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Abstract: The accuracy of gridded precipitation products is uncertain in different temporal and spatial
dimensions. Analyzing the applicability of precipitation products is a prerequisite before applying
them to hydrometeorological and other related research. In this study, we selected three gridded
precipitation products, Integrated Multi-satellitE Retrievals for Global Precipitation Measurement
(IMERG), Global Satellite Mapping of Precipitation (GSMaP), and the fifth generation of atmospheric
reanalysis of the European Centre for Medium-Range Weather Forecasts (ERA5), including their data
from 2001 to 2020. Using the data from 699 ground observation stations, we evaluated the applicability
of these three precipitation products in China. Based on five statistical and five classification indicators,
we first assessed the applicability of the three precipitation products on daily, monthly, and annual
time scales, respectively, and then evaluated their applicability in different spatial dimensions,
including basins, agriculture, and geomorphology. The results showed that: (1) IMERG data had
the best accuracy on annual and monthly time scales, with both correlation coefficient (CC) values
greater than 0.95 and Kling–Gupta efficiency (KGE) values greater than 0.90. On a daily time scale,
the accuracy of all three precipitation products differed when statistical or categorical indicators were
considered alone. However, the applicability of IMERG data was best among the three precipitation
products when both types of indicators were considered. (2) The accuracy of the three precipitation
products gradually decreased along the southeast–northwest direction. The applicability of ERA5
data was better in northern regions than in other regions in China, especially in arid and semi-arid
regions in northern China. The applicability of IMERG data was better in southern regions with more
precipitation and in high-altitude regions than in other regions in China. (3) The applicability of the
three precipitation products in plain areas was generally better than in mountain areas. Among them,
ERA5 data were more accurate in plain areas, while IMERG data were more accurate in mountain
areas. This study can provide a reference for the selection of data sources of gridded precipitation
products in different time scales and spatial dimensions in China.

Keywords: applicability; gridded precipitation product; geomorphology; agriculture; last two
decades; China

1. Introduction

Precipitation, as an important component of the global water vapor cycle and a
fundamental driver of hydrological processes, plays an important role in exchanging
energy and maintaining ecological balance. Uncertainty in the temporal and spatial dis-
tribution of precipitation can lead to extreme weather events such as heavy rainfall and
droughts. Local heavy rainfall can easily trigger floods, affecting terrestrial hydrological
cycles [1,2]. Therefore, obtaining accurate precipitation information is important in the
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fields of forecasting, water resource management, agricultural production, and drought
and flood disaster monitoring.

There are three methods used to obtain precipitation data. The first method is through
the use of rain gauges, which is considered to be the most accurate precipitation measure-
ment method and is often used as the ground truth value to evaluate the performance of
other precipitation measurement methods [3]. However, the limited number of ground
observation stations makes it difficult to capture the large-scale temporal and spatial vari-
ability of precipitation [4]. The second method involves meteorological radar, which mainly
utilizes the reflection and scattering of precipitation particles to estimate the amount of the
precipitation. Meteorological radar has a larger monitoring range than rain gauges, but this
method may have the problem of occlusion in the case of complex terrain and high-rise
buildings [5]. The third method is by remote sensing, which provides gridded precipita-
tion data on a global scale [6]. Currently, there are many gridded precipitation products
obtained using remote sensing, such as Tropical Rainfall Measuring Mission (TRMM) [7,8],
Asian Precipitation-Highly Resolved Observational Data Integration Towards Evaluation
of Water Resources (APHRODITE) [9,10], Integrated Multi-satellitE Retrievals for Global
Precipitation Measurement (GPM) (IMERG) [11,12], Climate Prediction Center Morphing
Technique (CMORPH) [5], Global Satellite Mapping of Precipitation (GSMaP) [13,14], and
the fifth generation of atmospheric reanalysis of the European Centre for Medium-Range
Weather Forecasts (ECMWF) (ERA5) [15,16]. These products can be divided into three
categories: satellite data (infrared observations, passive microwave observations, soil mois-
ture observations, etc.), e.g., TRMM, IMERG, GSMaP; the combination of different data
sources (satellite precipitation estimates, reanalysis precipitation products, observational
data, etc.), e.g., APHRODITE, CMORPH; and the creation of reanalysis products using
atmospheric physical models combined with reference data [4], such as ERA5. These
gridded precipitation products cover different time series, time scales, spatial dimensions,
and spatial coverage. However, they are mainly affected by inversion algorithms, local
weather conditions, terrain, and sampling frequency [17,18]. Therefore, the applicability of
precipitation products needs to be validated based on ground observation station data.

A large number of studies on the validation of gridded precipitation products have
been conducted in different regions around the world. They are either global [13,19] or in
specific countries, for example, Iran [20,21], Pakistan [6,22], India [23], United Arab Emi-
rates [24], United States [25,26], Australia [27], Bangladesh [28], Greece [29], Italy [30,31],
etc. In recent years, there have been numerous studies on applicability analysis in China
(Table A1). We can see that most of the applicability analysis studies have short time
series [2,12,13,17,18,32–43], generally around 5 years. There are also some studies with
long time series [44–48], but most of them focus on monthly and annual scales. The time
series of Tang et al. [49] and Jiang et al. [50] were relatively long, up to 18 years, with
minimum hourly and daily time dimensions, but they only analyzed the climate zone in
the spatial dimension. Most of the studies with short time series are also further restricted
to one or some of the categories of the following regional subdivisions: administrative
zone [33,36,41], topography [36,40], basin [12,13,17,42], climate [32,39,43,46,50], and ge-
omorphologic regionalization [47]. These studies generally show that the applicability
of various gridded precipitation products varies more markedly across the seasons in
China, with summer being generally better than winter, and applicability being directly
proportional to the size of the time scale. In terms of regional dimensions, the accuracy of
precipitation products varies greatly in different regions of China, with the southern region
being generally better than the northern region. Satellite precipitation products generally
outperform reanalysis precipitation products, but the latter significantly perform better
than the former over high-latitude regions and in winter. The applicability of IMERG_Final
is overall the highest among the various gridded precipitation products; especially, the
correlation coefficients with ground observation stations are significantly better than those
of other precipitation products. However, we find that there are fewer studies on the
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applicability of precipitation products over long time series, and regional scale division of
the whole of China in spatial analysis is relatively crude.

At present, the construction of automatic stations and the advancement of digitization
in China still cannot change the actual situation of China’s meteorological station network
being “dense east and sparse west”, and the acquisition of high-resolution precipitation
data is affected by this situation [39]. China has a vast territory, crisscrossing water systems,
and complex topography, and agriculture is an important pillar of China’s economy. We
selected three gridded precipitation products, IMERG, GSMaP, and ERA5, and evaluated
the applicability of the three precipitation products first in the daily, monthly, and annual
temporal dimensions, and then in the spatial dimension in terms of basins, climate, geo-
morphology, and agriculture, using data from ground observation stations in the Chinese
region based on statistical and categorical indicators (CC, RMSE, BIAS, MAE, KGE, POD,
FAR, ACC, CSI, and ETS). In this study, we aimed to answer the following questions:
(1) What are the quality and applicability of the three gridded precipitation products on
a daily, monthly, and annual basis for the period 2001–2020 of a long time series sur-
vey? (2) How well do precipitation products perform in terms of basins, agriculture, and
geomorphologic types? Which gridded precipitation products are the most appropriate?

2. Study Area

Located on the west coast of the Pacific Ocean and the eastern part of the Eurasian
continent, China covers a vast area of approximately 9.6 million km2 [12]. China is one
of the countries with the most serious soil erosion in the world, characterized by a wide
distribution and large area of soil erosion. The topography of China is complex, with
high topography in the west and low topography in the east, presenting a clear stepped
distribution. The terrain in the eastern region is relatively flat, while the terrain towards the
northwest gradually becomes complex. Located on the western part of the Pacific Ocean
and influenced by complex topography and special land-sea distribution, China has a
diverse climate and abundant water resources. At the same time, the types of precipitation
are diverse and unevenly distributed across different temporal and spatial scales. The
overall precipitation in China shows a decreasing trend from southeast to northwest [51],
with most regions experiencing hot and rainy summers and cold and dry winters.

Assessing the applicability of various precipitation products in China based on ground
observation station precipitation data can help facilitate related work in the fields of
meteorological forecasting and hydrological monitoring. In this study, we carry out the
applicability analysis of different gridded precipitation products in three aspects, including
basins, agriculture, and geomorphology, to better assess the accuracy of precipitation
products in regional areas. The specific classification criteria are as follows:

In this study, we considered the principles of water resource classification in China by
the Resource and Environment Science and Data Center and previous related studies [12].
The Chinese region was divided into nine river basins, namely: Songhua and Liaohe River
Basin (S&L RB), Haihe River Basin (Hai RB), Huaihe River Basin (Hu RB), Yellow River
Basin (Yellow RB), Yangtze River Basin (Yangtze RB), Pearl River Basin (Pearl RB), Southeast
Basin (Southeast B), Southwest Basin (Southwest B), and Continental Basin (Continental B).
Their spatial distribution is shown in Figure 1.
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Figure 1. Spatial distribution of the ground observation stations in different basin zones in the
studied area.

We considered the principles of the “Comprehensive Agricultural Zoning of China”
and previous related studies [52], and divided the Chinese region into nine agricultural
zones, namely: Northeast China Plain (NCP), Yunnan-Guizhou Plateau (YGP), northern
arid and semiarid region (NASR), Southern China (SC), Sichuan Basin and surrounding
region (SBSR), middle-lower Yangtze Plain (MLYP), Qinghai Tibet Plateau (QTP), Loess
Plateau (LP), and Huang-Huai-Hai Plain (HHHP). Their spatial distribution is shown in
Figure 2.
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We referred to the principles of landform classification in China by the Resource
and Environment Science and Data Center and previous related studies [8], and divided
the Chinese region into seven geomorphologic types, namely: plains, platforms, hills,
small undulating mountains (SUM), medium undulating mountains (MUM), large undu-
lating mountains (LUM), and great large undulating mountains (GLUM). Their spatial
distribution is shown in Figure 3.
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Figure 3. Spatial distribution of different geomorphologic types in the studied area.

3. Data and Methodology
3.1. Data
3.1.1. IMERG

The GPM core platform is a joint U.S. and Japanese initiative that provides global
microwave-based rain and snow data within 3 h and microwave infrared-based rain and
snow data within 0.5 h, with coverage extending to the Antarctic and Arctic Circles. This
product combines dual-frequency precipitation radar with microwave and infrared obser-
vation data, greatly improving the detection capability of weak (<0.5 mm/h) and solid
precipitation [18]. As one of the mainstream precipitation datasets in the GPM era, the
IMERG product can be divided into IMERG_Early, IMERG_Late, and IMERG_Final. This
study selected IMERG_Final as the research dataset, which was sourced from the NASA
official website (https://disc.gsfc.nasa.gov/ (accessed on 26 May 2022)). The spatial resolu-
tion of this product was 0.1◦ × 0.1◦ with daily time resolution. In this study, IMERG_Final
is referred to as IMERG.

3.1.2. GSMaP

GSMaP is a high-precision, high temporal and spatial resolution satellite precipitation
dataset provided by the Japan Aerospace Exploration Agency (JAXA, Tokyo, Japan). This
dataset includes GSMaP_NRT, GSMaP_MVK, and GSMaP_Gauge [14]. This study used
the GSMaP_Gauge version 07 of the precipitation dataset, which has a spatial resolution
of 0.1◦ × 0.1◦ and spatial coverage of 60◦N–60◦S. In this study, GSMap_Gauge is referred
to as GSMaP and it was sourced from https://sharaku.eorc.jaxa.jp/GSMaP/index.htm
(accessed on 7 January 2022).

https://disc.gsfc.nasa.gov/
https://sharaku.eorc.jaxa.jp/GSMaP/index.htm
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3.1.3. ERA5

ERA5, funded by the European Union and operated by ECMWF, is the latest generation
of reanalysis data created by the Copernicus Climate Change Service (C3S). ERA5-Land
was produced by replaying the terrestrial component of ERA5 climate reanalysis, covering
the period from 1981 to the present [18]. In this study, the daily precipitation dataset from
ERA5-Land (hereinafter referred to as ERA5) was selected for the period 2001–2020, a
total of 20 years. The spatial resolution was 0.1◦ × 0.1◦, and it was sourced from https:
//www.ecmwf.int/ (accessed on 7 April 2023).

3.1.4. Other Data

This study collected daily precipitation data from 699 ground meteorological observa-
tion stations in the Chinese region from 2001 to 2020. The data were sourced from the China
Meteorological Science Data Center (http://data.cma.cn/ (accessed on 9 April 2023)). The
spatial distribution of the ground observation stations is shown in Figures 1–3.

The basin and agricultural zoning data and geomorphologic type data used in this
study were all sourced from the Resource and Environment Science and Data Center
(https://www.resdc.cn/ (accessed on 15 April 2023)). The specific spatial distribution of
the basin zones is shown in Figure 1, that of the agricultural zones is shown in Figure 2,
and that of the geomorphologic types is shown in Figure 3. The specific information of all
the data used in this study is shown in Table 1.

Table 1. Data and their sources.

Data Spatial
Resolution

Temporal
Resolution

Spatial
Coverage Period Research

Timeline Source

IMERG_Final
0.1◦ × 0.1◦

Daily Global 2000–2021

2001–2020

https://disc.gsfc.nasa.gov/
(accessed on 26 May 2022)

GSMaP_Gauge Daily 60◦N–60◦S 2000–present
https://sharaku.eorc.jaxa.jp/

GSMaP/index.htm (accessed on
7 January 2022)

ERA5_Land Hourly Global (land) 1950–present https://www.ecmwf.int/
(accessed on 7 April 2023)

Station precipitation data — Daily — 1951–present https://data.cma.cn/ (accessed
on 9 April 2023)

Basin zoning data — — China — — https://www.resdc.cn/
(accessed on 15 April 2023)Agricultural zoning data — — China — —

Geomorphologic types data — — China — —

3.2. Methodology

To comprehensively assess the applicability of the three precipitation products, IMERG,
GSMaP, and ERA5, in the Chinese region, this study selected 10 common indicators, namely:
correlation coefficient (CC), root mean square error (RMSE), relative bias (BIAS), mean
absolute error (MAE), Kling–Gupta efficiency (KGE), probability of detection (POD), false
alarm ratio (FAR), accuracy (ACC), critical success index (CSI), and equitable threat score
(ETS) [9,34,53]. Among them, five statistical indicators, including CC, RMSE, BIAS, MAE,
and KGE, were used to evaluate the accuracy error between precipitation product data and
ground observation station data. The other five classification indicators, including POD,
FAR, ACC, CSI, and ETS, were used to evaluate the precipitation event detection capability
of the precipitation products. The specific information is shown in Table 2.

https://www.ecmwf.int/
https://www.ecmwf.int/
http://data.cma.cn/
https://www.resdc.cn/
https://disc.gsfc.nasa.gov/
https://sharaku.eorc.jaxa.jp/GSMaP/index.htm
https://sharaku.eorc.jaxa.jp/GSMaP/index.htm
https://www.ecmwf.int/
https://data.cma.cn/
https://www.resdc.cn/
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Table 2. Information about ten evaluation indicators used in this study.

Statistical Metric Equation Perfect Value Value Range

Correlation Coefficient (CC) CC =
∑n

i=1 (Gi−G)(Si−S)√
∑n

i=1(Gi−G)
2×
√

∑n
i=1(Si−S)

2
1 [−1, 1]

Root Mean Square Error (RMSE) RMSE =
√

1
n ∑n

i=1(Si − Gi)
2 0 [0, +∞)

Relative Bias (BIAS) BIAS =
∑n

i=1(Si−Gi)

∑n
i=1 Gi

× 100% 0 (−∞, +∞)

Mean Absolute Error (MAE) MAE = 1
n ∑n

i=1(|Si − Gi |) 0 [0, +∞)

Kling–Gupta Efficiency (KGE)
KGE = 1−√

(1− CC)2 +
(

1− S
G

)2
+
(

1− SS
SG

)2 1 (−∞, 1]

Probability of Detection (POD) POD = H
H+M 1 [0, 1]

False Alarm Ratio (FAR) FAR = F
H+F 0 [0, 1]

Accuracy (ACC) ACC = H+Z
H+F+M+Z 1 [0, 1]

Critical Success Index (CSI) CSI = H
H+F+M 1 [0, 1]

Equitable Threat Score (ETS) ETS =
H− (H+F)(H+M)

H+F+M+Z

H+F+M− (H+F)(H+M)
H+F+M+Z

1 [0, 1]

In this table, S and G represent the precipitation observed by the gridded precipitation
products and ground observation stations, respectively, and n is the sample size. G and
SG are the mean and standard deviation of the precipitation observed at the ground
observation stations, respectively. S and SS are the mean and standard deviation of the
precipitation monitored by the gridded precipitation products, respectively. H is the
number of precipitation events monitored simultaneously by the precipitation products
and ground observation stations. F represents the number of precipitation events that were
monitored by the precipitation products but not by the ground observation stations. M is
the number of precipitation events monitored by the ground observation stations but not
by the precipitation products. Z represents the number of non-precipitation events detected
simultaneously by both the precipitation products and ground observation stations.

4. Results
4.1. Time Scale
4.1.1. Annual Time Scale

We analyzed the applicability of the three precipitation products, IMERG, GSMaP, and
ERA5, based on the annual precipitation data accumulated from 699 ground observation
stations in the study area from 2001 to 2020 as the “true values”. According to the results
shown in Figure 4, the applicability of the precipitation products was best in 2006 during
the 20 years from 2001 to 2020, and the IMERG satellite precipitation product had higher
accuracy than the GSMaP and ERA5 precipitation products, with a CC of 0.98, RMSE of
137.07 mm/year, BIAS of 4.84%, MAE of 97.57 mm/year, and KGE of 0.95. On the other
hand, the overall accuracy of the precipitation products was lowest in 2003, when the
GSMaP satellite precipitation product had lower accuracy than the IMERG and ERA5
precipitation products, with a CC of 0.54, RMSE of 387.15 mm/year, BIAS of −7.32%, MAE
of 304.89 mm/year, and KGE of 0.45. Overall, the applicability of the precipitation products
in the first decade (2001–2010) was better than that in the second decade (2011–2020).
Within the second decade, the applicability of the three precipitation products during the
four years of 2017–2020 was worse than during 2011–2016. Within these four years of
2017–2020, the least applicable precipitation product was the GSMaP satellite precipitation
product in 2017, with a CC of 0.65, RMSE of 464.97 mm/year, BIAS of 19.92%, MAE of
375.89 mm/year, and KGE of 0.54.
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and ground observation station data from 2001 to 2020. The units of RMSE and MAE are both in
mm/year, and that of BIAS is in %.

Among the three precipitation products, IMERG, GSMaP, and ERA5, the best per-
formance with the annual precipitation data from the ground observation stations was
achieved by the IMERG precipitation product, where the CC was basically 0.97, RMSE was
basically 140 mm/year, BIAS was basically around 5.5%, MAE was basically 110 mm/year,
and KGE was basically greater than 0.90. The ERA5 precipitation product showed the
second best fit, where the CC was basically 0.89, RMSE was basically 280 mm/year, BIAS
was basically around 16%, MAE was basically 200 mm/year, and KGE was basically greater
than 0.82. The worst performing product was the GSMaP precipitation product, where
the CC was basically 0.72, RMSE was basically 390 mm/year, BIAS was basically around
7.24%, MAE was basically 300 mm/year, and KGE was basically greater than 0.60.

By analyzing the various indicators of the three precipitation products, IMERG, GSMaP,
and ERA5, in the annual time dimension in the last two decades, we found that the IMERG
satellite precipitation product had the best applicability in the Chinese region.

4.1.2. Monthly Time Scale

We analyzed the applicability of IMERG, GSMaP, and ERA5 monthly precipitation
data using the monthly average precipitation data accumulated from all ground observation
stations in the study area from 2001 to 2020 as the “true values”. According to the results
shown in Figure 5, except for October, the slope K of the linear regression between the
IMERG precipitation product and ground observation station data was less than 1 for the
other eleven months, indicating that IMERG precipitation data were generally larger than
ground observation station data during these months. The best fit was observed in April,
with a CC between IMERG satellite precipitation data and ground observation station data
of 0.99, RMSE of 10.64 mm/month, BIAS of 7.12%, MAE of 7.44 mm/month, and KGE of
0.92. Good fits were also observed in months with higher precipitation (June to August),
with a CC of above 0.95, RMSE of greater than 20 mm/month, BIAS of around 7.4%, MAE
of around 17.00 mm/month, and KGE of around 0.91.
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The linear relationship between the GSMaP precipitation product and ground obser-
vation station precipitation data in the 12 months is shown in Figure 6. It could be observed
that the slope K of the linear regression was greater than 1 for the months of May–June
and August, indicating that GSMaP precipitation data were lower than ground observation
station precipitation data during these months. The best fit was observed in June, with a
CC between GSMaP satellite precipitation data and ground observation station data of 0.85,
RMSE of 55.34 mm/month, BIAS of 0.81%, MAE of 44.28 mm/month, and KGE of 0.70. The
poorest fit was observed in October, where the CC between GSMaP satellite precipitation
data and ground observation station data was 0.53, RMSE was 34.79 mm/month, BIAS
was 13.15%, MAE was 26.48 mm/month, and KGE was 0.47. Relative to the months with
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less precipitation, the months with more precipitation (May to August) exhibited better fits,
with a CC of above 0.78, RMSE of around 50 mm/month, BIAS of around 10%, MAE of
around 40 mm/month, and KGE of around 0.65.
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The linear relationship between the ERA5 precipitation product and ground observa-
tion station precipitation data for 12 months is shown in Figure 7. The analysis showed that
the slope K of the linear regression was less than 1 for all months, indicating that ERA5
precipitation data were generally larger than precipitation data from the ground observa-
tion stations in all months. The best fit was observed in May, with a CC between ERA5
precipitation data and ground observation station data of 0.94, RMSE of 33.92 mm/month,
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BIAS of 14.03%, MAE of 22.17 mm/month, and KGE of 0.84. The poorest fit was observed
in October, where the CC between GSMaP satellite precipitation data and ground obser-
vation station data was 0.84, RMSE was 23.20 mm/month, BIAS was 18.74%, MAE was
13.67 mm/month, and KGE was 0.75.
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Based on the convergence analysis of the 12 months, the fit between the IMERG
precipitation product and ground observation station data was better than that of the other
two precipitation products (GSMaP and ERA5), especially during months with higher
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precipitation (May to September). For this reason, on a monthly time scale, the IMERG
satellite precipitation product exhibited the best applicability in the Chinese region.

4.1.3. Daily Time Scale

We analyzed the applicability of three precipitation products, namely IMERG, GSMaP,
and ERA5, by comparing them with the “true value” daily precipitation data from all
ground observation stations in the study area. According to the results shown in Figure 8,
it could be seen that the CC value between the GSMaP precipitation product and ground
observation precipitation station data was the lowest, while the IMERG and ERA5 precip-
itation products had similar CC values throughout the year. From January to June and
September to December, the RMSE values between the GSMaP precipitation product and
ground observation precipitation station data were significantly larger than those for the
IMERG and ERA5 precipitation products. In July and August, the RMSE values for the
IMERG, GSMaP, and ERA5 precipitation products were similar throughout the year. In
May–June and September, the ERA5 precipitation product had significantly lower RMSE
values than the IMERG precipitation product. Regarding the BIAS indicator, the three
precipitation products showed larger fluctuations from January to April and October to De-
cember. From May to early-to-mid June, the BIAS values for all three precipitation products
were similar. From mid-to-late June to September, IMERG and ERA5 data performed better
than GSMaP data, while IMERG and ERA5 data had similar BIAS values. The changes
in MAE for the three precipitation products were similar to those in RMSE and are not
described in detail. In terms of KGE, all three precipitation products showed larger fluctua-
tions from January to April and October to December. From May to September, the KGE
values for all three precipitation products were similar, but IMERG and ERA5 had slightly
higher KGE values than GSMaP. The POD values of ERA5 data were significantly higher
than those of IMERG and GSMaP data, where IMERG data had slightly higher POD values
than GSMaP data. For the FAR indicator, GSMaP data performed better than both IMERG
and ERA5 data, especially from June to September, while IMERG data performed slightly
better than ERA5 data. In terms of the ACC indicator, the ACC values of IMERG data were
lower than those of the other two products from mid-to-late April to early-mid June. From
February to April and from July to September, GSMaP data performed significantly better
than the other two products, while ERA5 data had the lowest ACC values. In terms of
the CSI indicator, ERA5 data performed significantly better than the other two products
from January to June and September to December, while in July and August, GSMaP data
slightly outperformed the other two products, with ERA5 data performing the worst. In
terms of the ETS indicator, from mid-to-late June to mid-to-late September, ERA5 data had
the lowest ETS values, while GSMaP data had the highest ETS values. In the other months,
ERA5 data had the highest ETS values, with IMERG data having the lowest ETS values in
April–May and October.



Remote Sens. 2023, 15, 4154 13 of 27Remote Sens. 2023, 15, x FOR PEER REVIEW  14  of  28 
 

 

 

Figure  8.  Evaluation  index  results  of  daily  precipitation  data  for  the  three  products  (IMERG, 

GSMaP, and ERA5). The units of RMSE and MAE are both in mm/day, and that of BIAS is in %. 

4.2. Spatial Dimension 

This study also analyzed the applicability of the three gridded precipitation products 

in terms of spatial dimension, and the spatial distribution of the evaluation indicators is 

Figure 8. Evaluation index results of daily precipitation data for the three products (IMERG, GSMaP,
and ERA5). The units of RMSE and MAE are both in mm/day, and that of BIAS is in %.

Based on the comprehensive statistical analysis, it could be concluded that ERA5
and IMERG data exhibited better applicability than GSMaP data, with ERA5 data slightly
outperforming IMERG data. In terms of categorical indicators analysis, GSMaP and
IMERG data demonstrated better applicability than ERA5 data, with GSMaP data slightly
outperforming IMERG data. Considering both statistical and categorical indicators, we
believe that IMERG data exhibited the best applicability in the Chinese region.
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4.2. Spatial Dimension

This study also analyzed the applicability of the three gridded precipitation products
in terms of spatial dimension, and the spatial distribution of the evaluation indicators is
shown in Figures 9 and 10. Overall, the applicability of the three gridded precipitation
products gradually decreased along the southeast–northwest direction. To better evaluate
the applicability of the three precipitation products in the regional spatial dimension, we
further assessed their accuracy in terms of basins, agriculture, and geomorphology.
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Figure 10. Spatial distribution of classification indicators of three precipitation products (IMERG,
GSMaP, and ERA5) at different stations.

4.2.1. Basin Zoning

We analyzed the applicability of three precipitation products, namely IMERG, GSMaP,
and ERA5, in the nine basin zones using the “true value” daily precipitation data from all
ground observation stations in the study area. The number of ground observation stations
in Yangtze RB accounted for 28.77% of the total stations. The ground observation stations
in S&L RB, Yellow RB, and Pearl RB each accounted for approximately 12% of the total
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stations. Southeast B, Hai RB, and Southwest B had the lowest proportions of ground
observation stations, accounting for only around 5% of the total stations.

According to the results shown in Figure 11, among the nine basin zones, the CC values
between the three precipitation products and ground observation station precipitation data
were generally around 0.75 in eight basin zones, except for Continental B where the CC
value was relatively poor. Among them, Southwest B had the highest CC value. The basin
with the most CC anomalies was Yangtze RB when the GSMaP precipitation product was
used. In terms of RMSE, the lowest values were observed in Continental B, especially when
using the IMERG and ERA5 precipitation products, at only about 0.5 mm/day. The highest
RMSE values were found in Pearl RB, reaching around 3 mm/day. The basin with the
most RMSE anomalous values remained Yangtze RB. Regarding the BIAS indicator, the
best distribution of values was observed in Hu RB, with BIAS values closest to 0. The worst
distribution of BIAS values was found in Continental B, which also had many anomalous
values. The distribution of MAE values among the nine basin zones was similar to that
of RMSE values. Compared to the RMSE index, Yangtze RB had fewer anomalous values
in the MAE index. For the KGE indicator, Southeast B had the best distribution of values,
while Continental B had the worst distribution.
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From the results shown in Figure 12, we can observe that, in terms of the POD index,
the best numerical distribution was found in Southwest B, especially when using the ERA5
precipitation product, with POD values as high as about 0.98. The poorest distribution
of POD values was found in Continental B, and Yangtze RB had more anomalous POD
values. As for the FAR indicator, Pearl RB and Southeast B showed consistent numerical
distributions, with a FAR value of around 0.3 when using the GSMaP precipitation product,
which was better than that of the other seven basin zones. The poorest distribution of FAR
values was found in Continental B, with Yangtze RB and Southeast B having more anoma-
lous FAR values. In terms of the ACC indicator, Continental B significantly outperformed
the other eight basin zones, while Yangtze RB exhibited the poorest numerical distribu-
tion. Regarding the CSI indicator, Southeast B showed the best numerical distribution,
while Continental B exhibited the poorest numerical distribution. Yangtze RB had more
anomalous CSI values. Finally, for the ETS indicator, Pearl RB and Southwest B exhibited
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consistent numerical distributions, which were better than those of the other seven basin
zones, while Continental B showed the poorest numerical distribution.
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in different basin zones.

Based on the above, among the nine basin zones, the best overall distribution of
various indicators was observed in Southeast B, followed by Southwest B, while the
least favorable distribution was found in Continental B. Additionally, we believe that
the ERA5 precipitation product was most applicable for Southeast B and Continental B,
while the IMERG precipitation product was most applicable for Southwest B. For the other
basin zones, the choice of appropriate gridded precipitation product should be based on
individual needs.

4.2.2. Agricultural Zoning

The Chinese region mainly included nine agricultural zones, among which the number
of ground observation stations in the MLYP agricultural zone accounted for 20.70% of the
total stations, followed by NASR, which accounted for 16.76% of the total stations. The
three agricultural zones of SC, LP, and HHHP each accounted for about 8% of the total
stations. QTP had the fewest stations, accounting for only 6.12% of the total stations.

From the results shown in Figure 13, it could be observed that the QTP agricultural
zone had the best numerical distribution for the CC index, while the CC numerical distri-
bution when using the GSMaP precipitation product was extremely poor, and there were
more anomalous CC values in this agricultural zone. The NASR agricultural zone had
the overall worst numerical distribution of the CC index. For the RMSE index, NASR had
the best numerical distribution, while SC had the worst CC numerical distribution. For
the BIAS index, SC had the best numerical distribution. NASR had the worst numerical
distribution of BIAS values, especially when using the GSMaP precipitation product, and it
had the highest number of anomalous BIAS values. The numerical distribution of the MAE
index was consistent with that of the RMSE index. In terms of the KGE indicator, SC had
the best numerical distribution, especially when using IMERG precipitation data. NASR
had the worst numerical distribution of KGE values and the highest number of anomalous
KGE values.
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Figure 13. Statistical indicator results of three precipitation products (IMERG, GSMaP, and ERA5) in
different agricultural zones. The units of RMSE and MAE are both in mm/day, and that of BIAS is in
%.

From the analysis shown in Figure 14, it could be observed that the SC agricultural
zone had the best distribution of values in terms of the POD index, but it also had a higher
number of anomalous values. On the other hand, NASR had the worst distribution of
values for the POD index. In terms of the FAR index, SC had the best distribution of
values, while NASR had the worst distribution. For the ACC index, NASR had the best
distribution of values, and the three precipitation products performed similarly. SBSR
had the worst distribution of values for the ACC index. Regarding the CSI index, SC
had the best distribution of values, while NASR had the worst distribution. In terms of
the ETS index, SC had the best distribution of values, especially when using the GSMaP
precipitation product. NASR had the worst distribution of values for the ETS index.
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In summary, among the nine agricultural zones, the overall best distribution of values
was observed in the SC agricultural zone, while the worst distribution was found in NASR.
The IMERG precipitation product was most applicable for SC, while the ERA5 precipitation
product was most applicable for NASR. For the other agricultural zones, the choice of the
most appropriate precipitation product should be based on the specific requirements.

4.2.3. Geomorphologic Types

The Chinese region mainly included seven geomorphologic types, with the plains zone
accounting for 55.16% of the total ground observation stations, followed by the platforms
zone accounting for 20.28% of the total stations, hills accounting for 11.03% of the total
stations, and mountains accounting for 13.52% of the total stations. Among them, SUM
accounted for the highest proportion within the mountainous zone, reaching 6.23%.

According to the analysis of the daily dimension error indices of the three precipitation
products under different geomorphologic types, as shown in Figure 15, the CC values in
LUM were higher than those of the other six geomorphologic types, especially when ERA5
data were used. GLUM had the lowest CC values, followed by the plains zone, where
the most anomalous CC values occurred. In terms of the RMSE index, the plains zone
had the best distribution of values. GLUM had the worst distribution, with increasing
undulation leading to higher RMSE values. In terms of the BIAS index, platforms had
the best distribution of values, especially when using IMERG data. MUM had the worst
distribution of BIAS values. The plains zone had the most anomalous BIAS values. In
terms of the MAE index, the plains zone had the best distribution of values. In terms of the
KGE index, the platforms zone had the best distribution of values, especially when using
IMERG data. The MUM zone had the worst distribution of KGE values. The plains and
platforms zones had the most anomalous KGE values.
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According to the analysis shown in Figure 16, it could be observed that in terms
of the POD indicator, LUM exhibited the best numerical distribution, especially when
using ERA5 data. In terms of the FAR indicator, LUM demonstrated the best numerical
distribution, especially when using GSMaP data. The plains geomorphologic type exhibited
the poorest numerical distribution and had the highest number of anomalous FAR values.
In terms of the ACC index, the plains zone showed the best numerical distribution but
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also had the highest number of anomalous ACC values. LUM exhibited the best numerical
distribution in terms of the CSI indicator. Plains had the poorest numerical distribution
and also the highest number of anomalous CSI values. In terms of the ETS indicator,
platforms demonstrated the best numerical distribution, surpassing the other six types of
geomorphologic types. The plains zone had the poorest numerical distribution and also
had the highest number of anomalous ETS values.
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Figure 16. Classification indicator results of three precipitation products (IMERG, GSMaP, and ERA5)
in different geomorphologic types.

In conclusion, among the seven geomorphologic types, LUM exhibited the best overall
numerical distribution, followed by platforms, while MUM and GLUM performed the
worst. In terms of the applicability of the precipitation products, the IMERG product
performed best in MUM, LUM, and GLUM, while the ERA5 product performed best in
platforms. For the other geomorphologic types, the most applicable precipitation product
should be selected based on the specific needs.

5. Discussion

In this study, we evaluated the applicability of the three precipitation products, IMERG,
GSMaP, and ERA5, on different time scales. On the daily time scale, the performance of the
three precipitation products was inconsistent for the two different categories of indicators
(Figure 8). We analyzed the statistical indicators of daily precipitation data and found that
the applicability of the ERA5 precipitation product was better than that of the other two
products, especially for the BIAS and KGE indicators, which was inconsistent with the
findings of Xu et al. [39]. Considering the global climate change in the last two decades,
overall precipitation fluctuations in the study area had increased. Xu et al. [39] focused
on the period from 2016 to 2019, while our study focused on the period from 2001 to 2020.
The differences in precipitation amounts between these different periods might be the
main reason for the inconsistent results. By analyzing the classification indicators of daily
precipitation data, we obtained the applicability assessment ranking as GSMaP, IMERG,
and ERA5, especially for the FAR, ACC, and ETS indicators, which were more significant
in summer months with abundant precipitation, in agreement with the findings of Tang
et al. [49]. Considering the two types of indicators together, IEMRG had the best overall
applicability on the daily scale, consistent with the findings of Chen et al. [13], Wang
et al. [19], and Weng et al. [48]. However, all three precipitation products overestimated the
actual precipitation amount, which was also observed by Chen et al. [13], Wang et al. [19],
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and Gentilucci et al. [31]. Gentilucci et al. [31] suggested that this was due to the fact that
rain gauges at ground observation stations are generally affected by wind, which interacts
with the shape of the rain gauge and results in less rainfall falling into the rain gauge. In
China, winds are stronger in winter and snow is common, except in a few areas in the south.
Although the rain gauges are of the heated type, snow is more likely to be blown away
by the wind, reducing the actual snow accumulation and leading to a more pronounced
overestimation of precipitation in the winter.

The overall performance of the IMERG precipitation product was significantly better
than that of GSMaP and ERA5 in the annual and monthly dimensions, which was consistent
with the findings of Xu et al. [39]. The reason for the inconsistent applicability results of the
three precipitation products in the daily dimension compared to the annual and monthly di-
mensions might be that the IMERG precipitation product had the least overall fluctuations
in the daily dimension compared with the GSMaP and ERA5 precipitation products, which
subsequently improved the applicability of IMERG data when daily precipitation data
were accumulated to form annual and monthly precipitation data. Therefore, the applica-
bility of the three precipitation products was proportional to the time scale, with the best
applicability on the annual scale, which was consistent with the findings of Lei et al. [47].
By analyzing the statistical indicators of the annual precipitation data, we found that the
overall trends in the applicability of the three precipitation products over the 20 years were
not consistent. The applicability of GSMaP showed some fluctuations but the overall trend
was not significant. On the other hand, the applicability of ERA5 demonstrated an overall
increasing trend, which showed that improvement due to gauge adjustment was greater
than improvement due to satellite sensors. The frequency of extreme weather has increased
in recent years. However, the IMERG precipitation product had poor detection capabilities
for such events, which might have led to a decrease in its applicability. Although the
overall trend of the applicability of the IMERG precipitation product was decreasing, its
applicability remained superior to that of the previous two precipitation products. The
CC between the IMERG precipitation product and ground observation station data was
basically better than that of the other precipitation products, especially on annual and
monthly scales, in agreement with the findings of Chen et al. [13], Wang et al. [19], and
Weng et al. [48]. Additionally, the numerical performance of GSMaP precipitation data in
terms of the KGE indicator was consistent with the findings of Tang et al. [49], while the
study by Tang et al. [49] did not include the IMERG_Final and ERA5_Land precipitation
products used in our study, and therefore are not discussed here.

We also assessed the applicability of the three precipitation products, IMERG, GSMaP,
and ERA5, in different spatial dimensions. In addition, we calculated the spatial distribution
of ten indicators for the three precipitation products over the study’s entire spatial region
(Figures 9 and 10). The results of the spatial analysis based on basin zoning were consistent
with those of Lilan Zhang et al. [12], Weng et al. [48], and Tang et al. [49]. Among the nine
basin zones, Southeast B exhibited the highest applicability of the precipitation products,
while Continental B showed the lowest. Yangtze RB had the highest overall number of
anomalous values. The best applicable precipitation product in both Southeast B and
Continental B was ERA5.

In addition, we also analyzed the applicability of the three precipitation products
in terms of agricultural zoning and geomorphologic type. Among the nine agricultural
zones, the best applicability of the precipitation products was found in SC, while the least
applicability was observed in NASR. The MLYP agricultural zone had the highest number
of anomalous values overall. The IMERG precipitation product had the best applicability
in SC, which could be analyzed from the spatial distribution of indicators such as BIAS
(Figure 9) and FAR (Figure 10). The ERA5 precipitation product had the best applicability in
NASR, which could also be analyzed as shown in Figures 9 and 10, especially for POD, CSI,
and ETS. The geomorphologic types differed from the two spatial zoning mentioned above,
in that the seven geomorphologic types were not so distinct from each other, and there were
significant differences in the number of ground observation stations among the different
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geomorphologic types. The best applicability of the precipitation products was found in
LUM, followed by platforms, while the worst applicability was found in MUM and GLUM.
The plains geomorphologic type had the highest number of anomalous values overall.
However, because there were too few ground stations in some individual geomorphologic
types, we categorized the seven geomorphologic types into two basic geomorphologic
categories: plains and mountains. We found that the applicability of the precipitation
products was generally higher in plains than in mountains, with ERA5 precipitation data
showing the best applicability in plains and IMERG precipitation data showing the best
applicability in mountains. In addition, we found that there were a large number of index
anomalous values in individual spatial zones. In the above-mentioned partitions, we
should be careful in selecting precipitation products, and the applicability of precipitation
products could be evaluated again by refining the spatial dimension. Otherwise, we could
consider using the data from ground observation stations directly.

The main reasons for the differences on temporal scales and in spatial dimensions were
the differences in precipitation inversion methods and algorithms used by the different pre-
cipitation products [1,39]. In this study, the applicability of only two satellite precipitation
products and one reanalysis precipitation product was evaluated from the perspective of
temporal scales and spatial dimensions, without considering their inversion accuracy in
extreme precipitation events. In this study, we also only analyzed the three mainstream
gridded precipitation products. In future studies, we will consider multiple precipitation
products, such as MERRA and FY series precipitation products. In addition, passive sen-
sors have limitations and imperfect skill in measuring cloud and precipitation properties,
especially in certain scenarios with multilayer clouds and warm rain [54]. As precipitation
forms in the clouds when water vapor condenses into droplets, Pipunic et al. [55] indicated
that estimates of cloud information could affect the quality of the satellite precipitation
product. Further improving the performance of precipitation products based on cloud
information is a potential and promising future research direction.

6. Conclusions

We evaluated the applicability of three gridded precipitation products (IMERG,
GSMaP, and ERA5) in the Chinese region on both temporal scales and in spatial dimen-
sions, using ground observation station precipitation data as the “true values”. The main
conclusions were as follows: (1) IMERG data had the best applicability in the annual and
monthly time scale analyses, with both CC values greater than 0.95 and KGE values greater
than 0.90. However, on the daily time scale, the two types of indicators showed different
behaviors. The applicability of ERA5 data was better when statistical indicators were
analyzed, and the applicability of GSMaP data was better when categorical indicators were
analyzed. Considering both statistical and categorical indicators, IMERG data showed
the best applicability. (2) The applicability of the three precipitation products gradually
decreased along the southeast–northwest direction. ERA5 data demonstrated better ap-
plicability in areas with less precipitation and more ground observation stations, while
IMERG data showed better applicability in areas with more precipitation and fewer ground
observation stations. Specifically, the applicability of ERA5 data was better in northern
regions, especially in arid and semi-arid regions. In contrast, the applicability of IMERG
data was better in southern and high-altitude regions. (3) The geomorphologic type with
the best applicability for the precipitation products was LUM, followed by platforms, while
MUM and GLUM had the lowest applicability. Among the two basic geomorphologic
categories of plains and mountains, the applicability was overall better in plains than in
mountains. In plains, ERA5 data exhibited better applicability, while in mountains, IMERG
data showed better applicability. (4) In other different spatial zones, the most applicable
gridded precipitation product should be chosen according to the specific requirements. In
spatial divisions with more anomalous index values, the spatial dimension should be re-
fined when using precipitation products. The results of this study could provide a reference
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for future researchers in geological disasters, hydrometeorology, agricultural cultivation,
etc., to select appropriate precipitation products when needed.
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Appendix A

Table A1. Summary of applicability studies using gridded precipitation products in China over the
last decade.

Source
Documents Research Region Using Datasets Research

Timeline
Number of

Stations Time Dimension Spatial
Dimension

Qin et al. [36] China

TRMM-3B42,
TRMM-3B42RT,

CMORPH,
GSMaP

2003–2006 2000 Quarterly,
monthly, daily

Administrative
zone, topographic

zone

Shen et al. [37] China CMORPH 2008–2010
(May–September) 30,000 Daily, hourly Northeast and

northwest regions

Yang and
Luo [40] Northwest China

CMORPH,
CMORPH,

TRMM(3B42,3B43)
2003–2010 76 Annual, monthly,

daily Topographic zone

Tang et al. [38] Ganjiang River Basin
TMPA3B42V7,
3B42RT, GPM

IMERG

May–September
2014 310 Daily —

Anjum et al. [32] Tianshan
Mountains

IMERG-V06,
IMERG-V05,

TRMM3B42V7

June
2014–December

2017
37 Monthly, daily Whole spatial

area, climate zone

Chen et al. [44] China

NCEP-2, CFSR,
ERA-Interim,

JRA-55,
MERRA-2

1980–2014 817 Annual, monthly Eastern and
western regions

Fang et al. [45] China TRMM3B42,
IMERG 2000–2017 830 Annual Whole spatial

area

Chen et al. [13] Global, China

IMERG-L,
IMERG-E,
GSMaP-N,
GSMaP-M,
TMPA-RT,

PERSIANN-CCS

February
2017–January

2019

17,000
(Global),

30,000
(China)

Daily, hourly

Global, China
(whole spatial
area, climate

zone)

Gao et al. [33] Southern China

CMPA,
PERSIANN-CCS,

ERA5-Land,
FY-4A, GSMaP,

IMERG

June–August 2019 155 Daily, hourly Administrative
zone

Yu et al. [42] China
CHIRPS,

GPM-IMERG,
PERSIANN-CCS

2015–2017 553 Quarterly,
monthly

Basin zone,
topographic zone

Zhang et al. [43] China SM2RASC,
IMERG 2012–2017 701 Monthly, daily Climate zone
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Table A1. Cont.

Source
Documents Research Region Using Datasets Research

Timeline
Number of

Stations Time Dimension Spatial
Dimension

Tang et al. [49] China

TRMM 3B42,
CMORPH,

PERSIANN-CDR,
GSMaP, CHIRPS,
SM2RAIN, ERA5,

ERA-Interim,
MERRA2, IMERG

2000–2018 (daily);
Summer

2013–Summer
2015 (hourly)

2400 (daily);
30,000

(hourly)

Annual,
quarterly,

monthly, daily

Whole spatial
area,

Qinghai-Tibet
Plateau, Xinjiang
region, northeast

region

Ren et al. [2] Western China FY-4A June–August 2020 508 Hourly Whole spatial
area

Lu et al. [35] Yunnan-
Kweichow Plateau CMPA, FY-4A June–August 2019 323 Daily, hourly Whole

spatial area

Wei et al. [46] China

IMERG-F,
GSMaP-G, TMPA

3B42,
CMORPH-CRT,

PERSIANN-CDR,
CHIRPS,

IMERG-E,
IMERG-L,

GSMaP-RT,
TMPA-RT,

PERSIANN-RT,
ERA5,

ERA-Interim,
MERRA2, GPCC,

CPC, CRU

June
2000–December

2019
2400 Monthly Climate zone

Jiang et al. [50] China
IMERG-E,
IMERG-L,
IMERG-F

2001–2017 807 Monthly, daily Whole spatial
area, climate zone

Lilan Zhang et al.
[12] China IMERG, GSMaP,

MERRA, CFSR 2008–2017 2144
Quarterly,

monthly, daily,
hourly

Basin zone

Shaowei et al.
[17] Eastern China

CHIRPS, MSWEP,
CMADS,

PERSIANN-CDR,
ITPCAS

2011–2015 2400 Quarterly,
monthly, daily Basin zone

Lele Zhang
et al. [18] Tibetan Plateau

AIMERG,
CHIRPS, CMFD,

ERA5-Land,
IMERG,

PERSIANN-CCS-
CDR

2003–2015 143 Annual, monthly,
daily

Whole
spatial area

Xu et al. [39] China
IMERG, GSMaP,

ERA5,
ERA5-Land

2016–2019 2200 Annual, monthly,
daily, hourly Climate zone

Yin et al. [41] Northeast Asia FY-2G, FY-4A,
GK-2A 2020 304 Quarterly,

hourly
Administrative

zone

Lei et al. [47] China ERA5 1979–2020 666
Annual,
monthly,

daily

Geomorphologic
regionalization

Liu [34] Inner
Tibetan Plateau

CHIRPS,
CMORPH,

GSMaP, IMERG,
MSWEP,

PERSIANN,
TMPA

2014–2019 47
Annual,

quarterly,
monthly, daily

Whole
spatial area

Weng et al. [48] Xijiang River Basin

IMERG-E,
IMERG-L,
IMERG- F,
GSMaP-G,
GSMaP-N,

GSMaP-GN

2009–2018 107
Annual,
monthly,

daily
—
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