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Abstract: Ship detection in optical remote sensing images plays a vital role in numerous civil and
military applications, encompassing maritime rescue, port management and sea area surveillance.
However, the multi-scale and deformation characteristics of ships in remote sensing images, as well
as complex scene interferences such as varying degrees of clouds, obvious shadows, and complex
port facilities, pose challenges for ship detection performance. To address these problems, we propose
a novel ship detection method by combining multi-scale deformation modeling and fine region
highlight-based loss function. First, a visual saliency extraction network based on multiple receptive
field and deformable convolution is proposed, which employs multiple receptive fields to mine the
difference between the target and the background, and accurately extracts the complete features of
the target through deformable convolution, thus improving the ability to distinguish the target from
the complex background. Then, a customized loss function for the fine target region highlight is
employed, which comprehensively considers the brightness, contrast and structural characteristics of
ship targets, thus improving the classification performance in complex scenes with interferences. The
experimental results on a high-quality ship dataset indicate that our method realizes state-of-the-art
performance compared to eleven considered detection models.

Keywords: multi-scale deformation modeling; fine region highlight; loss function; ship detection;
optical remote sensing

1. Introduction

The detection of maritime ships holds immense significance in the domains of auto-
mated fishery management, port rescue operations, and marine traffic maintenance [1].
The precision of detection technology is directly proportional to the safety and prompt-
ness of both military and civilian applications. Automatic identification system (AIS) is a
short-range coastal tracking system currently used on ships, which can realize real-time
data exchange between ships and ships, ship and shore, as well as target detection. It
is designed to ensure the safety of maritime navigation. Information provided by AIS
equipment, such as unique identification, position, course, and speed, can be received by
other ships or maritime authorities to track and monitor the movements of different vessels.
However, for a variety of reasons, ships can turn off their AIS transceivers. Therefore,
there are some limitations in using AIS data to detect ships or monitor sea areas, especially
for non-cooperative ships and sea areas. In comparison, visible light imaging offers rich
textures and apparent target structure features, making its information intuitive and easy to
comprehend, which aligns with the daily observation habits of the human eye. Moreover,
it is not limited by regional conditions and non-cooperative targets. As a result, visible
light remote sensing images have emerged as a crucial data source for ship detection and
identification [2]. However, remote sensing images usually cover vast areas, thus encom-
passing various environmental factors such as clouds and diverse port infrastructures in
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the image scene [3]. Hence, detecting ships amidst complex optical image scenes remains a
challenging task.

For the detection of ships in intricate scenes, scholars have proposed a diverse range
of strategies and models. Among them, the visual saliency model stands out as a prime
example [4]. This model emulates the mechanism of attention in the human eye and
promptly pinpoints unusual regions or points in complex scenes, offering a vast potential
for applications in the processing of massive data. Conventional image attributes, such as
edge, contrast, and texture features [5], were employed in early visual saliency models to
highlight potential areas. Subsequently, various extraction strategies, such as frequency
domain analysis [6], cellular automata [7], and Bayesian theory [8], were adopted to achieve
more precise contour of suspected objects. These techniques have achieved superior object
detection outcomes for specific scenes. However, due to the intricate scene conditions, such
as various artificial facilities and interferences from environmental elements like clouds,
the saliency model is prone to producing a high number of false alarms when applied to
large-scale remote sensing scenes. Consequently, there is a pressing exigency to proffer a
potent tactic to redress this quandary.

As is widely recognized, convolutional neural networks (CNNs) serve as powerful
tools for representing high-level semantic features in deep learning [9]. Consequently,
they offer an effective framework for the detection of ships in remote sensing images [10].
The application of deep learning technology has notably enhanced the performance of re-
gion extraction and ship detection through saliency methods based on CNNs [11]. In order
to enable the network to effectively detect ships of various sizes and types, feature pyramid
network (FPN) [12] is widely used to solve multi-scale object detection problems in images
due to its advantage of generating feature representations at different levels. Interestingly,
the multi-level structure of FPN actually uses information from different receptive fields.
The receptive field usually refers to the spatial range in the original image that is perceived
by neurons located at different positions. By mining the context relationship between the
target and the background in different receptive fields [13], the detection model can learn
the different characteristics of the target and the background at different scales to a certain
extent, thus achieving the correct detection of the target.

However, relevant research has proved that not all receptive field pixels contribute
to the response of the output unit for different practical tasks [14]. Therefore, how to
dynamically select different receptive fields and carry out information fusion to achieve
the effective learning of features is one of the problems to be studied in the field of ship
detection. In addition, due to the observation distance and direction of the remote sensing
platform, the shape of the target in remote sensing images may undergo various degrees
of deformation, and the characteristics of the target may also have certain differences,
which poses new challenges to the robustness of the detection network. Consequently, it is
urgent to accurately characterize the multi-scale, multi receptive fields, and deformation
characteristics of the target and enable the model to learn the differences between the
target and the background, so as to achieve accurate detection of ship targets in complex
scenes. Furthermore, due to the inherent locality of convolution operation and the pixel-
level characteristics of cross-entropy loss function [15], the current deep learning detection
model is difficult to achieve uniform saliency extraction of objects, resulting in incomplete
prominent areas of ships in complex scenes, which limits the performance of the detection
algorithm under complex port, cloud interference, and other conditions. Therefore, it is
urgent to closely combine the characteristics of ships in image scenes and then design the
loss function that can precisely learn the target regions.

To address these above issues, we propose a new ship-detection framework that
combines visual attention-based saliency extraction and fine region highlight-based loss
function, enabling the high-accuracy detection of typical ship targets in complex scenes.
Specifically, we propose a saliency extraction framework that jointly models the multi-scale
and deformation characteristics of targets. This framework leverages dilated convolutions
and deformable convolutions to learn the discriminative features of targets against the
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background and intrinsic features of the targets themselves, thereby generating saliency
extraction results for the targets. On this basis, a loss function is presented that comprehen-
sively utilizes global and local features such as brightness, contrast, and structure. This loss
function facilitates the fine and uniform enhancement of target regions, thereby improving
the overall detection performance of ships. Finally, experimental results on a high-quality
dataset demonstrate the accurate detection performance of the proposed method under
complex interference conditions such as port facilities and cloud disturbances.

The main contributions of our work are summarized as follows:

• A ship detection framework combining multi-scale saliency extraction with semantic
consistency and loss function for fine region highlight is proposed, which can achieve
a high-accuracy detection performance for typical ship targets in complex port and
sea scenes.

• A deformable multi-scale convolutional saliency extraction network is proposed,
which can jointly model the multi-scale and deformation characteristics of the target.
The network combines multiple receptive fields to improve the ability to distinguish
the difference between the target and the background and employs deformable con-
volution to extract the complete features of the target, thus enhancing the ability to
characterize the target.

• A specialized loss function for fine and overall target region highlight is proposed,
which comprehensively considers the brightness, contrast, and structure character-
istics of the ship target, thus improving the classification performance in complex
scenes such as port facilities, cloud and shadow interference.

2. Previous Related Research

In this section, we first provide a succinct overview of the salient object detection
technology evolution and explain the inadequacies of the classical methods. On this basis,
we explicate the solution of our method. Furthermore, we scrutinize the utilization of the
conventional edge enhancement-based loss function and clarify the distinctions between
our approach and other advanced classification methods.

2.1. Salient Object Extraction Model

The issue of detecting ships in intricate scenes has garnered significant attention within
the field of remote sensing. The visual attention mechanism, akin to the discerning gaze of
the human eye, plays a pivotal role in the processing of visual information [9]. By effectively
filtering out insignificant stimuli and swiftly honing in on crucial regions within an image
scene, it expedites the search and localization of the target of interest against complex
backgrounds, such as sparsely distributed ships. Drawing inspiration from this remarkable
mechanism, researchers have proposed various visual saliency models tailored for ship
detection. These models are designed to extract and leverage the crucial and valuable
information present in the salient regions, thereby facilitating timely and accurate ship
localization even in complex scenes. In past research on salient object detection, a large
number of detection models have been proposed based on intrinsic cues and extrinsic cues.
In [16], a saliency optimization technique is used to estimates the backgroundness probabil-
ity of superpixels through geodesic saliency analysis. In [17], a graph-based model based
on manifold ranking is proposed, constructing a query sequence by considering bound-
ary nodes as either background or non-salient regions. In [18], a method via conditional
random field (CRF) learning is applied to model groups of saliency features, generating
detection results.

With the development of hardware computing capability, the methods based on deep
learning, especially the use of convolutional neural networks (CNNs), have gradually be-
come the dominant paradigm in the research of salient target detection. Many studies have
adopted various CNN architectures, including fully convolutional networks (FCNs) [19]
and residual networks (ResNets) [20], which have achieved significant advancements in
accuracy and speed. Moreover, researchers have explored multi-scale and multi-modal
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fusion techniques to enhance the accuracy and robustness of salient object detection. These
techniques combine features from multiple scales or multiple modalities, such as color, tex-
ture, and depth, to capture salient objects from different perspectives and improve detection
performance. With the rise of feature enhancement ideas, attention mechanisms have been
widely used in salient object detection to improve the performance of CNNs [21]. These
mechanisms allow the network to focus on the most relevant regions of the image, which
can help to capture salient objects more accurately and efficiently. In addition, domain
adaptation [22] and generalization have emerged as important research directions in salient
object detection. These approaches aim to improve the modeling ability to generalize across
different domains, such as different lighting conditions, weather conditions, and camera
perspectives, which can enhance the practical applicability of salient object detection in
real-world scenes. Different from other works, we focus on the joint modeling of multi-
scale, multiple receptive fields and deformation characteristics and construct a deformable
multi-scale convolutional neural network. Moreover, we enhance the important features of
the target in channel and spatial dimensions based on attention mechanisms, improving
the discriminatory ability for interested targets and complex background environments.

2.2. Salient Region Highlighting Method

Extracting the intricate contours of the target with precision is a prerequisite for achiev-
ing the accurate classification of the object. Numerous approaches have been proposed
by researchers to tackle this challenge [23]. In addition to fine feature extraction, feature
enhancement, and the optimization of detection head strategies, proposing an appropriate
loss function is also one of the important ideas to improve training efficiency and detection
accuracy. In the field of salient object detection, the development of loss functions has seen
notable advancements [15]. Loss functions play a crucial role in training deep learning
models for object detection tasks by quantifying the discrepancy between predicted and
ground truth bounding boxes. Over the years, researchers have proposed various loss
functions to address specific challenges and improve the performance of object detection
systems [9].

Initially, the most commonly used loss function is the mean squared error (MSE) [24],
which computes the average squared difference between predicted and ground truth
bounding box coordinates. However, MSE is known to be sensitive to outliers and can
lead to unstable training. To overcome these limitations, researchers introduced smooth L1
loss [24], which assigns less weight to outliers and offers a more robust alternative to MSE.
Another significant development in loss functions for object detection is the introduction
of focal loss [25]. Focal loss addresses the problem of class imbalance by assigning higher
weights to misclassified examples, thereby focusing the model’s attention on challenging
samples. This loss function effectively reduces the impact of well-classified instances and
allows the model to prioritize the detection of rare or difficult objects. Furthermore, recent
advancements have seen the emergence of Intersection over Union (IoU) loss as an alterna-
tive to traditional regression-based losses. IoU loss directly optimizes the intersection over
union metric, which measures the overlap between predicted and ground truth bounding
boxes. By directly optimizing this metric, IoU loss encourages more accurate localization
and precise object detection. The Lovász-Softmax loss function has been proposed for
optimizing the mean Intersection over Union (mIoU) in foreground and background seg-
mentation within image scenes [26]. Additionally, attention has been given to developing
loss functions that consider object-level relationships and contextual information. Contex-
tual loss functions take into account the spatial relationships between objects in an image,
improving the detection accuracy by leveraging the contextual cues. A hierarchical saliency
network is introduced that initially employs diverse global saliency cues and subsequently
iteratively enhances the fine-grained details of the feature map [27]. A pyramid pooling
structure combined with multi-level refinement strategy is used to optimize the spatial
details and fine edges of the target in the saliency map, and has provided a good saliency
performance on multiple datasets [28]. A context-aware refinement loss is utilized to con-
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strain the encoder–decoder network, achieving the excellent preservation of target contours
at different resolutions [29]. These loss functions aim to enhance the model’s understand-
ing of object interactions and scene understanding. Consequently, these advancements
contribute to the continual improvement of object detection systems, enabling the more
accurate and efficient detection of significant objects in various applications.

Different from other methods, we propose a new loss function, which comprehensively
considers the brightness, contrast, structure, and other characteristics of the ship target,
and constrains the predicted salient regions from both global and local aspects, thus
improving the accuracy of target edge contour extraction.

3. Proposed Method
3.1. Method Overview

The structural diagram of the proposed method is illustrated in Figure 1. Similar to
the classical Faster R-CNN [30], the proposed method is a two-stage network structure.
In order to learn the multi-scale and deformation characteristics of ship targets, we propose
a multi-scale deformation modeling-based feature extraction (MDMFE) module, which
consists of two components: multi-scale feature enhanced part (MSFEP) and dual attention
fusion part (DAFP). Through these two modules, we can explore the multi-scale differences
between the target and the background, and simultaneously learn the deformation features
of the target. By applying the region proposal network (RPN) [30] to process the extracted
feature maps, preliminary salient region extraction results are obtained. On this basis,
to improve the efficiency and accuracy of extracting salient regions in complex scenes,
we propose a loss function to finely distinguish region differences between target and
background from global and local aspects, thus realizing satisfactory highlight performance
of ship target in feature maps.

Figure 1. Flow chart of the proposed work.
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3.2. Multi-Scale Deformation Modeling Based Saliency Extraction

In the realm of maritime ship detection applications, various types and scales of ships
are usually distributed in wide-area remote sensing scenes. Conventional neural networks
(CNNs), renowned for their remarkable feature extraction advantage, are frequently em-
ployed in the design of detection frameworks. However, CNNs inherently suffer from
limitations in modeling large-scale and unknown shape transformations, stemming from
the fixed sampling positions of their convolutional units on input feature maps. This results
in uniform receptive fields for all activation units within the same convolutional layer,
while objects at different positions may correspond to varying scales or deformations. Thus,
adaptive scale and receptive field size are imperative for precise localization of targets.

In response to the above issue, we propose the multi-scale deformation modeling-
based feature extraction module to enhance the modeling ability of CNN for scale and
deformation. As illustrated in Figure 2, this module is mainly composed of two compo-
nents: multi-scale feature enhanced part (MSFEP) and dual attention fusion part (DAFP).
The MSFEP adds three feature extraction branches of atlas convolution, and applies mul-
tiple receptive field fusion to learn context relations at different scales, thus improving
the learning ability of difference features between target and background. This module
can easily replace the common module in typical CNN and achieve end-to-end training
through backpropagation. Furthermore, by applying the additional deformable convolu-
tional neural network, we improve the ability to model multi-scale deformation in regions
or targets of interest. In addition, the DAFP is then introduced to fully fuse the extracted
features along the spatial and channel dimension.
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Figure 2. The structure of the MDMFE module.
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Specifically, we adopt the encode–decode framework to achieve the salient object
detection. Within the framework, a skip-connection structure is applied to provide addi-
tional multi-scale and multi-level features by introducing the encoding features during
the decoding process. It helps to reduce the compression and disappearance of detailed
information. The first multi-scale-feature-enhanced part is applied in each level during
the encoding process to extract multi-scale information of the targets. Firstly, we adopt
atrous convolution to obtain features at different scales, which is beneficial for capturing the
scale variation of targets. By introducing the dilated rate r, atrous convolution can enlarge
the receptive field of the network and enhance the ability of feature extraction without
additional computation. For the n-th level of features in the encoding process, we apply
the atrous convolution with dilated rates of 3, 4, and 5 in parallel to extract multi-scale
features. The 1 × 1 convolution is also used to preserve the information at the original
resolution. Finally, the multi-scale features are aggregated by channel concatenation and
1 × 1 convolution. Here, 1 × 1 convolution is used to restore the same number of channels
as the input feature map. This process is formulated as:

Fn = conv(concat(AC3(Fn), AC4(Fn), AC5(Fn), conv(Fn))) (1)

where ACn(·) represents the atrous convolution with dilated rate of n, concat(·) is the
channel concatenation operator, and conv(·) is the 1 × 1 convolution.

At the same time, to adapt to the variable shape of the targets, after extracting the
multi-scale features through atrous convolution at the fixed receptive fields, we introduce
the deformable convolution to automatically adjust the shape change modeling. Compared
with ordinary convolution, deformable convolution additionally learns offset coordinate
information, so that receptive field in the convolution process will be dynamically refined.
For the input feature map F1

n , the output at position p0 via deformable convolution is
calculated as

F2
n(p0) = ∑

pn∈R
w(pn) · F1

n(p0 + pn + ∆pn) (2)

where R = {(−1,−1), (−1, 0), ..., (0,−1), (1, 1)} is the range of the convolution kernel, w
represents the weights, pn and ∆pn are the index and offset coordinates of the convolu-
tion kernel, respectively.

To improve the training efficiency of features, we propose the dual attention fusion
part to fuse the encoding and decoding features by introducing the dual attention mecha-
nism [31]. For the encoded feature map F2

n enhanced by MSFEP and decoded feature map
Fencode

n , we perform preliminary fusion by addition operation. And then, we achieve more
adequate fusion through channel attention structure (CAS) and spatial attention structure
(SAS). The feature map obtained by the preliminary fusion is formulated as

F3
n = F2

n + Fdecode
n (3)

By modeling the importance of different feature channels, CAS assigns the weights
along channel dimension to enhance effective features and suppress irrelevant interference.
To achieve that, maximum pooling and average pooling are adopted to embed spatial
dimension information in channel significance. Then, we use the shared multilayer percep-
tron (MLP) to better capture the correlation between different channels. Finally, the weights
are obtained through the sigmoid activation function and assigned to the preliminary
fusion feature map F2

n . This process can be written as

Fchannel
n = σ

(
MLP

(
AvgPool

(
F3

n

))
+ MLP

(
MaxPool

(
F3

n

)))
(4)

where σ(·) is the sigmoid activation function, and MLP(·) represents the multilayer
perceptron.

By generating masks along the spatial dimension, the SAS achieves the feature en-
hancement of specific regions while suppressing the feature representation of irrelevant
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regions. The spatial correlation between features is first aggregated by maximum pooling
and global pooling along the channel dimension. After performing channel concatenation,
spatial saliency is generated by a 7 × 7 convolution. The weights are then obtained using
the sigmoid activation function and multiplied with the preliminary fusion feature map F2

n ,
which is formulated as

Fspatial
n = σ

(
conv

(
concat

(
MaxPool

(
F3

n

)
, AvgPool

(
F3

n

))))
(5)

where conv(·) represents the 7 × 7 convolution.
We apply the CAS and SAS in parallel to extract the enhanced features along

the channel and spatial dimension in parallel. The final fusion is then achieved by
addition operation.

F f usion
n = Fchannel

n + Fspatial
n (6)

After the above steps, we apply the minimum bounding rectangle to mark all potential
salient regions, thus obtaining the potential region extraction results for the first stage.

3.3. Loss Function for Fine Region Highlighting

For the salient ship detection, the binary cross entropy (BCE) loss function [15] is often
applied to measure the pixel difference between the extracted suspected region and the
ground truth region. The BCE loss is defined as

LBCE = ∑
p∈P,g∈G

−[g log p + (1− g) log(1− p)] (7)

where P represents the predicted saliency map, G represents the ground truth region.
p ∈ (0, 1) and g ∈ (0, 1) mean the probability of belonging to the salient area and ground
truth, respectively.

In order to improve the accuracy of image training, the predicted foreground re-
gion should overlap with the ground truth as much as possible, and changes in object
scale should not cause fluctuations in this phenomenon. We first measure the probability
of overlapping regions between the P and G, and this dependency relationship can be
characterized as

R(P, G) =
P ∩ G
P ∪ G

=
2pg

p + g
(8)

To ensure the monotonicity of loss function constraints, we convert this overlapping
probability into an offset loss function as

LO f f set = 1− 2 ∑ pg
∑ p + ∑ g

(9)

Obviously, by limiting the offset loss function to a certain range, we can ensure the
high consistency of the edge contour of the extracted region and the ground truth region.

The above two loss functions mainly constrain the extracted saliency regions from
the structural perspective. In fact, the brightness of the predicted region and the contrast
between the region and background are also key influencing factors affecting subsequent
classification performance. Considering that the structural similarity index can comprehen-
sively characterize the attributes of the image from three aspects: brightness, contrast, and
structure, assuming that x and y are corresponding patches of the predicted and ground
truth regions, respectively, then the structural similarity loss is applied as

LSSIM = 1−
(2µxµy + c1)(2σxy + c2)

(µx2 + µy2 + c1)(σx2 + σy2 + c2)
(10)

where µx, µy represent the mean values of the patches. σx and σy are the standard deviation.
σxy means their covariance.
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Actually, the BCE loss is calculated based on local pixel positions, while the offset loss
is calculated for global regions. By combining the two penalty terms, the global and local
constraint can be applied to image training, thus finely learning the target edge contour.
Considering the constraints of brightness and contrast comprehensively, therefore the final
loss can be characterized as

LIOU = αLBCE + βLO f f set + γLSSIM (11)

where α, β and γ are weight parameters, which are utilized to adjust the different contribu-
tion relationship. During the experiments, we optimize these parameters to focus on edge
pixels, thus enhancing the ability to distinguish between the edge and the interior of the
ship targets.

Since the proposed network is a two-stage network, the comprehensive loss can be
defined as

Llast = LRPN + LIOU + LR−CNN (12)

where LRPN and LR−CNN represent the losses of RPN and classification module, respec-
tively, and each term includes losses in both classification and regression aspects. Their
detailed definition can be found in classical two-stage Faster R-CNN work [30].

4. Experimental Results
4.1. Experimental Settings
4.1.1. Datasets Description

To verify the correctness and robustness of the proposed algorithm, the public high-
quality HRSC2016 dataset [32] is employed for performance analysis, which contains
1061 images of port scenes. Considering that in practical ship detection applications, port
facilities and environmental factors such as clouds and sea clutter are interference sources,
while the images collected from the HRSC dataset mainly include port facility elements,
lacking examples of natural factors. To address this issue, we select 500 scene images
containing natural scene elements from the Airbus ship detection challenge dataset and
high-resolution commercial satellite images such as worldview-3 and Jilin-1 for experiments.
The resolution of these satellite images is approximately from 0.3 m to 0.8 m. Considering
the fact that the actual satellite image size is too large for training and testing, we crop the
satellite image size to be between 800 × 800 and 1800 × 1800 pixels.

The dataset we used contains a total of 1561 images, and the allocation ratio of the
training and testing sets is approximately 8:2. As we mainly focus on the detection of
ship targets, the labels of the dataset images are all ship. Some typical samples of the new
dataset are shown in Figure 3.

4.1.2. Evaluation Metrics

The precision, recall, and average-precision (AP) metrics, the widely accepted bench-
marks, are employed to quantitatively evaluate the performance of our saliency model.
The precision can describe the proportion of true positives among the predicted positives,
and the recall can illustrate the proportion of true positives correctly identified. Combining
these two indicators can provide a comprehensive overview of the model’s performance
across different operating points, enabling a nuanced analysis of its effectiveness in captur-
ing the relevant information. Actually, the average precision is a comprehensive description
for precision and recall. It is a single-value metric that summarizes the trade-off between
precision and recall into a single score, which allows for a concise assessment of the overall
performance of the model. By utilizing these metrics, we precisely evaluate the performance
of our saliency model, enabling us to make informed conclusions about its effectiveness
and suitability for the salient region extraction task. These metrics are given as

precision =
|P ∩ G|
|P| , recall =

|P ∩ G|
|G| (13)
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AP =

1∫
0

precision(recall)d(recall) (14)

where P and G, respectively, denote the predicted saliency map and the ground truth [3].
The efficacy of the overall ship detection is evaluated through the utilization of two

pivotal metrics: the average accuracy (AC) and the false alarm rate (FAR). These quantitative
measures provide a comprehensive assessment of the algorithm’s application potential,
encapsulating the accuracy of object prediction and the probability of false classification.
The definitions of these metrics are as

AC =
number of correctly detected ships

number of real ships
(15)

FAR =
number of detected false alarms
number of detected candidates

(16)

   

   
 

Figure 3. Typical samples of the employed dataset (the first row is from the HRSC2016 dataset,
the second is from commercial satellite images).

4.2. Performance Analysis
4.2.1. Ablation Analysis
4.2.2. Implementation Details

The experiments are conducted on a high-performance workstation equipped with an
Nvidia RTX 2080 GPU. The proposed algorithm is implemented through the renowned
PyTorch framework, which is known for its flexibility and efficiency in developing deep
learning models. To extract diverse and rich features from input images, we select the
widely used and pre-trained ResNet-101 as the backbone for our algorithm. This choice is
made based on the extensive research and empirical evidence that highlight the efficacy of
ResNet-101 in various computer vision tasks. During the training process, we conduct a
comprehensive investigation on various hyperparameters to ensure optimal model perfor-
mance. The number of training epochs is set to 250, which can achieve a balance between
model convergence and avoiding overfitting. The batch size for training is set to 4, which is
set to optimize the GPU memory usage and computational efficiency. In our experiments,
we employ the stochastic gradient descent (SGD) strategy to calculate the loss function
during the training stage and update the model parameters. The learning rate is initialized
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at 0.001, and we apply a weight decay of 0.0003 and momentum of 0.9 to further enhance
the model’s optimization process, ensuring robustness and stability.

In order to verify the necessity and effectiveness of the proposed modules, the ablation
experiments are carried out. First, the proposed learning-based saliency model is compared
with several advanced saliency extraction methods, including the Amulet [33], Pase [34],
and ERPNet [35] methods. Figure 4 shows the saliency extraction results of different
methods. As shown in the Figure 4, for the first scene image containing complex port
facility interference (see the image in the first column of Figure 4), the Amulet method has a
poor effect on distinguishing the background and foreground, and numerous backgrounds
are introduced into the saliency map. Although the Pase method and ERPNet method can
suppress the prominent areas of buildings such as ground houses and warehouses, they
find it difficult to effectively distinguish the docks in the scene, mainly because the docks
and ships both have symmetry and their sizes are relatively close. Our method can mine
and fuse features at different levels, thus accurately highlighting multiple ship targets in the
image. In the second scene, shadows in the image are the main interference to the extraction
of ship areas. The Amulet method mistakenly treats shadows as salient regions due to
the lack of prior information about ships. The Pase and ERPNet method both highlight
most areas of the ships, but the Pase method does not distinguish the difference between
the ship and the dock. The ERPNet method applies the suppression strategy for the low
brightness area, which can better restrain the dock area but also affect the retention of some
low dynamic range areas of the ships themselves. Although there are certain non-target
regions in our method results, the shape and position features of the ships are most fully
preserved. In view of the third scene image containing thick cloud interference, the Amulet
misses the detection of ships in cloud shadows, while the Pase and ERPNet methods
accurately extract the contours of the three ships, but there are still varying degrees of the
highlighting of thick clouds. In contrast, our method can achieve excellent suppression of
cloud regions. In the scene of fragmented cloud interference (as shown in the fourth column
of Figure 4), the Amulet and Pase methods do not effectively distinguish the significance
of the background and foreground, resulting in both the target and some fragmented
clouds being highlighted. The ERPNet and our method can effectively extract the ship
target, but the former introduces some waves around the ship. Our method can learn the
target characteristics more finely and has a better inhibitory effect on the sea waves caused
by navigation.

In order to more directly display the gain effect of each module on the entire algorithm,
Table 1 lists the objective experimental evaluation results on the selected dataset. It can be
seen that when using the Faster R-CNN original network with IOU set to 0.5, the benchmark
value of the AP index is 84.2%. When configuring the MDMFE module on the benchmark
network, the AP value increased by 4.5%. When the network further imposes the constraint
of the proposed loss function, the AP of the overall algorithm even increases by 7.0%.
The experimental results with an IOU set to 0.75 also reflect a similar growth pattern.
From the above analysis, we can find that both the proposed MDMFE and loss function
have a positive effect on the detection algorithm.

Table 1. Evaluation results of ablation experiments.

Methods Loss Function AP(%)@IOU0.5 (%) AP(%)@IOU0.75 (%)

Faster R-CNN The original function 84.2 81.6
Faster R-CNN + MDMFE The original function 88.7 (+4.5) 85.4 (+3.8)

Faster R-CNN The proposed loss function 86.3 (+2.1) 83.4 (+1.8)
Faster R-CNN + MDMFE The proposed loss function 91.2 (+7.0) 87.9 (+6.3)
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Figure 4. Comparison results of the proposed method and several advanced saliency models on
the considered dataset: (a) input image, (b) Amulet, (c) Pase, (d) ERPNet, (e) proposed method and
(f) ground truth.

4.2.3. Algorithm Performance Comparison

In order to assess the efficacy and robustness of the proposed model, a comparative
analysis is conducted against eleven representative models for ship detection on the es-
tablished dataset. The models considered in this evaluation encompass well-established
approaches such as the conventional Faster R-CNN [30], YOLOv4 [36], YOLOv7 [37],
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R2CNN [38], RRPN [39], Gliding Vertex [40], CenterMap-Net [41], RITSD [42], R3Det [43],
FES-SPB [44], and MSSDet [45]. These models have been widely acknowledged for their
excellence in object detection applications. Notably, the first three methods are network
architectures designed for general object detection, while the remaining nine models are
specifically tailored for target detection in remote sensing images and have gained promi-
nence in recent years. For the purpose of fair comparison, all methods being compared
have employed the same data augmentation strategy.

In order to demonstrate the applicability of the proposed method across various image
scenes, we provide the detection results for several typical scene conditions in Figure 5.
To enhance clarity, we have removed the confidence labels from the resulting images. We
can observe that the tested image scenes encompass various background elements, such
as varying degrees of clouds, obvious shadows, and complex port facilities. Furthermore,
the considered scenes also include performance validation under multi-object conditions.
The experimental results from diverse scenes reveal that this proposed method outperforms
all comparative approaches in terms of average accuracy and false detection rate.

Specifically, for the scene of port facility interference, as shown in the first column in
the Figure 5, the Faster R-CNN and Gliding Vertex methods have missed detection of a
ship target and mistakenly detected multiple port facilities as targets; besides, the R3Det
method can suppress the interference of environmental elements, but it detects two ships
docked side-by-side as one target, resulting in missed detection. In contrast, our method
can extract the effective features of the target, thus accurately detecting all ship targets
from the complex environment. For the scene image with obvious shadow interference,
the Faster R-CNN method has many missed and false detections, and the Gliding Vertex
and R3Det methods have detected most ship targets, but the shadow interference has not
been completely removed, resulting in a certain deviation between the boundary box of the
detected target and the real boundary box. Our method can better suppress the influence
of shadow on the location of target boundary box, thus accurately describing the contour
boundary of the target. For the application of thin clouds and occluded scenes, all methods
have successfully detected the ships near the center of the image, but only R3Det and our
method accurately selected the targets at the edge of the image, that is, they have the ability
to detect the targets under certain occluded conditions. For the scene conditions of thick
clouds and shadow interference, the Faster R-CNN, Gliding Vertex, and R3Det methods
all detect two ships with ideal lighting conditions. Moreover, the R3Det method detects
the target in the shadow in the upper left corner of the image, but the three methods do
not distinguish the ship in the other shadow in the lower right corner of the image. Our
method can suppress the interference of shadows and clouds, finely distinguishing all
ship targets.

The quantitative evaluation results of the utilized dataset are demonstrated in Table 2.
It can be found from the evaluation index results that our algorithm can obtain the highest
average accuracy and the lowest false alarm rate. In contrast, the R2CNN method obtains
the lowest average accuracy, and the RRPN method shows the highest false alarm rate.
The performance of the R3Det method is second only to that of the proposed method.
Interestingly, this method also incorporates a feature refinement module to accurately
learn the position information of the target. However, this method utilizes a typical CNN
structure, which has inherent limitations in modeling the scale and shape variations of
ships. In contrast, our approach leverages multi-scale deformable convolutions to capture
the scale changes and shape deviations of the target, while considering the semantic
consistency across different extraction branches. This enables the more efficient utilization
of features and consequently achieves a better detection performance. Therefore, through
the above analysis of quantitative and qualitative results, we can see that our method
has better detection performance than all comparison methods, and can effectively detect
targets under the interference of complex scenes such as clouds, shadows, complex port
facilities, etc.
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Table 2. Quantitative evaluation results of different methods on the applied dataset (all methods
adopt the 2012 evaluation metric).

Methods Backbone AC(%) FAR(%)

R2CNN ResNet-101 68.35 13.73
RRPN ResNet-101 79.63 14.28

Faster R-CNN ResNet101 84.20 13.45
YOLOv4 CSPDarknet53 85.12 10.38
YOLOv7 ELAN-Net 87.68 7.48

Gliding Vertex ResNet-101 88.22 8.53
CenterMap-Net ResNet-101 92.84 5.84

RITSD ResNet-101 92.92 6.36
MSSDet ResNet-101 93.05 9.43
FES-SPB ResNet-101 93.20 7.85

R3Det ResNet-101 94.61 5.50

Proposed ResNet101 94.89 5.25

(a) 

    

(b) 

    

(c) 

    

(d) 

    

(e) 

    

(f) 

    

 
Figure 5. Detection results provided by the proposed method and the compared models: (a) orig-
inal images, (b) Faster R-CNN, (c) Gliding Vertex, (d) R3Det, (e) the proposed method, and
(f) ground truth.
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5. Conclusions

In this paper, we propose a novel ship-detection model which can effectively detect
ships of various scales and deformations in complex scenes, including intricate harbor
facilities, varying degrees of cloud cover, and significant shadow interferences. To address
challenges posed by complex environmental interferences, we design a saliency extraction
structure that jointly models the multi-scale and deformation characteristics of targets.
Leveraging dilated convolutions and deformable convolutions, we learn the distinctive
features of targets and backgrounds, obtaining relatively accurate saliency maps highlight-
ing potential ship candidates. Furthermore, we present a new loss function, incorporating
brightness, contrast, and structural aspects, to refine the extraction of salient regions, thus
enhancing the final classification performance of targets. The experimental results on high-
quality datasets show that our method achieves the highest average accuracy and lowest
false alarm rate compared to other excellent benchmark testing methods, which also proves
the effectiveness and robustness of our method for ship detection in complex environments.

In the future, considering that our detection model still has slightly higher false
detections, we plan to further explore more features that can more effectively represent
ship targets. In addition, we will further optimize the strategy to obtain higher granularity
target interpretation capabilities, such as ship recognition.
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