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Abstract: The expansion of mountainous urban areas and road networks can influence the terrain,
vegetation, and material characteristics, thereby altering the susceptibility of landslides. Under-
standing the relationship between human engineering activities and landslide occurrence is of great
significance for both landslide prevention and land resource management. In this study, an analysis
was conducted on the landslide caused by Typhoon Megi in 2016. A representative mountainous area
along the eastern coast of China—characterized by urban development, deforestation, and severe
road expansion—was used to analyze the spatial distribution of landslides. For this purpose, high-
precision Planet optical remote sensing images were used to obtain the landslide inventory related
to the Typhoon Megi event. The main innovative features are as follows: (i) the newly developed
patch generating land-use simulation (PLUS) model simulated and analyzed the driving factors of
land-use land-cover (LULC) from 2010 to 2060; (ii) the innovative stacking strategy combined three
strong ensemble models—Random Forest (RF), Extreme Gradient Boosting (XGBoost), and Light
Gradient Boosting Machine (LightGBM)—to calculate the distribution of landslide susceptibility; and
(iii) distance from road and LULC maps were used as short-term and long-term dynamic factors to
examine the impact of human engineering activities on landslide susceptibility. The results show that
the maximum expansion area of built-up land from 2010 to 2020 was 13.433 km2, mainly expanding
forest land and cropland land, with areas of 8.28 km2 and 5.99 km2, respectively. The predicted
LULC map for 2060 shows a growth of 45.88 km2 in the built-up land, mainly distributed around
government residences in areas with relatively flat terrain and frequent socio-economic activities. The
factor contribution shows that distance from road has a higher impact than LULC. The Stacking RF-
XGB-LGBM model obtained the optimal AUC value of 0.915 in the landslide susceptibility analysis
in 2016. Furthermore, future road network and urban expansion have intensified the probability of
landslides occurring in urban areas in 2015. To our knowledge, this is the first application of the PLUS
and Stacking RF-XGB-LGBM models in landslide susceptibility analysis in international literature.
The research results can serve as a foundation for developing land management guidelines to reduce
the risk of landslide failures.

Keywords: tempo-spatial landslide susceptibility; PLUS model; stacking RF-XGB-LightGBM model;
land-use land-cover; typhoon

1. Introduction

Global climate change increases the frequency and severity of typhoon events [1]. In
recent years, catastrophic typhoons have occurred frequently in coastal areas around the
world, resulting in numerous geological disasters [2–5]. The southeastern coast of China,
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which is bordered by the Pacific Ocean, is susceptible to landslides caused by typhoons.
Every year, there are a large number of casualties and economic losses [6–8]. To date,
the Chinese government has attempted to prevent landslide disasters by establishing a
geological hazard warning system that includes weather forecasting [9–12]. However, the
annual economic losses are still increasing. A large part of this is due to the continuous
transformation of the geological environment by human engineering activities [13,14]. In
the past few years, China’s urbanization index has rapidly increased from 0.157 in 2000
to 0.438 in 2015 [15]. In areas with strong engineering activities, the Typhoon-triggered
rainstorm was more likely to cause landslide disasters. Therefore, we urgently need to
explore the characteristics of changes in human engineering activities on the occurrence
of landslides.

Land-use and land-cover are often used to describe the impact of human engineering
activities, including natural elements (water bodies, forests, cropland, and grassland)
and human-modified surfaces (building activity areas). Many researchers found that
LULC may alter the distribution of landslide susceptibility caused by rainfall [16–18].
For instance, Pisano et al. [19] analyzed the hill and low mountain areas of the Italian
Southern Apennines land-use change and concluded that increasing forest and cropland
area can reduce the susceptibility to landslides. Rohan et al. [20] focused on the Southern
Pennsylvania area and analyzed that urbanized areas are usually more prone to landslides,
which are closely related to distance from roads and terrain curvature. Hao et al. [21]
analyzed the LULC dataset in Kerala, India, from 2000 to 2018 and found that landslides
mainly occur in forest areas. In China, human activities and urban expansion have become
the main causes of landslides in recent decades, accounting for approximately 70% of the
total number [22]. Chen et al. [23] compiled two types of LULC maps with a time interval
of 21 years (1992–2013) and analyzed that even if cropland and grassland were converted
to forestland, the susceptibility of landslides still increased. Xiong et al. [22] analyzed the
changes in landslide susceptibility in Enshi City using landslide inventories from 2000 and
2020 and changes in LULC maps. Given that human activities can rapidly change vast areas,
the LULC map may require more predictive scenarios. Promper et al. [24] used the Dyna-
CLUE model to analyze LULC changes in Austria over 138 years (1962–2100) to simulate
the evolution of landslide risk. Tyagi et al. [18] proposed the ANN-CA model to predict the
LULC in 2030 and analyzed the variation patterns of landslides. Guo et al. [25] utilized the
land change modeler (LCM) integrated into IDRISI Selva software to obtain LULC maps
for 2040 and 2080 and analyzed the susceptibility of shallow landslides in Wanzhou, China.
Shu et al. [26] also used the LCM software to explore how LULC in the Varan region of
Spain has changed with landslide susceptibility over the past 150 years (1946–2097). Past
prediction models had limited capabilities in investigating the causes of land-use changes.
Moreover, using dynamic simulations to evaluate patch-level alterations of various land-use
types over time and space was challenging [27,28]. In 2021, the High performance Spatial
Computational Intelligence Lab of China University of Geosciences (Wuhan) developed
the patch generating land-use simulation (PLUS) model to explore the driving factors of
multiple types of land expansion and predict patch-level evolution of LULC [28]. This
model has made outstanding progress in the study of land-use analysis in China [27,29–31].
This article is the first attempt to explore the impact of LULC change on landslides using
the PLUS model. In addition, a point often overlooked in many studies is to consider road
distance as a static factor without considering its dynamic characteristics [18,19]. Generally
speaking, road construction directly affects slopes through changes in road cut or surface
water runoff. Therefore, this study explores the effects of road network and LULC changes
on landslide susceptibility.

Currently, most of the literature evaluates the spatial probability (or susceptibility) of
landslides by focusing on environmental and geographical factors [32–36]. The production
of landslide susceptibility maps with accurate, up-to-date, and reliable information is the
focal point. With the rapid development of artificial intelligence and computer science, ma-
chine learning models have been widely used for landslide susceptibility assessment. More
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specifically, the shift from traditional statistical models to data-driven models fundamen-
tally directly affects the predictive performance of susceptibility modeling [37]. The widely
used machine learning models currently include decision trees (DT) [38–40], multi-layer
perceptron network (MLPNN) [41,42], support vector machine (SVM) [43–45], etc. Further-
more, some scholars have attempted to use ensemble models to enhance and improve
the prediction errors of single classifiers. The Random Forest model is the earliest and
most widely used ensemble model. The prediction accuracy of landslide susceptibility
has been greatly improved by the integration of the bagging algorithm and decision tree
model [46,47]. Similarly, based on gradient enhancement methods (i.e., gradient boosting
decision tree (GBDT), XGBoost, and LightGBM), the model with predicted errors is strength-
ened and improved by the principle of reusing residual patterns [48,49]. Dou et al. [50]
integrated the basic model SVM using bagging, boosting, and stacking algorithms to ex-
plore the susceptibility distribution of shallow landslides in Japan. However, the limitations
of these models are evident, i.e., optimal performance varies across different research areas.
For example, He et al. [48] analyzed the susceptibility of landslides and wildfires in South-
east Asia and obtained that the prediction accuracy of Random Forest model is always
higher than GBDT and Adaptive Boosting model. Wang et al. [51] found that the RF model
(area under the receiver operating characteristic (ROC) curve, AUC = 0.88) outperformed
XGBoost (AUC = 0.86) in the study area of Wuqi County in the hinterland of the Loess
Plateau. Liu et al. [52] found that the GBDT model is better than the RF model in spatial
modeling of shallow landslides near Kvam, Norway. Due to variations in model operation
strategies and sensitivity to datasets, it is challenging to identify a model with strong
generalization capabilities that consistently performs optimally across diverse research
areas [34]. Therefore, some scholars have attempted the hybrid strategy of strong classifiers.
Li et al. [53] adopted a stacking strategy to integrate the convolutional neural network
(CNN) and recurrent neural network (RNN), and the results showed that the proposed
framework could retain the best predictive capability (AUC = 0.918) compared to CNN
(AUC = 0.904) and RNN (AUC = 0.900). Arabameri et al. [54] compared the modeling
AUC values of credal decision tree (CDT), Alternative Decision Tree (ADTree), and their
ensemble method (CDT-ADTree) of 0.837, 0.867, and 0.981, respectively. In the analysis
of landslide susceptibility in the Three Gorges Reservoir area, Zeng et al. [34] compared
and analyzed various ensemble strategies (bagging, boosting, and stacking) and basic
models (DT, SVM, MLPNN, XGBoost, and RF). They found that the stacking strategy,
which ensembles strong models like XGBoost and RF, yielded optimal prediction accuracy
and generalization ability. Therefore, appropriate ensemble strategies can help researchers
obtain models with stronger robustness. In particular, more and more attention has been
paid to the application of the hybrid model to landslide susceptibility analysis. We should
explore the impact of the hybrid model and dynamic human engineering activities on
landslide occurrence.

The southeast coastal mountainous areas of China are affected by typhoon-triggered
rainstorms all year round. Land-use change (such as deforestation, agricultural, and ur-
ban regional expansion) and road network expansion have aggravated the occurrence of
landslide disasters. In this study, we used high-precision optical remote sensing images
to obtain the landslide inventory triggered by Typhoon “Megi” in 2016. The main pur-
pose of this study is to explore the relationship between LULC and road network on the
susceptibility of landslides triggered by typhoons. The innovations include the following:
(i) We adopted the newly developed PLUS model to simulate various factors, and utilized
historical LULC imagery to forecast the LULC long-term dynamic factors for both 2030 and
2060; concurrently, the road network distribution from 2018 to 2020 was harnessed as a
short-term dynamic factor. (ii) In a novel approach, we combined the RF, XGBoost, and
LightGBM models through a stacking strategy to delineate the susceptibility relationship
between influential factors and landslides. (iii) Furthermore, we assessed the susceptibility
distribution of typhoon-induced landslides under diverse human engineering activity
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scenarios. To our knowledge, this marks the pioneering application of both the PLUS and
the stacked RF-XGB-LGBM models in landslide susceptibility research.

2. Study Area
2.1. Geography and Geological Conditions

The research area, situated in the middle of the circum Pacific coastline of the Chinese
Mainland (Figure 1a), in the southeast of Zhejiang Province, near the East China Sea
(Figure 1b). The landform is trapezoidal from northwest to southeast, which can be divided
into the middle- and low-mountains in the northwest, the low-mountains, hills, and basins
in the middle, and the mudflat area in the eastern plain. Covering 2067.55 km2, it reaches a
peak elevation of 1150 m (Figure 1c). Geologically, this region is positioned in the north
section of the Mesozoic volcanic rock belt in the southwest of the Pacific continental margin
volcanic rock belt. Quaternary sediments in mountainous areas are mainly distributed
in small and medium-sized valleys and local mountainous areas. The accumulation is
mainly alluvial and proluvial, with a thickness of 5–10 m. The sediments in plain areas are
mostly transitional from terrestrial to marine. The area rests on the southeastern edge of
the Eurasian Plate and is affected by the collision of the Pacific Plate. The low mountain
landforms in the study area are mostly composed of sandstones, volcanistic rocks, glutenite,
and carbonate rocks (Figure 1d). The rock structure fractures are not developed, with a high
degree of weathering and a layer thickness of 5–6 m, making it susceptible to geological
disasters. According to the monitoring of the China Geological Survey, the seismic activity
in the study area is not strong, with low occurrence probability. Climatically, the area
enjoys a subtropical monsoon climate, averaging 18 ◦C with an annual rainfall exceeding
1700 mm. The region experiences the “plum rain” season from May to June, resulting from
the confluence of warm, humid airflows from the south and cooler, dry ones from the
north. Typhoons, frequent between July and September, coupled with high rainfall, pose
significant geological disaster risks. Over the past 20 years, escalating human engineering
activities, particularly road construction, have compromised slope stability, with over 90%
of landslides triggered by typhoon-induced rainstorms.
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Figure 1. Location of the study area: (a) site location in China; (b) site location in Zhejiang province;
(c) landslide inventory in the study area; and (d) lithology map of the study area.

2.2. Description and Analysis of Landslide Inventory

In 2016, the 17th Typhoon “Megi” landed in Zhejiang Province of China on 27 Septem-
ber and ceased operations on 29 September. The Typhoon caused a heavy rainstorm.
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According to the disaster management system of the China Meteorological Administration
and the China Geological Environment Monitoring Institute, the rainfall events triggered
by the Typhoon caused many landslides, resulting in 32 deaths and three missing people.
It also caused serious damage to infrastructure, such as buildings, transmission line towers,
and roads. A detailed and accurate landslide inventory is an important foundation for
landslide susceptibility assessment. With the advancement of sensors and space technology,
remote sensing can obtain detailed temporal and spatial information about landslides on
the Earth’s surface. After the Typhoon event, we immediately carried out a comprehensive
landslide mapping activity. This study used two high-resolution optical satellite images
of Planet (3 m resolution) to evaluate the failure boundary (https://www.planet.com/,
18 November 2019). The satellite data were obtained before and after the event, namely
in August 2016 and November 2016, respectively. These images cover the entire study
area and have low cloud cover (Figure 2). Zhang et al. [55], Geertsema et al. [56], and
Saito et al. [57] described the importance of high-quality Planet satellites in drawing land-
slide inventories. All landslides are related to this single rainfall event, thus representing
an event-based inventory. Field investigations have shown that most of the landslides in
the study area belong to planer slides [58]. It has been observed that some of the slides
have evolved into mountain slope mudslides, with relatively long propagation distances
and even affecting some gentle slopes. Finally, we established a landslide inventory for
Typhoon “Megi” event, which includes 1124 landslides. Among them, 748 areas are larger
than 1000 m2. The average area is 2088.49 m2, and the maximum area is 33,391.21 m2, and
the minimum area is 916.52 m2.
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3. Materials and Methods

Figure 3 provides an overview of the steps involved in this study’s application. The
landslide inventory is derived from the visual interpretation of two time-separated high-
precision optical remote sensing images. The basic data for modeling landslide suscep-
tibility includes seven static factors (slope, aspect, plane curve, profile curve, hydrology,
DEM, and soil type) and two dynamic factors (LULC and distance from road). Based on
data availability, distance from road was only considered as a short-term dynamic factor
considering changes from 2016 to 2020. The PLUS model was used to predict LULC maps
from the past to the future for the years 2030 and 2060. This step is based on the obtained
conditioning factors, and LULC maps from 2010 and 2020. The hybrid model was applied
to landslide susceptibility modeling, with the following primary innovative characteristics:
(i) the use of Bayesian optimization to obtain the optimal parameters for the RF, XGBoost,
and LightGBM models, and (ii) the application of a stacking strategy to combine these three
optimized strong ensemble models. Finally, we investigated the distribution of landslide
susceptibility under different engineering scenarios.
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3.1. Data Collection and Processing
3.1.1. Land-Use Land-Cover Conditioning Factors

This study mainly considered land-use land-cover, socio-economic, and climate-
environmental data. The LULC datasets were provided by the Data Center for Resources
and Environmental Sciences, Chinese Academy of Sciences (RESDC) (http://www.resdc.cn,
20 November 2022). The LULC data in 2010 mainly used Landsat TM/ETM remote sensing
images, and the LULC data in 2015 and 2020 mainly used Landsat 8 remote sensing images.
The datasets were reclassified into six categories: cropland, forestland, grassland, water
area, and built-up land, with the 30 × 30 m spatial resolution. The research area shows a
relatively small area of unused land, and Google Image cross-validation shows that the
translated unused land is actually built-up land. Therefore, this article categorizes unused
land into built-up land for analysis.

Socio-economic and climatic environmental data were selected as potential drivers
of urban expansion (Table 1). GDP, population, annual average temperature, and annual

http://www.resdc.cn
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average precipitation were obtained from the 1 km spatial resolution grid data provided by
the RESDC (https://www.resdc.cn/, 20 November 2022). The distribution data of oil type
is the vectorized 30 m resolution data from Nanjing Institute of Soil, Chinese Academy of
Sciences. An open-source platform, OpenStreetMap (https://www.openstreetmap.org/,
20 November 2022), is used to obtain vector data of road network and water systems. In
the ArcGIS platform, the distance from road and river was measured in the Euclidean
distance tool. All factors were resampled to the pixel data with a spatial resolution of 30 m.
DEM data was extracted based on ASF Data Search data (https://search.asf.alaska.edu,
20 November 2022).

Table 1. Land-use simulation data source table.

Data Type Name Year Spatial Resolution Sources

Land-use land-cover data
China’s Multi-Period Land Use Land
Cover Remote Sensing Monitoring

Dataset

2010 30 m Data Center for Resources and
Environmental Sciences, Chinese

Academy of Sciences
(https://www.resdc.cn,

20 November 2022)

2015 30 m
2020 30 m

Socio-economic data

Population density 2019 1 km
GDP 2019 1 km

Distance from first-class road

2020

30 m
OpenStreetMap

(www.openstreetmap.org,
20 November 2022)

Distance from second-class road 30 m
Distance from third-class road 30 m

Distance from government 30 m

Climate-environmental
data

Distance from river 30 m

Soil type 1995 30 m
Data Center for Resources and

Environmental Sciences, Chinese
Academy of Sciences

(https://www.resdc.cn,
20 November 2022)

Annual average precipitation 2020 1 km
Annual average temperature 2020 1 km

DEM / 12.5 m
ASF Data Search

(https://search.asf.alaska.edu, 20
November 2022)

3.1.2. Influencing Factors Used as Landslide Predictors

The influencing factors are necessary information for statistical correlation with the pres-
ence and absence of observed landslides, used to construct a susceptibility map [46,59–61].
Reichenbach et al. [37] and Lima et al. [62] reviewed the most commonly used geological
and terrain prediction factors for landslide susceptibility modeling in machine learning
assessments. Some of these factors remained essentially unchanged during the analysis
time range. For example, geological factors can be considered time-invariant. Similarly,
terrain features also exhibit a slow rate of time variation and can be approximated as
time-invariant. On the contrary, LULC has been proven to be dynamic over long-time
spans (decades) [63]. At the same time, the short-term change factor that many studies
overlook—road network—is a very clear dynamic signal in China, where infrastructure is
rapidly developing. In this study, the factors influencing landslides were selected based
on both data availability for the study area and literature reviews [20,26,50]: (i) static
factors, digital elevation models (DEM), and geology and (ii) dynamic factors and human
engineering activities. In the ArcGIS platform, secondary terrain factors such as slope,
aspect, plane curvature, and profile curvature were generated from the DEM. All spatial
factors were resampled to a resolution of 30 m. An overview of the spatial distribution
of these factors and their internal categories in the study area is shown in Figure 4. The
lithology in geological factors shows the main distribution of sandstones (SS), volcanic
rocks (VR), and glutinite (Glut) in the study area. Planar sliding is common in sandstone,
especially when the inclination direction is consistent with the dip of the rock layer [64,65].
Glutenite and volcaniclastic rock are mainly located on steep slopes in mountainous areas,
usually completely to strongly weathered. The soil type is mainly classified as laterite soil
(LS), followed by yellow soil (YS), paddle soil (PS), and brown forest soil (BFS). Table 1
shows the sources of the LULC dataset, and we used the data from 2015 to model landslide
susceptibility. The OpenStreetMap obtained the road network distribution from 2016 to

https://www.resdc.cn/
https://www.openstreetmap.org/
https://search.asf.alaska.edu
https://www.resdc.cn
www.openstreetmap.org
https://www.resdc.cn
https://search.asf.alaska.edu
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2020. The road network of the research area was analyzed by merging in 2017 and 2018,
as there were no significant differences. The Euclidean distance in the ArcGIS platform
was used to calculate the distance from road. The results show a gradual decrease in
road distance.
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Figure 4. Influencing settings of the study area: (a) DEM; (b) slope; (c) aspect; (d) plane curvature;
(e) profile curvature; (f) land-use land-cover (legend: CL = cropland, Fl = forestland, GL = grass-
land, Bl = built-up land); (g) lithology (legend: VR = volcaniclastic rocks, CR = carbonate rocks,
Gran = granite, Dior = diorite, ICR = intermediate-felsic volcanic rocks, SS = sandstone, GP = granite-
porphyry, RP = rhyolite porphyry, Glut = glutenite, APD = alluvial–proluvial deposits); (h) soil type
(legend: BFS = brown forest soil; DFS = dark-brown forest soil; YS = yellow soil; CS = cinnamon
soil; PS = paddle soil; APS = acidic purple soil; YRS = yellow-red soil; FPS = flooded paddle soil;
PPS = permeating paddy soil; LS = laterite soil; CAS= calcareous alluvial soil; SPS = shallow water
paddy soil; Cher = chernozem); and (i–l), distance from road in 2016, 2018, 2019, and 2020.
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3.2. Data Collection and Processing

The patch generating land-use simulation model was developed by the High perfor-
mance Spatial Computational Intelligence Lab of China University of Geosciences (Wuhan)
in 2021 [28,66]. The model proposes a new land expansion analysis strategy (LEAS), which
can avoid exponential growth of transformation types with categories. Specifically, the RF
model was used to analyze the driving relationship between the expansion of LULC and
the conditioning factors in two periods, so as to obtain the development probability of each
land-use type and the weight of each conditioning factor. The interpretability of the model
provides a mechanism for exploring LULC change and simulating the generation and
evolution of multiple random LULC patches [29]. In addition, PLUS model provides a new
model based on multiple random seeds cellular automata (CARS), which automatically gen-
erates dynamic simulation patches under development probability constraints, and drives
the total LULC based on local micro land-use changes [27]. Finally, its operating speed
is much superior. Therefore, the PLUS model was used to better evaluate the evolution
process and predict future changes in the distribution of LULC. The operation processes of
PLUS model are as follows:

(1) We extracted the LULC expansion from 2010 to 2020 based on the land expansion
module in PLUS software. Then, eleven conditioning factors were used to generate the
development probability and factor contribution for each type of LULC.

(2) Based on LULC data from 2010 and 2020, the Markov Chain predicted the demand
for LULC types in 2030. The CARS module combines land development probability, land
demands, transition matrix, and neighborhood weights to obtain the predicted LULC
distribution map. The transition matrix considered the socio-economic development and
natural environmental characteristics of the study area, limiting the conversion of water
systems into other land-use patterns (Table 2). The neighborhood weights are calculated
based on the proportion of expanded area for each LULC type:

Xi =
∆TAi − ∆TAmin

∆TAmax − ∆TAmin
(1)

where Xi is the neighborhood weight of type i; ∆TAi is the change in land-use type i; ∆TAmax
and ∆TAmin represents the maximum and minimum values of land-use expansion area,
respectively.

Table 2. Land-use conversion scenario matrix.

Cropland Forestland Grassland Water Built-Up Land

Cropland 1 1 1 0 1
Forestland 1 1 1 0 1
Grassland 1 1 1 0 1

Water 0 0 0 1 0
Built-up land 0 0 0 0 1

(3) We closed 2010 as the baseline starting time and used the development probability
of each LULC from 2010 to 2020 to predict the data in 2020. The validation module in
PLUS software was used to input actual and predicted LULC data for 2020. The model
validation was usually carried out through Kappa coefficients [30,67]. Kappa coefficients
calculate the overall accuracy (OA) classification through confusion or accuracy matrices.
The accuracy matrix returns the accuracy of producers, which is a measure of consistency
between observed data and modeled data. Usually, Kappa coefficients greater than 0.8,
and can be considered as a perfect simulation result [67]. Ultimately, our goal is to simulate
LULC map for 2030 and 2026.
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3.3. Hybrid Model for Landslide Susceptibility Assessment

The ensemble model selects the basic classifier with relatively weak classification
performance, and finally obtains a strong classifier through the ensemble strategy. The
most effective ensemble strategy currently is bagging and boosting algorithm. The former
trains multiple “weak and different” classifiers through sample diversity and feature
diversity, and then integrates the output results through voting or mean methods; the
latter continuously optimizes the learning strategy by increasing the importance and
weight of misclassified samples through concatenation, ultimately gradually improving
the final output.

Random Forest is a typical bagging model created by Breiman [68]. This model ran-
domly samples different subsets from the data to establish multiple different decision trees
and integrates the results of a single decision tree according to bagging’s rules (regression
means average, classification means minority follows majority). The samples at the root
node of the decision tree are randomly selected from the training set to extract N bootstrap
samples. Each node of the decision tree randomly selects m of these M attributes for split-
ting (m << M). The structure of a single decision tree will increase the overall complexity
and overfitting degree of RF model.

XGBoost is a new generation boosting model based on the comprehensive upgrade
of GBDT model [69]. The XGBoost model mainly uses boosting algorithm for modeling.
The Loss function L(x, y) adaptively influences the construction of the next weak classifier
f(x)k according to the result f(x)k−1 of the previous classifier. The running goal of the GBDT
model is to find the minimum value of the Loss function L(x, y) and minimize the differ-
ence between the predicted and real results. This process only cares about accuracy, not
complexity or overfitting. The XGBoost model adds the structural risk term of controlling
overfitting to the Loss function. This strategy makes the XGBoost different from other
boosting models as the model is trained towards the goal of minimizing the objective
function, rather than minimizing the Loss function. XGBoost model prioritizes the use of
parameters in structural risk to control the overfitting, rather than relying on the decision
tree structure parameters (such as the maximum depth of the tree, learning rate, etc.). This
step improves the prediction accuracy and generalization ability of XGBoost, and also
enables the model’s wide use in data competitions and industrial production.

LightGBM is a model derived from the XGBoost and applied to industrial practice [70].
The XGBoost model requires the preservation of data feature values and ranking, resulting
in significant space consumption. LightGBM has introduced the Histogram algorithm
to optimize the traditional XGBoost model, which can accelerate the training velocity
without compromising accuracy. Histogram algorithm discretizes the continuous floating-
point eigenvalues into K integers, and constructs a histogram with the width of K. After
traversing the data, the histogram accumulates the required statistics, and traverses to
find the optimal segmentation point. The histogram optimization algorithm proposed by
LightGBM can handle compressed data very well, ultimately significantly improving the
training efficiency of each tree.

However, although the ensemble model already has many optimization strategies,
practical applications still need to test different types of models to obtain better results.
The ‘strong yet different’ RF, XGBoost, and LightGBM models can be very suitable for
future model integration to achieve a better model. The widely used stacking strategy can
better combine multiple strong classifiers to obtain better results [34,71]. Unlike voting
and averaging methods, the stacking strategy achieves model combination by training a
secondary classifier (rather than finding a weighted average). In this process, the original
individual classifiers are considered to as the first-level classifier, while the model used in
the combination process is referred to as the second-level classifier. The stacking algorithm
obtains the advantages of multiple strong classifiers to establish a new hybrid model, which
improves prediction accuracy. The specific process is as follows:

(i) The research area adopted a raster format with a pixel size of 30 m. The unit point
turning function in GIS environment was used to obtain attribute data of all influencing
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factors within the region. The GIS database includes all units within the study area, with
attribute values for nine influencing factors. In the Python environment, 8173 landslide
units (value = 1) and 8173 non-landslide units (value = 0) were divided into two parts: 70%
of the units were randomly selected as the training dataset, and the remaining 30% were
used as the testing dataset.

(ii) In our study, we chose Bayesian optimization for hyperparameter tuning due to
its known efficiency in high-dimensional spaces, especially beneficial for complex models
like XGboost and lightGBM. Its data-efficient nature, which is paramount when model
evaluations are computationally intensive as with 10-fold cross-validation, and its unique
sequential strategy, where hyperparameters are evaluated in succession based on insights
from previous evaluations, made it particularly suitable. Given the limited 1000 evaluations
and the depth of our hyperparameter search space detailed in Table 3, Bayesian optimization
was an optimal choice. The meaning of optimization parameters is as follows: N_estimators,
the number of basic estimators; Max_depth, the maximum depth of basic estimators;
Min_sample_split, the minimum number of split samples; Min_samples_leaf, the minimum
number of leaf samples; Lr, the learning rate; Subsample, the proportion of used samples;
Colsample_bytree, the proportion of random sampling each tree; Colsample_bylevel, the
proportion of random sampling features at each level; Colsample_bynode, the proportion
of random sampling each leaf node; Num_leaves, the number of leaf nodes in a tree;
Min_split_gain, the minimum weight sum of split nodes; and Min_child_samples, the
minimum number of leaf samples.

Table 3. Hyper-parameters of three ensemble models.

Random Forest XGBoost LightGBM

N_estimators: (0, 200, 1)
Max_depth: (1, 100, 1)

Min_sample_split (3, 30, 1) Lr: (0.1, 1, 0.1)
Min_samples_leaf (3, 30, 1) Subsample: (0.1, 1, 0.1)

/ / Colsample_bytree (0.1, 1, 0.1) Num_leaves (50, 150, 1)
/ / Colsample_bylevel (0.1, 1, 0.1) Min_split_gain (0, 5, 1)
/ / Colsample_bynode (0.1, 1, 0.1) Min_child_samples (10, 50, 1)

(iii) It is worth noting that in order to prevent information leakage, optimization
and hybrid strategies were carried out on the training dataset, with a 30% testing dataset
used for the final model performance evaluation. Three optimized ensemble models were
applied to the first-level classifier. The logistic regression model was used as a stacking
secondary classifier. Finally, we obtained the hybrid model stacking RF-XGB-LGBM.

4. Results
4.1. Analysis of Temporal and Spatial Variation Characteristics of LULC

The area size LULC types in the research area are forestland > cropland > grassland
> built-up land > water area (Table 4). From 2010 to 2020, grassland, built-up land, and
water increased by 0.139, 13.443, and 0.037 km2, respectively; the cropland and forestland
decreased by 6.031 and 7.589 km2.

Table 4. Areas of land-use land-cover types from 2010 to 2020 (km2).

Land-Use Land-Cover Types 2010 2015 2020

Grassland 104.67 104.301 104.809
Cropland 281.178 275.602 275.147

Built-up land 22.2111 27.592 35.654
Forestland 1629.896 1630.45 1622.306

Water 29.616 29.628 29.654
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From 2010 to 2020, the area transfer reached 57.477 km2 (Table 5). The transferred-out
land in the study area mainly comes from forestland and cropland, with the transferred-out
areas of 28.23 and 20.727 km2 and 49.12% and 36.06% of the total transferred out area,
respectively; the transferred in land is mainly forestland, cropland and built-up land, which
are 35.92%, 25.56%, and 25.33%, respectively. The expansion area of the water body did not
change, mainly due to most of the water in the study area being controlled by hydropower
stations, maintaining a relatively stable water area. The expansion area of grassland is
only 0.139 km2. The maximum expansion area of built-up land is 13.433 km2, mainly
expanding forestland and cropland, with 8.28 km2 and 5.99 km2, respectively. According to
equation (1), we calculated the neighborhood weights for different LULC types. It is worth
mentioning that the calculation results of grassland, water, and built-up land are 1, 0.008,
and 0, respectively. To avoid the absoluteness of probability, we have corrected these three
weights to 0.9, 0.1, and 0.1.

Table 5. Transfer matrix and neighborhood weights from 2010 to 2018 (km2).

2010
2020

Grassland Cropland Built-Up Land Forestland Water Sum Transferred Out

Grassland 98.820 0.435 0.241 5.153 0.022 104.670 5.850
Cropland 0.463 260.451 5.990 13.876 0.399 281.178 20.727

Built-up land 0.048 0.470 21.093 0.547 0.053 22.211 1.118
Forestland 5.456 13.391 8.280 1601.660 1.110 1629.897 28.237

Water 0.023 0.401 0.050 1.071 28.071 29.616 1.545
Sum 104.810 275.147 35.654 1622.307 29.654 2067.572 5.850

Transferred in 5.989 14.696 14.561 20.647 1.583 / /
Extended area 0.139 6.031 13.443 7.590 0.038 / /
Neighborhood

weights 0.1 0.447 0.9 0.563 0.1 / /

We entered LULC maps for 2010 and 2020 and extracted the expanded area for each
type. The LEAS module obtains the development probability of each LULC type and the
contribution of different conditioning factors to expansion. Furthermore, we analyzed the
factor contributions and main factors of cropland, forestland, and built-up land (Figure 5).
The main driving factors for the expansion of cropland are distance from third-level roads,
distance from government, annual rainfall, and distance from rivers. Cropland activities
were dominated by human engineering activities and required sufficient water resources
for irrigation. The increase in cropland was mainly distributed in areas closer to third-level
roads (Figure 5a). Figure 5b shows that the distance from second-level road has the greatest
impact on forestland expansion, followed by slope, distance from third-level road, and
DEM. Most of the areas with increased forestland were mainly concentrated in the area
far from the road, with higher slopes and elevations. DEM has the greatest impact on the
expansion of built-up land area, followed by distance from government (Figure 5c). The
increase in built-up land is mainly distributed around government residences in areas with
relatively flat terrain and frequent socio-economic activities.

The accuracy of the PLUS model determines the authenticity of the experimental
results. We incorporate the 2010 LULC map into the PLUS model to simulate the 2020
LULC map and compare it with the actual LULC map in 2020. The results show that the
Kappa coefficient is 0.904, and the overall accuracy is 0.965, indicating that the model can
effectively simulate the dynamic changes of LULC in the study area. Furthermore, based on
the actual 2020 LULC map, we used the CARS module to simulate the land-use changes in
2030 and 2060 (Figure 6). Final simulation of 2030 LULC map contains 269.78 km2 cropland,
1614.89 km2 forestland, 104.93 km2 grassland, 29.70 km2 water, and 48.25 km2 built-up
area; 2060 LULC map contains 257.07 km2 cropland, 1593.77 km2 forestland, 105.23 km2

grassland, 29.95 km2 water, and 81.54 km2 built-up area.
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4.2. Factor Performance

The primary analysis objective of landslide influencing factors must be to confirm
whether the factor set is highly correlated. Highly correlated factors can bring redundant
information and interfere with the predictive function of the model. The multicollinearity
analysis of Pearson correlation coefficients was used to test this function [72]. Figure 7a
shows a weak correlation with |r| values < 0.5. Therefore, we determined that all factors
are relatively independent and used for subsequent analysis. The operational logic and
random feature selection of ensemble models result in differences in attention to input
features. As shown in Figure 7, the RF model tends to use aspect (0.209), distance from road
(0.182), and DEM (0.149); the XGBoost model focuses more on soil (0.180), LULC (0.163),
lithology (0.161), and distance from road (0.141); LightGBM generated higher scores for
distance from road (3945), DEM (3447), and aspect (2892). The strong and independent
ensemble model provides a better guarantee for the results of the model hybrid strategy.
However, it should be noted that land-use has a very low contribution in both the RF model
and the LightGBM model. The active landslide is closely related to the distance from the
road, especially in areas close to roads, the number of landslides is highest (Figure 7e). The
land-use shows that the forestland area has the highest number of landslides, followed by
cropland and grassland (Figure 7f).
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4.3. Assessing Modeling Patterns

Before using cross-validation to evaluate modeling accuracy, we would like to remind
readers of an important aspect that is often overlooked in the literature. When using
spatially dependent data, we must have robust non-parametric methods to validate, select,
and evaluate the predictive accuracy of the model. Ideally, model validation, selection,
and prediction errors should be calculated using independent data. Therefore, we used
the training set for 10-fold cross-validation here and used the test set to evaluate the final
prediction ability. The cross-validation strategy for parameter optimization is also carried
out on the training set. This methodology can test the overfitting ability of the model.
The model optimization parameters are shown in Table 6. As shown in Figure 8, it starts
from the independent evaluation of the cut-off point of the report summary of the receiver
operating characteristic (ROC) obtained through each of the 10 iterations. The optimal
performance model for 10-fold cross-validation was LightGBM (mean AUC = 0.9), followed
by XGBoost (mean AUC = 0.898), and finally RF (mean AUC = 0.889). The Stacking strategy
has improved prediction accuracy, with an average AUC of 0.908. The following Figure 9
corresponds to the calibration plot and the average prediction probability distribution of
the model. The calibration plot is obtained from the average prediction probability and the
fraction of positive classes in each bin. Perfectly calibrated to fit diagonally in the graph
(prediction probability equals empirical probability). The performance of the Stacking
model is very stable, and the prediction probability is close to the diagonal. The average
prediction probability shows that the RF model exhibits a certain degree of uncertainty
in the prediction of the entire dataset. The XGBoost and LightGBM models have similar
predicted distributions and exhibit extreme predictions. The Stacking model integrates
bagging and boosting algorithms, reducing overall uncertainty. This is also reflected in the
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error rate, which is stable at around 0.19. These are important considerations that support
our model not only as an explanatory tool but also as a robust predictive tool.

Table 6. Optimized parameters of ensemble models.

Random Forest XGBoost LightGBM

N_estimators 199 50 200
Max_depth 39 32 27

Min_sample_split 3 Lr 0.5 0.3
Min_samples_leaf 3 Subsample 1.0 0.2

/ / Colsample_bytree 0.7 Num_leaves 100
/ / Colsample_bylevel 0.7 Min_split_gain 0
/ / Colsample_bynode 1.0 Min_child_samples 12
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We used test set data to evaluate the predictive ability of the model in fields that
have never appeared before. In general, discrimination categories are regarded as No
discrimination (AUC = 0.5), Acceptable (0.8 ≤ AUC < 0.9), Excellent (0.8 ≤ AUC < 0.9),
and Outstanding (0.9 ≤ AUC) [73]. Figure 10 provides an overview, with an RF model
prediction accuracy of 0.887, which is basically consistent with the training set; the AUC
values of XGBoost and LightGBM models are 0.893 and 0.898, respectively. The Stacking
model achieved an excellent AUC value of 0.915. The final result shows an improvement in
the generalization ability of the hybrid model. After demonstrating the predictive ability of
our spatiotemporal susceptibility model, in this section, we transform the model results into
maps. The susceptibility map needs to further process steps where the continuous spectrum
of probability values is divided into multiple categories. Based on the fixed level division,
the reconstructed susceptibility maps were subdivided into very low (0 ≤ S < 0.05), low
(0.05 ≤ S < 0.35), moderate (0.35 ≤ S < 0.75), and high (0.75 ≤ S ≤ 1.00) levels [34]. According
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to observations, there are significant differences in the appearance of susceptibility maps
(Figure 11). Generally speaking, the RF model generates low spatial contrast prediction
patterns in the region, resulting in a considerable number of pixels in the lower and flatter
parts of the catchment area, resulting in lower susceptibility scores. XGBoost and LightGBM
have good predictive performance for known landslide areas but lack exploration of other
areas. The visual interpretation of the Stacking RF-XGB-LGBM model indicates a general
consistency between the corresponding landslide inventory location and areas classified as
moderate or highly susceptible. The hybrid model clearly reproduced the observed higher
and lower landslide distribution patterns in the figure and was considered the ultimate
application tool. The next section will specifically discuss using simulation methods to
generate future scenarios.

Remote Sens. 2023, 15, x FOR PEER REVIEW 18 of 29 
 

 

 

Figure 9. (a) Calibration plots of prediction results and (b–e) prediction distribution of the RF, 

XGBoost, LightGBM, and Stacking models. 

We used test set data to evaluate the predictive ability of the model in fields that have 

never appeared before. In general, discrimination categories are regarded as No discrim-

ination (AUC = 0.5), Acceptable (0.8 ≤ AUC < 0.9), Excellent (0.8 ≤ AUC < 0.9), and Out-

standing (0.9 ≤ AUC) [73]. Figure 10 provides an overview, with an RF model prediction 

accuracy of 0.887, which is basically consistent with the training set; the AUC values of 

XGBoost and LightGBM models are 0.893 and 0.898, respectively. The Stacking model 

achieved an excellent AUC value of 0.915. The final result shows an improvement in the 

generalization ability of the hybrid model. After demonstrating the predictive ability of 

our spatiotemporal susceptibility model, in this section, we transform the model results 

into maps. The susceptibility map needs to further process steps where the continuous 

spectrum of probability values is divided into multiple categories. Based on the fixed level 

division, the reconstructed susceptibility maps were subdivided into very low (0 ≤ S < 

0.05), low (0.05 ≤ S < 0.35), moderate (0.35 ≤ S < 0.75), and high (0.75 ≤ S ≤ 1.00) levels [34]. 

According to observations, there are significant differences in the appearance of suscepti-

bility maps (Figure 11). Generally speaking, the RF model generates low spatial contrast 

prediction patterns in the region, resulting in a considerable number of pixels in the lower 

and flatter parts of the catchment area, resulting in lower susceptibility scores. XGBoost 

and LightGBM have good predictive performance for known landslide areas but lack ex-

ploration of other areas. The visual interpretation of the Stacking RF-XGB-LGBM model 

indicates a general consistency between the corresponding landslide inventory location 

Figure 9. (a) Calibration plots of prediction results and (b–e) prediction distribution of the RF,
XGBoost, LightGBM, and Stacking models.



Remote Sens. 2023, 15, 4111 18 of 28

Remote Sens. 2023, 15, x FOR PEER REVIEW 19 of 29 
 

 

and areas classified as moderate or highly susceptible. The hybrid model clearly repro-

duced the observed higher and lower landslide distribution patterns in the figure and was 

considered the ultimate application tool. The next section will specifically discuss using 

simulation methods to generate future scenarios. 

 

Figure 10. Predictive performances of the models versus different test samples. 

 

Figure 11. Landslide susceptibility maps of the four models. 

  

Figure 10. Predictive performances of the models versus different test samples.

Remote Sens. 2023, 15, x FOR PEER REVIEW 19 of 29 
 

 

and areas classified as moderate or highly susceptible. The hybrid model clearly repro-

duced the observed higher and lower landslide distribution patterns in the figure and was 

considered the ultimate application tool. The next section will specifically discuss using 

simulation methods to generate future scenarios. 

 

Figure 10. Predictive performances of the models versus different test samples. 

 

Figure 11. Landslide susceptibility maps of the four models. 

  

Figure 11. Landslide susceptibility maps of the four models.

4.4. Prediction Patterns over Different Engineering Scenarios

We examined various engineering scenarios to develop comprehensive prediction
patterns. The scenarios considered include:(i) All static factors remained constant, with the
exception of two parameters associated with human engineering activity. (ii) For short-
term predictions, the road networks from 2018, 2019, and 2020 were considered. Land-use
and land-cover data from 2015 was maintained constant across these scenarios, which
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are labeled as RL1–RL3. (iii) Long-term forecasting involves two main scenarios. In the
combined change (RLP1 & RLP2) scenarios, we take into account alterations in the road
network data from 2020, paired with predictions in LULC changes. Meanwhile, in the
Land-use changes only (LP1 & LP2) scenarios, our focus is solely on the predicted LULC
variations, keeping the road data from 2016 unchanged. (iv) We defined areas within a
200 m radius of further urbanization as directly affected areas.

All the engineering scenarios are detailed and outlined in Table 7. This program may
be interesting as it conveys the direct impact of disasters on local and future communities. It
is worth noting that the 2017 road network is the same as the 2018 road network; therefore,
we did not consider the operating scenarios of the 2017 road network.

Table 7. Engineering scenarios of different road network and LULC maps.

Description Scenarios Road Network LULC

All area Urbanized area

Basic Condition RL RL-U 2016

2015Short-Term Forecasting
RL1 RL1-U 2018
RL2 RL2-U 2019
RL3 RL3-U

2020Combined Changes RLP1 RLP1-U Predicted 2030
RLP2 RLP2-U Predicted 2060

Land-use Changes
Only

LP1 LP1-U
2016

Predicted 2030
LP2 LP2-U Predicted 2060

The landslide susceptibility maps for 2018, 2019, and 2020 were predicted using the
Stacking RF-XGB-LGBM model and road network changes as dynamic factors. Changes in
the susceptibility region can be observed in Figure 12. Significant changes in susceptibility
levels were observed in the southwest and northwest of the study area from 2016 to 2018.
Among them, the susceptibility level of very-low decreased by 17.18%, and the susceptibility
level of low, model, and high increased by 6.2%, 15.94%, and 7.04%, respectively. From
2018 to 2019, the susceptibility expansion area of the study area mainly occurred in the
northwest. The susceptibility of very-low levels decreased by 6.82, and low, moderate,
and high levels increased by 3.42%, 1.75%, and 0.45%, respectively. The eastern region
experienced expansion from 2019 to 2020. The susceptibility level of very-low and low
decreased by 1.33% and 0.05%, respectively; the susceptibility level of moderate and high
increased by 1.39% and 1.05%, respectively. Table 8 shows the landslide susceptibility
level in urban areas. With the construction of the road network, areas with low, moderate,
and high susceptibility areas are gradually increasing. From 2016 to 2020, the very-low
susceptibility decreased by 11.96%, and the low, medium, and high susceptibility increased
by 11.15%, 26.88%, and 17.72%, respectively. The road networks expansion has greatly
increased the probability of landslides occurring in urban areas.

To explore the impact of LULC and road network on susceptibility estimation, we
generated landslide susceptibility maps for the study area in 2030 and 2060. Figure 13
compares the urbanization part of the map from two aspects: spatial pattern and suscepti-
bility. Road construction has changed the distribution of susceptibility in the research area;
and susceptibility models based on LULC and road networks have generated smoother
susceptibility patterns and relatively higher susceptibility in urbanized areas. Furthermore,
the susceptibility to landslides increases with the expansion of urbanization areas. These
four landslide susceptibility maps highlight slightly different areas that may require further
attention. Regardless of the year considered, most of the accumulation zone that are most
threatened by landslides are located in the southeast of the study area.
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Table 8. Influence of road network change on the susceptibility level in urban areas.

Susceptibility
Level

Number of Pixels

RL-U RL-U1 RL-U2 RL-U3

Very-low 11,840 11,029 10,568 10,423
Low 7215 7684 7994 8020

Moderate 1529 1754 1845 1940
High 1134 1251 1311 1335

As shown in Figure 14, the statistical analysis of susceptibility values reveals the dif-
ferences between susceptibility maps modeled based on different operating scenarios. The
comparison shows that for the entire study area, only considering changes in LULC (LP1
and LP2), low susceptibility increases, while moderate and high susceptibility decreases
slightly. However, it is unrealistic to only consider LULC change, as the development of
urban areas was accompanied by road network construction. The landslide susceptibility
considering road network factors (RLP1 and RLP2) showed significant percentage changes:
a decrease of 9.05% for very-low level, an increase of 5.29% for low level, a moderate
increase of 2.96%, and an increase of 0.79% for high susceptibility level. We also observed
the impact of scenarios on urbanization areas. The urbanization areas in 2015 showed that
human engineering have increased potential risks to a certain extent, such as the percentage
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of low susceptibility areas increasing from 33.22% to 38.67%; the moderate susceptibility
increased from 7.04% to 9.38%; the high susceptibility increased from 5.22% to 6.56%. The
predicted urbanization areas in 2030 showed more significant changes in susceptibility
level: low susceptibility increased by 12.6%, moderate susceptibility increased by 3.16%,
and high susceptibility increased by 0.64%. The 2060 urbanization areas have 31.06% very
low, 50.96% low, 11.87% moderate, and 6.12% high susceptibility percentage levels. The
RL-U, RLP1-U, and RLP2-U scenarios show that, in 2015 in urbanized areas, the number of
pixels with high susceptibility was 1134, 1386, and 1425, respectively. It is obvious that the
expansion of road network and LULC will increase the probability of landslide disasters
in old urban areas. This comparison helps to quantify whether urbanized areas are more
susceptible to landslides before urbanization.
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5. Discussion

The current research focus involves considering human engineering activity scenarios
and evaluating how they alter landslide susceptibility [63]. Now, ample evidence suggests
that landslide susceptibility is dynamic, particularly in the context of rapid urban and road
network expansion—a prevalent issue in many developing countries, including China.
Especially in the eastern coastal areas of China, policy adjustments have driven a large
number of engineering activities [74,75]. Firstly, it is necessary to consider the influence
of LULC changes on landslides of mountain area. Accurately predicting future LULC
scenarios is crucial for improving susceptibility reliability. Therefore, this study used
the PLUS model for the first time in landslide research. This model has high simulation
and prediction accuracy for larger regions and can better predict the evolution of future
land-use patterns [28,67]. Many studies [27,29,30,76] have confirmed that the PLUS model
can simulate LULC changes at different scales and scenarios, providing guidance for
sustainable urban development. Eleven conditioning parameters were used to predict
the 2060 LULC map: the forestland and cropland areas decreased by 28.53 km2 and
18.07 km2, respectively, and the built-up area increased by 45.88 km2. The land-use in
this area is mainly transformed from forests to built-up areas. The increase in built-up
land is mainly distributed around government residences with relatively flat terrain and
frequent socio-economic activities. Numerous studies have assessed the impact of LULC
changes on landslide susceptibility [18,20,22,25]. However, human activities are carried
out by road network [77]. The extended road network may lead to rapid changes in urban
land-use. Generally, roads enter the susceptibility model based on their distance from the
plotted landslide [18,21]. But few researchers have explored the influence of road network
changes on landslides. Roads may introduce deviations in the distribution of landslide
susceptibility [20]. Therefore, this article has updated the list of road networks and LULC. It
should be noted that many researchers have explored the application of different landslide
inventory in land-use change, such as Xiong et al. [22] used LULC and landslide inventories
from 2000 and 2020 and Tyagi et al. [18] used 218, 243, and 387 landslide events from 2005
to 2010, 2010 to 2015, and 2015 to 2020, respectively. On the contrary, Hao et al. [21] only
used the 2018 landslide inventory for dynamic research. The update landslide inventory
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inevitably has a higher density and quantity of landslides, making it difficult to explore
the impact of LULC on susceptibility alone. Therefore, this study focused solely on the
landslides triggered by the 2016 Typhoon event to explore the impact of LULC and road
network changes on landslide susceptibility, employing nonlinear relationships constructed
by hybrid models.

People are more and more interested in the study of the application of hybrid model
in landslide susceptibility analysis, especially the effect of human engineering activities
on landslide occurrence [63]. In the realm of landslide susceptibility analysis, the integra-
tion of models offers a potent approach to enhance prediction capabilities. Our choice
of employing a hybrid model, specifically combining RF, XGBoost, and LightGBM, was
motivated by several factors. Firstly, each of these models has shown superior predictive
prowess individually in previous landslide susceptibility studies [49,78]. While they are
adept on their own, their combination allows us to harness their unique strengths and offset
individual weaknesses, offering a more robust and comprehensive modeling approach.
Secondly, the stacking strategy offers a layer of meta-learning where predictions from indi-
vidual models are used as input to train a higher-level model, thereby refining predictions.
However, no papers attempted to integration and application. The Stacking strategy has
started to be applied to integrate basic models. For instance, Li et al. [53] adopted a stacking
strategy combined with the convolutional neural network and recurrent neural network
to explore the distribution of landslide susceptibility in the Three Gorges Reservoir area.
Zeng et al. [34] compared and analyzed the application of different ensemble models and
strategies in landslide susceptibility, and found that stacking strategy combined with strong
classifiers can maximize the efficiency of improving prediction accuracy. We can find the
differences from the factor contribution of ensemble models: the RF model tended to use
aspect, distance from road and DEM. The XGBoost model focused more on soil, LULC,
hydrology, and distance from road. The LightGBM model generated higher scores for
distance from road, DEM, and aspect. A major difference between this study and previous
studies is that both RF and LightGBM have low rankings for LULC. This may reflect differ-
ences in environmental and/or climatic conditions and LULC categories between this study
and previous studies. The results show that distance from road is highly correlated with
landslides occurrence. Finally, the stacking RF-XGB-LGBM model achieved the optimal
AUC value of 0.915 on the test set. The hybrid model in this study area can be proved to
improve the prediction accuracy and generalization ability of landslide susceptibility. We
also encourage researchers to attempt the use of more hybrid model. These studies are
good attempts to map the susceptibility of landslides in dynamic environments.

The hybrid model explores the road network and LUCL expansion on landslide
susceptibility. The density of landslides gradually decreases with the increase in road
distance (Figure 7e). This correlation reflects the richness of roads along the valleys in
the study area, and nearby slopes are prone to slide. For the whole research area, the
regional susceptibility of road network expansion has changed from 2016 to 2020. In 2018,
the moderate and high susceptibility areas increased by 15.94% and 7.04%, respectively.
Early large-scale engineering construction increased the probability of landslides. Urban
areas have been more affected: from 2016 to 2020, the very low susceptibility decreased
by 11.96%, while the low, moderate, and high susceptibility increased by 11.15%, 26.88%,
and 17.72%, respectively. Most of the landslides that happened in 2016 occurred in forest
areas. This is contrary to many other findings in which forest areas were considered to
have a stabilizing ability [24,79,80]. However, Lan et al. [81] found that the weight of trees
may increase the sliding force in parallel directions. The vegetation structure with different
root systems can increase or reduce the susceptibility of shallow landslides [82]. Especially
bamboo forests and shrubs are mostly distributed in the research area. The extreme rainfall
event in 2016 is more prone to causing a large number of planer slides in forest areas.

We further explored the changes in susceptibility using the predicted LULC maps for
2030 and 2060. For the whole study area, the susceptibility of road networks and LULC to
landslides showed significant percentage changes: a decrease of 9.05% for very-low levels,
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an increase of 5.29% for low levels, a moderate increase of 2.96%, and an increase of 0.79%
for high susceptibility. For the urbanized areas in 2015, the expansion of road network
and LULC increased the number of landslides with high susceptibility. The urbanization
areas in 2030 and 2060 show that LULC has a positive impact on landslides. This may be
due to our data lamination of 2020 road network. It is difficult for us to obtain data on
future road planning. Therefore, we can conclude that for our research area, road expansion
is the main dynamic factor, followed by LULC. The influence of LULC changes on the
stability conditions of our study area is positive, but relatively limited. About this point,
controversial findings have been reported in the literature. In high mountain areas, the
improvement in stability conditions may be significant [83], while other researchers have
found that specific changes in LULC (such as deforestation) may also lead to an increase in
regional landslide susceptibility [80]. However, there is no doubt that land-use changes
in urban areas have brought about unstable factors. The current policy of China will
continue to lead to a large number of road network and urban regional expansion in many
years. We suggest that the government can provide more road network planning to more
precisely describe the landslide area. Through policy interpretation, landslide managers
can obtain future land information, such as potential landslide risks in future roads and
land built-up areas.

Although this study systematically quantifies the long-term impact of urbanization on
landslide occurrence, it is still limited by the dataset and methods used. Our finding used a
limited inventory induced by extreme rainfall events. A larger inventory of multi-temporal
landslides and more detailed information on the occurrence of landslides at different stages
of urbanization may help to better quantify the impact of urbanization on susceptibility.
This article does not consider the impact of climate and other environmental factors on
the stability conditions of future slopes, especially the prediction of Typhoon induced
rainfall events. As future work, we plan to include more aspects in the prediction of human
engineering activities. In addition, applying current programs in other regions to test the
impact of environmental changes will reveal better insights into this topic.

6. Conclusions

This study explores the individual and joint effects of road network and LULC changes
on the stability of Typhoon-triggered landslides in the mountainous areas along the south-
eastern coast of China. The hybrid model simulates the regional landslide susceptibility of
seven engineering scenarios. Finally, we compared the results obtained in each scenario
with the reference scenario.

From 2010 to 2020, the rapid urbanization of the research area led to a maximum
built-up area of 13.433 km2, mainly expanding forestland and cropland, with 8.28 km2 and
5.99 km2, respectively. The novelty PLUS model was used to predict changes in LULC, and
the results indicate an increase in built-up land in the future. The increase in built-up land
is mainly distributed around government residences in areas with relatively flat terrain and
frequent socio-economic activities. The predicted 2060 LULC map shows that forestland
and cropland will decrease by 28.53 km2 and 18.07 km2, respectively, while the built-up
area will increase by 45.88 km2.

The hybrid model has improved the prediction accuracy and generalization ability of
landslide susceptibility. In the training set, the optimal performance model shown in the
10-fold cross-validation was Stacking RF-XGB-LGBM model (mean AUC = 0.908), followed
by LightGBM model (mean AUC = 0.9) and XGBoost model (mean AUC = 0.898), and
finally RF model (mean AUC = 0.889). The final testing set showed that the Stacking model
achieved an excellent AUC value of 0.915.

The prediction model shows that the factor contribution of distance from road was
greater than that of LULC. From 2016 to 2020, the prediction results show that the distance
from road has decreased by 11.96% from 2016 to 2020, and the low, medium, and high
susceptibility have increased by 11.15%, 26.88%, and 17.72%, respectively.



Remote Sens. 2023, 15, 4111 25 of 28

Ultimately, changes in LULC and road network may disrupt the stability of mountain-
ous areas, endanger natural resources, and damage the environment. These results require
more rational land-use and road planning in future urbanization processes, and suggest
incorporating LULC changes more systematically in disaster assessment to implement
preventive measures from the beginning. This adopted method is novel for landslide
susceptibility research in this region.
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