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Abstract: Sea fog detection (SFD) presents a significant challenge in the field of intelligent Earth
observation, particularly in analyzing meteorological satellite imagery. Akin to various vision tasks,
ImageNet pre-training is commonly used for pre-training SFD. However, in the context of multi-
spectral meteorological satellite imagery, the initial step of deep learning has received limited attention.
Recently, pre-training with Very High-Resolution (VHR) satellite imagery has gained increased
popularity in remote-sensing vision tasks, showing the potential to replace ImageNet pre-training.
However, it is worth noting that the meteorological satellite imagery applied in SFD, despite being
an application of computer vision in remote sensing, differs greatly from VHR satellite imagery. To
address the limitation of pre-training for SFD, this paper introduces a novel deep-learning paradigm
to the meteorological domain driven by Masked Image Modeling (MIM). Our research reveals two key
insights: (1) Pre-training with meteorological satellite imagery yields superior SFD performance
compared to pre-training with nature imagery and VHR satellite imagery. (2) Incorporating the
architectural characteristics of SFD models into a vanilla masked autoencoder (MAE) can augment the
effectiveness of meteorological pre-training. To facilitate this research, we curate a pre-training dataset
comprising 514,655 temporal multi-spectral meteorological satellite images, covering the Bohai Sea
and Yellow Sea regions, which have the most sea fog occurrence. The longitude ranges from 115.00◦E
to 128.75◦E, and the latitude ranges from 27.60◦N to 41.35◦N. Moreover, we introduce SeaMAE,
a novel MAE that utilizes a Vision Transformer as the encoder and a convolutional hierarchical
decoder, to learn meteorological representations. SeaMAE is pre-trained on this dataset and fine-
tuned for SFD, resulting in state-of-the-art performance. For instance, using the ViT-Base as the
backbone, SeaMAE pre-training which achieves 64.18% surpasses from-scratch learning, natural
imagery pre-training, and VRH satellite imagery pre-training by 5.53%, 2.49%, and 2.21%, respectively,
in terms of Intersection over Union of SFD.

Keywords: sea fog detection; pre-training; masked autoencoders; meteorological satellite imagery

1. Introduction

The precise detection of sea fog (SFD) using meteorological satellite imagery holds
substantial implications for a wide range of marine activities. Meteorological bureaus
continuously monitor their jurisdictional ocean areas to forecast weather, manage fishing
and shipping, and relieve meteorological disasters (Figure 1a) [1,2]. In this study, our focus
lies on the Bohai Sea and Yellow Sea regions (Figure 2a), utilizing deep-learning techniques
to tackle this problem.

Through an exhaustive review of previous studies on SFD [3–14], we observe that
the question of pre-training SFD networks remains an open challenge. Some papers rely
on ImageNet pre-training weights [3,4,6,8,10,14], while some others even opt to train SFD
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models from scratch on fine-tuning data [5,7–9,11–13]. Lately, with the advancements in
self-supervised learning [15–18], which is independent of expensive semantically labeled
data, customizing pre-trained models on large-scale raw data has become a prevailing
practice, especially in some specialized domains such as medical imagery [19,20] and VHR
satellite imagery [21,22]. The existing VHR satellite imagery pre-training model may be
deemed as an alternative suitable for SFD since the data in pre-training and fine-tuning
are both captured by satellites from aerial angles. However, vast distinctions between
the VHR and meteorological satellite imagery, such as the number and types of bands,
image resolution, and observation targets, necessitate the exploration of meteorological
pre-training for SFD.

This paper leverages the rich data obtained from the Himawari-8 satellite as the
foundation for our investigation [23]. Indeed, the Himawari-8 satellite has emerged as
a crucial contributor to the rapid progress in SFD. It offers the capability to capture up to
16 Advanced Himawari Imager (AHI) observation bands (Figure 2b) and provides substan-
tial temporal publicly available data (Figure 3c). Hence, we curate a dataset comprising
514,655 samples as the pre-training data. To better differentiate the samples of our meteoro-
logical dataset from the counterparts, Figure 3a,b exhibits natural imagery of ImageNet [24]
and VHR satellite imagery of Million-AID [22]. Based on these comparisons, it becomes
evident that there exist significant domain gaps between meteorological satellite imagery
versus both natural imagery and VHR satellite imagery. It is justifiable to argue that pre-
training SFD models using meteorological satellite imagery can result in the acquisition of
more valuable meteorological representations.

Marine Gov.Deep Net
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Emergency

(a) Application of Sea Fog Detection

(b) Architecture for Natural Imagery
Encoder

Latent 
Representation

Input Extract Feat. Upsample

Logits
Plain

Decoder

Input Predict

Seg. ResultImage

Encoder
Latent 

Representation

Input Extract Feat. Upsample

LogitsDecoder

Input Predict

Seg. ResultImage

(c) Architecture for Meteorological Satellite Imagery

Figure 1. (a) illustrates how sea fog detection (SFD) contributes to marine management. (b) An effective
network pipeline on segmenting natural imagery. The upsampling operation is intensive because
it interpolates the logits with very large ratios (e.g., 8 or 16) to match the spatial size of the input.
(c) A canonical network pipeline for SFD. The most apparent difference lies in the decoder part,
where the latent representation is upsampled progressively, and the output layer upsample the logits
very slightly, with a ratio of 2.
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(a) Study Area (RGB) (b) Gray Scale Image of 16 AHI Bands

Figure 2. (a) Study area. The green curve depicts the coastline. (b) Visualization of 16 AHI bands in
grayscale.
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Figure 3. (a) Samples from ImageNet dataset. (b) Samples from Million-AID dataset. (c) Samples
from Himarwari-8. These samples are synthesized with (B03, B04, B14). The number under every
image is the time when it is taken, in a format YYMMDD.

Besides the large-scale meteorological satellite imagery, another pivotal aspect of
successful meteorological pre-training lies in the adoption of learning methodologies.
Our approach builds upon Masked Image Modeling (MIM), as Masked Autoencoders
(MAE) [15], a canonical method of MIM, have been empowering various realms through
competently pre-trained Vision Transformers [25]. Given the absence of SFD networks
incorporating a Vision Transformer as the backbone, we assert that employing MAE for
pre-training can simultaneously fill this gap, making contributions not only to pre-training
SFD networks but also to fine-tuning SFD networks.

Furthermore, we tweak the architecture of MAE by replacing its plain decoder with
a convolutional hierarchical decoder [26,27]. The motivation stems from the performance
of SFD improving a lot when the plain decoder in the SFD network is substituted by
a hierarchical decoder [6,10]. The plain decoder indicates the upsampling is intensive [15,28],
but the hierarchical decoder indicates the upsampling is progressive [29–31], as shown in
Figure 1b,c. Regarding meteorological satellite imagery, the main objects it covers, such as
clouds and fog, possess diverse and complex forms, along with intricate texture features
and fragile edge information. Therefore, iterative upsampling operations are necessary
for processing the latent representations to progressively restore spatial dimensions. Such
an architectural idea can be defined as an inductive bias highly associated with meteoro-
logical satellite imagery, irrespective of the task being SFD or MIM. Due to the introduction
of this inductive bias of the SFD network, we term our tweaked MAE as SeaMAE.

To be brief and clear, we enumerate the contributions of this work:

• This paper proposes meteorological pre-training for sea fog detection (SFD). To this
end, we collect 514,655 Himawari-8 satellite multi-channel images and use MAE
to learn representations from them. On SFD, this pre-training paradigm outper-
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forms from-scratch learning, ImageNet pre-training, and VHR satellite imagery pre-
training. The power of available large-scale meteorological satellite raw data is
unparalleledly utilized.

• We investigate a decoder architecture tailored for meteorological pre-training, which
results in a novel variant of MAE, SeaMAE. Specifically, an off-shelf decoder effective
in SFD is utilized to model masked patches in pre-training. Meteorological pre-training
on the proposed SeaMAE facilitates additional performance gains for SFD. To our
knowledge, this paper first pioneers the application of Vision Transformers for SFD in
this community.

• SeaMAE intrinsically introduces an architecturally end-to-end pre-training paradigm,
wherein the decoders in both pre-training and fine-tuning share the same architecture,
revolutionizing the previous routine that only the encoder of SFD is pre-trained. We
manifest that the pre-trained decoder performs better than the from-scratch learning
decoder on fine-tuning data. The extension of pre-trained components in the SFD
network shows great promise.

• Finally, training SFD networks typically involves using either all bands or (3, 4, 14)
bands. Generally, the former performs better than the latter. Our proposed learning
paradigm can adapt to both training settings, and make the latter performance on par
with the former because our proposed learning paradigm has learned representations
from all bands during the pre-training.

2. Materials and Methods

This section contains three parts. The first part introduces the pre-training dataset as
well as the collection thereof, and the fine-tuning dataset on which every learning paradigm
will be verified. The second part elaborates on our new MAE with a decoder architecturally
consistent with that for sea fog detection (SFD). In the last part, we comprehensively
describe the pipeline of the proposed meteorological learning paradigm based on SeaMAE
for SFD.

2.1. Himawari-8 Meteorological Satellite Imagery

Himawari-8 is a geostationary weather satellite operated by the Japan Meteorological
Agency (JMA) [23]. It was launched in 2014 and is positioned over the western Pacific
Ocean, providing continuous observation of the Asia-Pacific region. Himawari-8 captures
high-resolution imagery and monitors weather patterns, cloud cover, and other atmospheric
states. It has been instrumental in enhancing weather forecasting and disaster management
efforts in the region. We use its meteorological satellite imagery to construct the pre-training
dataset for self-supervised learning, and the fine-tuning dataset for SFD.

2.1.1. Pre-Training Dataset

The meteorological satellite imagery in the area of Bohai Sea and Yellow Sea (115.00◦E
to 128.75◦E, 27.60◦N to 41.35◦N) from the year 2018 to 2021 serves as our database. To
accomplish the meteorological pre-training, we collect all 2018 images within the study
region, regardless of whether these images capture any sea fog activity, and crop them with
a spatial size of 256 × 256. As a result, the pre-training dataset involves 514,655 samples.
Despite the meteorological dataset not being dominant in terms of quantity compared to
ImageNet (1.43 million) or Million-AID (1.1 million), it possesses 16 channels and every
band has special meteorological, cloud, and marine information, as reported in Table 1 and
visualized in Figure 2, which can provide the SFD model more meteorological representa-
tions in the ocean region. Furthermore, its coverage area aligns precisely with the scope of
SFD in that, generally speaking, SFD is also a geostationary interpretation task on satellite
imagery, distinguishing it from numerous other satellite imagery pre-training datasets.
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Table 1. Information of AHI observation bands.

No. Name Type Detection Category

B01 V1 Visible Vegetation, aerosol
B02 V2 Visible Vegetation, aerosol
B03 VS Visible Low cloud (fog)
B04 N1 Near Infrared Vegetation, aerosol
B05 N2 Near Infrared Cloud phase recognition

B06 N3 Near Infrared Cloud droplet effective
radius

B07 I4 Infrared Low cloud (fog), natural
disaster

B08 WV Infrared Water vapor density from
troposphere to mesosphere

B09 W2 Infrared Water vapor density in the
mesosphere

B10 W3 Infrared Water vapor density in the
mesosphere

B11 MI Infrared Cloud phase discrimination,
sulfur dioxide

B12 O3 Infrared Ozone content
B13 IR Infrared Cloud image, cloud top

B14 L2 Infrared Cloud image, sea surface
temperature

B15 I2 Infrared Cloud image, sea surface
temperature

B16 CO Infrared Cloud height

2.1.2. Fine-Tuning Dataset

The fine-tuning dataset comprises a training set and a validation set. The training
set includes images from the period of 2019 to 2020, while the validation set consists of
images from 2021. Unlike the pre-training dataset that involves all samples of the entire
year, fine-tuning focuses merely on the images that capture sea fog.

We organize a group with meteorological expertise in recognizing sea fog from the
meteorological satellite imagery, employing them to annotate the sea fog of training and
validation set in pixels. Consequently, a pixel-level annotated SFD dataset is contributed to
the community by us, including 1128 training image-label pairs and 382 test image-label
pairs involving 108 sea fog events, both of which are with spatial sizes of (1024, 1024)
covering the ocean region with the longitude from 115.00◦E to 128.75◦E as well as the
latitude from 27.60◦N to 41.35◦N. We believe this dataset will be of great applicability for
researchers in this field due to the delicate annotation, sufficient samples, and various sea
fog activities. Therefore, another article will be organized to provide a deeper introduction
and a wider analysis of this SFD dataset, and the dataset will also be publicly available
soon. Before that, we report some state-of-the-art (SOTA) methods’ performance on this
fine-tuning dataset to quantify its challenge in advance, as displayed in Table 2.

Table 2. Comparison of SOTA methods on our fine-tuning dataset. The bold indicates the highest
result.

Backbone Methods IoU Acc

CNN

Deeplabv3+ [28] 56.10 68.89
Scselinknet [3] 55.29 68.18

UNet [31] 58.44 70.23
UNet++ [29] 56.95 69.30

Attetion-unet [30] 56.35 68.94



Remote Sens. 2023, 15, 4102 6 of 23

2.2. SeaMAE

Similar to the majority of Masked Image Modeling (MIM) methods, our approach
utilizes the masked autoencoder (MAE) to learn visual representations [15], as illustrated
in Figure 4. In line with a standard MAE, the input image in our SeaMAE model is divided
into non-overlapping patches, with 75% of the patches being randomly masked. The
encoder, which is a plain Vision Transformer, operates solely on the unmasked patches and
produces latent representations. The decoder takes these latent representations along with
learnable mask tokens as inputs and reconstructs the masked patches at the pixel level.

Patchify 
Mask

Natural 
Img.

Rem. 
Sens. 
Image

EncoderUnmasked 
Patch Seq.

Decoder
Natural 
Img.

Rem. 
Sens. 
Image

Sea Fog
Img-GT Pairs

Encoder-Decoder
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Input Output

MSE Loss Fine-tune Initialization

Pre-
training
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Mask 
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Latent 
repre-

sentation

Figure 4. Illustration of the MIM pre-training and fine-tuning in existing sea fog detection applications.

2.2.1. SFD Driven by ViT

Adopting MAE to pre-train means that Vision Transformer is taken as the backbone of
the network for sea fog detection. Since there have been never previous works probing this
topic, we must first introduce a simple method to utilize Vision Transformer, particularly
ViT [25]. Now that the hourglass architecture, or so-called U-shape architecture, has proved
effective in SFD [26,31], the key issue is how to extract the feature-map hierarchy from
ViT in that the U-shape network transfers the encoder’s feature to the decoder in a stage-
to-stage fashion by building skip connections. Unlike hierarchical networks [32] which
can naturally generate feature hierarchy, a common manner to handle the plain ViT is
separating the ViT into four stages regularly [33], hooking the last feature-map of each
stage, and rescaling them to multiple levels.

We propose another easier method to deal with this. Specifically, only the last feature
map is used to generate all-level feature maps because it has the strongest representa-
tions. By denoting F as the feature-map output by ViT, the generation of the feature-map
corresponding n-th stage on the top of the decoder can be formulated by:

Fn = Bicubic(F, ratio = 23−n), n ∈ [1, 4], (1)

where Bicubic is a function acting on F through bicubic interpolation with a re-sampling
ratio. Generally, ViT’s output feature map has an output stride of 16 compared to the input
2D image, hence the values of ratio are 0.5, 1, 2, and 4. Given such a group of outputs, most
decoders for sea fog detection can be used without any bells and whistles.

2.2.2. Hierarchical Decoder

As aforementioned in Section 1, the downstream task of SFD motivates the utilization
of a hierarchical decoder instead of a plain decoder in MIM pre-training. In terms of
effortlessness, we select LinkNet [26], a widely favored hierarchical decoder in SFD [3,6], to
serve as the decoder during both the pre-training and fine-tuning stages. The decoder has
4 blocks and the n-th decoder block takes its corresponding feature Fk of the feature pyramid
as input. The structure of one decoder block is visualized in Figure 5c. It upsamples Fn
and outputs En which is added to Fn−1, and the summation is input to the (n − 1)-th
decoder block.
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2.2.3. Skip Connection for Masked Input

The skip connection plays a crucial role in the U-shape network, connecting the
backbone and the decoder. Although implementing the skip connection is straightforward
during fine-tuning, it becomes more challenging in MIM pre-training, where the patch
sequence in the backbone is masked. For the masked patch sequence, directly using
interpolation to upsample it may associate with potential risks due to the considerable
information loss. We hence perform interpolation on the concatenation of masked patches
and mask tokens, as shown in Figure 5b. The operation of interpolation is identical to
Equation (1).
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Figure 5. (a) illustrates our proposed learning paradigm. (b) details our method to output the feature
pyramid with only the last feature from ViT. (c) illustrates the hierarchical decoder architecture and
components of one decoder block.

2.3. Learning Paradigm

Like the conventional “first pre-training then fine-tuning” learning paradigm illus-
trated in Figure 4, our resulting learning paradigm also contains two steps, as shown in
Figure 5a. However, different from the steps of the previous learning paradigm shown in
Figure 4 which are conducted on two different architectures with imagery from different
domains, our method’s two steps depend on the same architecture except for the output
layer. The first step is pre-training when SeaMAE learns representations on 514,655 meteo-
rological satellite images. By denoting the output of hidden layers as Fh ∈ RH∗W∗dim, the
output layer can be defined as Wrec ∈ Rdim∗3, and the operation of the output reconstruction
layer can be formulated by

Orec ∈ RH∗W∗3 = Fh ×Wrec. (2)

The objective function is Mean Square Error (MSE):

MSE =
1
n

n

∑
i
(yi − ŷi)

2, (3)

where n is the number of masked patch tokens, yi ∈ Rp∗p∗3 is i-th masked patch token of
raw image, and ŷi ∈ Rp∗p∗3 is i-th reconstructed counterpart (p denotes the patch size) of
Orec.

In the second fine-tuning step, the SFD model driven by ViT is trained on labeled
meteorological satellite imagery. For Fh ∈ RH∗W∗dim, the output layer can be defined as
Ws f d ∈ Rdim∗1, and the operation of the output SFD layer can be formulated by

Os f d ∈ RH∗W∗1 = Fh ×Ws f d. (4)
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The objective function is binary cross-entropy (BCE) loss with sigmoid activating logits:

BCE = − 1
n

n

∑
i
(ti · log(oi) + (1− ti) · log(1− oi)), (5)

where n is number of pixels in the image, t ∈ {0, 1} represents the background or sea fog,
and o is the sigmoid activating logits.

In summary, the pre-training is indeed architecturally close to the fine-tuning, as
shown in Figure 5a. The distinctions between them only include mask tokens which are
indispensable in pre-training but redundant in fine-tuning and the output layer whose
output channel numbers are 3 or 1 in pre-training and fine-tuning as evident in Equation (2)
and Equation (4), respectively. Therefore, two knowledge-transferring ways, i.e., loading
pre-training weights, are proposed to initialize the parameters of the SFD network. (1) Only
the knowledge of the SeaMAE encoder is transferred. (2) The entire knowledge of SeaMAE
is transferred except for the mask tokens and output layer.

3. Results

In this section, we primarily validate the following hypotheses: (1) Under the stan-
dard MAE architecture, pre-training with meteorological satellite imagery yields better
representations for sea fog detection (SFD) compared to pre-training with natural imagery
or Very High-Resolution (VHR) satellite imagery. (2) The decoder of the pre-training MAE
using meteorological satellite imagery should exhibit architectural characteristics that align
with the SFD network. (3) In the context of sea fog detection, an architecturally end-to-
end transfer of pre-trained knowledge surpasses the knowledge transfer limited to the
backbone network alone. (4) Our proposed approach, SeaMAE, enjoys several desirable
properties, such as data scalability, model-capacity scalability, fast pre-training convergence,
and fine-tuning band adaptability. (5) Such architectural improvements result in a novel
SeaMAE that performs better than existing state-of-the-art satellite imagery pre-training
methods in terms of pre-training for SFD.

3.1. Implementation and Metric

Our hardware environment is a server with 4 NVIDIA3090 GPUS. We use PyTorch
as the deep-learning framework to conduct all experiments. For the pre-training setting,
we follow the learning protocols of the standard MAE [15]. However, towards the fast
tempo of attaining results, all our pre-training experiments set learning epoch 300 instead
of 800. For fine-tuning settings, we follow the learning protocols of [6]. In the training stage
of fine-tuning, crops of 512× 512 are input to the network, and in the evaluation stage,
the whole image with a size of 1024× 1024 is input to the network. The performance of
detecting sea fog is evaluated through two metrics, sea fog Intersection over Union (IoU)
and sea fog Accuracy (Acc.). The sea fog IoU can be calculated as:

IoUSF =
TPSF

TPSF + FNSF + FPSF
(6)

where SF denotes sea fog, and TP, FN, FP are True Positive, False Negative, and False
Positive of detecting sea fog, respectively.

3.2. MAE Pre-Training on Meteorological Satellite Imagery

Table 3 compares pre-training on natural imagery—ImageNet [24]—and VHR satellite
imagery—Million-AID [22]—and our collected Himawari-8 dataset. The experiment is
conducted on three ViT backbones with different model capacities, ViT-Tiny (Ti), ViT-Small
(S), and ViT-Base (B) [25]. First, Table 3 showcases the performance of from-scratch UNet,
also displayed in Table 2, to define a baseline. For any variant of ViT, the performance
of SFD with pre-trained models on any dataset outperforms the performance of from-
scratch SFD by large margins. Except for ViT-Ti, pre-training with Million-AID results
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in superiority to the ImageNet pre-training model on both ViT-S and ViT-B. On all three
backbones, the meteorological pre-training outperforms natural imagery pre-training and
VHR satellite imagery pre-training by large margins.

Table 3. Comparison of meteorological pre-training with ImageNet pre-training and from-scratch
initialization on ViT-Ti, ViT-S, and ViT-B. Green numbers are the performance gains derived from
changing pre-training data from VHR satellite imagery to meteorological satellite imagery.

Pre-Train
Method

Pre-Train
Data Encoder Fine-Tune

Decoder IoU Acc.

Supervised ImageNet CNN UNet 58.44 70.23

From Scratch — ViT-Ti LinkNet 55.05 66.48
MAE ImageNet ViT-Ti LinkNet 57.79 69.78
MAE Million-AID ViT-Ti LinkNet 57.56 69.63
MAE Himawari-8 ViT-Ti LinkNet 58.63 (+1.07) 70.47 (+0.84)

From Scratch — ViT-S LinkNet 56.30 68.04
MAE ImageNet ViT-S LinkNet 59.42 70.82
MAE Million-AID ViT-S LinkNet 59.62 71.35
MAE Himawari-8 ViT-S LinkNet 60.48 (+0.86) 71.87 (+0.52)

From Scratch — ViT-B LinkNet 58.88 70.49
MAE ImageNet ViT-B LinkNet 61.69 72.53
MAE Million-AID ViT-B LinkNet 61.87 72.79
MAE Himawari-8 ViT-B LinkNet 62.92 (+1.05) 73.91 (+1.12)

3.3. SeaMAE Pre-Training on Meteorological Satellite Imagery

Table 4 analyzes the introduction of SFD’s architectural characteristics to the meteo-
rological MIM pre-training, based on SeaMAE instead of MAE as the pre-training model.
Also, the effectiveness is evaluated on three backbones. According to Table 4, the experi-
mental results are divided into three groups based on different backbones, with the first
two results in each group directly comparing the fine-tuning performance of SeaMAE and
MAE on meteorological image pre-training. It can be observed that SeaMAE consistently
outperforms MAE. As described in Section 2.2, the introduced architectural characteristics
are hierarchical decoder and skip connection. Considering that the hierarchical decoder
involves more tensor operations compared to the skip connection, Table 4 further probes
the impact of retaining only the hierarchical decoder, i.e., removing the skip connection, in
the SeaMAE on the fine-tuning performance. It is evident that the skip connection in the
U-shape network under MIM learning, where the network takes masked images as input,
cannot be overlooked.

Table 4. Comparison of meteorological pre-training based on MAE with SeaMAE. Green numbers
are the performance gains derived from using SeaMAE instead of MAE. Red numbers are the
performance drops derived from removing skip connections. ! means the skip connection is
equipped. %means the skip connection is removed.

Pre-Train
Method

Pre-Train
Data Encoder Skip

Connection IoU Acc.

MAE Himawari-8 ViT-Ti – 58.63 70.47
SeaMAE Himawari-8 ViT-Ti ! 59.37 (+0.74) 70.97 (+0.50)
SeaMAE Himawari-8 ViT-Ti % 59.09 (−0.28) 70.71 (−0.28)

MAE Himawari-8 ViT-S – 60.48 71.87
SeaMAE Himawari-8 ViT-S ! 61.55 (+1.07) 72.52 (+0.95)
SeaMAE Himawari-8 ViT-S % 61.12 (−0.43) 72.24 (−0.28)

MAE Himawari-8 ViT-B – 62.92 73.91
SeaMAE Himawari-8 ViT-B ! 63.74 (+0.82) 75.12 (+1.21)
SeaMAE Himawari-8 ViT-B % 63.37 (−0.37) 74.66 (−0.48)
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3.4. Ablation Study
3.4.1. End-to-End Pre-Training

Integrating architectural ideas from the SFD model into MAE brings consistency
between the pre-training architecture with fine-tuning architecture, which allows the whole
knowledge learned by pre-training, i.e., pre-training weights, can be transferred to almost
every corner of the fine-tuning network. In the SeaMAE experiments of Table 4, the
fine-tuning results are obtained with such an end-to-end knowledge transfer by default.
Therefore, Table 5 compares using only the encoder pre-trained weights with both encoder
and decoder pre-trained weights, suggesting that the SFD’s decoder initialization with
pre-trained weights is a promising pre-training methodology.

Table 5. Comparison of loading SeaMAE pre-training weights to the decoder with randomly initial-
izing the decoder. Green numbers are the performance gains derived from initializing the decoder
with SeaMAE pre-training weights.

Encoder Init. Decoder Init. Encoder IoU Acc.

MAE Random ViT-Ti 58.63 70.47
SeaMAE Random ViT-Ti 59.16 70.94
SeaMAE SeaMAE ViT-Ti 59.37 (+0.21) 70.97 (+0.03)

MAE Random ViT-S 60.48 71.87
SeaMAE Random ViT-S 61.02 72.16
SeaMAE SeaMAE ViT-S 61.55 (+0.53) 72.52 (+0.36)

MAE Random ViT-B 62.92 73.91
SeaMAE Random ViT-B 63.43 74.25
SeaMAE SeaMAE ViT-B 63.74 (+0.31) 74.66 (+0.41)

3.4.2. Data Scalability and Pre-Training Time

The standard MAE learns representations on ImageNet involving 1.43 million images.
In contrast, our meteorological pre-training dataset contains 0.51 million images. Indeed,
the meteorological MIM pre-training with one third of ImageNet’s sample numbers leads
to better SFD performance. We are interested in (1) how much performance drops if under
some meteorological scenario where available data are insufficient, and (2) how much
performance increases if under some meteorological scenario where more large-scale data
are available.

For the first question, we reduce the pre-training dataset to 25% (0.125 m), 50% (0.25 m),
and 70% (0.375 m) of total samples, respectively. Figure 6a draws the fine-tuning results of
ViT at various sizes under four pre-training data scales and plots the trend curve. According
to the trend curve, it can be observed that the fine-tuning performance is linearly correlated
with the pre-training data scale.

For the second question, although it is possible to collect data before 2018 to enlarge
the pre-training dataset, the large time span may result in a significant inner variance of
representations in pre-training, which may impair performance. Thus, we adopt a robust
alternative trick to simulate a larger-scale pre-training dataset. The epoch number is
extended from 300 to 400, 600, and 800, approximately simulating a scaling factor of 1.33, 2,
and 2.66 times the pre-training dataset. Figure 6a demonstrates this trend, showing that
increasing the training epochs leads to better fine-tuning performance.

Based on these analyses, further increasing the data scale on SeaMAE is expected
to yield performance gains in fog detection. Additionally, Figure 6b also examines the
performance with reduced pre-training epochs. By comparing the results in Figure 6a
with those in Figure 6b where the epochs are less than 300, we find that while varying the
pre-training epochs can simulate data scaling, shorter learning schedule on a larger dataset
induces higher performance, which also reflects the fast convergence of SeaMAE.
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(b)(a)

Figure 6. (a) Performance (IoU) change induced by scaling the pre-training data. (b) Performance
(IoU) change induced by increasing the pre-training epochs.

3.4.3. Band Number of Input

The images captured by the Himawari-8 satellite are multi-channel images with
16 channels. In the conducted experiments both in pre-training and fine-tuning, all channels
are input to the network. However, for the annotation of the fine-tuning dataset, we only
labeled the fog based on the synthesized images from the three most prominent channels: 3,
4, and 14. Some previous literature has also focused on SFD research only using these three
channels, despite that fine-tuning on all bands performs better than three channels [6,10].
To reduce the overhead of processing multi-spectral data, Table 6 explores two learning
strategies where only three channels are used for fine-tuning. The first strategy uses only a
combination of three channels, namely (3, 4, 14), for both pre-training and fine-tuning. The
first line in the second group of results of Table 6 shows this way makes the performance
degrades by 0.66. The second is using all bands to pre-train, and three bands to fine-tune.
With this strategy, the input channel numbers of the input layer, i.e., patch embedding layer,
in pre-training and fine-tuning are different, 16 and 3. So three methods are introduced,
Random, Index, and Resize, to adjust the patch embedding to transfer the knowledge of
the input layer. Random means the input layer in fine-tuning loads no knowledge, whose
parameters are randomly initialized. Index means the input layer only loads the parameters
of (3, 4, 14) channel. Denoting the weights of patch embedding layer from pre-training as
Wpt ∈ R(ps×ps×16×dim), where pt is short for pre-training, ps is short for patch size, and dim
is short for dimension of ViT, Index makes the patch embedding layer in fine-tuning just
load Wpt[:, :, [3, 4, 14], :]. Resize means Wpt is resized to W f t ∈ R(ps×ps×3×dim), which acts
on the input channel through bicubic interpolation. Table 6 compares these three methods
and shows that Random and Index both impair the performance apparently but Resize only
causes an acceptable performance drop 0.22IoU. This very slight performance drop indeed
improves the performance of SFD using only (3, 4, 14) bands to fine-tune, implying our
pre-training approach is well adaptive in various band number settings.

Table 6. Comparison of different settings of band number in pre-training and fine-tuning in on
ViT-B. Red numbers are performance drops compared to using all bands both in pre-training and
fine-tuning.

Pre-Train Band# Fine-Tune
Band#

Patch Emb.
Adjustment IoU Acc.

16 16 — 63.74 74.66

3 3 — 63.08 (−0.66 ) 73.99 (−0.67)
16 3 Random 62.59 (−1.15) 73.43 (−1.23)
16 3 Index 62.71 (−1.03) 73.50 (−1.16)
16 3 Resize 63.52 (−0.22) 74.48 (−0.18)
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3.5. Comparison to Other Satellite Imagery Pre-Training Methods

SatMAE [21] and RingMo [22] are two outstanding pre-training methods, both of
which utilize MIM and learn representations on large-scale satellite imagery. What they
employed as pre-training network architecture are improved versions of MAE. SatMAE
introduces a temporal encoding for temporal imagery and a new masking strategy for
input to MAE. RingMo also proposes a new masking strategy and a lightweight decoder
with L1 loss for reconstruction. Table 7 shows the SFD performance using SatMAE and
RingMo to learn representations of meteorological imagery and as the pre-training model.
On backbone with different model capacities, SatMAE and RingMo show varying per-
formance. Therefore, we calculate the performance difference between SeaMAE and the
best-performing method among them, as shown in Table 5 for each group of results.
SeaMAE outperforms the current state-of-the-art satellite imagery pre-training methods,
yielding the best results in pre-training with meteorological satellite imagery for SFD.

Table 7. Comparison of SeaMAE pre-training methods proposed for satellite imagery. Results in
bold font are the better ones between SatMAE and RingMo. Green numbers are the performance
gains compared to bold results.

Pre-Train
Method Pre-Train Data Encoder IoU Acc.

SatMAE Himawari-8 ViT-Ti 58.56 70.28
RingMo Himawari-8 ViT-Ti 58.22 69.90
SeaMAE Himawari-8 ViT-Ti 59.37 (+0.81) 70.97 (+0.69)

SatMAE Himawari-8 ViT-S 60.26 71.55
RingMo Himawari-8 ViT-S 60.14 71.61
SeaMAE Himawari-8 ViT-S 61.55 (+1.29) 72.52 (+0.91)

SatMAE Himawari-8 ViT-B 62.83 74.39
RingMo Himawari-8 ViT-B 63.02 74.42
SeaMAE Himawari-8 ViT-B 63.74 (+0.72) 75.12 (+0.70)

3.6. Qualitative Results of Sea Fog Detection

Figure 7 compares SFD qualitative results of Himawari-8 pre-training SeaMAE with
ImageNet pre-training MAE. In terms of friendly visualization, the group of bands (3, 4,
14) is used to show the image. Looking into their SFD results, we find that ours presents
more consistent annotations, more complete sea fog objects, and more precise boundaries
between fog and background. For example, in the 3rd row of the first column, ImageNet pre-
training one outputs two holes in the central area of sea fog, and mistakes a cluster of clouds
as sea fog, but our result is very close to the ground truth with good prediction consistency.

Figure 7 also demonstrates that in SFD, the most challenging objects to differentiate
from sea fog are various types of clouds, which can be categorized as high clouds and
low clouds based on their altitude. Analyzing the visualization from bands (3, 4, 14) of
meteorological satellite imagery, sea fog areas appear mostly smooth in texture, continuous
in color, and dense in structure. In contrast, most low cloud areas show sparse structures,
rough textures, and diverse color tones. However, since low cloud areas can also be
extensive during sea fog occurrence, there are some sub-regions of low cloud where they
resemble sea fog and exhibit similar representations. Experienced meteorologists can
distinguish between them based on their rich experience. Nevertheless, for deep-learning
models, it is still prone to making errors, especially False Positive predictions. For instance,
in the 1st row and 2nd row of the 1st column, SeaMAE pre-training model shows more
accurate predictions compared to ImageNet. Another challenge arises from the presence
of high clouds frequently over a large area. High clouds are much sparser and rougher,
and sometimes appear in a scattered distribution, unlike sea fog and low clouds that tend
to cluster together. High clouds often present in a thin state and may overlay the sea fog,
resulting in varying representations that can be easily overlooked by SFD models, leading
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to False Negative predictions. For example, in the 4th row of the 1st column and the 3rd row
of the 2nd column, SeaMAE accurately detects sea fog even in these overlaid circumstances,
unlike ImageNet’s incomplete predictions.

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 7. Comparison of SFD results . Red bounding boxes help to focus the reader’s attention on
the key area. (a,e) show the image. (b,f) show the ImageNet pre-training SFD results. (c,g) show the
SeaMAE pre-training SFD results. (d,h) show the ground truth of sea fog.

3.7. Visualization
Qualitative Results of MIM

Figure 8 shows some reconstruction results. The network is pre-trained SeaMAE
with ViT-B as the backbone, and we use the validation data in fine-tuning as input to
evaluate its reconstruction performance qualitatively. Due to using all bands are not
friendly to visualization, we just select the (3, 4, 14) band group to showcase. The objects
in meteorological satellite imagery mainly are cloud and fog. SeaMAE succeeds in the
reconstruction of the shape of main objects, even the very tiny and hazy ones. For detailed
textures, SeaMAE can also depict them ambiguously but not that vividly because the
cloud or fog has very sophisticated forms. In general, the pre-trained SeaMAE model
demonstrates the ability to model images that capture representations of clouds and fogs,
including their shape, size, region, and quantity, utilizing only a small portion of remaining
patch cues.
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(a) (b) (c) (d) (e) (f) (g) (h)

Figure 8. Reconstruction Results from SeaMAE based on ViT-B. (a,e) show the masked satellite image.
(b,f) show the raw reconstruction output of SeaMAE. (c,g) show the combination of the reconstructed
patch with the unmasked patch. (d,h) show the raw satellite image.
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4. Discussions

The content of this discussion includes aspects: (1) Explanation of Results. (2) Validation
over 2021 sea fog events. (3) Literature review and comparison to ours. (4) Future directions.

4.1. Explanation of Results

The initial step in applying deep-learning algorithms is to select a pre-training model
and load its weights as the initialization of the deep network. Appropriate pre-training
methods can lead to performance improvements and more stable optimization. Therefore,
when using deep networks to interpret meteorological satellite imagery for sea fog detection
(SFD), it is essential to utilize a pre-training model. Our results confirm that applying the
most commonly used ImageNet pre-training model yields better results than training the
SFD from scratch, i.e., with random parameter initialization.

However, ideally, the distribution of knowledge learned during pre-training should
align with the knowledge that the deep-learning model needs to learn during the SFD
learning phase (hereinafter referred to as fine-tuning). For instance, recent studies have
shown that when interpreting very high-resolution (VHR) satellite imagery, pre-training
the model with VHR satellite imagery (using self-supervised methods) outperforms pre-
training on natural images (e.g., the ImageNet dataset), leading to better interpretation
performance [21,22]. As both VHR satellite imagery and the Himawari-8 meteorological
satellite imagery learned by the SFD model have some similarities, such as (1) bird’s-eye
camera angle and (2) densely arranged small objects, we compared the performance of
the SFD model pre-trained on both natural imagery and VHR satellite imagery, and the
results showed that the latter slightly outperformed the former, which meant closing the
distribution gap between the pre-training data and the fine-tuning data is promising.

We continue to make efforts to bring the pre-training data representation closer to
the fine-tuning data because there are still big gaps between VHR satellite imagery and
meteorological satellite imagery, such as (1) channel numbers and types, (2) stationary
background in SFD and non-stationary background in VHR satellite imagery, and (3) dis-
parity of image resolution. To achieve this, we collected a large-scale pre-training dataset
consisting of images captured by the Himawari-8 meteorological satellite with ample mete-
orologically marine representations, covering the same marine region and spectrum as the
fine-tuning data for SFD. The meteorological pre-training approach largely outperformed
the two previously mentioned pre-training methods and utilized only one third of their
magnitudes. In the context of deep learning for SFD, our results revealed, for the first
time, the importance of pre-training and pre-training data representation, indicating that
pre-training the deep-learning model with meteorological satellite imagery can lead to
marked SFD performance gains.

On the other hand, besides the data for pre-training, we delve into the network archi-
tecture for pre-training. By effectively leveraging Masked Image Modeling (MIM), masked
autoencoders (MAE) [15] have emerged as state-of-the-art pre-training architecture. When
comparing it with our designed SFD network architecture, it becomes evident that apart
from the output layer, which differs due to the different prediction tasks (MIM and SFD),
the main distinction lies in the decoder structure. Therefore, we hypothesized that the de-
coder structure of the SFD network (including hierarchical decoders and skip connections)
may be inherently equipped with suitable inductive biases for processing meteorological
satellite imagery (as introduced in Section 1), consequently, during the meteorological pre-
training, if the decoder of MAE is replaced with the SFD network’s decoder, it could result
in further improvements in SFD. The results validated this hypothesis, as incorporating the
architectural characteristics of the SFD network’s decoder into the pre-training architecture
MAE, be it hierarchical decoders or skip connections, further augmented SFD performance.
In addition, the existing state-of-the-art endeavors on pre-training architecture for satellite
imagery were compared to ours. The results clarify that for SFD with meteorological
satellite imagery, our architecture is the best for pre-training.
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Furthermore, we uncovered another advantage of such architectural improvement,
which is the complete utilization of the pre-training model. Typically, due to the differences
(learning targets) between pre-training and fine-tuning, the decoder structures of the
pre-training and fine-tuning models also differ. As a result, the utilization of the pre-
training model involves loading only the encoder’s pre-training weights. However, our
improvement keeps the consistency of decoders between pre-training and fine-tuning,
enabling the complete utilization of the pre-training model, not only loading the encoder’s
weights but also the decoder’s to the SFD network. The results further analyzed the
contributions of such architectural improvement in pre-training, revealing that the complete
utilization of the pre-training model indeed elevates SFD performance.

Although our efforts in pre-training, whether in terms of data or network architecture,
were initially aimed at improving SFD’s performance, the analysis of results motivates us to
assume that the proposed method has generalizability for most meteorological satellite im-
agery interpretation tasks, especially in marine regions. In summary, collecting a large-scale
dataset of meteorological satellite imagery that resembles the downstream learning task’s
regions, meteorological activities, and satellite characteristics, and employing a decoder
structure that exhibits excellent performance in that task as the pre-training network’s
decoder, holds promising potential as a pre-training methodology.

4.2. Validation over 2021 Sea Fog Events

The validation dataset involves all sea fog events in 2021. Table 8 reports, in 2021,
when the sea fog event happened and how long time the sea fog event lasted. Table 9
presents monthly statistics of the number of sea fog events. From these two tables, it can
be observed that sea fog is most frequent during the spring season, with no occurrences
during the autumn season. Sea fog also occurs during the summer and winter seasons, but
the total number of occurrences is lower compared to the spring. In general, the duration
of sea fog events lasts around 7 to 8 h, but in July, there were two events with much shorter
durations, due to the influence of tropical cyclones during the summer.

Table 8 further compares the performance of the SFD, where the backbone is ViT-Base
with the ImageNet and SeaMAE pre-training weights for each sea fog event. Our method
outperforms the SFD performance from the ImageNet pre-training weights on any sea fog
event. This indicates that the proposed pre-training paradigm is not influenced by specific
sea fog events, occurrence dates, or seasons, and consistently presents performance gains
for sea fog detection.

Table 8. Sea fog event records in 2021. : Date, Duration, ImageNet pre-training SFD IoU, and SeaMAE
pre-training SFD IoU from top to bottom in every cell. Green numbers are performance gains derived
from using the SeaMAE pre-training weights instead of ImageNet pre-training ones.

Jan. 21st Jan. 24th Jan. 26th Feb. 11th Feb. 12th Feb. 13th

8 h 8 h 8 h 8 h 8 h 8 h
49.69 40.52 61.70 76.51 61.32 46.43

74.28 (+24.59) 64.86 (+24.34) 72.75 (+11.05) 77.63 (+1.12) 63.93 (+2.61) 59.59 (+13.16)

Feb. 20th Mar. 5th Mar. 10th Mar. 14th Mar. 25th Mar. 28th

8 h 8 h 8 h 8 h 8 h 8 h
54.05 58.34 58.77 56.37 90.55 56.10

63.08 (+9.03) 76.61 (+18.27) 60.42 (+1.64) 58.86 (+2.49) 91.12 (+0.57) 68.03 (+11.93)

Apr. 26th Apr. 27th Apr. 28th Apr. 29th May 9th May 10th

7.5 h 8 h 6.5 h 6.5 h 8 h 8 h
64.67 55.81 59.36 58.07 87.94 72.94

65.28 (+0.61) 59.64 (+3.83) 64.11 (+4.75) 62.43 (+4.36) 88.08 (+0.14) 73.86 (+0.92)

May 30th May 31st Jun. 6th Jun. 13th Jul. 11th Jul. 17th

8 h 8 h 8 h 8 h 3 h 5.5 h
68.73 75.95 79.03 80.00 49.61 45.99

70.41 (+1.68) 77.81 (+1.86) 80.13 (+1.10) 80.34 (+0.34) 64.96 (+15.35) 68.44 (+22.45)
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Table 9. Number of sea fog events in every season and every month.

Winter Spring Summer
Jan. Feb. Mar. Apr. May Jun. Jul.

3 3 5 4 4 2 2

During a sea fog event, the position and shape of the sea fog gradually change over
time. Although Table 8 calculates the Intersection over Union (IoU) for each sea fog event
as a criterion of performance, we aim to further highlight the superiority of our proposed
pre-training paradigm for SFD intuitively. To achieve this, we devise high-frequency SFD
extraction along the time dimension over the entire duration of one event. This strategy
allows for summarizing the sea fog event using a single sea fog mask that captures the
climactic sea fog (CSF) locations throughout the entire sea fog event.

For a specific location denoted by pixel (i, j) in the study region, if sea fog occurs at
that location for more than half of the time steps within the sea fog event duration (0, T), the
pixel (i, j) is defined as a CSF location. Both ground truth sea fog events and predicted sea
fog events can be processed to obtain CSF locations in this way, resulting in the constitution
of CSF masks.

Figure 9 compares the CSF masks predicted by the ImageNet pre-training model,
the SeaMAE pre-training model, and the ground truth sea fog events. The CSF masks of
predictions are contrasted with the ground truth CSF masks. The yellow regions represent
True Positive predictions, the red regions represent False Negative predictions, and the
orange regions represent False Positive predictions. Across all sea fog events, our proposed
paradigm consistently generates predictions that most closely resemble the ground truth
CSF masks.

4.3. Literature Review and Comparison to Ours

In comparison with related literature, this work’s contributions and significance can
be highlighted.

4.3.1. Sea Fog Detection in Bohai Sea and Yellow Sea

We primarily review works that use deep-learning technology to detect sea fog
(SFD) [3–14]. In recent years, most of them studied the area covering the Bohai Sea and
Yellow Sea [3,6,10–14], where the sea fog is a frequent occurrence. Ref. [3] introduces
a scSE-LinkNet model that utilizes residual blocks and an attention module to accurately
detect daytime sea fog. Ref. [6] presents a correlation context-driven method for SFD
using a two-stage superpixel-based fully convolutional network (SFCNet) and an attentive
Generative Adversarial Network (GAN). Ref. [10] introduces an unsupervised domain
adaptation method that utilizes labeled land fog data to detect sea fog in meteorological
satellite imagery. Ref. [11] presents an improved algorithm using one visible (VIS) and
one near-infrared (NIR) band of the Himawari-8 satellite, demonstrating successful SFD
without cloud mask information. Ref. [12] proposes a two-stage deep-learning strategy
for daytime SFD through the creation of a labeled dataset and the Cloud-Aerosol LiDAR
with Orthogonal Polarization (CALIOP) vertical feature mask (VFM). Ref. [13] utilizes
MODIS images to analyze the temporal and spatial characteristics of sea fog, establishing
a threshold algorithm based on specific MODIS bands. Ref. [14] presents a novel approach
to weakly supervised semantic segmentation for SFD using point-based annotation and
auxiliary information from ICOADS visibility data.

Previous methods oftentimes employ ImageNet pre-training models or learn from
scratch on meteorological satellite imagery annotated with sea fog. In contrast, our novel
learning paradigm prioritizes large-scale pre-learning with meteorological satellite imagery,
capitalizing on the rich availability of multi-spectral geostationary imagery captured by
the meteorological satellite. Furthermore, we strengthen this paradigm by harnessing and
amending Masked Autoencoders (MAE), for the first time enabling the integration of Vision
Transformers into SFD, a pioneering endeavor within this interdisciplinary community.
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Moreover, our approach extends the scope of pre-training beyond the encoder, embracing
the decoder of the SFD network as an essential pre-trained component.

Jan. 21st Jan. 24th Jan. 26th

Mar. 5thFeb. 20th Mar. 10th

Feb. 11th Feb. 12th Feb. 13th

Mar. 25thMar. 14th Mar. 28th

Apr. 27thApr. 26th Apr. 28th

May 9thApr. 29th May 10th

May 31stMay 30th Jun. 6th

Jul. 11thJun. 13th Jul. 17th

Figure 9. CSF masks from ImageNet pre-training prediction , SeaMAE pre-training prediction, and
GT in every sea fog event involved within the validation dataset. Yellow pixels represent True
Positive predictions. Orange pixels represent False Positive predictions. Red pixels represent False
Negative predictions. Zoom in to View.
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4.3.2. MIM Pre-Training with Satellite Imagery

Recently MIM succeeds in pre-training very large-scale Vision Transformers [15] in
many fields [19,20,34–37], so more and more Vision Transformers pre-trained with satel-
lite imagery have been being proposed [21,22,38–56]. Ref. [38] introduces a scalable and
adaptive self-supervised Transformer (AST) model for optical satellite imagery interpreta-
tion by generating scale-invariant representations through cross-scale collaboration and
masking strategies. Ref. [39] presents large vision models specifically designed for VHR
satellite imagery interpretation, utilizing rotated varied-size window attention in trans-
formers. Ref. [40] introduces Presto, a pre-trained Remote Sensing Transformer specifically
designed for self-supervised learning on remote-sensing pixel-time series data. Ref. [22]
introduces RingMo, a remote-sensing foundation model framework that leverages genera-
tive self-supervised learning to construct a large-scale dataset—Million-AID—and train
models with improved general representation capabilities. Ref. [21] introduces SatMAE,
a pre-training framework for satellite imagery based on Masked Autoencoder, leveraging
temporal and multi-spectral information. Ref. [41] explores the use of self-supervised
MIM and modifications to the transformer architecture for hyper-spectral satellite imagery.
Ref. [42] proposes RS-BYOL, a self-supervised learning approach for remote sensing, which
leverages multi-spectral and synthetic aperture radar data as an implicit augmentation to
learn invariant feature embeddings.

Most of the existing studies in the field of MIM pre-training with satellite imagery
use large-scale satellite datasets to pre-train models, tailored to the downstream task of
interpreting VHR satellite imagery. These pre-training datasets typically involve various
geographical scenarios and various types of satellite imagery, such as multi-high-resolution,
multi-spectral, optical RGB, and SAR. However, the marine environment and meteoro-
logical satellite imagery have remained unexplored in these works. In comparison to the
existing literature, SeaMAE serves as the first contribution in this community to intelligent
vision tasks of ocean observation, i.e., SFD, through a novel MAE architecture with architec-
ture characteristics from the SFD network and a large-scale pre-training dataset consisting
of meteorological satellite imagery.

4.4. Future Directions

Our future research will consist of a probe into the used fine-tuning dataset, a validation
of the deduction proposed at the end of Section 4.1, which will be carried on another
challenging interpretation of meteorological imagery, cloud classification in pixel, and
an extended application on pre-training SFD deep-learning models in other marine regions.

The SFD dataset used in our study is finely annotated by experts with vast knowledge
of sea fog, covering all sea fog events in the Bohai Sea and Yellow Sea over three years,
from 2019 to 2021. Considering the scarcity of satisfactory SFD datasets in the community,
we will make this dataset publicly available. Apart from benchmarking SFD technology,
this dataset can also be utilized for research on cloud classification in meteorological
satellite imagery, therefore promoting the intelligent development of marine meteorology.
Encyclopedic statistics of the dataset will be analyzed in a separate article, and we will
propose a novel SFD method capable of setting state-of-the-art results on this dataset.

In Section 4.1, we draw a deduction that the methodology proposed in this paper is
likely to apply to multiple meteorological satellite imagery interpretation tasks, such as
pixel-level cloud classification in marine regions. From the perspective of pixel-level classi-
fication, i.e., semantic segmentation or scene understanding, SFD is a binary classification,
distinguishing pixels as either sea fog or background. On the other hand, cloud classifi-
cation involves categorizing pixels into ten classes, including alto-cumulus, altostratus,
nimbostratus, cumulus, stratocumulus, stratus, cirrus, cirrostratus, and deep convection.
We expect to revisit pixel-level cloud classification in meteorological satellite imagery, build-
ing upon the pre-training guideline proposed in this paper. Such research will be to explore
a pre-training paradigm tailored for cloud classification. Additionally, the deduction drawn
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from the above results in pre-training for SFD can be examined by the study on cloud
classification, one of the most important meteorological imagery interpretation tasks.

In future work, validating the proposed learning paradigm for SFD in other marine
regions, or devising specialized pre-training strategies, will both significantly advance
the field. We will also proceed in this direction by conducting SFD research in the South
China Sea and integrating it with the Bohai Sea and Yellow Sea regions to propose a highly
generalized pre-training model tailored for SFD across multiple marine areas.

5. Conclusions

This paper develops a novel learning paradigm for sea fog detection (SFD). We focus
on an economically important and sea-fog-vulnerable area in the range of 115.00◦E to
128.75◦E and 27.60◦N to 41.35◦N. Our learning paradigm improves the SFD performance
of canonical learning paradigms by 2–3% sea fog IoU, achieving 64.18% sea fog IoU. We
primarily answer the question that how to pre-train SFD networks. This paper is also the
first research utilizing Vision Transformer as the backbone of SFD networks. First, we show
that ViT without pre-training will lead to unsatisfactory performance, and pre-training in
any manner is of significance. Next, we show that ImageNet pre-training and VHR satellite
imagery pre-training can be substituted by the meteorological satellite imagery pre-training.
Finally, we show that making the pre-training network architecturally consistent with the
sea fog detection model can brings more performance gains, which is mainly attributed to
(1) the architectural characteristics of the SFD model are also effective in meteorological
sea fog reconstruction and (2) such an architectural consistency enables the decoder part of
SFD model to load pre-training knowledge. Even when compared to the latest pre-training
methods specialized for satellite imagery, our approach still demonstrates considerable
superiority in meteorological satellite imagery pre-training for SFD. We hope this work
can inspire creativity in pre-training deep-learning models for interpreting meteorological
satellite imagery in the future.

Limitations: This paper investigates the pre-training of deep-learning models for SFD
in meteorological satellite imagery. However, due to the availability of large-scale data
(more sea fog events in the Bohai Sea and Yellow Sea region), our analysis is limited to SFD
in this specific area. Therefore, whether the proposed approach is effective for SFD in other
sea regions deserves further investigation.
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