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Abstract: The trophic state is an important factor reflecting the health state of lake ecosystems.
To accurately assess the trophic state of large lakes, an integrated framework was developed by
combining remote sensing data, field monitoring data, machine learning algorithms, and optimiza-
tion algorithms. First, key meteorological and environmental factors from in situ monitoring were
combined with remotely sensed reflectance data and statistical analysis was used to determine
the main factors influencing the trophic state. Second, a trophic state index (TSI) inversion model
was constructed using a machine learning algorithm, and this was then optimized using the spar-
row search algorithm (SSA) based on a backpropagation neural network (BP-NN) to establish an
SSA-BP-NN model. Third, a typical lake in China (Hongze Lake) was chosen as the case study.
The application results show that, when the key environmental factors (pH, temperature, aver-
age wind speed, and sediment content) and the band combination data from Sentinel-2/MSI were
used as input variables, the performance of the model was improved (R2 = 0.936, RMSE = 1.133,
MAPE = 1.660%, MAD = 0.604). Compared with the performance prior to optimization (R2 = 0.834,
RMSE = 1.790, MAPE = 2.679%, MAD = 1.030), the accuracy of the model was improved by 12.2%.
It is worth noting that this framework could accurately identify water bodies in different trophic
states. Finally, based on this framework, we mapped the spatial distribution of TSI in Hongze Lake in
different seasons from 2019 to 2020 and analyzed its variation characteristics. The framework can
combine regional special feature factors influenced by a complex environment with S-2/MSI data to
achieve an assessment accuracy of over 90% for TSI in sensitive waters and has strong applicability
and robustness.

Keywords: integrated framework; trophic state index; remote sensing; environmental factors; large
lake; optimized machine learning algorithm

1. Introduction

Lake ecosystems are dynamic, nonequilibrium, nonlinear, and highly complex ecosys-
tems which are particularly sensitive to human activities and climate change [1]. As large
amounts of nitrogen and phosphorus nutrients resulting from chemical production, farm-
land irrigation, and rainfall enter lakes, the eutrophication level of the water rises, and
harmful algae and invasive species of organisms multiply rapidly, eventually leading to
outbreaks of algal blooms [2]. Therefore, the trophic state is a crucial issue influencing the
water environment of lakes. According to a study of the trophic state of 84 typical large
lakes in China, more than 85% of the lakes were in the eutrophic state, and the remainder
were in the mesotrophic state [3,4].

Water quality monitoring is essential to ensure the safety of water resources and
prevent water pollution. Traditional field monitoring [5,6] has the benefits of high mon-
itoring accuracy and dependable data; unfortunately, it also has disadvantages such as
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being time-consuming, expensive, and having a limited testing range. Therefore, the
long-term dynamic monitoring of water quality indicators is limited by constraints [7,8],
and rapid identification of pollution sources is difficult [9]. Since the 1970s [10], remote
sensing technology has been gradually applied to the dynamic monitoring of water quality
because of its efficiency, wide coverage, and low cost. Therefore, effectively combining
these approaches can compensate for the limitations of field monitoring, making it possible
to dynamically monitor lake water quality indicators on a large scale and in long time
series [11,12]. In addition, it can efficiently identify pollution sources, which has a positive
effect on the economic and social development of lake basins [13].

To apply this technique to the trophic state of lakes, existing studies have generally
developed statistical regression models based on remote sensing and field monitoring
data [14]. Then, certain water quality indicators such as chlorophyll-a (Chl-a) [15,16],
dissolved oxygen (DO) [17], and NH3-N [18] are inverted to assess the distribution of the
trophic state of lakes. Although the inversion accuracy of this method is high, the use of
a single indicator [19] as the standard for assessing the trophic state requires additional
validation because the lake is influenced by multiple factors. The use of remote sensing
to invert Chl-a in lakes has become a popular research topic [18]. However, Chl-a is more
appropriate for early warning of harmful algal blooms [20]. In the absence of substantial
deterioration of the environment of lakes, Chl-a may have limited application. Furthermore,
most of existing studies estimated the trophic state of lakes by assigning or calculating the
weights of multiple indicators [21], which results in an accumulation of errors during the
inversion, thereby increasing the uncertainty of the assessment results [15].

To reduce errors in the assessment of the trophic state of lakes, researchers have
proposed the trophic state index (TSI) [22], which is gradually being applied in trophic
state analysis and for risk prediction of algal bloom outbreaks. This index considers five
indicators: Chl-a, total phosphorus (TP), total nitrogen (TN), Secchi depth (SD), and the
permanganate index (CODMn) [23]. The TSI can be quickly calculated to identify and
compare the trophic state of lakes according to grading criteria. Unfortunately, because the
TSI involves several indicators reflecting the trophic state of water, its inversion is more
difficult than with other approaches. Some recent studies have developed empirical models
to investigate the direct correlation between TSI and reflectance [24] or some major water
color indexes [3]. These models are simpler and more accurate, but their applicability and
extrapolation performance require improvement. To overcome these difficulties, current
research tends to use machine learning to develop TSI inversion algorithms [23].

However, most existing TSI inversion models have been developed based on lakes that
are hyper eutrophic [23,25] and those in the medium trophic state have received insufficient
attention. This skewed research focus may result in a biased assessment of the health of
certain lakes because hyper eutrophic lakes have nutrient concentrations that significantly
exceed the tolerance limit of the ecosystem and are accompanied by changes in water color
and algal blooms [25]. In contrast, lakes in the medium trophic state have high nutrient
levels but are within a controllable range and have shown an increasing trend toward
eutrophication in recent decades [26]. Furthermore, large lakes have complex water color
and hydrodynamic characteristics, and their nutrients are exchanged violently with water
flows. They are rich in colored, dissolved, organic, and suspended matter and have complex
optical properties. Therefore, it is difficult to construct a highly accurate TSI inversion
model applicable to different trophic states using spectral information alone, and in our
study we consider the use of environmental factors, such as pH, temperature (T), average
wind speed (AWS), wind direction (WD), precipitation (P), DO, sediment content (SC),
sediment transport rate (STR), etc., to compensate for this deficiency.

Based on the above background, our research objective was to develop a comprehen-
sive integrated framework for the trophic state inversion of water bodies, as shown in
Figure 1. Specifically, we focused on (i) combining regional remote sensing data and the key
environmental factors to compensate for the uncertainty of the traditional remote sensing
inversion model, (ii) developing a TSI inversion model applicable to large lakes in different
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trophic states, and (iii) using relevant optimization algorithms to improve the accuracy of
the model and applicability of the framework. We used Hongze Lake as a case study to
provide a practical example of how this integrated framework could be used. The aim was
to achieve the quantitative restoration of lake ecosystems.
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2. Study Area and Datasets
2.1. Study Area

Hongze Lake (33◦03′–33◦40′N and 118◦10′–118◦52′E), one of the largest freshwater
lakes in the lower reaches of the Huaihe River, is located in the western area of Jiangsu
Province, China, and has a surface area of approximately 1580 km2 [27]. The bottom of
Hongze Lake is flat and consists mainly of sediment and phytoplankton. As an important
source of the Huaihe River and an important reservoir for the South–North Water Transfer
Project, Hongze Lake plays an important role in climate regulation, ecological protection,
flood and drought prevention, agricultural irrigation, and as a source of drinking water [28].

The trophic state of Hongze Lake is mainly influenced by human activities such as
industrial production, the use of fertilizers and pesticides, and urban sewage discharge.
These activities lead to excessive accumulation of nutrients in the soil and water, which
then flow into the lake and gradually worsen eutrophication in Hongze Lake.

Although the field monitoring data show that the nutrient concentrations in Hongze
Lake, such as TP and TN, are slightly decreasing year by year [29], they remain at a
high level. The problem of eutrophication cannot be ignored, and there is a risk of algal
blooms which may harm the lake ecosystem and endanger human safety and produc-
tion activity [25]. Therefore, we took Hongze Lake as an example and used the inte-
grated framework that we had developed to assess its trophic state under the influence of
complex environments.
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2.2. Data Collection

The period of interest for this study is 2019–2020 when river dredging and remediation
projects were implemented in the Hongze Lake basin to remove redundant sediment from
the rivers entering the lake. A series of engineering measures contributed to improving the
mobility of water bodies, thereby improving the trophic state level.

2.2.1. Field Measurements

To comprehensively and objectively assess the environmental characteristics and
trophic state of the water in the study region, 16 sampling stations were distributed evenly
across the lake (Figure 2). From January 2019 to December 2020, we conducted a total
of 24 in situ field monitoring exercises to obtain hydrological and water quality data in
the middle and latter half of each month. Water environment indicators such as pH, DO,
SC, TP, TN, Chl-a, CODMn, and SD were obtained, and national water quality monitoring
requirements were strictly adhered to during the sampling, monitoring, and laboratory
analysis processes for all indicators.
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2.2.2. Remote Sensing Data

Sentinel-2 (S-2) is a high-resolution, multispectral imaging satellite consisting of two
complementary satellites, S-2A and S-2B, which were launched in 2015 and 2017, respec-
tively, together with a multispectral imager (MSI) sensor which contains 13 bands. The
European Space Agency (ESA) offers free downloads of satellite images. Compared to
other satellites such as MODIS, MERIS, and Landsat-8/OLI [30], S-2/MSI has a higher
spatial resolution (10 m, 20 m, and 60 m), and its revisit period is 5 days. The feasibility
of the TSI inversion algorithm varies considerably between different sensors because of
their various band configurations [31]. However, S-2/MSI has 3 special spectral bands
(vegetation red edge) that can be used to monitor trophic state changes in lakes [18,32].
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For trophic state assessment, this study retrieved 24 S-2/MSI images from the ESA
Data Center between January 2019 and December 2020. Because the study area was often
largely obscured by clouds, a total of 22 cloud-free images covering the study area were
obtained and used to construct the TSI inversion model. Moreover, the time interval
between these images and field monitoring data was less than five days.

2.2.3. Meteorological Data

Meteorological data corresponding to the sampling time were obtained from the
Hydrological Yearbook of the People’s Republic of China and NOAA’s National Climatic
Data Center. Variables of interest included T, P, WD, and AWS.

3. Methods
3.1. An Integrated Framework for TSI Inversion

An integrated framework employs multiple techniques and methods to invert the
TSI of water bodies. Based on the framework, the specific workflow for this study was as
follows (Figure 3):

1. Step 1: Data collection and collation, and identification of the main driving factors of
TSI. Complex environmental factors were used to compensate for the uncertainty of
remote sensing inversion.

2. Step 2: Quantification of the degree of influence of driving factors on TSI. Key envi-
ronmental factors were selected as the optional input variables for the model.

3. Step 3: Data preprocessing, outlier cleaning, etc., to obtain the data set.
4. Step 4: Construction and optimization of the TSI inversion model.
5. Step 5: Model accuracy assessment and temporal and spatial distribution mapping.

3.2. Data Preprocessing
3.2.1. Region of Interest Extraction

In this study, we used the B4, B3, and B2 of S-2/MSI images for true-color synthesis
and the support vector machine (SVM) method, a classification algorithm, was used to
extract water bodies (Figure 2). The SVM can achieve a balance between training accuracy
and promotion performance, effectively avoid the subjectivity of human-set thresholds
(e.g., NDWI [33], MNDWI [34], and AWEI [35]), and is more suitable for water bodies with
complex lake boundary structures and high feature space variability [36].

3.2.2. Preprocessing of Remote Sensing Images

In this study, preprocessing steps such as radiometric calibration and atmospheric
correction of S-2/MSI images were performed using the Sen2cor toolbox [23] to obtain
images of level L2A, which were used to characterize the surface water reflectance in the
study area. Additionally, SNAP and ENVI 5.6 were utilized for image preprocessing [15],
which included resampling to 10 m and image cropping, and due to the large area of
Hongze Lake and the MSI operational orbit settings, the S-2 single image could not cover
the study area. Therefore, it is necessary to use the Mosaicking toolbox in SNAP to mosaic
the two images from the same date. In addition, different spectral bands have different
sensitivities to the reflection and absorption properties of water bodies. To improve the
accuracy of the model, we processed band combinations of S-2/MSI data to improve
the response relationship between S-2/MSI data and TSI using the complementarity of
scientific principles between bands [13]. According to the correlation coefficients, 12 feature
combination bands were selected as the input variables of the model, and to avoid a high
degree of co-linearity between the input variables they were not exactly used the same
bands in the calculation process. The absolute values of the correlation coefficients for the
selected feature combination bands were all in the range of 0.29–0.38 (Table 1).
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Table 1. Correlation between band combination of S-2/MSI images and TSI.

No. Band Combination Correlation No. Band Combination Correlation

1 (B11 − B8)/(B11 + B8) −0.317 * 7 B12/B11 0.311 *
2 (B8A − B8)/(B8A + B8) −0.369 ** 8 (B8A − B6)/(B8A + B6) −0.352 **
3 (1.5B11 − (B8 + B3)/2)/(1.5B11 + (B8 + B3)/2) −0.308 * 9 (B8A − B7)/(B8A + B7) −0.380 **
4 B4/B1 0.305 10 B9/B3 −0.305
5 B8A/B5 −0.291 11 B9/B4 −0.306
6 B9/B5 −0.335 * 12 (B9 + B11)/(B3 + B4) −0.300

Pearson’s correlation coefficient. When a correlation is greater than 0, it means that the band combination is
positively correlated with the TSI value, and a correlation less than 0 indicates a negative correlation. The greater
the absolute value of correlation, the higher the correlation between the TSI value and the band combination.
* and ** indicate a significant correlation at the 0.05 (double-tailed), and 0.01 (double-tailed) levels, respectively.

3.2.3. Spectral Curve Outlier Removal

Large lakes have significant temporal and spatial variability in the distribution of
TSI and optically active substances in the water bodies because of variations in their
genesis and environment. Therefore, the optical characteristics of various regions vary
considerably [37]. The spectral curve is the energy distribution of light absorbed or emitted
by water, which is mainly determined by the components and optical characteristics of the
water. Additionally, when the water is in different trophic states, the reflectance of different
bands has different properties of absorption, scattering, and transmission [38]. To analyze
its optical characteristics, reflectance data extracted from S-2/MSI images were plotted as
spectral curves.

As shown in Figure 4a, there were nine monitoring points with spectral curve trends
which differed from the other points. The corresponding remote sensing pixel points
revealed that the degree of cloud coverage had a significant impact on these points, with
a cloud confidence degree of more than 25. Additionally, water vapor and aerosols had
an impact on the band reflectance. There were certain errors in the preprocessing of the
S-2/MSI images, and there were floating objects such as leaves in the lake, leading to errors
in the spectral curves at some points that were difficult to avoid. Therefore, the nine cloudy
monitoring points were eliminated.
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Figure 4b shows that the remaining monitoring points had the same spectral curve
trend. Additionally, the overall spectral reflectance of the water in Hongze Lake was
between 0 and 0.3, and the spectral curve reached the reflectance peak near B3 (Green) and
B5 (vegetation red edge) before gradually decreasing and approaching 0.

3.2.4. TSI Outlier Removal

Because of unavoidable mistakes in monitoring, transmission, or transcription, field
monitoring datasets usually contain outliers which deviate from the normal range [39]. To



Remote Sens. 2023, 15, 4238 8 of 24

ensure the reliability and accuracy of the datasets used in machine learning, it is necessary
to remove outliers from the large amount of data used in the study.

The interquartile range (IQR) principle of the box plot utilizes a nonparametric statis-
tic to identify outliers based on quartiles and interquartile ranges. This statistic has no
restrictions on the original data set, applies to all distribution types of outlier measurement,
and provides a more objective way to identify outliers. Therefore, in this study, we adopted
the IQR rule to clean the water environment data set.

The IQR rule sorts the original data from lowest to highest, taking 1/4 of the positions
as the lower quartile (Q1), 1/2 of the positions as the median (Q2), 3/4 of the positions
as the upper quartile (Q3), and the IQR as the difference between Q3 and Q1. When the
original value is greater than the sum of Q3 and 1.5 IQR or less than the difference between
Q1 and 1.5 IQR, it is considered an outlier.

As shown in Figure 5, there are two outliers in the TSI values calculated using the five
field monitoring water quality indicators, which occurred in April 2019 (TSI = 48.48) and
August 2019 (TSI = 65.96) and at sampling points S5 and S8, both of these are close to the
shore and more affected by human activities.
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Overall, the TSI of Hongze Lake was higher in summer than other seasons. In addition
to seasonal differences, TSI showed spatial differences. During the study period, the
Hongze Lake sampling point S5 was in light eutrophic state, with TSI of approximately
52.5. The water body of Hongze Lake represented by S11 and S12 sampling points were
connected to the Huaihe River and influenced by its change of the trophic state and
sediment content; as a result, the trophic state of these two points were higher than that of
other points, and their TSIs were 53.7 and 54.2, respectively.

3.3. TSI Inversion Model Based on Backpropagation Neural Network

Because of the complexity of the optical properties of the water in large lakes, the
relationships between environmental data, meteorological data, S-2/MSI data, and TSI
are complex and nonlinear. The BP-NN has significant advantages in solving nonlinear
problems [40].
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In this study, we initially constructed the TSI inversion model based on BP-NN, which
includes an input layer, implicit layer, and output layer. The input layer consists of highly
correlated meteorological and environmental factors as well as 12 feature combination
bands (RS) based on S-2/MSI data, and the output layer is the TSI inversion values. To
improve the generalization ability of the model, accelerate its training speed, and alleviate
the problem of gradient disappearance or explosion for this study, we normalized the data
in the input and output layers. The data normalization equation is as follows:

y =
x− xMin

xMax − xMin
(1)

where x is the measured value of the corresponding data for the input and output layer
parameters, xMin and xMax are the maximum and minimum values of the sample data, and
y is the normalized value corresponding to x.

The training number of the BP-NN model was set to 10,000 times, the learning rate
was set to 0.001, and the remaining parameters were kept as default values. To achieve the
best model-fitting effect, the model also tested the number of hidden layer sizes.

HiddenLayerSize =
√

n + m + α (2)

where n and m are the numbers of neuron nodes in the input and output layers, respectively,
and α is a random number between 1 and 10.

3.4. Optimization of Model Parameters Based on Sparrow Search Algorithm

The sparrow search algorithm (SSA) is a new swarm intelligence optimization algo-
rithm proposed in 2020 [41], based on the behavior of sparrows foraging and evading
predators, which has fewer control parameters, higher convergence performance, and local
search capability. The SSA algorithm outperforms the gray wolf optimization (GWO),
gravitational search algorithm (GSA), and particle swarm optimization algorithm (PSO) in
terms of accuracy, convergence speed, and stability [42,43].

Therefore, in this study, SSA was chosen to optimize the initial BP-NN weights and
thresholds. The algorithm divides the population into producers and followers, and the
producers in the model were set to 20% of the population. The number of sparrows
was 5, the safety threshold (ST) was 0.8, and the maximum number of iterations was 50.
Producers typically have high energy reserves and are responsible for searching for areas
with abundant food, providing foraging direction for all followers. When the alert value R2
is greater than ST, the sparrows engage in antipredator behavior and update the position
of the population to find an optimal solution.

The location of the producers was updated as follows:

xt+1
i,j =

{
xt

i,j × exp( −i
α×itermax

) R2 < ST
xt

i,j + Q× L R2 ≥ ST
(3)

where t is the current iteration, xt+1
i,j is the position of the i-th generation sparrow in the j-th

dimension in the t-th iteration, α∈(0,1] is a random number, itermax is the largest number of
iterations, R2∈[0,1] and ST∈[0.5,1.0] are random numbers, Q is a random number obeying
normal distribution, L is an all-1 matrix of 1×dim, and dim refers to the matrix dimension.
When R2 < ST, it means that there is no predator within the foraging range and producers
can search for food extensively; when R2 ≥ ST, it means that predators appear and all
producers need to fly to a safe area.

The location of the followers was updated as follows:

xt+1
i,j =

 Q× exp(
xt

wj−xt
i,j

i2 ) i > n
2

xt+1
p +

∣∣∣xt
i,j − xt+1

p

∣∣∣× A+ × L i ≤ n
2

(4)
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where xt
wj is the location of the sparrow with the worst adaptation in the t-th iteration and xt+1

p
is the location of the sparrow with the best adaptation in the t + 1-th iteration. A denotes a
matrix of 1 × dim with elements defined randomly as 1 or −1, and A+ = AT(AAT)−1. When
i > n/2, it indicates that the i-th follower has low fitness and is not eligible to compete for food
with the producer, and when i≤ n/2, the follower will find food at the optimal individual.

Based on the anti-predatory behavior of sparrows, the following formula is used to
update the location of the sparrow population:

xt+1
i,j =


xt

bj + β×
∣∣∣xt

i,j − xt
bj

∣∣∣ fi 6= fg

xt
bj + k×

(
xt

i,j−xt
bj

| fi− fw |+ε

)
fi = fg

(5)

where xt
bj is the global optimal position in the t-th iteration, β is the parameter that controls

the step size and obeys a normal distribution with a mean of 0 and a variance of 1. K, and
∈[−1, 1] is a random number. fi indicates the fitness value of the current individual, and
fg and fw indicate the fitness values of the global best and worst individuals, respectively.
When fi 6= fg, it means that the individual is at the edge of the population, and when fi = fw,
it means that the individual is at the center of the population and needs to move closer to
other individuals to stay away from danger.

3.5. Model Accuracy Assessment

The accuracy of the model can be assessed using the coefficient of determination
(R2), root mean square error (RMSE), mean absolute percentage error (MAPE), and mean
absolute deviation (MAD). These four assessment parameters are calculated using the
following formulae:

R2 = 1− ∑n
i=1 (ti − yi)

2

∑n
i=1 (ti − t)2 (6)

RMSE =

√
1
n

n

∑
i=1

(ti − yi)
2 (7)

MAPE =
100
n
×

n

∑
i=1

∣∣∣∣ ti − yi
ti

∣∣∣∣ (8)

MAD =
∑n

i=1|ti − yi|
n

(9)

where t is the TSI value calculated using the field monitoring data, y is the TSI value
estimated with the model, n is the number of all samples, and n = 341.

4. Results
4.1. Selection of Key Factors Driving Eutrophication

Based on several indicators collected in this study, we selected six typical meteoro-
logical and environmental factors for analysis: pH, T, AWS, DO, SC, and P. The Pearson
correlation coefficients (PCC) between the TSI and these factors were calculated and the
influence of these factors on the trophic state of the study area was assessed.

As shown in Figure 6, there was a significant correlation between pH and TSI, as
well as between pH and key indicators (Chl-a, CODMn, and SD), with a PCC of at least
0.3. Using principal component analysis and redundancy, some researchers concluded
that pH was the main environmental impact factor in Hongze Lake [44]. Therefore, pH
(PCC = −0.58) can be used as an input variable. T was weakly correlated with TSI but
T and other key indicators, such as TP and CODMn, had a strong correlation. Moreover,
there was a correlation between TSI and AWS, and the PCC between AWS and TP was
0.52. According to previous research [45], T and AWS are the main factors contributing to
eutrophication in water and the outbreak of algal blooms. Therefore, T (PCC = 0.15) and
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AWS (PCC = −0.27) can be used as input variables for the model. In the study area, SC
was significantly correlated with TSI, and there was a strong correlation between SC, TP,
and TN. In addition, Hongze Lake is the product of the convergence of the Yellow River
and the Huaihe River, and the volume of incoming sediment is greater than the outgoing
sediment [46]. Hongze Lake shows an overall siltation trend. As a result, the dynamics
of SC play a crucial role when studying the changing processes of the trophic state. SC
(PCC = 0.26) was therefore used as one of the optional input variables in this study.
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Additionally, the PCC between DO and T was very high (PCC = −0.81). However,
there was no significant correlation between DO and TSI, probably because the DO con-
centrations were primarily in the range of 8–12 mg/L with insignificant trends during the
study period. Therefore, the impact of DO on TSI was excluded. The impact of P on TSI
was disregarded because there was no significant correlation between P and TSI or other
important indicators.

4.2. Trophic State of Water

A TSI-based method was proposed by the National Environmental Monitoring Center
(NEMC) in 2001 [45] to assess the trophic state of rivers and lakes. This method integrates
five trophic indicators: TP, TN, Chl-a, CODMn, and SD, where Chl-a is used as a refer-
ence parameter to determine the weighting coefficients of the five indicators in the TSI
calculation, which are 0.1879, 0.1790, 0.2663, 0.1834 and 0.1834, respectively.

This study used TSI to quantify the trophic state of water bodies. The level of eu-
trophication increases as the TSI increases. The criteria for TSI classification are shown
in Table 2:
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Table 2. TSI classification standard.

Trophic State Index Grading Range Degree of Water Eutrophication

TSI < 30 Oligotrophic
30 ≤ TSI ≤ 50 Mesotrophic
50 < TSI ≤ 60 Light eutrophic
60 < TSI ≤ 70 Middle eutrophic

TSI > 70 Hyper eutrophic

According to the calculation results, the trophic state of Hongze Lake is more frequent
in the mesotrophic and light eutrophic ranges, with a TSI between 40 and 60. Several
monitoring sites were in the middle eutrophic (Figure 5).

4.3. Performance Comparison of the TSI Model with Environmental Factors

According to Figure 6, the four key factors available for the TSI inversion model were
identified. These were randomly arranged and combined with RS to produce a total of 17
different combinations of input variables for the model. There were five groups; Zero-index
indicates that S-2/MSI data only were used as input variables; Single-Index, Double-Index,
Three-Index, and Four-Index indicate that n key factors and RS were combined as input
variables, and n was 1, 2, 3, and 4, respectively. As shown in Table 3.

Table 3. Different input variable combination patterns considering environmental factors.

Group Input Variables

Zero-Index No.1.Band reflectance, No.2.RS
Single-Index No.3.pH&RS, No.4.T&RS, No.5.AWS&RS, No.6.SC&RS

Double-Index No.7.pH&T&RS, No.8.pH&AWS&RS, No.9.pH&SC&RS,
No.10.T&AWS&RS, No.11.T&SC&RS, No.12.AWS&SC&RS

Three-Index No.13.pH&T&AWS&RS, No.14.pH&T&SC&RS,
No.15.pH&AWS&SC&RS, No.16.T&AWS&SC&RS

Four-Index No.17.pH&T&AWS&SC&RS
Band reflectance refers to the single-band reflectance of S-2/MSI. RS refers to the reflectance of the 12 feature
combinations shown in Table 1. No.2 can be used as a reference object to assess the accuracy-improving ability of
other model input variables.

To optimize the accuracy of the model, avoid overfitting, and simplify the subsequent
model training effort, this study employed No.17 as the basis for determining the hidden
layer size of the model. As shown in Table 4.

Table 4. Influence of hidden layer size on accuracy of the model (No.17 pH&AWS&T&SC&RS). The
No.7 test shows the optimal hidden layer size.

No. Hidden Layer Size R2 RMSE MAPE MAD

1 5 0.802 2.017 3.067 1.265
2 6 0.808 1.960 2.986 1.168
3 7 0.857 1.672 2.558 1.082
4 8 0.875 1.584 2.430 0.997
5 9 0.868 1.619 2.492 1.029
6 10 0.918 1.280 1.954 0.798
7 11 0.936 1.133 1.660 0.604
8 12 0.931 1.168 1.650 0.599
9 13 0.870 1.601 2.351 0.908

10 14 0.818 1.907 3.043 1.186
The results show that the model achieves its highest accuracy and the error tends to be stable when the hidden
layer size is set to 11. Therefore, the hidden layer size in the subsequent model training was set to 11.
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4.3.1. Performance Comparison of TSI Model Based on BP-NN

A total of 22 images were selected for the study after cloud coverage screening of
S-2/MSI images. The S-2/MSI images were preprocessed, and a total of 352 samples were
obtained covering the period from 2019 to 2020 by combining 16 monitoring locations in
the study area (Figure 2). A total of 11 outliers were removed based on the spectral curve
(Figure 4) and the IQR principle (Figure 5). Therefore, the model had 341 samples, of which
10% were randomly extracted as the test.

The distribution of the estimated and measured TSI when Zero-Index was used as
the input to the BP-NN model is shown in Figure 7. It can be observed that the accuracy
of the model improved to some degree after using the RS as input variables. The R2 has
improved from 0.322 to 0.469.
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The results of Sinlge-Index being used as the input to the BP-NN model are shown in
Figure 8. No.3 (pH&RS) had the highest accuracy (R2 = 0.688, RMSE = 2.518, MAPE = 3.941%,
MAD = 1.736), which was 46.7% better than reference object. No.4 (T&RS) had the lowest
accuracy (R2 = 0.475, RMSE = 3.248, MAPE = 5.395%, MAD = 2.293), which was only 1.3%
better than the reference object. In addition, the accuracy of the model was similar when
No.5 (AWS&RS) and No.6 (SC&RS) were used as the input variables.

The results of Double-Index being used as the input to the BP-NN model are shown in
Figure 9. The accuracy (R2) of the six different input variables ranged between 0.578
and 0.811. When pH was the dominant factor, the model was more accurate. No.8
(pH&AWS&RS) had the highest accuracy (R2 = 0.811, RMSE = 1.939, MAPE = 2.836%,
MAD = 0.996) which was 72.9% better than the reference object. No.11 (T&SC&RS) had
the lowest accuracy (R2 = 0.578, RMSE = 2.887, MAPE = 4.515%, MAD = 1.983) which was
only 23.2% better than the reference object. In addition, it could be observed that when the
Double-Index was used as the input variable, the accuracy of the model was greater than
when the Single-Index was employed.
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The results of Three-Index being used as the input to the BP-NN model are shown in
Figure 10. The R2 of the model was in the range of 0.66–0.81. No.13 (pH&T&AWS&RS) had
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the highest accuracy (R2 = 0.809, RMSE = 1.928, MAPE = 2.973%, MAD = 1.122), which
was 72.5% better than the reference object. In addition, the accuracy of the model was
higher when the Three-Index was used as the input variable than when the Double-Index
was employed.
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The results of Four-Index being used as the input to the BP-NN model are shown
in Figure 11. This had the highest accuracy (R2 = 0.834, RMSE = 1.790, MAPE = 2.679%,
MAD = 1.030), which was 77.8% better than the reference object.
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4.3.2. Performance Comparison of the TSI Model Based on SSA-BP-NN

When trained using Four-Index, the BP-NN achieved its highest accuracy of 0.834,
which met the requirement but did not have outstanding advantages in the TSI inversion.
SSA is used to optimize the weights and thresholds of the BP-NN model to improve
its accuracy and generalization ability. Here, we trained the SSA-BP-NN model with
Three-Index and Four-Index to explore the ability of SSA to improve the model.

The results of Three-Index being used as the input to the SSA-BP-NN model are shown
in Figure 12. In particularly, the highest accuracy (R2 = 0.915, RMSE = 1.325, MAPE = 1.964%,
MAD = 0.739) was achieved when No.15 (pH&AWS&SC&RS) was used as input to the
model, which met the accuracy requirements for TSI assessment. These results were
significantly better than those of BP-NN models with the same input variables (Figure 10),
for which the accuracy improved by 10.8%, 19.5%, 14.9%, and 17.9%, respectively.

Remote Sens. 2023, 15, x FOR PEER REVIEW 18 of 26 
 

 

significantly be er than those of BP-NN models with the same input variables (Figure 10), 
for which the accuracy improved by 10.8%, 19.5%, 14.9%, and 17.9%, respectively. 

 
Figure 12. Performance of TSI inversion model based on SSA-BP-NN (Three-Index). 

When Four-Index was used as the input, the SSA-BP-NN model achieved the highest 
accuracy (R2 = 0.936, RMSE = 1.133, MAPE = 1.660%, MAD = 0.604), as shown in Figure 13. 
Compared to the BP-NN results, the overall accuracy increased by 12.3% (Figure 11). 

 
Figure 13. Performance of TSI inversion model based on SSA-BP-NN (Four-Index). 

Figure 12. Performance of TSI inversion model based on SSA-BP-NN (Three-Index).

When Four-Index was used as the input, the SSA-BP-NN model achieved the highest
accuracy (R2 = 0.936, RMSE = 1.133, MAPE = 1.660%, MAD = 0.604), as shown in Figure 13.
Compared to the BP-NN results, the overall accuracy increased by 12.3% (Figure 11).

In this study, 10% of the 341 samples were randomly selected as a test set to assess the
generalization ability of the model. The results are shown in Figure 14.

In Figure 14, the TSI estimated with the SSA-BP-NN model and the TSI measured from
the field data are indicated by the blue and red lines, respectively. It can be observed that
the model fits well and can be applied to the TSI inversion and prediction of the trophic
state in large lakes. It can provide a real-time early warning of the eutrophication level of
the lake ecosystem if the environmental factors are guaranteed.
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We calculated the accuracy of the model for different inputs as shown in Figure 15.
The analysis results show that the TSI inversion model based on SSA-BP-NN established in
this study has good accuracy enhancement capability and reliability, and the model error is
within the acceptable range. In addition, the accuracy of the model improved by 6.7% and
79.5% for No.10 and No.1, respectively.

In addition, we further analyzed the inversion ability of the model for different trophic
states of water when Three-Index and Four-Index were used as input variables. The results
show (Figure 16) that the model identified the mesotrophic state (30 ≤ TSI < 50) with the
highest accuracy. Although the identification accuracy of light eutrophic (50 < TSI ≤ 60)
decreased slightly, the overall accuracy remained high. When Four-Index was used as
the input to the model, the assessment errors of the different trophic states were small.
When the eutrophication level of the water bodies was higher (TSI > 60), the assessment
errors were smaller than the results when the Three-Index was used as input variables.
This shows that the TSI inversion model established in this study is appropriate for the TSI
inversion of large lakes in different trophic states.
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4.4. Temporal and Spatial Distribution of Trophic State

Here, using the comprehensive integrated framework, the TSI temporal and spatial
distribution of Hongze Lake from 2019 to 2020 (Figure 17) was mapped by combining four
key environmental factors and S-2/MSI data.
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The model fitting results for the trophic state of Hongze Lake from 2019 to 2020
indicated that the whole lake had a rich trophic state during the summer and a poor trophic
state during the winter. This is consistent with the changing trend of the water quality data.
The primary reason for this phenomenon is the increase in temperature and rainfall within
the study area during the summer. These factors lead to nutrients sinking into the lake
via surface runoff, which restores the biochemical activity of the water and accelerates the
growth rate, thereby intensifying the overall trophic state of the water.

It is worth noting that the trophic state of Hongze Lake in 2020 showed a decreasing
trend compared with 2019, and this was most obvious in February. The results indicate that
the river dredging and remediation project and the South–North Water Transfer Project
conducted in the Hongze Lake basin were conducive to improving the trophic state of the
study area.

Furthermore, the trophic state revealed more obvious spatial differences. The overall
trophic state of the western and northern lake districts was higher than that of the eastern
lake district [47]. The reason for this difference could be that the eastern lake district
comprises the primary flowing water area of Hongze Lake, with higher water transparency,
stronger water disturbance, and lower nutrient levels (e.g., TP, TN) than in the other
areas, and therefore the degree of eutrophication is lower. The western and northern lake
districts are relatively closed and less mobile. In addition, agriculture and fisheries are more
developed around the western and northern lake districts and disturbance from human
activities is greater, which makes nutrients such as algae multiply rapidly, resulting in a
higher trophic state [48]. Moreover, with the water color change characteristics in Hongze
Lake in Figure 2, the water color in the western and northern lake districts was substantially
darker than that in the eastern lake district, confirming that the higher water mobility in
the eastern lake and demonstrating that our results were accurate.

Unfortunately, the eutrophication level at the lake boundary of Hongze Lake is sig-
nificantly higher than at its center, particularly in the summer. This may be due to the
complexity of the lake edge and the difficulty in avoiding errors during the extraction of
water, resulting in the misclassification of part of the land as a water body and the difference
in optical properties between land and water. Equally, the water edge is more susceptible to
human activities and other factors. Numerous factors contribute to a certain degree of error
at the edge of our model results. Therefore, further refinement of the model is required to
address such problems.

5. Discussion
5.1. Construction and Assessment of the TSI Inversion Framework

The integrated framework constructed in this study has broad application potential,
which provides an integrated approach to the assessment of the trophic state of lake
ecosystems. The framework is superior to existing inversion methods because it takes the
special environmental characteristics of the region and incorporates field monitoring data,
remote sensing data, multiple data processing methods, and machine learning algorithms. It
also uses a comprehensive TSI indicator [22] which can more accurately invert the temporal
and spatial variation characteristics of the trophic state. Firstly, through statistical analysis,
we correlated the multisource data with TSI to identify the input variables of the model.
Secondly, we constructed a nonlinear black box model by combining machine learning
with new swarm intelligence optimization algorithms [40,41] with good convergence
performance and local search capability. The application of this integrated algorithm
effectively improved the prediction and generalization capabilities of the model [42]. Finally,
according to the results of the case study, unlike previous studies, this integrated framework
combined multi-source data with multiple methods and models, which avoids the limited
scope of trophic state’s identification due to the limitation of the S-2/MSI spectral bands
and other factors [23,49]. This framework can not only be applied to lakes with a high
frequency of algal bloom outbreaks but can also achieve high accuracy in the inversion
and assessment of TSI for water bodies in a medium trophic state. This result shows that
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our integrated framework can be applied for the assessment of the trophic state of lake
ecosystems taking account of the special environmental features of the region and can
provide a reference for the development of effective management strategies to improve the
water quality of Hongze Lake and other similar lakes.

5.2. Selection of the Input Variables

In the process of constructing the framework, to overcome the limitation of using single
or multiple indicators, we selected TSI as a comprehensive indicator to assess the trophic
state of lakes. TSI includes several trophic indicators that can quickly assess the trophic state
of lakes [23]. For S-2/MSI data, we eliminated outliers by analyzing the trend of the spectral
curve. To increase the correlation between S-2/MSI data and TSI, the band combination
of S-2/MSI data was performed on the basis of avoiding covariance [13,38]. For the field
monitoring data, the IQR principle [23] was selected for data set cleaning to ensure the
reliability of the input data. The use of these methods avoids the influence of outliers in
the data set on the estimated results. In addition, through statistical analysis, we added
new information sources (pH, T, AWS, and SC) that are important environmental factors
affecting trophic state changes in the study area to enhance the adaptability of the framework.
According to related studies [44–46], these indicators are all major variables influencing
events such as eutrophication and algal bloom outbreaks in lakes. The combination of
S-2/MSI data enables rapid identification of pollution sources and analysis of the temporal
and spatial characteristics of trophic states under the influence of complex environments [9].
Based on this, we were able to achieve a trophic state identification accuracy higher than 90%.
However, the application performance of the framework was limited by field monitoring
when environmental factors were absent as model inputs. We encourage other researchers
to apply the framework to other lakes to further optimize our approach.

5.3. Limitations and Future Perspectives

Although the integrated framework has strong application prospects, it nevertheless
depends on remote sensing data and field monitoring data, and therefore its application
may be limited in remote areas or for lakes that lack field monitoring data. In future research,
more remote sensing sources can be considered to explore the use of emerging technologies
such as the use of unmanned aerial vehicles to obtain high-resolution water quality data,
thus further extending the application of the framework. In this study, key environmental
factors were added to enhance the adaptability of the framework; however, only a few
factors were taken into account. Lake ecosystems are extremely complex and are also
affected by hydrodynamic processes, climate change, human activities, and other factors.
To further understand the changing trophic state of lakes, other significant environmental
factors could be explored and incorporated into the framework. Finally, the integrated
framework primarily relies on machine learning algorithms for model construction and
optimization, and other machine learning models, such as convolutional neural network
(CNN), random forest (RF), logistic regression (LR), XGBoost, etc., could be considered
for incorporation in future studies to further improve the accuracy and adaptability of the
framework.

In summary, although the integrated framework achieved significant results in trophic
state assessment, it still has some limitations. The adaptability of the framework to different
lakes could be improved by further expanding data sources, taking additional representa-
tive environmental factors into consideration, and integrating multiple models.

6. Conclusions

In this study, our aim was to provide a comprehensive integrated framework which
incorporated multiple data sources and methods and inverted the TSI indicator to assess
the trophic state of lakes. We applied the developed framework to a typically large and
complex lake in China (Hongze Lake). Key meteorological and environmental factors (pH,
T, AWS, and SC) affecting the TSI were selected using statistical analysis and combined with
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S-2/MSI data as input variables for the model. All of these indicators are closely related to
the degree of eutrophication and can provide new sources of information. We constructed
the SSA-BP-NN model and used R2, RMSE, MAPE, and MAD to assess the performance
of the model in this framework. When Four-Index was used as the input variables to the
model before and after the dredging and remediation project in Hongze Lake during the
study period (n = 341), the R2 of TSI inversion reached 0.936, which could compensate for
the shortcomings of remote sensing TSI inversion. The results of the case study indicate
that the integrated framework could successfully assess the temporal–spatial trophic state
of large lakes. In the future, more data may be acquired to optimize the inversion model in
the framework and combine various machine learning and deep learning algorithms to
improve its application and generalization capability.
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