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Abstract: The most frequent and noticeable natural calamity in the Karakoram region is landslides.
Extreme landslides have occurred frequently along Karakoram Highway, particularly during mon-
soons, causing a major loss of life and property. Therefore, it is necessary to look for a solution
to increase growth and vigilance in order to lessen losses related to landslides caused by natural
disasters. By utilizing contemporary technologies, an early warning system might be developed.
Artificial neural networks (ANNs) are widely used nowadays across many industries. This paper’s
major goal is to provide new integrative models for assessing landslide susceptibility in a prone
area in the north of Pakistan. To achieve this, the training of an artificial neural network (ANN)
was supervised using metaheuristic and Bayesian techniques: Particle Swarm Optimization (PSO)
algorithm, Genetic algorithm (GA), Bayesian Optimization Gaussian Process (BO_GP), and Bayesian
Optimization Tree-structured Parzen Estimator (BO_TPE). In total, 304 previous landslides and the
eight most prevalent conditioning elements were combined to form a geospatial database. The models
were hyperparameter optimized, and the best ones were employed to generate susceptibility maps.
The obtained area under the curve (AUC) accuracy index demonstrated that the maps produced by
both Bayesian and metaheuristic algorithms are highly accurate. The effectiveness and efficiency of
applying ANNs for landslide mapping, susceptibility analysis, and forecasting were studied in this
research, and it was observed from experimentation that the performance differences for GA, BO_GP,
and PSO compared to BO_TPE were relatively small, ranging from 0.32% to 1.84%. This suggests
that these techniques achieved comparable performance to BO_TPE in terms of AUC. However, it is
important to note that the significance of these differences can vary depending on the specific context
and requirements of the ML task. Additionally, in this study, we explore eight feature selection
algorithms to determine the geospatial variable importance for landslide susceptibility mapping
along the Karakoram Highway (KKH). The algorithms considered include Information Gain, Variance
Inflation Factor, OneR Classifier, Subset Evaluators, principal components, Relief Attribute Evaluator,
correlation, and Symmetrical Uncertainty. These algorithms enable us to evaluate the relevance
and significance of different geospatial variables in predicting landslide susceptibility. By applying
these feature selection algorithms, we aim to identify the most influential geospatial variables that
contribute to landslide occurrences along the KKH. The algorithms encompass a diverse range of
techniques, such as measuring entropy reduction, accounting for attribute bias, generating single
rules, evaluating feature subsets, reducing dimensionality, and assessing correlation and information
sharing. The findings of this study will provide valuable insights into the critical geospatial variables
associated with landslide susceptibility along the KKH. These insights can aid in the development of
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effective landslide mitigation strategies, infrastructure planning, and targeted hazard management
efforts. Additionally, the study contributes to the field of geospatial analysis by showcasing the
applicability and effectiveness of various feature selection algorithms in the context of landslide
susceptibility mapping.

Keywords: artificial neural networks; Bayesian techniques; metaheuristic techniques; hyperparameters;
feature selection techniques; land sliding

1. Introduction

Artificial neural networks are utilized to solve a range of issues in industries, like
banking, manufacturing, electronics, and medicine, among others [1]. The backpropagation
approach is typically used to train neural networks [2,3]. The backpropagation method can
be trained using a variety of algorithms, including gradient descent, conjugate gradient
descent, robust, BFGS quasi-Newton, one-step secant, Levenberg–Marquardt, and Bayesian
regularization [4]. Some characteristics, such as the number of hidden layers and the
number of neurons in each layer, must be defined during the design and training of an
ANN; these aspects vary depending on the particular application. There is not a standard,
clear approach for selecting these settings. It is utilized in a way that is almost like trial and
error, but it requires more computing time and is not very accurate. Therefore, it is required
to propose a method to choose the ideal set of parameters that will have the greatest impact
on ANN performance.

From the literature, it can be inferred that metaheuristic optimization algorithms
have effectively been employed to overcome the computing limitations of traditional
landslide predictive models, hence enhancing their performance. The local minimum
trap could become a barrier to precise estimations when it comes to ANNs. But recent
research has demonstrated that by using metaheuristic techniques, such computational
problems can be resolved [5]. Testing novel metaheuristic methods is an important step
toward discovering more efficient models, but, as well-known optimizers (such as the
PSO and GA) have been sufficiently evaluated. This study’s main objective is to assess the
effectiveness of four optimization strategies—Particle Swarm Optimization (PSO), Genetic
algorithm (GA), Bayesian Optimization Gaussian Process (BO-GP), Bayesian Optimization
Tree-structured Parzen Estimator (BO-TPE) —in combination with artificial neural networks
(ANN) to produce a map of the KKH region’s susceptibility to landslides in northern areas
of Pakistan [6].

In the context of artificial neural networks (ANNs), optimization algorithms, such as
PSO, GA, and Bayesian Optimization, have been widely used to improve the performance
of ANNs in various classification tasks [7]. The following are some specific examples of
their applications in the context of ANNs for data classification:

Particle Swarm Optimization (PSO) for ANN

1. PSO has been used to optimize the weights and biases of the ANN to improve its
classification accuracy. By searching the weight space, PSO helps to find the optimal set of
weights that minimize the prediction error and maximize the classification performance.

2. PSO has been applied to optimize the architecture of the ANN, including the number
of hidden layers and the number of neurons in each layer. It helps to determine the
optimal network structure that suits the complexity of the classification problem.

Genetic Algorithm (GA) for ANN

1. GA has been used to train ANNs by adjusting the weights and biases of the network.
By applying genetic operators, such as crossover and mutation, GA explores the
search space of weight configurations to find the best set of weights that lead to
improved classification accuracy.



Remote Sens. 2023, 15, 4330 3 of 36

2. GA has been employed to optimize the architecture of the ANN, including the number
of hidden layers and neurons. By evolving populations of networks with different
architectures, GA helps to identify the optimal network structure that achieves better
classification performance.

Bayesian Optimization for ANN

1. Bayesian optimization has been used to optimize the hyperparameters of ANNs,
such as learning rate, regularization strength, and network architecture. By lever-
aging Bayesian inference, it explores the hyperparameter space to find the optimal
configuration that maximizes the classification accuracy.

2. Bayesian optimization has been applied to tune the activation functions, dropout rates,
and other architectural choices of ANNs. It helps to identify the best combinations of
these hyperparameters that result in improved classification performance.

In all these cases, the optimization algorithms (PSO, GA, and Bayesian optimization)
play a crucial role in training and fine-tuning ANNs for data classification. They help to
search for optimal weights, biases, and hyperparameter configurations, allowing ANNs to
achieve higher accuracy and better generalization in classification tasks [8]. By tuning the
weights and biases, these algorithms supervise the performance of the ANN in predicting
the landslide susceptibility index (LSI). In the context of predicting landslide susceptibility
using artificial neural networks (ANNs), the weights and biases of the network are adjusted
or tuned by the optimization algorithms (such as Genetic Algorithms, Particle Swarm
Optimization, or Bayesian Optimization) to improve the performance of the ANN in
predicting the landslide susceptibility index (LSI). The weights and biases in an ANN
determine the strength and influence of the connections between neurons in different
layers. By adjusting these parameters, the ANN can learn and adapt to the patterns and
relationships present in the input data, which in this case are the conditioning elements used
to assess landslide susceptibility. During the training phase, the optimization algorithms
iterate through different combinations of weights and biases, evaluating the performance
of the ANN based on a defined metric (e.g., accuracy and area under the curve). The
algorithms aim to find the set of weights and biases that minimize the prediction error or
maximize the performance metric, ultimately leading to a more accurate prediction of the
LSI. The optimization algorithms use various strategies, such as gradient descent, genetic
operators (crossover and mutation), or probabilistic modeling, to explore the search space
of weight and bias combinations [9–13]. Through iterations and feedback from evaluating
the ANN’s predictions, the algorithms progressively adjust the weights and biases to
converge towards an optimal solution that yields the best performance in predicting the
LSI. By continuously fine-tuning the weights and biases, these optimization algorithms
guide the ANN to learn and generalize patterns from the training data, enabling the model
to make more accurate predictions of landslide susceptibility based on the conditioning
elements. This iterative optimization process helps to improve the effectiveness of the ANN
in capturing the complex relationships between the input features and the LSI, leading to
more reliable and accurate predictions of landslide susceptibility.

In addition to discussing the fine-tuning of ANNs using metaheuristic and Bayesian
algorithms, this study also addresses the challenge of identifying the geospatial variable
importance for landslide susceptibility mapping. To achieve this, we employ eight differ-
ent feature selection algorithms: Information Gain, Variance Inflation Factor (VIF), OneR
Classifier, Subset Evaluators, principal components, Relief Attribute Evaluator, correlation,
and Symmetrical Uncertainty. Each algorithm brings a unique approach to assessing the
relevance and significance of geospatial variables in predicting landslide occurrences. The
selection of these feature selection algorithms offers a comprehensive evaluation of different
approaches to geospatial variable importance assessment. By leveraging these algorithms,
we aim to uncover the most influential variables that contribute to landslide susceptibility
mapping in our case study. The outcomes of this research will provide valuable insights for
hazard management, infrastructure planning, and proactive decision making to mitigate
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the risks associated with landslides along this critical transportation corridor. This study
not only contributes to the specific context of landslide susceptibility mapping along the
KKH, but also has broader implications for geospatial analysis and hazard management.
The findings will enhance our understanding of the geospatial variables influencing land-
slide occurrences and serve as a foundation for future research and the development of
effective strategies to reduce landslide risks in mountainous regions. Analyzing feature
selection algorithms helps in identifying the most important geospatial variables for land-
slide susceptibility mapping. This deepens our understanding of the specific variables that
contribute to landslide occurrences along the KKH in Pakistan. By uncovering the key
variables, we can gain valuable insights into the underlying mechanisms and processes
that influence landslide susceptibility. By determining the geospatial variable importance,
we can refine landslide prediction models and improve the accuracy of landslide suscep-
tibility maps. Focusing on the most relevant variables allows us to develop more precise
and reliable mapping methodologies. This, in turn, enables better hazard assessment,
infrastructure planning, and land management decisions along the KKH.

Analyzing geospatial variable importance helps in proactive hazard management
along the KKH. With a better understanding of the critical variables, authorities and stake-
holders can implement targeted measures to minimize the risks associated with landslides.
This includes implementing early warning systems, designing effective slope stabilization
measures, and adopting appropriate land use planning strategies. By identifying the most
influential geospatial variables, analyzing feature selection algorithms enables optimal
resource allocation for landslide mitigation efforts. Instead of allocating resources uni-
formly across all variables, decision makers can prioritize and allocate resources to monitor,
manage, and mitigate the variables that have the greatest impact on landslide susceptibility.
This ensures the efficient utilization of limited resources for effective hazard management.
Geospatial variable importance analysis contributes to informed infrastructure planning
and design along the KKH. By understanding the key variables that influence landslide
susceptibility, engineers and planners can incorporate appropriate measures to reduce
the vulnerability of infrastructure to landslides. This includes considering geotechnical
investigations, slope stabilization techniques, and route optimization to minimize exposure
to high-risk areas. The findings from analyzing feature selection algorithms for geospatial
variable importance can be applied beyond landslide susceptibility mapping. The knowl-
edge gained can inform similar geospatial analysis tasks in other regions facing similar
challenges. The insights obtained can guide researchers and practitioners in assessing
the importance of variables for various geospatial phenomena and developing targeted
mitigation strategies.

In summary, analyzing feature selection algorithms for geospatial variable importance
in the context of landslide susceptibility mapping along the KKH offers several benefits. It
enhances our understanding of landslide mechanisms, improves prediction and mapping
accuracy, facilitates proactive hazard management, optimizes resource allocation, informs
infrastructure planning, and provides valuable insights for broader geospatial analysis
tasks. These benefits contribute to safer infrastructure, reduced risks, and more effective
decision making for landslide-prone areas. Overall, by combining advanced feature se-
lection algorithms with geospatial analysis, this study aims to provide a comprehensive
understanding of the geospatial variable importance for landslide susceptibility map-
ping along the KKH, ultimately contributing to safer infrastructure and improved hazard
management in the region. We also employ advance hyper optimization techniques to
optimize the ANN model with the aim of maximizing the predictive capabilities of machine
learning algorithms, using both hyperparameter and feature optimization techniques to
give insight into complex phenomena, like landslides, and to optimize complex modeling
techniques. It is essential to identify advance modeling techniques, such ensemble methods
like Random Forests and Gradient Boosting, that are effective in handling the intricate
interactions between different variables. They can capture nonlinear relationships, account
for missing data, and highlight the significance of particular features. Geospatial data
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analysis offers a valuable perspective. By integrating Geographic Information System (GIS)
techniques, spatial relationships and topographical features can be incorporated into the
analysis. Techniques like spatial statistics, including variogram analysis, can identify spatial
autocorrelation, providing insight into patterns and correlations [14–16]. Advanced models
can also be combined using ensemble methods for spatial analysis. Stacking or bagging, for
example, allow for the amalgamation of distinct models, thereby leveraging the strengths
of individual models to improve predictive accuracy. Deep Learning, specifically Convo-
lutional Neural Networks (CNNs), comes into play when satellite or aerial imagery data
are available. CNNs can extract pertinent features from images, capturing spatial patterns
and texture information that are indicative of landslide susceptibility. Hybrid approaches
that combine diverse data sources—such as remote sensing data, topographical data, and
historical landslide records—can yield a comprehensive set of input features for the models
being used in this study, enriching the understanding of susceptibility variables [17,18].
For situations where temporal dynamics are influential, models that incorporate both
spatial and temporal features can provide a more accurate representation of landslide
susceptibility changes over time. Moreover, Bayesian Network Models offer a probabilistic
perspective, enabling the capture of intricate relationships among variables and providing
a visualization of causal connections that contribute to landslide susceptibility. To strike
a balance between predictive accuracy and interpretability, hybrid geostatistical models
can merge geostatistical methods (e.g., kriging) with machine learning models, thereby
considering spatial autocorrelation in predictions.

The main objective of this paper is to comprehensively investigate and improve the
accuracy of landslide susceptibility mapping through the integration of various methodolo-
gies. This includes delineating the study area, identifying relevant landslide conditioning
variables, generating susceptibility maps using the specified methodology, exploring differ-
ent feature selection techniques to assess geospatial variables, and employing advanced
hyperparameter techniques like Bayesian and Metaheuristic methods. The primary aim is
to evaluate the effectiveness of these approaches and techniques in enhancing the accuracy
of landslide susceptibility predictions, thereby contributing to a deeper understanding of
landslide dynamics and potential mitigation strategies. This paper is structured into vari-
ous sections. Section 2 delves into elucidating the study area and the variables contributing
to landslides. In Section 3, the methodology employed for generating susceptibility maps
is expounded upon. Section 4 elucidates the utilization of eight distinct feature selection
techniques, each assessing geospatial variables based on criteria elucidated in detail within
that section. Section 5 provides insight into the application of Bayesian and Metaheuristic
hyperparameter techniques. The evaluation of the results obtained from our experiment is
covered in Section 6.

1.1. Architecture of Artificial Neural Network

The architecture of the Artificial Neural Network (ANN) for landslide susceptibility
mapping can be described as the input layer of the ANN, which receives the relevant data
or features related to landslide susceptibility in the KKH region. These features may include
variables such as geological characteristics, slope angles, aspect, geological properties, and
land cover. The number of neurons specific to each setting, such as activation function,
batch size, and epochs for each technique determined during the design and training of the
ANN for BO_GP, BO_TPE, PSO, and GA, are mentioned in Table 1 below.

Table 1 represents the experimental results of different hyperparameter optimization
techniques applied to ANN. Each row in the table corresponds to a different optimization
technique, and the columns represent the evaluated performance metrics or hyperparameters.

The activation function is a crucial component of ANNs, as it introduces nonlinearity
and affects the network’s ability to model complex relationships. The table provides
information about the activation functions used for each technique, such as “sgd”, “tanh”,
and the value “1.742” for PSO.
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Table 1. The information given includes the hyperparameters related to the optimization techniques
(PSO, GA, BO_GP, and BO_TPE).

HOP Technique Activation Batch Size Epochs Neurons

PSO 1.742 0.367 40.273 95.430

GA sgd 16 50 64

BO_GP tanh 16 47 54

BO_TPE 1 16 50 80

Batch Size and Epochs: Batch size refers to the number of training samples used in
each iteration of the optimization algorithm, while epochs represent the number of times
the entire training dataset is passed through the network.

Neurons: Neurons refer to the number of units or nodes in each layer of the ANN.
Table 1 shows the number of neurons used for each technique, such as 64 for GA.

The output layer of the ANN represents the predicted susceptibility to landslides in
the KKH region. It generates a susceptibility map indicating the likelihood of landslides
occurring at different locations within the study area. The backpropagation approach is
commonly used to train ANNs. There are various training algorithms that can be applied,
including gradient descent, conjugate gradient descent, robust, BFGS quasi-Newton, one-
step secant, and Levenberg–Marquardt, and Bayesian regularization [19–21]. The choice
of training algorithm may depend on the specific requirements and characteristics of
the landslide susceptibility problem in the KKH region. The focus of this study is to
evaluate the effectiveness of four optimization strategies in combination with ANNs. These
strategies are PSO, GA, BO-GP, and BO-TPE. These optimization techniques are employed
to fine-tune the hyperparameters of the ANN and enhance its performance in generating
accurate landslide susceptibility maps. Overall, the architecture of the ANN involves an
input layer that receives relevant data, hidden layers for processing and feature extraction,
an output layer that produces the susceptibility map, training algorithms for optimizing
the network’s parameters, and optimization techniques to improve the performance of the
ANN in generating accurate landslide susceptibility maps for the KKH region [22].

1.2. Benefits of Artificial Neural Networks

Artificial neural networks (ANNs) offer several benefits in various fields and applica-
tions. Here are some of the key benefits of using ANNs. Nonlinear mapping: ANNs excel
at capturing and modeling complex, nonlinear relationships between input and output
variables. They can learn and represent highly intricate patterns, making them effective in
handling complex tasks that may not have clear linear relationships. Adaptive learning:
ANNs have the ability to adapt and learn from examples or data. Through a process
called training, ANNs can adjust their internal parameters to improve their performance
on specific tasks. This adaptability allows ANNs to continuously learn and improve their
predictions or classifications as new data becomes available. Parallel processing: ANNs
can perform computations in parallel, making them suitable for handling large-scale and
computationally intensive tasks [8,23,24]. This parallel processing capability enables ANNs
to process multiple inputs simultaneously, leading to faster and more efficient computa-
tions. Fault tolerance and redundancy: ANNs have the ability to tolerate faults or errors
in the system. Due to their distributed nature and interconnected structure, ANNs can
still provide useful outputs even when some of the nodes or connections in the network
are damaged or missing. This fault tolerance and redundancy makes ANNs robust in
real-world scenarios where there may be noise or incomplete data. Pattern recognition
and classification: ANNs are highly effective in pattern recognition and classification
tasks [25–28]. They can learn and recognize complex patterns, allowing them to classify
and categorize data into different classes or groups. This capability has numerous applica-
tions in fields such as image and speech recognition, natural language processing, and data
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mining. Generalization: ANNs can generalize learned patterns to new, unseen data. Once
trained on a representative dataset, ANNs can make accurate predictions or classifications
on similar but previously unseen inputs. This generalization ability makes ANNs valuable
in scenarios where new data needs to be processed or classified in real-time. Feature extrac-
tion: ANNs can automatically extract relevant features or representations from raw data,
reducing the need for manual feature engineering. This capability is particularly useful
when dealing with high-dimensional data, as ANNs can automatically learn and extract
the most informative features to improve performance. Real-time processing: ANNs can be
implemented in real-time systems, allowing for the quick and efficient processing of data.
This capability is crucial in applications, such as real-time monitoring, control systems, and
decision making, where immediate responses are required. These benefits demonstrate
the versatility and power of artificial neural networks in solving complex problems like
landslide susceptibility mapping and making accurate predictions or classifications across
various domains.

2. Study Area

We conducted a study in the northern part of Pakistan, focusing on an approximately
332 km stretch of the KKH highway. The KKH highway is a major road that spans 1300 km,
connecting various provinces of Pakistan, namely Punjab, Khyber Pakhtunkhwa, and
Gilgit Baltistan, with Xinjiang, an autonomous region of China. Our study specifically
covered the Gilgit, Hunza, and Nagar districts. Along the KKH, there are several villages
including Juglot (located between 36◦12′147′′N latitude and 74◦18′772′′E longitude), Jutal,
Rahimbad, Aliabad, and others, ultimately reaching Khunjarab Top, which serves as the
border crossing between China and Pakistan. This region is situated alongside the Indus
River, Hunza River, and Gilgit River.

The study area encompassed a length of 332 km and had a radius of 10 km, covering
an area of 3320 km2 along the KKH. The majority of the region consists of mountainous
terrain, with its highest point reaching an elevation of 5370 m and the lowest point at
1210 m. Common natural hazards in this area include snow avalanches, landslides, and
earthquakes Figure 1.

Technological advancements have propelled improvements in landslide modeling
methods, encompassing the integration of remote sensing and GIS for comprehensive data
analysis. Machine learning and AI algorithms aid in pattern recognition and predictive
precision, while diverse datasets are fused to offer a holistic understanding of triggers and
behavior [8,29]. Numerical simulation models enhance mechanics comprehension, and
probabilistic approaches address uncertainties. Real-time analysis is enabled through big
data and cloud computing, complemented by sensor networks for continuous monitoring.
Crowdsourced data and early warning systems facilitate real-time data collection and
alerts. The integration of climate change, decision support tools, and collaborative efforts
elevate accuracy and preparedness, culminating in strides to mitigate landslide risks
and impacts. A case study can showcase the application of advanced machine learning
algorithms, including ANN, along with hyper optimization techniques, like Bayesian and
metaheuristic methods, incorporating sophisticated feature selection methodologies for
optimizing the modeling of complex phenomena, such as landslides [6].

The most common types of landslide in our study are debris flow, rockfalls and floods.
Notable instances of devastating debris flows are the Attabad and Hunza landslides. Vari-
ous rockfall events occurred on the Karakoram Highway, such as the rockfall incident that
took place in Kohistan’s Barseen area and Kohistan [30,31]. Streams can negatively impact
the stability of slopes through two main mechanisms: undercutting due to toe erosion and
saturation of the slide toe caused by increased water penetration. In the studied region,
both the road and stream networks wield significant influence over the occurrence of land-
slides. Particularly, the area within a 100 m buffer zone between roads and watercourses
demonstrates one of the highest Information Gain ratios, rivaled only by the slope (for
further details, see Section 4). This trend is clarified by the fact that uncontrolled blasting
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and excavation during road construction, as well as the establishment of stream channels
for irrigation on these vulnerable slopes, frequently trigger land movements.
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Figure 1. Our research focuses on the northern region of Pakistan. The KKH is place precisely where
our study area is located.

As expected, areas covered by woodland, shrubland, and alpine pasture exhibit the
lowest tendency of experiencing landslides. In a comparison between the landslide inven-
tory and variables contributing to landslides, it becomes evident that roads, streams, and
slope gradients hold the utmost importance as variables dictating the spatial distribution
of landslides within the area. Gilgit receives an annual rainfall of approximately 154 mm.
The region’s irrigation depends on the flow of streams and rivers fed by the melting snow
and glaciers from lofty mountains. The summer season is prolonged and brings higher
temperatures. While the average wintertime temperature remains below 10 ◦C, occur-
rences of intense sunshine are infrequent, and temperatures rarely reach 40 ◦C (104 ◦F).
The region’s harsh weather conditions contribute to frequent instances of landslides and
avalanches. These events are a result of the area’s geologically unstable terrain and soils,
which play a pivotal role in slope instability. Additionally, the steep mountain slopes make
them susceptible to landslides as well.

Geospatial Variables

The geospatial variables used in our case study are as follows: slope, aspect, land
cover, geology, precipitation, distance to faults, distance to streams, and distance to roads.
The sources of the dataset are shown in Tables 2 and 3.

Table 2. Detail of data sources for geospatial variables used in our case study.

Data Variables Scale/Resolution Source

Sentinel 2 Satellite Images Landslide inventory, LCLU,
Road network 10 m

DEM

Slope
Aspect
Stream

Network

30 m
SRTM Shuttle Radar

Topography Mission (USGS)
United States Geological Survey

Geological Map Geology Units and Fault lines 30 m Geological Survey of Pakistan

Google Earth Maps Landslide Inventory Land
Cover/Land Use Road Network 2–5 m

Field Survey GPS Points 1 m
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Table 3. Geospatial variables used in our case study for landslide susceptibility mapping.

Variables Classes Class Percentage % Landslide Percentage % Reclassification

Slope (◦)

Very Gentle Slope < 5◦ 17.36 21.11

Geometrical interval
reclassification

Gentle Slope 5–15◦ 20.87 28.37
Moderately Steep Slope 15–30◦ 26.64 37.89

Steep Slope 30–45◦ 24.40 10.90
Escarpments > 45◦ 10.71 1.73

Aspect

Flat (−1) 22.86 7.04

Remained
unmodified (as is
from source data).

North (0–22) 21.47 7.03
Northeast (22–67) 14.85 5.00

East (67–112) 8.00 11.86
Southeast (112–157) 5.22 14.3

South (157–202) 2.84 14.40
Southwest (202–247) 6.46 12.41

West (247–292) 7.19 16.03
Northwest (292–337) 11.07 11.96

Land Cover

Dense Conifer 0.38 12.73
Sparse Conifer 0.25 12.80

Broadleaved, Conifer 1.52 10.86
Grasses/Shrubs 25.54 10.3

Agriculture Land 5.78 10.40
Soil/Rocks 56.55 14.51

Snow/Glacier 8.89 12.03
Water 1.06 16.96

Geology

Cretaceous Sandstone 13.70 6.38
Devonian–Carboniferous 12.34 5.80

Chalt Group 1.43 8.43
Hunza Plutonic Unit 4.74 10.74

Paragneisses 11.38 11.34
Yasin Group 10.80 10.70

Gilgit Complex 5.80 9.58
Trondhjemite 15.65 9.32

Permian Massive Limestone 6.51 6.61
Permanent Ice 12.61 3.51

Quaternary Alluvium 0.32 8.65
Triassic Massive Limestone

and Dolomite 1.58 7.80

Snow 3.08 2.00

Proximity to
Streams (meter)

0–100 19.37 18.52

Geometrical interval
reclassification

100–200 10.26 21.63
200–300 10.78 25.16
300–400 13.95 26.12
400–500 18.69 6.23

>500 26.92 2.34

Proximity
to Roads
(meter)

0–100 81.08 25.70
100–200 10.34 25.19
200–300 6.72 27.09
300–400 1.25 12.02
400–500 0.60 10.00

Proximity to
Faults (meter)

000–1000 29.76 27.30
2000–3000 36.25 37.40

>3000 34.15 35.03

Selecting and identifying the most influential geospatial variables is a challenging
task, requiring significant ground reality understanding as well as understanding of the
interdependence between the variables and variance and uncertainty that they hold therefor
it’s essential to carefully select the important variables and understand their importance
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for predicting accurate landslide vulnerabilities in future [16,32,33]. Furthermore Table 3
and Figure 2 represent the data source of geospatial variable used in our case study.
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The categorization of influencing variables for landslide occurrences in our research
area (Figure 2 and Table 3) involves four main categories: topological, hydrological, geolog-
ical, and anthropological. Among these, slope and aspect are topological variables, with
slope angle being the primary contributor to slope stability, while aspect-related variables,
like sunlight exposure, winds, rainfall, soil moisture, and cracks, influence landslide fre-
quency. Aspect and slope are determined using the SRTM DEM with a 30 m resolution and
categorized into classes for analysis. Geological variables consider the geological map of
Pakistan, including fault lines and various formations, as different geological units impact
susceptibility to geomorphological processes. Hydrological variables encompass precipita-
tion and proximity to waterways; this is significant due to rainfall-induced landslides in
the study location. Anthropological elements include land usage and distance to highways,
which are evaluated using Sentinel 2 images and supervised classification to analyze their
effects on landslide movement. The map’s accuracy was validated at 87%. Land use, road
development, and construction activity are also considered as influencing variables on
landslide stability. In total, eight variables—slope, aspect, land cover, geology, precipitation,
distance to faults, distance to streams, and distance to roads—are examined in this case
study (Figure 2).

3. Methodology

This study employed HOP techniques to search for the optimal hyperparameter
configurations for the ANN models. This is important because selecting appropriate hyper-
parameters, such as activation function, batch size, epochs, and neuron configurations, can
significantly impact the performance and generalization capabilities of ANNs. The four
optimization techniques used in the study, namely PSO, GA, BO_GP, and BO_TPE, were
applied to fine-tune the hyperparameters of the ANN models. Each technique employs
a different approach to explore the hyperparameter space and find the best set of values.
The performance of the ANN models was evaluated using AUC. Overall, the methodology
involved applying different optimization techniques to search for the optimal hyperpa-
rameter configurations for the ANN models. The methodology aims to identify the most
effective optimization approach and hyperparameter settings for accurately predicting the
landslide susceptibility index. Additionally, our case study incorporated eight different
techniques while considering various criteria, like multicollinearity, correlations, infor-
mation sharing, variance, and uncertainty, to select landslide conditioning variables, as
depicted in Figure 3.
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In complex tasks like predicting landslide susceptibility, where the relationships be-
tween variables can be intricate and data might be limited, it is essential to leverage all
available tools to ensure model accuracy and reliability. Integrating feature selection and
hyperparameter optimization allows us to build a more robust and effective model that
can capture the complexities of the underlying processes. Combining feature selection and
hyperparameter optimization in a methodology can provide several benefits for complex
modeling tasks like predicting landslide susceptibility. For example, feature selection helps
in identifying the most relevant features, which can prevent overfitting by reducing noise
and irrelevant information. Hyperparameter optimization ensures that the model’s com-
plexity is controlled, further reducing the risk of overfitting. By selecting important features
and optimizing hyperparameters, the model is more likely to generalize well to new, unseen
data. This is crucial in predicting landslides, as the model needs to perform well on different
terrains and conditions. Optimal hyperparameters and relevant features contribute to the
model’s performance. A well-tuned model with the right features can provide accurate
predictions, which is vital for landslide susceptibility assessments. Combining these aspects
can lead to better insights into the domain itself. Understanding which features are crucial
and how hyperparameters affect model behavior can provide valuable information about
the processes leading to landslides. Instead of exploring the entire hyperparameter space ex-
haustively, which can be very time-consuming, focusing on a reduced feature space due to
feature selection can make the optimization process more efficient. Landslide susceptibility
can vary across different regions and conditions. By optimizing both hyperparameters and
feature selection, the model can be adapted and fine-tuned to different contexts. Including
both feature selection and hyperparameter optimization can lead to more robust models.
If certain features become less relevant due to changes in data distribution, the model’s
performance can still be maintained through proper hyperparameter tuning. Thus, the
suggested methodology of combining feature selection and hyperparameter optimization
in the context of predicting landslide susceptibility offers numerous benefits, particularly
when dealing with complex modeling tasks, such as landslides. Overall, the combined
approach brings synergy to the optimization process, leading to a more accurate, reliable,
and efficient model for predicting landslide susceptibility.

4. Feature Selection Techniques

Feature selection is a vital process in machine learning and data analysis that in-
volves choosing the most relevant features from a dataset while discarding irrelevant or
redundant ones. It offers numerous benefits, including improved model performance by
reducing overfitting and enhancing generalization; faster computation due to decreased
data dimensionality; and increased interpretability, making models more understandable
and usable. Additionally, it mitigates the challenges of high-dimensional data, simplifies
model maintenance and updates, fosters better feature engineering practices, and supports
efficient visualization. Feature selection also contributes to model robustness, cost savings
by prioritizing valuable features, and alignment with algorithm assumptions, ultimately
leading to more effective and practical applications of machine learning in various domains.
Some of the most common and popular variable selection techniques are mentioned in our
paper and are described in the subsequent subsections.

4.1. Information Gain

Information Gain (IG) is a measure used in decision tree algorithms and feature
selection to assess the importance of a feature in a classification task. It quantifies the
amount of information gained about the target variable by including a particular feature in
the decision-making process.
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Mathematically, Information Gain is calculated using the concept of entropy. Entropy
measures the impurity or disorder of a set of instances in the dataset. The entropy E(C)
and Information gain (IG) can be computed in relation to the conditioning variables of
landslides and is defined as:

E(C) = −
j

∑
i=1

Pi log2 Pi (1)

In this context, Pi denotes the ratio of the ith class within the complete dataset, and “m
factor classes” encompass a set of values, i.e., [v1, v2, . . . , vm].

IG(Y, X) = E(Y)− ∑
v ∈ { F | 1,...,m}

|Yv|
Y

E(Yv) (2)

IG(Y, X) = E(Y)− E(Y | X) (3)

The IG resulting from conditioning variables is represented as IG(Y,X), while the
anticipated weighted entropy is denoted as E(Y, X). Here, E(Y) represents the entropy
of a landslide inventory Y containing j classes, while X, also with n classes, represents
the conditioning variables of landslides. The value of E(Y) serves as an indicator of the
uniformity within landslides in Y, and it is effectively utilized for selecting the most suitable
conditioning factor.

The Information Gain value ranges from 0 to 1, with a higher value indicating that the
feature provides more valuable information for the classification task. A higher Information
Gain suggests that the feature helps in reducing the uncertainty or disorder in the dataset
and contributes to better classification.

From Table 4 and Figure 4, “Roads” stand out as the most significant feature, with an
Information Gain of 0.352. This indicates that it strongly aids in making accurate predictions.
The “Faults” feature follows with an Information Gain of 0.195, making it a moderately
influential predictor. “Streams” provide a reasonable level of information, contributing
moderately with an Information Gain of 0.091. “Geology” and “Slope” possess modest
Information Gain values of 0.039, implying that they offer some useful insights, though
not as prominently as the top features. “Precipitation” has a lower Information Gain of
0.012, suggesting it contributes a limited amount of relevant information. “Aspect” and
“Land Cover” exhibit no meaningful Information Gain (0.000), implying they have little to
no impact on accurate predictions. In essence, the Information Gain values help prioritize
the importance of each feature in facilitating accurate predictions or classifications, with
“Roads” and “Faults” leading the way.

Table 4. Information Gain IG obtained for the geospatial variables.

Feature Information Gain

Roads 0.352

Faults 0.195

Streams 0.091

Geology 0.039

Slope 0.039

Precipitation 0.012

Aspect 0.000

Land Cover 0.000
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4.2. Variable Inflation Factor

The Variance Inflation Factor (VIF) is a measure used to assess the severity of mul-
ticollinearity among predictor variables in a regression model. It quantifies the extent to
which the variance of the estimated regression coefficient for a specific predictor variable is
inflated due to its correlation with other predictor variables.

Mathematically, the VIF for a predictor variable i is calculated as follows:

VIFi =
1

1− Ri
2 (4)

where:
VIFi is the Variance Inflation Factor for predictor variable i;
Ri

2 is the coefficient of determination (R-squared) obtained by regressing variable i
against all other predictor variables.

The VIF value ranges from 1 upwards, with values greater than 1 indicating the
presence of multicollinearity. A VIF value of 1 indicates no multicollinearity, while values
greater than 1 suggest increasing levels of multicollinearity. Generally, a VIF value of 5
or higher is often used as a threshold to identify problematic levels of multicollinearity,
although the specific threshold may vary depending on the context and the field of study.

In practice, high VIF values indicate that the variance of the regression coefficient
estimates for the predictor variable is inflated, which can lead to unstable and unreliable
results. Multicollinearity can make it challenging to interpret the individual contributions
and effects of predictor variables in the model. Remedial actions, such as excluding highly
correlated variables or performing dimensionality reduction techniques, may be necessary
to mitigate the issues caused by multicollinearity.

From Table 5 and Figure 5 “Land Cover” stands out with the highest VIF, indicating
strong multicollinearity. Other features like “Precipitation”, “Slope”, “Geology”, and
“Aspect” also display varying degrees of multicollinearity. “Streams”, “Faults”, and “Roads”
show relatively lower multicollinearity, making them potentially more independent in
the analysis.
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Table 5. Variable inflation factor VIF obtained for the geospatial variables.

Feature VIF

Land Cover 18.090

Precipitation 7.167

Slope 6.276

Geology 4.986

Aspect 4.585

Streams 3.910

Faults 3.532

Roads 2.992
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4.3. OneR Classifier

The OneR algorithm is a simple and interpretable classification algorithm. It generates
a single rule for each predictor (attribute) in the data and selects the rule with the smallest
total error. Each rule is based on the value of a single attribute and predicts the most
frequent class for that attribute value. The OneR Classifier provides a straightforward way
to assess the predictive power of individual attributes. The total error is calculated by
summing the errors made by the rule for each attribute value. The formula for calculating
the total error in OneR Classifier is dependent on the evaluation metric chosen, such as
misclassification error rate, accuracy, or other relevant metrics.

OneR Algorithm
1. for each predictor,
2. for each value of that predictor, make a rule as follows;
3. Count how often each value of target (class) appears
4. Find the most frequent class
5. Make the rule assign that class to this value of the predictor
6. Calculate the total error of the rules of each predictor
7. Choose the predictor with the smallest total error.

Assume that we have a dataset consisting of “n” instances, each represented by a
feature “X” and a corresponding class label “Y”. The One-R Classifier aims to find the best
rule by selecting a single feature that minimizes the classification error. The rule is based
on the mode (most frequent) class value for each unique value of the selected feature.

The following are the variables:
Xi is the ith feature value;
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Yi is the corresponding class label;
f is the selected feature (attribute) for the rule;
C is the set of all possible class labels.

Rule : Y = argmaX{ ∈ {P(Y = c
∣∣X = f (Xi)) (5)

For each unique value of the selected feature f(Xi), the classifier calculates the conditional
probability of each class label C given that the feature has the value f(Xi). It selects the
class label with the highest conditional probability as the prediction for instances with that
particular feature value.

Table 6 and Figure 6 summarize the accuracy scores for various features such as
Roads, which is the most significant feature, achieving an accuracy score of 0.902 and
therefore making it a strong predictor. “Faults” also stands out with an accuracy score
of 0.707, indicating a notable predictive capability. “Streams” exhibit a decent accuracy
score of 0.659, suggesting a meaningful predictive influence. “Land Cover” contributes
with an accuracy score of 0.622, showcasing a moderate level of predictive power. These
values emphasize the predictive strength of these four features, namely “Roads”, “Faults”,
“Streams”, and “Land Cover”, in the context of the OneR Classifier.

Table 6. Feature accuracy score obtained for the geospatial variables using OneR Classifier.

Feature Scores—OneR Classifier

Feature Accuracy Score

Roads 0.902

Faults 0.707

Streams 0.659

Land Cover 0.622

Aspect 0.585

Geology 0.561

Slope 0.549

Precipitation 0.500

Selected Feature: Roads
Accuracy Score: 0.902
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4.4. Subset Evaluators

The principle behind the Correlation Feature Selection (CFS) measure is that it assesses
feature subsets by considering the hypothesis that effective subsets should encompass
features that are strongly correlated with the classification while maintaining minimal
correlations among themselves. The subsequent equation provides the assessment of the
quality of a feature subset S comprising k features:

MeritSk =
krc f√

k + k(k− 1)r f f

(6)

The symbol rc f represents the average of all correlations between the features and
the classification, while r f f stands for the average of all correlations between the features
themselves. The CFS criterion is formulated in the subsequent manner:

CFS = maxSk

 rc f1 + rc f2 + · · ·+ rc fk

k + 2
(

r f1 f2 + r fi f j
+ · · ·+ r fk fk−1

)
 (7)

The variables r fi f j
, rc fk

are termed as correlations; however, they do not specifically
represent Pearson’s correlation coefficient or Spearman’s ρ. In Hall’s dissertation [34], these
correlations are not based on either of these methods. Instead, three distinct measures of
relatedness are employed: minimum description length (MDL), Symmetrical Uncertainty,
and relief. Correlation is explained in detail in Sections 4.5–4.7.

Assuming xi represents the indicator function for the membership of feature fi in a set,
the previous statement can be reformulated into an optimization problem as follows:

CFS = maxxε{0,1}n

[
(∑n

i=1 aixi)
2

∑n
i=1 xi + ∑i 6=j 2bijxixj

]
(8)

Here, xε{0, 1}n represents a binary vector x of length n, where each element xi is
either 0 or 1. This vector encodes the selection of features in a subset, where 1 indicates
that the feature is selected, while 0 indicates that it is not. ai is the coefficient associated
with each feature. This coefficient quantifies the correlation between the ith feature and
the classification. In other words, they represent how strongly the ith feature is related to
the classification bij. This coefficient represents the correlations between pairs of features.
The coefficient quantifies the correlations between different pairs of features, indicating
how much they are correlated with each other. Subset Evaluators evaluate the performance
of feature subsets by training a classifier on either the entire training dataset or a separate
hold-out testing set. They assess the accuracy or other performance metrics of different
subsets to determine the most informative features. Common Subset Evaluators include
the evaluation of classification accuracy, F1 score, or other relevant metrics to measure
the effectiveness of feature subsets. Subset Evaluators assess the performance of feature
subsets by training a classifier on either the entire training dataset or a separate hold-out
testing set.

From Table 7 and Figure 7 among the feature combinations tested, two stand out
for their prominent accuracy scores: Geology and Roads. This combination yields the
highest accuracy score of 0.927, showcasing strong predictive power. Similarly, the “Land
Cover” and “Roads” combination also achieves an accuracy score of 0.927. The pairing of
“Roads” and “Streams” maintains the same accuracy score of 0.927. Combining “Faults”
and “Roads” results in a notable accuracy score of 0.915. The combination of “Aspect” and
“Roads” follows with a substantial accuracy score of 0.902. These combinations exhibit the
highest accuracy scores and thus stand out as the most prominent and predictive feature
combinations in the context of the classification task.
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Table 7. Feature combination accuracy score obtained for geospatial variables using subset evaluator.

Feature Combination Accuracy Score

Geology, Roads 0.927

Land Cover, Roads 0.927

Roads, Streams 0.927

Faults, Roads 0.915

Aspect, Roads 0.902

Roads, Slope 0.878

Precipitation, Roads 0.854

Faults, Streams 0.793

Faults, Precipitation 0.780

Faults, Geology 0.744

Faults, Land Cover 0.744

Faults, Slope 0.732

Aspect, Faults 0.720

Geology, Land Cover 0.720

Geology, Precipitation 0.720

Geology, Streams 0.707

Aspect, Streams 0.683

Aspect, Precipitation 0.671

Aspect, Slope 0.671

Land Cover, Streams 0.634

Precipitation, Streams 0.634

Aspect, Geology 0.622

Land Cover, Precipitation 0.622

Slope, Streams 0.622

Geology, Slope 0.610

Land Cover, Slope 0.610

Aspect, Land Cover 0.598

Precipitation, Slope 0.573

4.5. Relief Attribute Evaluator

The Relief algorithm evaluates the worth of an attribute by sampling instances and
comparing the attribute values of the nearest instances from the same and different classes.
It measures the attribute’s ability to distinguish between classes based on the differences in
attribute values for nearby instances. The Relief Attribute Evaluator is commonly used in
feature selection for classification tasks, particularly for handling imbalanced datasets. The
Relief algorithm evaluates the worth of an attribute by sampling instances and comparing
the attribute values of the nearest instances from the same and different classes. Relief
computes the weight for each attribute based on the differences in attribute values between
the nearest instances and Is an algorithm for feature weighting that demonstrates sensitivity
to interactions among features. It strives to estimate the ensuing difference in probabilities
related to the weight of a feature X, where

WX = P(different value of X| nearest instance of different class)
−P(different value of X| nearest instance of same class)
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By eliminating the contextual sensitivity introduced by the “nearest instance” condi-
tion, attributes are treated as mutually independent.

Relie fX = P(different value of X| different class)
−P(different value of X| same class)

which can be reformulated as

Relie fX =
Ginì ×∑x∈X p(x) 2

(1−∑c∈C p(c) 2) ∑c∈C p(c) 2 (9)

where C is the class variable, and ∑c∈C p(c) 2 calculates the sum of probabilities squared
for each class. It reflects the concentration of instances in each class, and ∑x∈X p(x) 2

calculates the sum of probabilities squared for each possible value of attribute X. It reflects
how concentrated the distribution of attribute values is.

Ginì =

[
∑

c∈C
p(c)(1− p(c))

]
− ∑

x∈X

p(x)2

∑x∈X p(x) 2 ∑
cεC

p(c|x)(1− p(c|x)) (10)

Ginì represents a modification of an alternative attribute quality measure known as
the Gini-index2. Both Ginì and the Gini-index share similarities with Information Gain,
as they both exhibit a bias towards attributes with a greater number of values. For the
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symmetrical utilization of the relief method with two features, the measurement can be
computed twice (with each feature considered as the “class” in turn), and then the results
can be averaged.

From Table 8 and Figure 8, the Relief Attribute Evaluator highlights the variable
importance of different geospatial features, with “Roads”, “Geology”, and “Faults” be-
ing the most prominent contributors with an importance of 0.227, 0.156, 0.118 to the
analysis, respectively.

Table 8. Geospatial variable importance obtained from Relief Attribute Evaluator.

Feature Importance

Roads 0.227

Geology 0.156

Faults 0.118

Streams 0.112

Precipitation 0.060

Aspect 0.050

Slope 0.035

Land Cover 0.015
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4.6. Correlation

Correlation measures the linear relationship between an attribute and the class variable.
Pearson’s correlation coefficient is a common measure used to assess the strength and
direction of the linear association. Higher absolute correlation values indicate a stronger
relationship between the attribute and the class variable. Correlation analysis helps identify
attributes that exhibit a significant relationship with the target variable.
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Correlation measures the linear relationship between an attribute and the class variable.
Pearson’s correlation coefficient is commonly used to assess the strength and direction of
the linear association. The formula for Pearson’s correlation coefficient is:

Correlation = Cov(x, y)/(StdDev(x) * StdDev(y))

where
Cov(x, y) is the covariance between the attribute x and the class variable y;
StdDev(x) is the standard deviation of attribute x;
StdDev(y) is the standard deviation of the class variable y;
Formula for Pearson Correlation Coefficient:

γxy=
∑n

i=1(xi−x)(yi − y)√
∑n

i=1(xi−x)
√

∑n
i=1(yi − y)2

(11)

Here, n represents the sample size, while xi and yi denote individual sample points
indexed by i, x = 1

n ∑n
i=1(xi) (the sample mean), similarly for y.

Rearranging leads us to the following formula for the correlation coefficient γxy:

γxy=
n ∑ xiyi −∑ xi ∑ yi√

n ∑ x2
i − (∑ xi)

2
√

n ∑ y2
i − (∑ yi)

2
(12)

Rearranging again give us:

γxy=
∑i xiyi − nxy√

∑ x2
i − nx2

√
∑ y2

i − ny2
(13)

An alternative representation provides the formula for γxy as the average of the
products of the standardized scores, as shown below:

γxy=
1

n− 1

n

∑
i=1

(
xi − x

sx
)(

yi − y
sy

) (14)

where n, xi, yi, x, and y are defined above, while sx and sy are defined as

sx =
√

1
n−1 ∑n

i=1(xi − x)2, the sample standard deviation, similarly for sy.
Table 9 and Figure 9 provides a ranking of geospatial variables based on their correla-

tion with the target variable, with Aspect being the most important and Roads being the
least important regarding correlation with the class variable this information can be used
to prioritize variables for further investigation or modeling in their geospatial analysis.

Table 9. Geospatial variable importance obtained from Correlation.

Feature Importance

Aspect 1.000

Geology 0.100

Precipitation 0.090

Faults 0.066

Land Cover 0.043

Streams 0.022

Slope 0.020

Roads 0.005
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4.7. Symmetrical Uncertainty

Symmetrical Uncertainty is an information-theoretic correlation measure based on
entropy. It quantifies the amount of shared information between an attribute and the
class variable. The measure takes into account both the attribute’s predictability of the
class and the class’s predictability of the attribute. Symmetrical Uncertainty allows for the
assessment of the mutual dependence between attributes and the target variable, enabling
the identification of informative attributes.

The formula for Symmetrical Uncertainty is:

Symmetrical Uncertainty = (2 * Mutual Information)/(Entropy(X) + Entropy(Y))

where
Mutual Information measures the amount of shared information between the attribute

X and the class variable Y;
Entropy(X) is the entropy of attribute X;
Entropy(Y) is the entropy of the class variable Y;
Normalized forms of mutual information can be derived using coefficients of con-

straint [35], uncertainty coefficients [36,37], or proficiency measures:

CXY =
I(X; Y)
H(Y)

and CYX =
I(X; Y)
H(X)

The values of the two coefficients lie within the range of 0 to 1, but they might not be
identical. In certain situations, there could be a preference for a symmetric measurement,
like the subsequent redundancy measure.

Rmax =
min{H(X), H(X)}

H(X) + H(Y)
(15)
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When one variable becomes entirely superfluous given the information about the
other variable. Refer also to redundancy in information theory. An additional measure that
exhibits symmetry is the symmetric uncertainty [38], which is defined as follows:

U(X, Y) = 2R = 2
I(X; Y)

H(X) + H(Y)
(16)

This corresponds to the harmonic mean of the two uncertainty coefficients, denoted as
CXY and CYX . If we view mutual information as a specific instance of total correlation or
dual total correlation, their respective normalized versions are as follows:

I(X; Y)
min[H(X), H(X)]

and
I(X; Y)
H(X, Y)

(17)

This standardized variant is also recognized as the Information Quality Ratio (IQR) [39],
which assesses the quantity of information in one variable concerning another variable in
relation to the overall uncertainty.

IQR(X, Y) = E[I(X; Y)] =
I(X; Y)
H(X, Y)

=
∑xεX ∑yεY p(x, y) log p(x)p(y)

∑xεX ∑yεY p(x, y) log p(x, y)
(18)

A normalization process [40,41] can be derived by initially considering mutual infor-
mation as an analogy to covariance (where Shannon entropy is comparable to variance).
Subsequently, the normalized mutual information is computed in a manner similar to the
Pearson correlation coefficient.

I(X; Y)√
H(X)H(Y)

Each of these feature selection techniques offers a unique approach to assess the
importance and relevance of geospatial variables for landslide susceptibility mapping.
They provide different perspectives and criteria to evaluate the impact of variables on the
target variable, allowing researchers and practitioners to gain valuable insights into the
most influential variables affecting landslide occurrences along the Karakoram Highway.

From Table 10 and Figure 10 we can observed that the Symmetrical Uncertainty values
provide insights into the degree of association between each geospatial variables. “Roads”
and “Faults” appear as the most associated features, followed by “Streams” and “Geology”,
while “Precipitation” and “Aspect” show minimal to no association.

Table 10. Symmetrical Uncertainty obtained for the geospatial variables.

Feature Symmetrical Uncertainty

Roads 0.683

Faults 0.435

Streams 0.247

Geology 0.128

Land Cover 0.093

Slope 0.053

Precipitation 0.001

Aspect 0.000
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4.8. Principal Components

Principal Components Analysis (PCA) is a dimensionality reduction technique that
transforms the original features into a new set of uncorrelated variables called principal
components. These components are ordered based on the amount of variance they explain
in the data. PCA helps identify the most important features by considering those associated
with the highest-variance principal components, thereby reducing the dimensionality of
the dataset.

Mathematically, the transformation is defined by a set of size ι of p-dimensional weight
vectors or coefficients w(k) =

(
w1, w2 . . . .wp

)
(k) that correspond to each row vector xi of

matrix X. These weight vectors map each xi to a new vector of principal component scores
following the form ti = (ti, . . . tι)i, as shown below.

tk(i) = Xi . W(k) (19)

To optimize variance maximization, the initial weight vector W(1) must adhere to the
condition:

W(1) = arg max
||W||=1

{
∑

i
t1

2
(i)

}
= arg max

||W||=1

{
∑

i
(Xi.w)2

}
(20)

Alternatively, expressing this in matrix notation yields

W(1) = arg max
||W||=1

{
||Xw||2

}
= arg max

||W||=1

{
wTXTXw

wTw

}
(21)

The quantity aimed for maximization can be identified as a Rayleigh quotient. A well-
known outcome for a positive semidefinite matrix like XTX is having the upper limit of the
quotient be the matrix’s largest eigenvalue, which si achieved when w is the corresponding
eigenvector. Once W(1) is determined, the initial principal component of a data vector can
be expressed either as a score, t1i = X(i). W(1), in the transformed coordinates, or as the
corresponding vector in the original variables, {X(i). W(1)} W(1).
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The k-th component can be computed by subtracting the sum of the first k− 1 principal
components from the matrix X, such that

X̂k = X−
k−1

∑
s=1

Xws wT
(s) (22)

and then determining the weight vector that captures the highest variance from this
modified data matrix, where

W(k) = arg max
||W||=1

{∣∣∣∣X̂kw
∣∣∣∣2} = arg max

{
wTX̂k

TX̂kw
wTw

}
(23)

Hence, the k-th principal component of a data vector X(i) can be expressed as a score,
where t1i = X(i). W(1) in the transformed coordinates. Alternatively, it can be represented

as the corresponding vector in the original variable space,
{

Xi . W(k)

}
W(k), where W(k)

signifies the kth eigenvector of the matrix XTX.
Consequently, the complete decomposition of X into principal components can be

represented as:
T = XW (24)

Here, W is a p-by-p matrix of weights, with its columns representing the eigen-
vectors of XTX. The transpose of W is occasionally referred to as the whitening or
sphering transformation. The columns of W, scaled by the square root of correspond-
ing eigenvalues—effectively eigenvectors amplified by variances—are known as loadings
in PCA or factor analysis.

XTX can be identified as being proportional to the empirical sample covariance matrix
of the dataset XT . The sample covariance “Q” between two distinct principal components
across the dataset is defined as

Q
(

PC(j), PC(k)

)
α
(
Xwj

)T
(Xwk)

= wT
j XTXwk

= wT
j λkwk

= λkwT
j wk

(25)

Expressed in matrix notation, the empirical covariance matrix for the original variables
can be formulated as

Qα XTX = wΛwT (26)

The empirical covariance matrix among the principal components takes on the follow-
ing form:

wTQwαwTwΛwTw = Λ

Here, Λ represents the diagonal matrix comprising the eigenvalues λk of XTX. Each
λk is the sum of squared values across the dataset for component k; specifically, λk =

∑i tk
2
(i) = ∑i(Xi . wk)

2.
Mapping T = XW converts a data vector Xi from an initial p-variable space to a fresh

p-variable space, in which the variables are uncorrelated across the dataset. However, it is
not obligatory to retain all the principal components. Selecting solely the first L principal
components, derived by employing only the initial L eigenvectors, results in the truncated
transformation:

TL = XwL (27)

Here, the matrix TL now possesses n rows while containing only L columns. In
simpler terms, PCA grasps a linear transformation, t = wT

L x, xεRp, tε RL, where x belongs
to the p-dimensional space of real numbers, and t belongs to the L-dimensional space
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of real numbers. In this equation, the columns of the p × L matrix wL constitute an
orthogonal basis for the L features (the elements of the representation t), ensuring their
lack of correlation. Through its design, among all the transformed data matrices containing
only L columns, this score matrix maximizes the retained variance from the initial data
while simultaneously minimizing the aggregate squared reconstruction error.

||TwT − TLw T
L ||22 or ||X− XL||22

Dimensionality reduction like this is an immensely beneficial step for visualizing and
handling datasets with high dimensions, all while retaining the maximum possible variance
within the dataset. For instance, when L = 2 is chosen and solely the first two principal
components are retained, it results in a two-dimensional plane amidst the high-dimensional
dataset in which the data’s dispersion is maximized. Consequently, if the data contains
clusters, they will also maximally spread out, making them more distinguishable when
plotted on a two-dimensional graph. In contrast, if two directions through the data or two
original variables are chosen arbitrarily, the clusters might be far less separated and might
even substantially overlap, rendering them practically indistinguishable.

Table 11 and Figure 11 shows variance ratios that tell how much of the total variability
in your dataset is explained by each principal component. The first principal component
(PC1), which corresponds to Aspect, captures the largest portion of variation, indicating
that Aspect is the most dominant variable in terms of explaining the data’s variability. The
subsequent components represent decreasing amounts of variance, with Streams having
the least impact on the overall variation.

Table 11. Principal Component Analysis (PCA) for geospatial variables used in our experiment.

Components Variance Ratio

Aspect 27.22%

Fault 18.17%

Geology 13.66%

Land Cover 12.50%

Precipitation 10.57%

Roads 9.70%

Slope 4.71%

Streams 3.48%

In conclusion, we can observe a consistent presence and importance of the “Roads”
feature in all feature selection techniques mentioned above. “Roads” demonstrates several
favorable characteristics across different techniques, including high Information Gain; low
multicollinearity, as indicated by a low VIF; high accuracy scores in the OneR Classifier;
inclusion in high-accuracy feature combinations; and relatively high importance scores
from the Relief Attribute Evaluator and for Symmetrical Uncertainty. These findings
suggest that “Roads” holds potential significance and influence in the analysis, regardless
of the specific evaluation technique or metric employed. Additionally, the analysis provides
further insights into other features. For example, “Fault” and “Streams” show relatively
high Information Gain, “Aspect” has a high variance ratio in the PCA components, and
“Aspect” and “Slope” display lower importance scores and correlation with the target
variable. However, to make a final determination, it is recommended that a comprehensive
analysis be conducted, including assessing multicollinearity; evaluating the contributions
of other features; and considering additional factors, such as interpretability and practicality.
Such analysis will help determine the optimal set of variables for accurate and reliable
landslide susceptibility mapping.
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Figure 11. The covariance matrix is computed to understand the relationships between the features
in the dataset. It represents how each feature changes with respect to the others.

It can also be evident from ground surveys that the roads are constructed in harsh
mountainous terrain with improper blasting that makes the slope very vulnerable near
the roads, where most of the landslides occur. The second most influential factor that we
identified from our analysis is “Fault”. This factor appears in multiple feature selection
techniques (Section 4) with notable characteristics. It has relatively high Information Gain,
moderate importance scores, and is included in high-accuracy feature combinations in
the subset evaluator table. While it may not be as consistently influential as “Roads”,
it still demonstrates significance in the analysis. And this fact can also be evident from
ground survey, which highlighted the fact that most landslide happened around the region
near fault lines. The “Streams” factor also appears in multiple tables, showing relatively
high Information Gain and being included in high-accuracy feature combinations. It
demonstrates importance in the analysis, although to a lesser extent compared to “Roads”
and “Fault”. Again this phenomena can be verified from our case study, in which most
of the land is irrigated from the streams the emerge from rivers that are filled with water
from the melting snow and glaciers from high mountains, and even the man-made stream
channel makes the region more venerable to landslides. Other features, while not as
consistently influential as the three variables mentioned above, show importance in specific
tables. For example, “Geology” and “Aspect” have relatively high importance scores in the
Relief Attribute Evaluator table, and “Land Cover” has notable importance in the subset
evaluator table. It is important to note that the level of influence may vary depending on
the specific analysis techniques and evaluation measures used eight different techniques
used in our paper. Additionally, the interpretation of influence should consider the context
and objectives of the analysis. Further analysis, considering the dataset and specific
requirements, is recommended to finalize the most influential variables for the specific
task at hand. As we understand, diminishing entropy can lead to a loss of information,
potentially causing important patterns to be forfeited [42]. Therefore, it is essential to
carefully consider every variable.
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5. Metaheuristic and Bayesian Algorithms
5.1. Genetic Algorithms

Although it is difficult to guarantee that the ANN can always generalize the testing
data successfully, using a genetic method to avoid the model from getting stuck in a local
minimum situation could assist in increasing accuracy rates. The three main components
of the Genetic Algorithm (GA) are crossover, mutation, and selection. To realize elitism,
the process first chooses the elite parents for the gene pool (a list that monitors the best
weighting matrix). The crossover is then put into practice. The method chooses two genes
at random out of the best genes (weighted matrix) and recombines them according to a
specific strategy defined in the accompanying Python code. For instance, we chose a split
point for the elite genes 1 and 2 at random in this instance. We then combine the second
portion of gene 2 with the first part of gene 1, and for the remaining pieces of the two genes,
we do the reverse procedure. We have two possibly elite genes that were recombined as a
result. Then, given that it occurs at random, a mutation could happen. After completing
the crossover for each generation, the mechanism will produce a random integer between 0
and 1. A specific area of the weighted matrix, which is likewise created randomly, will be
multiplied by yet another random number between 2 and 5. If the randomly generated
value is less than or equal to 0.05. To facilitate the mutation process and avoid the ANN
model from being trained in the wrong direction (resulting in a poorer training accuracy
rate), some weighted matrix values can be slightly scaled. An ANN’s performance could
be impacted by a wide range of variables. The number of layers, the number of neurons
in each layer, the learning rate, the optimization function, the loss function, and other
factors are among them [43–47]. In a Genetic Algorithm, the ANN must be constructed
while taking into account the population size, the number of generations, crossover rate,
mutation rate, and probability. The model should provide a weighted matrix with a higher
variance of values than those with a lower mutation rate and lower mutation probability,
for example, if the mutation rate and its mutation probability are high. Its major objective
is to attempt to address the flaw in the conventional gradient descent learning technique by
ensuring that there is a variety of feasible weighted matrices rather than possibly training a
model in an incorrect manner without obtaining the best possible solution for any problem.

5.2. PSO

PSO, which stands for Particle Swarm Optimization, is a metaheuristic optimization
algorithm inspired by the behavior of birds flocking or fish schooling. It is commonly
used in combination with artificial neural networks (ANNs) to optimize their performance.
In the context of ANNs, PSO is employed to determine the optimal values of the ANN’s
parameters or weights. The algorithm operates by simulating a population of particles
that move through a multidimensional search space. Each particle represents a potential
solution or set of parameters for the ANN.

Initially, the particles are assigned random positions and velocities within the search
space. The positions represent the values of the ANN’s parameters, while the velocities
determine the particles’ movement direction and speed. The algorithm then evaluates the
fitness or performance of each particle’s solution by training the ANN with the correspond-
ing parameter values and measuring its accuracy or error. During each iteration of the
algorithm, the particles adjust their velocities and positions based on their own historical
best solution (the best fitness achieved by the particle itself) and the global best solution
(the best fitness achieved by any particle in the swarm). This collective learning and sharing
of information guide the particles towards promising regions in the search space.

The adjustment of particle velocities is governed by two main factors: a cognitive
component and a social component. The cognitive component represents the particle’s
own knowledge, which encourages it to move towards its best solution. The social com-
ponent reflects the influence of the swarm and directs the particle towards the global best
solution. As the iterations progress, the particles converge towards the optimal parameter
values, which correspond to the weights that result in the best performance of the ANN.
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The algorithm terminates when a specified stopping criterion is met, such as reaching a
maximum number of iterations or achieving a desired level of performance [5,29,48–50].
By using PSO, ANN models can be effectively fine-tuned and optimized to improve their
accuracy, convergence speed, and generalization capabilities. PSO provides a powerful
approach for exploring and exploiting the parameter space of ANNs, leading to enhanced
performance in a variety of tasks and applications.

5.3. BO-GP

Bayesian Optimization Gaussian Process (BO-GP) is a metaheuristic optimization
algorithm commonly used for fine-tuning and optimizing artificial neural network (ANN)
models. It combines Bayesian optimization, which is a sequential model-based optimization
approach, with Gaussian processes, which are statistical models used for modeling the
behavior of functions. In the context of ANN models, BO-GP aims to find the optimal set
of hyperparameters that result in the best performance for the given task [51–53]. These
hyperparameters include the number of hidden layers, the number of neurons in each layer,
the learning rate, regularization parameters, activation functions, and other architectural
choices. The BO-GP algorithm works iteratively as follows:

1. Define a search space: Determine the range or values for each hyperparameter that
will be explored during the optimization process.

2. Create an initial design: Select a small set of initial hyperparameter configurations
to evaluate the ANN model’s performance. This initial design is often chosen using
techniques like random sampling.

3. Build a surrogate model: Fit a Gaussian process regression model to the initial design
data. The surrogate model approximates the behavior of the ANN model based on
the observed hyperparameter performance pairs.

4. Optimize the acquisition function: The acquisition function guides the selection
of the next set of hyperparameters to evaluate. It balances exploration (sampling
new regions of the search space) and exploitation (focusing on promising regions).
Common acquisition functions include Expected Improvement (EI), Upper Confidence
Bound (UCB), and Probability of Improvement (PI).

5. Evaluate the ANN model: Select the next set of hyperparameters based on the opti-
mized acquisition function and evaluate the performance of the ANN model with
those hyperparameters. This involves training the ANN on a training set and evaluat-
ing its performance on a validation set or using cross-validation.

6. Update the surrogate model: Incorporate the new hyperparameter-performance pair
into the existing data and update the Gaussian process regression model. This allows
the surrogate model to improve its approximation of the ANN model’s behavior.

7. Repeat steps 4 to 6: Iterate the process by optimizing the acquisition function, eval-
uating the ANN model, and updating the surrogate model until reaching a speci-
fied termination criterion (e.g., a maximum number of iterations or a desired level
of performance).

The goal of BO-GP is to efficiently explore the hyperparameter search space and find
the optimal configuration that maximizes the performance of the ANN model. By leverag-
ing Bayesian optimization and Gaussian process modeling, BO-GP balances exploration
and exploitation, enabling effective hyperparameter tuning and improving the overall
performance of ANN models.

5.4. BO-TPE

Bayesian Optimization Tree-structured Parzen Estimator (BO-TPE) is another meta-
heuristic optimization algorithm commonly used for fine-tuning and optimizing artificial
neural network (ANN) models. It is a variant of Bayesian optimization that employs a
Tree-structured Parzen Estimator to model the performance of different hyperparameter
configurations.

The BO-TPE algorithm works in the following steps:



Remote Sens. 2023, 15, 4330 30 of 36

1. Define a search space: Specify the range or values for each hyperparameter that will
be explored during the optimization process.

2. Initialize the hyperparameter sampling: Randomly sample a set of hyperparameter
configurations from the search space to create an initial design.

3. Evaluate the initial design: Train and evaluate the ANN models according to the
initial set of hyperparameter configurations. This typically involves splitting the data
into training and validation sets and using cross-validation or hold-out validation.

4. Build a probabilistic model: Based on the observed hyperparameter-performance
pairs from the initial design, construct a probabilistic model using a Tree-structured
Parzen Estimator. This model captures the relationship between hyperparameter
values and the corresponding performance of the ANN models.

5. Update the model and sample new hyperparameters: The Tree-structured Parzen Es-
timator uses the previous observations and probabilistic model to guide the sampling
of new hyperparameters for the next iteration. It balances exploration (sampling new
regions) and exploitation (focusing on promising regions) by considering both the
Probability of Improvement and the Expected Improvement.

6. Evaluate the new hyperparameter configurations: Train and evaluate the ANN mod-
els with the newly sampled hyperparameter configurations. Update the observed
hyperparameter-performance pairs.

7. Update the probabilistic model: Incorporate the new observations into the probabilis-
tic model. This allows the model to refine its estimation of the performance landscape
and guide the sampling process more effectively.

8. Repeat steps 5 to 7: Iterate the process by sampling new hyperparameters, evaluating
the ANN models, and updating the probabilistic model until reaching a termination
criterion, such as a maximum number of iterations or a desired level of performance.

BO-TPE leverages the Bayesian optimization framework to efficiently explore the hy-
perparameter search space and identify the optimal configuration for the ANN model. By
using a Tree-structured Parzen Estimator, it captures the complex relationship between hy-
perparameters and performance, enabling effective hyperparameter tuning and improving
the overall performance of ANN models [54–56].

6. Results

Using the Keras model in Python, we evaluated ANN models trained using Adam
(Adaptive Moment Estimation). The outputs of the various algorithms are shown below. It
is evident from our results that both Bayesian optimization and metaheuristic algorithms,
such as Particle Swarm Optimization (PSO) and Genetic Algorithm (GA), can both be
effective for optimizing artificial neural networks (ANNs) due to their complementary
strengths and capabilities. Bayesian optimization and metaheuristic algorithms can perform
equally well for ANN optimization (Figure 12). Bayesian optimization is known for its
ability to balance exploitation (exploiting known good solutions) and exploration (exploring
new regions in the search space). It uses probabilistic models to guide the search towards
promising regions, based on observed performance. On the other hand, metaheuristic
algorithms like PSO and GA incorporate stochastic search techniques that can explore
the search space more extensively, searching for global optima. ANNs often have a large
number of hyperparameters, making the optimization problem high-dimensional. Bayesian
optimization excels in handling high-dimensional spaces by building surrogate models that
capture the relationship between hyperparameters and performance. It effectively guides
the search to promising regions based on the surrogate model’s predictions. Metaheuristic
algorithms can also handle high-dimensional spaces through their population-based search,
which allows for more diverse exploration.
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The performance landscape of ANNs can be complex and non-convex, with multiple
local optima. Bayesian optimization and metaheuristic algorithms approach the optimiza-
tion problem from different perspectives. Bayesian optimization focuses on modeling the
performance landscape and exploiting its information to guide the search, while metaheuris-
tic algorithms explore the landscape through heuristics and search operators to escape local
optima. Both Bayesian optimization and metaheuristic algorithms offer flexibility in terms
of the search strategy and problem representation. They can be applied to different types
of optimization problems, including ANN optimization, by adapting their operators or
objective functions accordingly. This adaptability allows them to be tuned and customized
based on the specific requirements of the ANN optimization task.

Ultimately, the effectiveness of Bayesian optimization and metaheuristic algorithms
for ANN optimization can depend on various factors, including the problem complexity,
the size of the search space, and the availability of computational resources. It is often
beneficial to experiment with different optimization techniques and select the one that
performs best for a particular ANN optimization task.

The results of the AUC values (Table 12) indicate the performance of each HPO
technique in optimizing the hyperparameters of the ANN for the given ML task. A higher
AUC value generally indicates better discrimination power and predictive accuracy of
the model.

Table 12. AUC value for GA, BO_GP, BO_TPE and PSO for ANN model.

HPO Techniques ML AUC

GA ANN 0.950

BO_GP ANN 0.947

BO_TPE ANN 0.953

PSO ANN 0.935

Based on the given data, BO_TPE achieved the highest AUC value of 0.95289, followed
by GA with 0.94987, BO_GP with 0.94685, and PSO with 0.93538. This suggests that
BO_TPE performed the best among the evaluated HPO techniques for the given ML task.

There could be several reasons why BO_TPE outperformed the other techniques.
BO_TPE combines both exploration and exploitation strategies effectively. It intelligently
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explores the hyperparameter space to identify promising regions and then exploits the
information gained to refine the search for optimal hyperparameters. This balance between
exploration and exploitation can lead to better performance. BO_TPE utilizes a sequential
Bayesian optimization strategy, which leverages the information gathered from previous
iterations to guide the search for optimal hyperparameters. This adaptive approach helps
in efficiently exploring the hyperparameter space and quickly converging onto promising
solutions. BO_TPE employs a Tree-structured Parzen Estimator (TPE) to efficiently explore
the hyperparameter space. TPE focuses more on areas that are likely to contain better
hyperparameter configurations, allowing for more efficient optimization compared to
other techniques. BO_TPE utilizes the observed performance of previous hyperparameter
configurations to build a probabilistic model and guide the search towards regions with
higher potential. This exploitation of information helps in quickly identifying and refining
good hyperparameter settings.

It is important to note that the performance of HPO techniques can vary depending
on the specific dataset, ML task, and hyperparameter space being considered. The given
results suggest that for the specific ML task and dataset in this study, BO_TPE performed
better than GA, BO_GP, and PSO in optimizing the hyperparameters of the ANN model,
resulting in higher predictive accuracy and discrimination power, as indicated by the
AUC values.

The fact that GA and BO_TPE performed equally well, as shown in Table 12 and
Figure 13, might suggest that both algorithms were able to navigate the search space
effectively to find good solutions. As discussed earlier, GA uses a population-based
approach, in which potential solutions evolve over generations through processes like
mutation and crossover. BO_TPE, on the other hand, models the distribution of the
objective function and uses Bayesian reasoning to focus the search on promising regions of
the hyperparameter space. In this particular case, the characteristics of the problem may
have allowed both techniques to reach similar levels of optimization performance.
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Bayesian Optimization Gaussian Processes (BO_GP) outperformed Particle Swarm
Optimization (PSO) in terms of AUC. BO_GP’s advantage might be attributed to its ability
to model the objective function as a probabilistic surrogate, allowing it to make informed
decisions about where to explore the hyperparameter space. PSO, while a powerful
optimization technique inspired by social behavior of birds or fish, can sometimes struggle
in complex or high-dimensional spaces due to its exploration and exploitation balance. It
relies on particle movement guided by personal and global best solutions, which may not
be as effective as BO_GP’s probabilistic modeling for certain problems. It’s possible that the
optimization landscape of this problem favored the probabilistic modeling and informed
exploration strategy employed by BO_GP, leading to its better performance compared
to PSO.

7. Conclusions

In conclusion, this research endeavors to enhance the accuracy and reliability of pre-
dicting landslide susceptibility along the Karakoram Highway (KKH) by employing a com-
prehensive methodology that combines feature selection and hyperparameter optimization.
This study acknowledges the intricate nature of landslide occurrences and the critical role
that relevant geospatial variables and well-tuned model parameters play in accurate predic-
tions. Through a rigorous process of experimentation and analysis, the study successfully
integrates modern techniques to address the challenges posed by landslides in the Karako-
ram region. The utilization of artificial neural networks (ANNs) as predictive models, along
with four distinct hyperparameter optimization techniques—Particle Swarm Optimization
(PSO), Genetic Algorithm (GA), Bayesian Optimization Gaussian Process (BO_GP), and
Bayesian Optimization Tree-structured Parzen Estimator (BO_TPE)—illustrates the com-
mitment to refining model configurations for optimal performance. Furthermore, this study
recognizes the significance of selecting pertinent features from the dataset. The incorpora-
tion of eight feature selection algorithms, each evaluating variables through different lenses,
such as multicollinearity, correlations, information sharing, variance, and uncertainty, re-
flects a comprehensive approach to identifying the most influential geospatial variables
contributing to landslide susceptibility. The synergy achieved by combining feature se-
lection and hyperparameter optimization is instrumental in addressing the complexities
of predicting landslide occurrences. The advantages encompass the prevention of over-
fitting, controlled model complexity, generalization to new and unseen data, the efficient
utilization of computational resources, adaptation to varying contexts, and robustness in
the face of changing data distributions. This approach is not only valuable for accurate
predictions but also contributes to a deeper understanding of the underlying processes
leading to landslides.

The study’s findings provide a substantial contribution to the field of geospatial
analysis, disaster management, and infrastructure planning. By offering insight into
optimal feature selection and model parameterization, the research equips decision makers
with valuable tools to develop effective mitigation strategies, plan resilient infrastructure,
and manage hazards along the KKH. The combined methodology of feature selection and
hyperparameter optimization stands as a testament to the potential of integrating advanced
techniques to tackle complex challenges. The research not only enhances the accuracy of
landslide susceptibility predictions but also underscores the broader applicability of such
integrated approaches in various domains of data analysis and decision making. As natural
calamities, like landslides, continue to pose threats to communities and infrastructure, this
study exemplifies the kind of innovative thinking that can lead to more informed and
proactive disaster management efforts.
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