the implication of land-use diversity alteration on surface water resources; and
(ii) identify the most accurate surface water detection models. Despite this, the Republic of
South Africa’s Department of Forestry, Fisheries, and the Environment developed a limited
amount of quantitative data on land use at the national level, and reliable machine-learning
models such as RF did not support the development of this data. The effects of shifting
land-use diversity on surface water resources using remote-sensing models were not ex-
amined. Therefore, the novelty of our study is the incorporation of robust approaches for
studying the implication of land-use diversity across various district municipalities. The
objective of this study was to (i) analyze land-use diversity from the period (1993–2023) by
using an RF machine-learning model; (ii) quantify the probability of transfer-out (losses)
and transfer-in (gains) rate across each district municipality; (iii) explore the spatiotempo-
ral trends of surface water bodies and determine the implications of changing land-use
diversity; and (iv) find the relationship between the Modified Normalized Difference Wa-
ter Index (MNDWI) and Normalized Difference Water Index (NDWI) for surface water
bodies’ characterization. This study’s findings are crucial to enriching the existing land-
use planning and surface water management strategies and reducing the environmental
consequence of changing land-use diversity and water supply problems. Additionally,
it is imperative to comprehend the spatial distribution of natural resources across each
district municipality for planning and conservation. Moreover, it is helpful to realize the
performance of GEE-based machine-learning models such as RF for characterizing the
implication of changing land-use diversity on surface water bodies.

2. Materials and Methods
2.1. Study Area

This study was conducted in Gauteng Province, the smallest province in South Africa.
It is the economic powerhouse and transportation hub of South Africa [30,32]. It is also one
of the mining-dominated provinces of South Africa. The area covers 18,170 km2 (1.22%)
and is located between 27◦17′15′′S to 29◦17′25′′S and 26◦54′45′′E to 25◦54′40′′E (Figure 1).
Gauteng Province comprises five districts, namely Tshwane, 6296.2 km2 (34.7%); West
Rand, 4084.5 km2 (22.5%); Ekurhuleni, 3458.6 km2 (19%); Sedibeng, 2686.9 km2 (14.8%);
and Johannesburg, 1644.0 km2 (9%). There are also eight different metropolitan munic-
ipalities in the area. The topography of Gauteng Province ranges from 931 to 1916 m
above sea level (m.a.s.l.). The average elevation of Gauteng Province is 1481 m.a.s.l. The
mean annual rainfall of the study area is up to 363 mm [30]. The maximum and minimum
temperature are 26.3 ◦C and 20.3 ◦C, respectively. During the summer, the average tem-
perature can reach 23.3 ◦C. The study area has two primary climatic seasons. These are



Remote Sens. 2023, 15, 4092 5 of 21

the dry season (April–October) and winter (May–August). Based on the Soil and Terrain
Database of Southern Africa (SOTERSAF version 1.0), nine dominant soil types exist in
the study area. Lixisols are the most dominant soil type, covering 6895.3 km2 (37.9%),
while Solonetz covers 68 km2 (0.4%). The remaining soil types include Acrisols, covering
3656.1 km2 (20.1%); Leptosols, 2924.2 km2 (16.1); Plinthosols, 2458.3 km2 (13.5%); Vertisols,
1150.2 km2 (6.3%); Luvisols, 448.3 km2 (2.5%); Nitisols, 441.3 km2 (2.4%); and Regosols,
100 km2 (0.6%). The remaining part of the area is covered by a water body, 28.4 km2

(0.2%). About 15,488,137 people live in Gauteng Province and are receiving water from the
Vaal Dam [33,34]. However, the area is highly characterized by crystalline nature rocks,
making it challenging to extract adequate groundwater [35]. Additionally, it is impacted
by a variety of hydrogeological factors, including drainage density, lithology, slope, and
geomorphology [36].
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2.2. Image Acquisition

One of the most frequently utilized data sources for investigating the implications of
changing land-use diversity on surface water resources is Landsat imagery. The Landsat
multispectral and multitemporal imageries collection 2, level 2, acquired during daytime,
used at moderate spatial resolution for 1993, 2003, 2013, and 2022 (Table 1) downloaded
from four different scenes (tiles), namely path 170/row 77, 170/78, 170/79, and 171/78.
The availability of those medium-spatial-resolution satellite imageries drew the attention
of scholars to investigate the diversity and changes in land use in the landscape. Several
scholars have also successfully used the datasets to evaluate LULCC and other related
activities [18].
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Table 1. Kappa coefficient values threshold.

Level of Agreement Kappa Coefficient

Excellent 0.8–1.0
Good 0.6–0.8

Moderate 0.4–0.6
Weak 0.2–0.4
Bad −1.0–0.2

Training samples were also collected by supporting false-color-composite and visual-
image-interpretation techniques from all study areas’ land-use types in the GEE platform.
GEE has the benefit of simultaneously processing large pools of satellite imagery quickly,
and it has powerful computational algorithms [13]. According to Zhang et al. [37], there are
two required methods for gathering ground-truth data in a remote-sensing environment:
(i) using a false-color composite supported by the visual-image-interpretation approach
and (ii) creating sample points automatically from satellite images that are prepared for
classification. Therefore, manual interpretation and/or semi-automated classification
backed by field surveys are/is required for the identification, monitoring, mapping, and
analysis of land-use diversity [26]. Our research used the false-color-composite method
supported by the visual-image-interpretation method. After that, we gathered samples
from each land-use type separated by their spectral values. Studies also indicated that
visual-image-interpretation-based approaches to ground-truth data collection are higher in
quality than sample points that are randomly created from satellite images. The consistency
of postprocessing land-use datasets depends on these training samples [6].

2.3. Image Preprocessing, Interpretation, and Analysis

The primary prerequisites for remote-sensing products; processing and the LULCC
research are (i) image preprocessing and enhancement, (ii) appropriate image-classification-
technique selection, and (iii) collection of reference datasets for accuracy and validation.
The geometric, radiometric, and atmospheric errors had to be fixed to enhance the visibility
of each pixel and eliminate positional inclination (if any) before any research was per-
formed. As part of this requirement, the issue of cloud cover (shadow) and its effect is not
new [38], but it is critical in satellite-image analysis based on their spectral signatures. For
instance, cloud cover can significantly hinder the analysis of crop or vegetation growth [39].
Therefore, the effect of cloud, haze, shadow, or other disturbances in the input images
must be corrected to optimize classification accuracy [13]. In our study, we used high
qualities of Landsat imageries Level 2, which are atmospherically and radiometrically
corrected and enhanced images. Furthermore, geometric corrections should be applied to
remove distortions caused by the sensor or the earth’s rotation. The Universal Transverse
Mercator (UTM) Zone 35 South projection and World Geodetic System 1984 (WGS84) data
were applied for all inputs that we used. Studies have shown that RF has successfully
processed and analyzed remote-sensing products even with more pronounced noise effects.
Zurqani et al. [21] reported that LULCC was evaluated across the study area, using pre-
processed Landsat imagery made accessible by GEE. A quick analysis utility for LULCC
is provided by GEE and was analyzed based on Table 2. Following that, a pixel-by-pixel
study was performed using the spectral values of each individual pixel (Equation (1)):

gi(x) = 1np(wi)−
1
2

1n
∣∣∣∣∑i

∣∣∣∣−1
2
(x−mi)

T ∑i
−1(x−mi) (1)

where i = the ith class (e.g., class 1, 2, 3. . .. n), x = n–dimensional data (where n is the
number of bands), p(wi) = probability that a class occurs in the image and is assumed
the same for all classes, |∑i| = determinant of the covariance matrix of the data in a class,
∑i
−1 = the inverse of the covariance matrix of a class, and mi = mean vector of a class.



Remote Sens. 2023, 15, 4092 7 of 21

Table 2. Spectral index for surface water body detection and analysis.

Surface Water Detection
Indices

Landsat 4–5
(TM) and 8 OLI Reference

NDWI Green–NIR/Green + NIR McFeeters (1996) [40]
MNDWI Green–SWIR1/Green + SWIR1 Xu (2005, 2006) [24,41]

The spectral values of each pixel were analyzed using the N × 300 ground-truth
data to improve the classification processes and accuracy of the findings. In this case, N
refers to the total number of land-use types in the study area. Gbedzi et al. [19] reported
that about 50 ground-truth datasets per land-use type were used to classify the satellite
imageries and assess the level of accuracy. There are 500 trees in the RF classification for
categorizing seven land-use types [29]. Yang and Huang [6] reported that the accuracy
level of China land-cover datasets is evaluated by applying confusion matrixes, namely
producer’s accuracy, consumer’s accuracy, overall accuracy, and F-score. F-score is one of
the machine-learning measures that help assess the RF model’s precision. The proportion
of all instances that are classified by the model is known as classification accuracy [42]. The
minimum level of the overall accuracy should be at least 85 percent [43]. In this study, we
analyzed the confusion matrixes, namely consumer’s accuracy (CA), producer’s accuracy
(PA), overall accuracy (OA), F-score based on the Yang and Huang [6] formula, and Kappa
coefficient (Table 1), as follows (Equations (2)–(6)):

CA = xii/xi+ × 100 (2)

PA = xii/x+i × 100 (3)

OA = D/V × 100 (4)

F− score = 2× (PA× CA)/(PA + CA) (5)

ˆ
K =

N∑k
i=1 xii −∑k

i=1(xi+ × x+i)

N2 −∑k
i=1(xi+ × x+i)

(6)

where
ˆ
K is the Kappa coefficient, or K-coefficient; xii is the total number of observations in

row i and column i; xi+ and x+i are the marginal totals of row i and column i, respectively;
N is the total number of observations; D is the total number of correct pixels (diagonal); V
is the total number of pixels in the error matrix; F-score is the harmonic mean of PA and
CA; PA is the producer’s accuracy; and CA is the consumer’s accuracy.

To realize the spatial and temporal patterns of LULCC in the study area, a post-
classification change detection analysis was performed pixel-by-pixel between the final and
initial study years. This analysis was carried out by deducting the spatial area coverage
of the final year from the initial year. This change-detection method was proven to be the
most effective technique because data from two periods are separately classified, thereby
minimizing the problem of normalizing for atmospheric and sensor differences [44].

2.4. Surface Water Content Detection, Analysis, and Mapping

The surface water bodies of Gauteng Province were identified to investigate their
history and existing status, using Landsat 4–5 TM and 8 OLI satellite images. We also
evaluated the water content of the study area for proper planning and management. The
Modified Normalized Difference Water Index (MNDWI) and Normalized Difference Water
Index (NDWI) were used based on Table 2. Both indices are novel for surface water body
detection and water content analysis. They are also useful methods for determining water
quality since they exclude soil and terrestrial vegetation features within a water body [40].
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The MNDWI overcomes the limits of the Normalized Difference Water Index (NDWI) re-
garding soil and built-up areas but still has proven to be effective in separating water bodies
and vegetation [45]. The MNDWI improves the detection of water-content information
and eliminates shadow noise in areas where built-up lands are a dominant cover type than
the Normalized Difference Water Index (NDWI) [41]. The MNDWI also provides more
detailed and higher-quality water-content information than the NDWI [46,47]. In this study,
we employed both indices to verify the water content of the study area (Table 2; Figure 2).
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For the NDWI estimation, the Green and NIR represent bands 2 and 4 in Landsat
4–5 TM; however, they signify bands 3 and 5 in Landsat 8 OLI products. Furthermore, for
the analysis of the MNDWI, the Green and SWIR1 represent bands 2 and 5 in Landsat
4–5 TM and bands 3 and 6 in Landsat 8 OLI. The MNDWI uses green and shortwave
infrared (SWIR–1) bands to point out water bodies, while the NDWI uses green and
near-infrared (NIR) bands. The value of the MNDWI and NDWI ranges from −1 to +1.
Built-up areas, soil, and vegetation have negative values due to their higher reflectance,
while surface water bodies have positive values because of lower reflectance in the SWIR
band [31].

2.5. The Statistical Relationship between the MNDWI and NDWI

We applied the Pearson correlation coefficient (r) to investigate the relationships
between the NDWI and MNDWI (Equation (7)). In most cases, correlations are utilized to
analyze bivariate relationships between measured variables. In this study, we generated the
values of each pixel found within a 5, 10, and 15 km radius distance to compare the results
from the center of the study site to assess the relationships of each factor. This increases
the processing capability of our computer and Minitab version 16 statistical software. The
Pearson correlation coefficient values range from −1 to +1. Bolboaca and Jäntschi [48]
reported that if the variables have a value of +1, an increasing relationship completely
associates them; if they have a value of −1, they are perfectly related by a decreasing
relationship, and if they have a value of 0, they are not linearly related to each other. If the
correlation coefficient is more than 0.8, the correlation is strong; if it is lower than 0.5, the
correlation is weak. In several studies, the Pearson correlation matrix was used to assess
the relationships between the NDWI and MNDWI [2,49].

r =
n(∑ xy)− (∑ x)(∑ y)√[

n∑ x2 −
(

∑ x)2
][

n∑ y2 −
(

∑ y)2
] (7)

where r = Pearson correlation coefficient, n = no. of pairs, ∑ xy = sum of x and y,
(∑ x) = sum o f x values, (∑ y) = sum o f y values , ∑ x2 = sum of the squared x value, and
∑ y2 = sum of the squared y value.

3. Results and Discussion
3.1. Land-Use Diversity Analysis at the Province Level

Using the RF classifier machine-learning model, we found nine different land-use
diversity classes in the study area, namely WB, MQ, DF, GL, ShL, BuA, WeL, AL, and
BL (Figure 3a–d), with high F-score values ranging from 72.3 to 100% during the period
from 1993 to 2022 (Table 3). The results of CA and PA also show a strong agreement with
the F-score values of each land-use type (Table 3). These values were validated using the
OA and K-coefficient. The OA and K-coefficient values of the study area for the years
1993, 2003, 2013, and 2022 were 92, 93, 95, and 90%, respectively, with greater K-coefficient
values of 90, 91, 93, and 87% (Table 3). Mawasha and Britz [50] reported an OA of 85.9,
87.5, and 92.5% for the years 1987, 2001, and 2015, respectively, with a Kappa coefficient
of 81.3, 83.3, and 90% in the Jukskei River catchment, Gauteng, South Africa. Azzari and
Lobell [13] stated an OA of 89% for cropland and non-cropland in Zambia. According to
Zurqani et al. [21], the OAs for the years 1999, 2005, 2009, and 2015 were 79.18, 79.41, 76.04,
and 76.11%. However, Anderson [43] underlined that an acceptable OA value should be at
least 85%. Our findings were above the minimum standard and acceptable range in this
case. We also proved this value with the F-score value of each land-use type in our study
area. Various studies also indicated that an F-score value above the average (50%) indicates
perfect precision and is considered to be in higher agreement (Table 3). Table 3 shows our
study area’s detailed CA, PA, F-score, OA, and K-coefficient analysis from 1993 to 2022.
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Table 3. The detailed analysis of CA, PA, F-score, OA, and K-coefficient value from 1993 to 2022.

LC
1993 2003 2013 2022

CA% PA% F-Score CA% PA% F-Score CA% PA% F-Score CA% PA% F-Score

WB 93.8 96.8 95.2 97.1 100.0 98.5 100.0 100.0 100.0 91.2 100.0 95.4
MQ 86.8 80.5 83.5 100.0 100.0 100 97.8 95.8 96.8 84.6 83.0 83.8
DF 98.5 100.0 99.3 87.8 98.5 92.8 97.2 99.7 98.5 90.7 98.2 94.3
GL 88.9 88.9 88.9 97.4 100.0 98.7 97.8 93.8 95.7 93.6 100.0 96.7
ShL 90.7 97.5 94.0 95.8 65.7 78.0 97.0 86.5 91.4 86.8 82.5 84.6
BuA 89.1 87.5 88.3 100.0 100.0 100.0 89.2 94.3 91.7 75.0 69.8 72.3
WeL 94.9 92.5 93.7 94.6 70.0 80.5 89.1 83.7 86.3 85.0 58.6 69.4
AL 71.4 80 75.5 90.2 84.6 87.3 92.1 90.6 91.3 93.6 84.6 88.9
BL 90.2 74 81.3 92.4 93.8 93.1 81.3 81.3 81.3 95.4 95.4 95.4

OA% 92 – 93 95 – 90 –
K% 90 91 93 87

In GP, AL was the dominant land-use type in 1993. This land-use type covered an area
of 6156.0 km2 (33.88%) in 1993 (Figure 3a). Following by AL, BL covered an area of 4565.60
(25.13%); BuA, 2713.40 (14.93%); ShL, 2071.20 (11.40%); WeL, 1646.90 (9.06%); GL, 553.30
(3.05%); MQ, 213.80 (1.18%); DF, 182.60 (1%); and WB, 67.10 km2 (0.37%) (Table 4). However,
AL, BL, ShL, and BuA declined annually by 365.4, 293.2, 181, and 165.4 km2, respectively,
during the period of 1993–2003 (Figure 4a). In the same period, an increased trend was
observed in DF, WB, GL, WeL, and MQ by 2.8, 37.1, 297.2, 326.7, and 341.3 km2, respectively.
In the year 2003, WeL was the predominant land use, covering around 4913.5 km2 (27%)
of the total area (Table 4; Figure 3b). The remaining land-use types, namely MQ, GL, AL,
BL, BuA, WB, ShL, and DF covered an area of 3627.1 (20%), 3525.2 (19.4%), 2502.5 (13.8%),
1633.10 (9%), 1059.6 (5.8%), 437.6 (2.4%), 260.8 (1.4%), and 210.7 km2 (1.2%), respectively
(Table 4). The 2013 land-use diversity of the study area shows that AL was still covering the
highest occupancy rate, i.e., 7569.6 km2 (41.7%), in comparison to other land-use categories
in the area (Figure 3c). This land-use type shows an increased trend from its earlier coverage
by 5067.1 km2 (Table 4). The remaining land-use types included WeL, which covered 3878.8
(21.3%); BL, 1876.4 (10.3%); ShL, 1433.1 (7.9%); DF, 1426.5 (7.9%); BuA, 1053.9 (5.8%); MQ,
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593.8 (3.3%); GL, 250.7 (1.4%); and WB, 87.1 km2 (0.5%) (Table 4; Figure 3c). Similarly, in the
period 2003–2013, GL, MQ, WeL, WB, and BuA showed an annual decline of 327.5, 303.3,
103.5, 35.1, and 0.6 km2, respectively (Figure 4b). Moreover, the 2022 land-use diversity of
the study area (Figure 3d) indicated that AL occupied the largest area, i.e., 6241.5 (34%).
However, WeL covered 4243 (23%); ShL, 2395.8 (13%); BL 1654.7 (9.1%); BuA, 1490.7 (8.2%);
DF, 1041.4 (5.7%); GL, 715.8 (3.9%); MQ, 281.6 (1.5%); and WB, 105.7 km2 (0.6%) (Table 4).
In the years 2013–2022, AL, DF, MQ, and BL also showed an annual decline trend of 147.6,
42.8, 34.7, and 24.6 km2, respectively (Figure 4c). However, the extent of WB, WeL, BuA,
GL, and ShL intensified annually by 2.1, 40.5, 48.5, 51.7, and 107 km2, respectively. This
study reported that during the last three decades (1993–2022), only BL and BuA declined
by 100.4 and 42.2 km2, respectively (Figure 4d). The presence of high vegetation in the
area was strongly affecting the classification of BuA. The BuA was heavily dominated by
vegetation in the majority of GP district municipalities, including the metropolitan center
of Johannesburg. As a result, the spatial extent of BuA is less than the previous years. The
remaining land-use types, namely WB, MQ, AL, GL, ShL, DF, and WeL, have expanded
annually by 1.3, 2.3, 2.9, 5.6, 11.2, 29.6, and 89.5 km2, respectively. Those land uses may
affect the security of surface water bodies in the area. Abiye [35] stated that the economic
sustainability of the area is hampered by water insecurity (e.g., surface water), which is
brought on by factors such as population growth, expansion of industrial, agricultural,
and mining sectors, among others. In addition to this, the hydrological cycle may also be
significantly impacted by changes in water quality and surface runoff [33].

Table 4. Land-use diversity classes in the study area from 1993 to 2022.

L-Class
1993 2003 2013 2022

Area in
km2 % Area in

km2 % Area in
km2 % Area in

km2 %

MQ 213.80 1.18 3627.10 20.00 593.80 3.30 281.60 1.50
DF 182.60 1.00 210.70 1.20 1426.50 7.90 1041.40 5.70
GL 553.30 3.05 3525.20 19.40 250.70 1.40 715.80 3.90
ShL 2071.20 11.40 260.80 1.40 1433.10 7.90 2395.80 13.00
BuA 2713.40 14.93 1059.60 5.80 1053.90 5.80 1490.70 8.20
WeL 1646.90 9.06 4913.50 27.00 3878.80 21.30 4243.00 23.00
AL 6156.00 33.88 2502.50 13.80 7569.60 41.70 6241.50 34.00
BL 4565.60 25.13 1633.10 9.00 1876.40 10.30 1654.70 9.10

Surface water bodies’ coverage

WB 67.10 0.37 437.60 2.40 87.10 0.50 105.70 0.60
Total area
coverage 18,170.00 100.00 18,170.0 100.00 18,170.0 100.00 18,170.0 100.00

Mawasha and Britz [50] reported an increase in BuA and BL by 427.13 (56.2%) and
62.251 km2 (8.2%), whereas a decrease of vegetation cover by 74.55 (9.8%) and 197 km2

(25.8%), respectively, was observed for the period of 1987–2015. The decline in AL impacts
the accessibility of food for both humans and livestock. This has been proven by [51]
because livestock occupies 70% of all AL and GL. The decreased trend of WB may harm AL
productivity [52]. Additionally, the reduction of MQ could influence the economic growth
of GP. However, unwisely treated MQ causes negative environmental effects linked with
the contamination of surface and subsurface water resources [53]. Therefore, it is important
to undertake proper MQ waste management to safeguard the local water bodies and other
natural resources.
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3.2. Land-Use Diversity Class Analysis at the District Municipality Level

The smallest portion of the Ekurhuleni (EKU) District (19%) of Gauteng Province
was covered by WB (0.5), DF (0.9), and MQ (2.1%) in the year 1993 (Figure 3a). However,
the most dominant land-use types of the area were AL, which covers 1068.4 (30.9%); BL,
770.5 (22.3%); BuA, 572.1 (16.5%); ShL, 360.4 (10.4%); and GL, 107 km2 (3.1%). In 2003, the
spatial coverage of all land-use types changed to different spatial extents. For instance, WeL
covered an area of 953.8 (27.6%); GL, 703.9 (20.4%); MQ, 683.2 (19.8%); BL, 398.3 (11.5%); AL,
306.8 (8.9%); BuA, 208.1 (6%); WB, 108.8 (3.1%); DF, 45.3 (1.3%); and ShL, 50.3 km2 (1.5%)
(Figure 3b). In 2013, a remarkable shift in various land uses was observed. During this time,
the largest portion of the study area was covered by AL, 1231.6 km2 (35.6%). Following AL,
WeL covered 612.8 (17.7%), BL covered 623.7 (18%), BuA covered 313.1 (9.1%), ShL covered
256.9 (7.4%), DF covered 190.1 (5.5%), MQ covered 151.8 (4.4%), GL covered 54.9 (1.6%),
and WB covered 23.7 km2 (0.7%) (Figure 3c). Similarly, in the year 2022, AL covered 927.8
(26.8%), BL covered 560.3 (16.2%), BuA covered 504.9 (14.6%), WeL covered 743.4 (21.5%),
ShL covered 327.3 (9.5%), GL covered 163.2 (4.7%), DF covered 127.7 (3.7), MQ covered
74.5 (2.2%), and WB covered 29.8 km2 (0.9%) (Figure 3d). Moreover, EKU experienced a
significant loss (decrease) and gains (increase) in potential land use in 1993, 2003, 2013, and
2022. Supplementary Figure S1a indicates that AL, BuA, BL, and ShL annually declined
by 76.2, 36.4, 37.2, and 31 km2, respectively, from 1993 to 2003. In the same period, the
land-use types MQ, GL, WeL, WB, and DF increased by 61, 59.7, 49.4, 9.2, and 1.4 km2.
In 2003–2013, the previously increased land-use types declined in their spatial coverage.
For instance, GL, MQ, WeL, and WB were annually diminishing by 64.9, 53.1, 34.1, and
8.5 km2, respectively (Supplementary Figure S1b). On the contrary, AL, BL, ShL, DF, and
BuA intensified yearly by 92.5, 22.5, 14.5, and 0.5 km2, respectively. Similarly, in 2013–2022,
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WB showed a slight annual increase (gains) of 0.6 km2. During this time, the corresponding
annual increases for BuA, WeL, GL, and ShL were 19.2, 13, 10.8, and 7.1 km2, respectively
(Supplementary Figure S1c). However, there was a noticeable decrease in AL, MQ, BL, and
DF of 30.4, 7.7, 6.3, and 6.2 km2, respectively. In general, an increased trend of MQ, WB,
GL, DF, and WeL by 0.1, 1.5, 6.2, 10.8, and 31.5 km2, respectively, was observed in EKU
from the year 1993 to 2022. In the same period, the spatial extent of BL, AL, BuA, and ShL
declined annually by 23.4, 15.6, 7.5, and 3.7 km2, respectively (Supplementary Figure S1d).

The Johannesburg (JHB) Metropolitan City of Gauteng Province, which occupied only
9%, was dominated by ShL during 1993 (Figure 3a). The largest portion of the city was cov-
ered by healthy vegetation, including BuA, throughout the study years (Figure 3a). During
this time, ShL covered an area of 385.6 km2 (23.5.2%), while the land-use type BuA covered
420.9 (25.6%), BL covered 259.1 (15.8%), AL covered 214.1 (13%), WeL covered 190 (11.6%),
GL covered 104.3 (6.3%), MQ covered 48.5 (2.9%), WB covered 2.8 (0.2%), and DF covered
18.7 km2 (1.1%). Additionally, in 2003, BL covered the largest portion of the city. About
350.6 km2 (21.3%) was covered by BL, WeL covered 272 (16.5%), AL covered 257 (15.7%),
GL covered 248 (15.1%), MQ covered 164.3 (10%), WB covered 108.3 (6.6%), ShL covered 77
(4.7%), BuA covered 83.1 (5.1%), and DF covered 78.2 (4.8%) (Figure 3b). This coverage was
reverted in 2013 because of the land-use dynamics. During this time, the largest portion
of JHB city was occupied by ShL 352.8 km2 (21.5%). Following this, BuA was the second
dominant land-use type and covered an area of 279.1 (17%), WeL covered 249.8 (15.2%),
AL covered 242.3 (14.7%), BL covered 260.3 (15.8%), MQ covered 128.5 (7.8%), DF covered
70.9 (4.3%), GL covered 54.9 (3.3%), and WB covered 5.3 km2 (0.3%) (Figure 3c). However,
by 2022, BuA had replaced ShL as the area’s primary land-use type, covering 450 km2

(27.4%). ShL covered 219.9 (13.4%), BL covered 210.1 (12.8%), AL covered 195 (11.9%),
WeL covered 345 (21%), GL covered 85.3 (5.2%), MQ covered 69.5 (4.2%), DF covered 63.3
(44.6%), and WB covered 5.9 km2 (0.4%) (Figure 3d). Moreover, in the period 1993–2003,
most of the land-use types, namely AL, DF, WeL, BL, WB, MQ, and GL, showed an annual
increase (gains) in spatial coverage by 4.3, 6, 8.2, 9.2, 10.6, 11.6, and 14.4 km2. However, both
ShL and BuA showed a decline of 33.9 and 33.8 km2. This study strongly argues that the
effect of intense vegetation covering most BuA shows a declining trend because most BuA
pixels were dominantly covered by ShL and DF (Supplementary Figure S2a). In 2003–2013,
significant land-use types declined in their spatial extent (Supplementary Figure S2b). For
instance, GL decreased by 19.4, WB by 10.3, BL by 9, MQ by 3.6, WeL by 2.2, AL by 1.5,
and DF by 0.7 km2 per year (Supplementary Figure S2b). However, upon the loss of other
land-use types, ShL and BuA exhibited increases of 27.6 and 19.6 km2, respectively. Except
for BuA, WeL, GL, and WB, all other land-use classifications decreased by various degrees
between 2013 and 2022 (Supplementary Figure S2c). The size of the other land-use types,
namely BuA, WeL, GL, and WB, increased by 17.1, 9.5, 9, and 0.1 km2 annually. Conversely,
ShL, MQ, BL, AL, and DF shrunk by 13.3, 5.9, 5 km2, 4.7, and 0.8 km2 per annum, respec-
tively. Furthermore, the coverage of ShL, which is crucial for lessening the effects of climate
change at the local level, generally decreased during the past three decades (1993–2022) in
the metropolitan city of JHB (Supplementary Figure S2d). During this period, ShL declined
annually by 18.4, BL by 5.4, AL by 2.1, and GL by 2.1 km2. However, the spatial extent of
WeL, DF, BuA, MQ, and WB increased by 17.2, 5.0, 3.2, 2.3, and 0.3 km2 annually.

The Tshwane (TSH) District of Gauteng Province, which covers 34.7%, was dominated
by AL during 1993 (Figure 3a). This land-use type occupied 2143.6 km2 (34%) of the district.
Following this, BL covered 1821.9 (28.9%), ShL covered 809.5 (12.9%), BuA covered 664.1
(10.5%), WeL covered 608.7 (9.7%), GL covered 105.9 (1.7%), MQ covered 24.5 (0.4%), and
WB covered 15.9 km2 (0.3%). WB occupied the smallest portion of TSH. However, most
land-use types were changing into other land-use types in 2003. For instance, GL replaced
the dominance of AL in 2003. This might have occurred because of the similarity of early
stage crop growth with GL and GL’s expansion within AL. Following this, WeL covered
an area of 1522.2 (24.2%); MQ, 1395.2 (22.2%); AL, 781.1 (12.4%); BuA, 354.8 (5.6%); BL,
306 (4.9%); WB, 81.8 (1.3%); DF, 53 (0.8%); and ShL, 53.9 km2 (0.9%) (Figure 3b). In 2013,
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AL dominated the entire land mass of TSH (Figure 3c). The spatial extent of GL dropped
to 53.4 km2 (0.8%) due to the expansion of other land-use types, such as AL. During this
time, AL covered 3249.3 (51.6%), WeL covered 1181 (18.8%), BL covered 669.4 (10.6%), DF
covered 456.2 (7.2%), ShL covered 355.3 (5.6%), BuA covered 201.4 (3.2%), MQ covered
106 (1.7%), GL covered 53.4 (0.8%), and WB covered 24 km2 (0.4%). In 2022, WeL overtook
the dominance of AL by covering an area of 2310.9 (36.7%); AL, 1656.8 (26.3%); ShL, 817.6
(8.5%); DF, 389.2 (6.2%); BuA, 349.1 (5.5%); GL, 151.8 (2.4%); MQ, 47 (0.7%); and WB,
36.7 km2 (0.6%) (Figure 3d). In addition, during 1993–2003, the extent of BL declined
annually by 151.6 km2 (Supplementary Figure S3a). The decrease in BL in the TSH District
may provide opportunities to expand other crucial land-use types, such as AL, ShL, BuA
and DF. AL diminished annually by 136.3 km2. The decline in AL may also critically affect
the agricultural production and productivity of the area. Moreover, ShL, BuA, and DF
were reduced annually by 75.6 km2, 30.9 km2, and 4.9 km2, respectively. The decline in
ShL and DF has negatively impacted the area’s climate condition. Both ShL and DF are
vital for climate regulation. During the same period, TSH benefited from the increase
in GL, MQ, WeL, and WB by 164.2, 137.1, 91.4, and 6.6 km2, respectively. In the period
2003–2013, the increases, as well as decreases, of earlier land-use changed on various scales
(Supplementary Figure S3b). For instance, the spatial extent of GL, MQ, WeL, BuA, and
WB declined by 169.5, 128.9, 34.1, 15.3, and 5.8 km2, respectively. On the other hand, AL,
DF, BL, and ShL gained 246.8, 40.3, 36.3, and 30.1 km2 annually. In the years 2013–2022, AL,
BL, DF, and MQ showed a tendency to decline by 159.3, 13.3, 6.7, and 5.9 km2, respectively
(Supplementary Figure S3c). Nonetheless, WeL, ShL, BuA, GL, and WB showed a positive
trend in terms of their spatial coverages and grew by 113, 46.2, 14.8, 9.8, 1.3, and 1.3 km2,
respectively. Overall, we observed that BL, AL, and BuA declined by 142.8, 54.1, and
35 km2 from the year 1993 to 2022 (Supplementary Figure S3d). The decline in BuA during
the study years is linked to the predominance of ShL and DF. Nevertheless, WeL, DF, GL,
MQ, WB, and ShL improved annually by 189.1, 31.9, 5.1, 2.5, 2.3, and 0.9 km2, respectively.

The West Rand (DC 48) District of Gauteng Province, which covers about 22.5%, was
dominated by AL during 1993 (Figure 3a). AL occupied 1956.3 km2 (47.9%) of the entire
land mass within this period. Following this, BL was the second largest DC48 coverage.
It was sized 1096.4 km2 (26.8%), whereas BuA covered 417.9 (10.2%), ShL covered 274.6
(6.7%), WeL covered 174.8 (4.3%), GL covered 88.7 (2.2%), MQ covered 53.5 (1.3%), DF
covered 18.3 (0.4%), and WB covered 4 km2 (0.1%). In the year 2003, a significant change
in almost all land-use types occurred. For instance, MQ expanded by 1033 km2 from
its earlier coverage, while WeL intensified by 908.7, GL by 383.8, and WB by 67.5 km2.
However, the extent of AL diminished by 1206.2, BL by 819.6, ShL by 250.9, BuA by
109.6, and DF by 2.6 km2 (Figure 3b). Similarly, in 2013, AL led the spatial coverage of
DC48 (Figure 3c). During this period, about 2597.1 km2 (63.6%) of land was completely
occupied by AL. This shows an intensification of 1846 km2 from the 2003 coverage. The
remaining land-use types were WeL, which covered 654.3 (16%); DF, 253.2 (6.2%); BL,
227.3 (5.6%); ShL, 97.7 (2.4%); MQ, 101.5 (2.5%); BuA, 59 (1.4%); GL, 34.2 (0.8%); and WB,
10.2 km2 (0.2%). Likewise, in the year 2022, WeL covered an area of 1120.5 km2 (27.4%).
This depicts an increase of 466.3 km2 from its earlier coverage (Figure 3d). Similarly,
ShL covered 515.5 (12.6%), GL covered 157.8 (3.9%), BuA covered 93.3 (2.3%), and WB
covered 16.6 km2 (0.4%). Additionally, we observed a substantial reduction in AL, MQ,
BL, and DF by 42.4, 1.1, 4.3, and 5.6%, respectively. In addition, AL, BL, ShL, BuA, and
DF decreased annually from 1993 to 2003 by 120.6, 82, 25.1, 11.6, and 0.3 km2, respectively
(Supplementary Figure S4a). However, for MQ, WeL, GL, and WB, there was a notable
increase of 103.3, 90.9, 38.4, and 6.3 km2. As seen in Supplementary Figure S4b, MQ, GL,
WeL, BuA, WB, and BL experienced annual losses of 98.5, 43.8, 42.9, 24.3, and 5.7 km2 from
2003 to 2013, respectively. In the same period, an increase in AL, DF, ShL, and BL by 184.7,
23.8, 7.4, and 0.1 km2 was observed. Conversely, in the years 2013–2022, most of the land
uses changed at different rates (Supplementary Figure S4c). For instance, AL diminished
by 86.6, BL by 10.4, MQ by 5.6, and DF by 2.3 km2. Meanwhile, WeL, ShL, GL, BuA, and
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WB intensified by 46.8, 41.8, 12.4, 3.4, and 0.6 km2, respectively. In general, BL, BuA, AL,
and MQ declined annually by 102.5, 36.1, 25, and 0.9 km2, respectively. However, over
the past three decades, WeL, ShL, DF, GL, and WB increased by 105.1, 23.8, 23.6, 7.7, and
1.4 km2, respectively (Supplementary Figure S4d).

The Sedibend (DC 42) District of Gauteng Province, which covered about 14.8%, was
dominated by AL, i.e., 813.6 km2 (30.3%), in 1993. Following this, BuA was the second
overriding land-use type of the district. In this period, BuA covered 638.4 (23.8%), BL
covered 622.7 (23.2%), WeL covered 214.3 (8%), ShL covered 196.3 (7.3%), GL covered 147.4
(5.5%), WB covered 27.8 (1%), MQ covered 13.7 (0.5%), and DF covered 12.6 km2 (0.5%).
In 2003, most of the earlier land-use types changed sustainably from the 1993 coverage.
For instance, WeL increased by 860.8, MQ by 283.3, GL by 204, WB by 43.5, and DF by
5.9 km2. On the contrary, BuA declined by 518.1, AL by 403.6, BL by 321.8, and ShL by
154.2 km2. Likewise, during the year 2013, AL became the overriding land-use type, while
GL covered a small portion of the district. During this year, AL covered 1524.5, WeL
covered 426 (15.9%), BL covered 338.5 (12.6%), DF covered 124.4 (4.6%), BuA covered 90.7
(3.4%), ShL covered 86 (3.2%), WB covered 44.3 (1.6%), MQ covered 34.1 (1.3%), and GL
covered 18.4 km2 (0.7%). However, in 2022, a notable reduction in AL, BL, MQ, and DF
was observed by 509.5, 63.9, 23.2, and 19.7 km2, respectively, from the 2013 coverage. In the
same year, WeL, ShL, GL, BuA, and WB intensified by 282.4, 150.5, 146.5, 24, and 6.9 km2,
respectively. Moreover, the BuA, AL, BL, and ShL declined annually by 51.8, 40.4, 32.2,
and 15.4 km2, respectively, from 1993 to 2003 (Supplementary Figure S5a). On the other
hand, DF, WB, GL, MQ, and WeL intensified annually by 0.6, 4.4, 20.4, 28.3, and 86.1 km2,
respectively. However, in the period 2003–2013, most of the land-use types changed. For
instance, WeL lost 64.9, GL lost 33.3, MQ lost 26.3, BuA 3, and WB lost 2.7 km2 each
year (Supplementary Figure S5b). In the same period, BL, ShL, DF, and AL expanded by
3.8 km2, 4.4 km2, 10.6 km2, 111.5 km2, respectively (Supplementary Figure S5c). Moreover,
a significant loss in AL, BL, MQ, and DF were observed annually by 50.9, 6.4, 2.3 km2,
and 1.4 km2, respectively (Supplementary Figure S5c). Conversely, the crucial land-use
types of WB, BuA, GL, ShL and WeL intensified annually by 0.7, 2.4, 14.6, 15, and 28.2 km2,
respectively. In general, BuA, BL, and MQ dropped annually by 58.2, 38.7, and 0.3 km2,
respectively. Those loss became a gain to other land-use types, namely as GL, WB, ShL,
DF, AL, and WeL; in these land-use types, annual increases of 1.6, 2.6, 4.5, 10.9, 22.4, and
54.9 km2 were observed between 1993 and 2022 (Supplementary Figure S5d).

3.3. Surface Water Bodies Analysis

Table 5 indicates the overall surface water bodies of the study area, using the MNDWI
and NDWI. The results show that the surface water content has been below the standard
and diminishing yearly over the last three decades (Figure 5a–h). This reduction may
have caused the worsening shortages of surface water access for livestock and humans
in all district municipalities of GP from 1993 to 2022 (Table 5). As a result, the incidence
of drought would be severe [54], as well as the regularity, intensity, severity, and spatial
extent. Although all district municipalities of GP are depicted as being below the standard
thresholds, the TSH and EKU show relatively higher MNDWI values than all of the districts
of GP. In these districts, the max MNDWI values during the year 1993 were 0.39, and 0.38,
respectively. In the same year, the district of DC42 revealed a lower (0.27) MNDWI value. In
addition, the NDWI shows very low surface water content levels compared to the MNDWI
across all the study sites. Studies indicated that surface water bodies may be quickly
affected by extreme weather and poor land-use management-related factors. Additionally,
the allocation of water bodies using the RF method, MNDWI, and NDWI was analyzed.
The findings showed that the spatial representations of water bodies in the province of
Gauteng varied in three of the models. For instance, the MNDWI and NDWI show a decline
of 103 and 594 km2, respectively, from 1993 to 2022, whereas the RF model indicates an
increase of 38.56 km2.
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Table 5. Comparative analysis of surface water bodies across each district municipality in Gauteng
Province (GP).

Year Indices DM Min Max Mean STD CV%

1993

MNDWI

JHB −0.48 0.32 −0.19 0.06 −30.11
TSH −0.75 0.39 −0.22 0.05 −21.54
EKU −0.61 0.38 −0.21 0.06 −28.54
DC42 −0.75 0.27 −0.22 0.06 −27.96
DC48 −0.73 0.34 −0.24 0.04 −17.77

NDWI

JHB −0.46 0.20 −0.14 0.04 −31.79
TSH −0.50 0.22 −0.15 0.03 −21.15
EKU −0.46 0.22 −0.13 0.04 −29.48
DC42 −0.46 0.19 −0.14 0.04 −28.70
DC48 −0.47 0.26 −0.15 0.03 −20.80

2003

MNDWI

JHB −0.71 0.50 −0.19 0.05 −27.54
TSH −0.75 0.47 −0.24 0.05 −19.64
EKU −0.76 0.37 −0.22 0.06 −26.55
DC42 −0.63 0.48 −0.23 0.06 −27.07
DC48 −0.75 0.47 −0.24 0.04 −17.79

NDWI

JHB −0.75 0.51 −0.17 0.06 −34.45
TSH −0.75 0.52 −0.16 0.04 −22.47
EKU −0.73 0.29 −0.16 0.05 −29.42
DC42 −0.74 0.52 −0.14 0.04 −28.89
DC48 −0.73 0.50 −0.16 0.04 −24.04

2013

MNDWI

JHB −0.98 0.35 −0.18 0.06 −31.44
TSH −0.87 0.41 −0.24 0.05 −22.33
EKU −0.92 0.40 −0.22 0.06 −28.93
DC42 −0.77 0.33 −0.24 0.07 −29.95
DC48 −0.83 0.43 −0.26 0.05 −17.44

NDWI

JHB −0.96 0.35 −0.15 0.05 −32.36
TSH −0.80 0.34 −0.16 0.04 −22.54
EKU −0.89 0.28 −0.15 0.05 −31.11
DC42 −0.50 0.32 −0.15 0.05 −33.80
DC48 −0.76 0.32 −0.17 0.04 −21.79

2022

MNDWI

JHB −0.89 0.41 −0.18 0.05 −29.93
TSH −0.86 0.40 −0.23 0.05 −22.92
EKU −0.97 0.38 −0.21 0.06 −28.23
DC42 −0.77 0.34 −0.23 0.07 −29.16
DC48 −0.74 0.39 −0.25 0.05 −18.59

NDWI

JHB −0.86 0.37 −0.15 0.05 −30.58
TSH −0.84 0.40 −0.16 0.04 −25.38
EKU −0.96 0.29 −0.15 0.04 −29.31
DC42 −0.48 0.22 −0.16 0.05 −32.87
DC48 −0.50 0.27 −0.16 0.04 −23.62

3.4. Relationships of Various Surface Water Content Indicators at Various Radiuses

In this study, we examined the statistical relationship between the MNDWI and NDWI
at a 5, 10, and 15 km radius from the center of the study area to ascertain how the two
significant surface water content indicators related to one another. Figure 6a,b depict the
long-term mean NDWI and MNDWI levels at various radiuses.

Our results indicated that the Pearson correlation between the MNDWI and NDWI
is higher at the 5 km radius than at 10 and 15 km (r = 0.60, p = 0.00, n = 87,260) and is
statistically significant (p = 0.000) (Figure 7a–c).



Remote Sens. 2023, 15, 4092 17 of 21

Remote Sens. 2023, 15, x FOR PEER REVIEW 17 of 23 
 

 

MNDWI, and NDWI was analyzed. The findings showed that the spatial representations 
of water bodies in the province of Gauteng varied in three of the models. For instance, the 
MNDWI and NDWI show a decline of 103 and 594 km2, respectively, from 1993 to 2022, 
whereas the RF model indicates an increase of 38.56 km2.  

 
Figure 5. (a–h) Surface water content detection in Gauteng Province across each district munici-
pality. 

Table 5. Comparative analysis of surface water bodies across each district municipality in Gauteng 
Province (GP). 

Year Indices DM Min Max Mean STD CV% 

1993 

MNDWI 

JHB −0.48 0.32 −0.19 0.06 −30.11 
TSH −0.75 0.39 −0.22 0.05 −21.54 
EKU −0.61 0.38 −0.21 0.06 −28.54 
DC42 −0.75 0.27 −0.22 0.06 −27.96 
DC48 −0.73 0.34 −0.24 0.04 −17.77 

NDWI 

JHB −0.46 0.20 −0.14 0.04 −31.79 
TSH −0.50 0.22 −0.15 0.03 −21.15 
EKU −0.46 0.22 −0.13 0.04 −29.48 
DC42 −0.46 0.19 −0.14 0.04 −28.70 
DC48 −0.47 0.26 −0.15 0.03 −20.80 

2003 MNDWI 

JHB −0.71 0.50 −0.19 0.05 −27.54 
TSH −0.75 0.47 −0.24 0.05 −19.64 
EKU −0.76 0.37 −0.22 0.06 −26.55 
DC42 −0.63 0.48 −0.23 0.06 −27.07 

Figure 5. (a–h) Surface water content detection in Gauteng Province across each district municipality.

Remote Sens. 2023, 15, x FOR PEER REVIEW 19 of 23 
 

 

 
Figure 6. (a–b) The long-term mean NDWI (a) and MNDWI (b) levels at various radiuses from 
1993–2022. 
 

Our results indicated that the Pearson correlation between the MNDWI and NDWI 
is higher at the 5 km radius than at 10 and 15 km (r = 0.60, p = 0.00, n = 87,260) and is sta-
tistically significant (p = 0.000) (Figure 7a–c).  

   
Figure 7. (a–c) Statistical relationships between the MNDWI and NDWI at 5 km (a), 10 km (b), and 
(c) 15 km radiuses from the center of the study area. 

4. Conclusions 
This study explored the performance of machine-learning models such as RF to 

characterize the impact of changing land-use diversity on surface water bodies. Our re-
sults showed that the spatial coverage of BL has decreased by 100.4 km2 annually during 
the last three decades. The influence of the dense vegetation in GP was also evident in 
BuA, which showed a decreasing trend of 42.2 km2. On the other hand, WB, MQ, AL, GL, 
ShL, DF, and WeL have increased by 1.3, 2.3, 2.9, 5.6, 11.2, 29.6, and 89.5 km2 annually. 
Between 1993 and 2022, the spatial coverage of MQ, WB, GL, and DF increased in EKU by 

(a) (b) (c) 

(b) (a) 

Figure 6. (a,b) The long-term mean NDWI (a) and MNDWI (b) levels at various radiuses from
1993–2022.



Remote Sens. 2023, 15, 4092 18 of 21

Remote Sens. 2023, 15, x FOR PEER REVIEW 19 of 23 
 

 

 
Figure 6. (a–b) The long-term mean NDWI (a) and MNDWI (b) levels at various radiuses from 
1993–2022. 
 

Our results indicated that the Pearson correlation between the MNDWI and NDWI 
is higher at the 5 km radius than at 10 and 15 km (r = 0.60, p = 0.00, n = 87,260) and is 
statistically significant (p = 0.000) (Figure 7a–c).  

   
Figure 7. (a–c) Statistical relationships between the MNDWI and NDWI at 5 km (a), 10 km (b), and 
(c) 15 km radiuses from the center of the study area. 

4. Conclusions 
This study explored the performance of machine-learning models such as RF to 

characterize the impact of changing land-use diversity on surface water bodies. Our 
results showed that the spatial coverage of BL has decreased by 100.4 km2 annually 
during the last three decades. The influence of the dense vegetation in GP was also 
evident in BuA, which showed a decreasing trend of 42.2 km2. On the other hand, WB, 
MQ, AL, GL, ShL, DF, and WeL have increased by 1.3, 2.3, 2.9, 5.6, 11.2, 29.6, and 89.5 km2 
annually. Between 1993 and 2022, the spatial coverage of MQ, WB, GL, and DF increased 

(a) (b) (c) 

(b) (a) 

Figure 7. (a–c) Statistical relationships between the MNDWI and NDWI at 5 km (a), 10 km (b), and
(c) 15 km radiuses from the center of the study area.

4. Conclusions

This study explored the performance of machine-learning models such as RF to
characterize the impact of changing land-use diversity on surface water bodies. Our results
showed that the spatial coverage of BL has decreased by 100.4 km2 annually during the last
three decades. The influence of the dense vegetation in GP was also evident in BuA, which
showed a decreasing trend of 42.2 km2. On the other hand, WB, MQ, AL, GL, ShL, DF, and
WeL have increased by 1.3, 2.3, 2.9, 5.6, 11.2, 29.6, and 89.5 km2 annually. Between 1993
and 2022, the spatial coverage of MQ, WB, GL, and DF increased in EKU by 0.1, 1.5, 6.2,
and 10.8 km2, respectively. During the same time period, the spatial extent of BL, AL, BuA,
ShL, and WeL decreased by an average of 22.8, 11.2, 7.5, 3.7, and 1.9 km2, respectively. In
the metropolitan city of JHB, the coverage of ShL, which is crucial for minimizing the local
effects of climate change, has typically decreased. In this city, ShL has declined by 23.4%,
BL by 5.4%, AL and GL by 2.1, and WeL by 0.6 km2 yearly. However, there were annual
increases in WB, MQ, BuA, and DF of 0.3, 2.3, 3.2, and 5 km2, respectively. Additionally, the
spatial area of BL, AL, and BuA decreased by 142.8, 54.1, and 35 km2 in the TSH District,
respectively. However, ShL, WB, MQ, GL, DF, and WeL showed an annual improvement of
0.9, 2.3, 2.5, 5.1, 31.9, and 151.8 km2. In DC48, BL, BuA, AL, and MQ declined by 102.5, 36.1,
25, and 0.9 km2, respectively. Nonetheless, WeL, ShL, DF, GL, and WB have intensified by
71.8, 26.8, 23.6, 7.7, and 1.4 km2, respectively. Additionally, BuA, BL, and WB decreased
annually by 60.6, 49.9, and 1.2 km2 in the DC42 District. Other land-use types, such as GL,
MQ, DF, ShL, WeL, and AL, intensified annually by 1.2, 3.5, 24.2, 35.5, 67.4, and 101.9 km2,
respectively. Additionally, this study reported that the levels of surface water bodies are
decreasing because of the severe effects of land-use change. This study found that the
statistical relationship between the MNDWI and NDWI was higher at a radius of 5 km
(r = 0.60, p = 0.00, n = 87,260) than at 10 and 15 km. The finding of this study helps us to
comprehend the implications of the changing land-use diversity on surface water bodies
and improves the existing land-use system. Additionally, it can be used as a baseline study
for future research on the economic effects of land-use change on surface water resources.
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