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Abstract: Accurate individual tree detection by unmanned aerial vehicles (UAVs) is a critical tech-
nique for smart forest management and serves as the foundation for evaluating ecological functions.
Existing object detection and segmentation methods, on the other hand, have reduced accuracy
when detecting and segmenting individual trees in complicated urban forest landscapes, as well as
poor mask segmentation quality. This study proposes a novel Mask-CSP-attention-coupled network
(MCAN) based on the Mask R-CNN algorithm. MCAN uses the Cross Stage Partial Net (CSPNet)
framework with the Sigmoid Linear Unit (SiLU) activation function in the backbone network to
form a new Cross Stage Partial Residual Net (CSPResNet) and employs a convolutional block at-
tention module (CBAM) mechanism to the feature pyramid network (FPN) for feature fusion and
multiscale segmentation to further improve the feature extraction ability of the model, enhance its
detail information detection ability, and improve its individual tree detection accuracy. In this study,
aerial photography of the study area was conducted by UAVs, and the acquired images were used
to produce a dataset for training and validation. The method was compared with the Mask Region-
based Convolutional Neural Network (Mask R-CNN), Faster Region-based Convolutional Neural
Network (Faster R-CNN), and You Only Look Once v5 (YOLOv5) on the test set. In addition, four
scenes—namely, a dense forest distribution, building forest intersection, street trees, and active plaza
vegetation—were set up, and the improved segmentation network was used to perform individual
tree segmentation on these scenes to test the large-scale segmentation ability of the model. MCAN’s
average precision (AP) value for individual tree identification is 92.40%, which is 3.7%, 3.84%, and
12.53% better than that of Mask R-CNN, Faster R-CNN, and YOLOv5, respectively. In comparison to
Mask R-CNN, the segmentation AP value is 97.70%, an increase of 8.9%. The segmentation network’s
precision for the four scenes in multi-scene segmentation ranges from 95.55% to 92.33%, showing that
the proposed network performs high-precision segmentation in many contexts.

Keywords: individual tree detection; Mask R-CNN; urban forest; deep learning; UAV; attention mechanism

1. Introduction

Urban forests are composed of scattered trees, forest belts, and patches and are impor-
tant components of urban ecosystems [1]. They play a crucial role in carbon sequestration,
oxygen release, water cycling, soil conservation, and mitigating the urban heat island
effect [2]. Individual tree crown detection is a fundamental technique for estimating param-
eters such as the tree crown width, diameter at breast height, canopy closure, height, and
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biomass, which are important for characterizing the ecological functions of forests [3–6].
Determining the number of trees in urban forests is also important for government decision-
making and administrative management [7]. This number can serve as a basis for forest
inventory and carbon sequestration capacity assessment and can help promote sustainable
urban development [8]. Satellite remote sensing has been instrumental in monitoring urban
forest resources for a long time [2]. However, due to the fragmented distribution and
heterogeneous underlying surface of urban forests, it is often difficult to accurately identify
and detect individual tree crowns with the limited resolution of satellite remote sensing
images [9].

Due to the consistent advancements observed in unmanned aerial vehicle (UAV)
technology, using UAVs equipped with high spatial resolution sensors has become a
flexible, fast, accurate, and cost-effective method to acquire images for individual tree
detection [10,11]. High spatial resolution images obtained by UAVs contain rich and
detailed information about ground objects, which can help us better understand the scale
of individual tree crowns in urban forests [12].

Individual tree crown monitoring methods based on digital images obtained from
UAVs include the local maximum value method, edge detection algorithms, watershed
algorithms, and the region growing method [13]. Mohan et al. [14] utilized the local
maximum value method to segment individual trees in private forests in Wyoming, USA
with satisfactory results. Moreover, Jing et al. [15], Liu et al. [16], Bochkovskiy et al. [17], and
Zhang et al. [18] applied an edge detection algorithm, watershed algorithm, U-Net network
combined with a watershed algorithm, and region growing method, respectively, to achieve
high-precision segmentation results. However, these methods have limitations in data
utilization. First, these studies are usually based on small datasets and focused on small
areas. Second, these algorithms mainly use individual bands as input images without fully
tapping into all the available information in UAV images [19]. In addition, these methods
are usually unsupervised methods, and different parameters need to be set according
to different detection objects during processing, but the parameter settings depend on
expert knowledge [20], a problem that can lead to low detection accuracy in complex urban
forest areas. In summary, it is more difficult to apply digital image processing methods to
complex urban forest areas [2], so more efficient and accurate individual tree segmentation
algorithms need to be developed to meet the needs of the field.

In recent times, the domain of computer vision has witnessed the substantial utilization
of deep learning and convolutional neural network (CNN) methodologies. These advanced
techniques have found extensive applications, especially in intricate assignments like
image classification, semantic segmentation, and object detection [19,21]. With the constant
improvement of computing resources and algorithm networks, deep learning models have
demonstrated outstanding performance and reliable capability. Deep learning is a novel
approach to individual tree crown segmentation and detection that achieves end-to-end
learning and prediction through the training of multilayer networks [22]. In traditional
machine learning methods, manually designing features involves selecting and engineering
specific attributes or properties from the input data that are believed to be relevant for the
learning task [23]. However, manually designing features can introduce biases and errors
for several reasons. Firstly, this process is often subjective and relies heavily on human
expertise and domain knowledge. Secondly, creating and refining manual features can
be a time-consuming process [24]. Lastly, manual feature design typically explores only
a limited set of features, potentially missing crucial patterns or relationships that exist in
the data [25]. However, a deep learning approach avoids the biases and errors that may
occur when designing features manually, due to the fact that deep learning models learn
to extract features and make predictions directly from the raw data without the need to
predefine features that may be biased [26].

Currently, DL-based tree crown detection includes one-stage detection and two-stage
detection [27]. One-stage networks typically output the position and category of each
object in the image through a neural network [28], with the typical models including
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You Only Look Once (YOLO) [29] and Single Shot MultiBox Detector (SSD) [21]. They
have the advantages of a fast detection speed and requiring few computational resources,
making them suitable for real-time applications [30]. For tree crown detection, Jintasuttisak
et al. [31] used the YOLOv5 network to achieve the fast and accurate detection of palm
trees, while Zheng et al. [21] used the SSD network for individual tree segmentation in
Thai orchards, which greatly improved the accuracy compared to the traditional methods.
Two-stage networks implement object detection in two stages. In the first stage, a region
proposal network (RPN) is employed to produce regions that serve as potential candidates.,
and the second stage inputs these candidate regions into a classification network for further
classification and localization operations [8]. Although the detection accuracy of two-stage
networks is generally higher than that of one-stage networks, it comes at the cost of slower
speeds due to the two network operations needed, and it introduces an additional time
delay and overhead [32]. Each operation takes a certain amount of time to execute, and the
cumulative time of all operations in both phases is added together [33]. This may result
in a longer overall processing time than in a one-stage approach, where only one set of
operations needs to be performed. The quintessential two-stage network model is the
Faster Region-based Convolutional Neural Network (Faster R-CNN) [34]. For tree crown
detection, Mubin et al. [35] used Faster R-CNN for oil palm tree detection and achieved high
accuracy, while Xi et al. [36] used multispectral UAV images combined with an improved
Faster R-CNN network for individual Ginkgo biloba tree detection on a campus, resulting
in good accuracy.

The Mask Region-based Convolutional Neural Network (Mask R-CNN) is an instance
segmentation network that extends Faster R-CNN, integrating object detection and seman-
tic segmentation tasks [37]. It is capable of generating per-pixel binary masks for each
instance of the detected objects within the bounding box, effectively performing detection
and segmentation simultaneously [38]. Iqbal et al. [39] achieved 91% accuracy in detecting
and segmenting coconut trees using the Mask R-CNN approach. Yu et al. [20] compared
the Mask R-CNN with the watershed and local maximum methods for individual tree
segmentation in young artificial forests, demonstrating a higher level of accuracy in Mask
R-CNN. Zhang et al. [40] improved the Mask R-CNN network for the individual tree
segmentation of broad-leaved and coniferous forests within an ecological public welfare
forest and compared it with the U-Net and YOLOv3 networks, revealing the advantages of
the improved Mask R-CNN network in individual tree segmentation.

Although the Mask R-CNN network has shown high accuracy in segmentation in some
studies, it has primarily been applied to individual-type forests, street trees, or isolated trees
with relatively uniform tree crown sizes, uniform tree species, and uniform distributions,
which are easy to recognize [41,42]. However, the accuracy of the Mask R-CNN network
is less satisfactory for urban forests with complex backgrounds, dense distributions of
trees, diverse tree species, and varying tree crown sizes and shapes [43,44]. In this paper,
we propose an improved Mask R-CNN network named the Mask-CSP-attention-coupled
network (MCAN). We introduce Cross Stage Partial Net (CSPNet) [45] in the backbone
feature extraction network and add a channel–spatial attention mechanism in the feature
pyramid network and use a new learning rate decay method and activation function to
address the issue of low accuracy in individual tree segmentation in urban forests. The
proposed method effectively reduces the missed detections of small targets and the false
detections of objects in complex backgrounds, enabling the intelligent extraction of urban
forest features from UAV imagery.

2. Materials and Methods
2.1. Study Area

The study area is situated in Zhejiang A & F University’s East Lake campus, which
is in Lin’an District, Hangzhou City, Zhejiang Province, as depicted in Figure 1. Over
3000 different species of subtropical evergreen vegetation, including ginkgo, willow, os-
manthus, camphor, magnolia, and metasequoia, can be found in the area, which has a
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subtropical monsoon climate. These plants are distributed in the study area in various
forms, such as isolated trees, roadside trees, stands, and plantations. We conducted thor-
ough tests for four different scenarios, including a dense forest distribution, building
forest intersection, street trees, and active plaza vegetation, as shown in Figure 1, to gauge
MCAN’s ability to recognize tree crowns.
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Figure 1. Overview of the study area. (a) Location of the study area, (b) UAV images of the study
area, and (c–f) images of the four different scenes.

2.2. Datasets and Processing

The study used photos taken on 2 May 2022 using a DJI Mavic Air 2 drone with a 1/2-
inch CMOS camera. The day of shooting was midday; the weather was clear, cloudless, and
windless; and the sunlight intensity was stable. With a pitch angle of −90◦, viewing angle
of 84◦, an equivalent focal length of 24 mm, and an aperture of f/2.8, the drone was flown
at a height of 300 m. The maximum ascent speed of the UAV was 4 m/s, the maximum
descent speed was 3 m/s, the maximum flight time was 34 min, and the maximum range
was 18.5 km. The images had a spatial resolution of approximately 0.1 m and consisted of
three widely used spectral bands or RGB. The flight was programmed with an 80% overlap
rate in the heading direction and a 70% overlap rate on the sides.

We used PIX4Dreact 1.4 software to process the images acquired by the UAV. Firstly,
due to the high overlap rate of the images and the pitch angle of −90◦ during the flight,
we could obtain the corresponding points between the photos and then align the photos
through the corresponding points to merge them to obtain the orthophotos. The size of the
final orthophoto was 16,051 × 14,685, with a spatial resolution of 0.1 m, and the coordinate
system was CGCS2000.

2.3. Introduction to Object Detection Algorithms
2.3.1. YOLOv5

YOLOv5 is a fast and accurate one-stage target detection algorithm, which is the fifth-
generation version of the YOLO series [46]. YOLOv5 has improved upon YOLOv4 [17],
resulting in an elevated detection accuracy and accelerated processing speed. The structure
of YOLOv5 includes three parts: backbone, feature pyramid network (FPN), and head [27].
Among them, the backbone utilizes Cross Stage Partial Dark Net (CSPDarkNet) [27], while
the mosaic data enhancement method [47] and focus structure are added for image enhance-
ment and channel expansion. In addition, in the FPN, YOLOv5 performs multiscale feature
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fusion by up-sampling and down-sampling the feature maps output from the backbone [48].
The head module of YOLOv5 contains three branches, each of which is responsible for
predicting target frames at different scales. In the head, the input features are reshaped
into a 3D tensor that contains the position coordinates and category probabilities of the
predicted target frames. These tensors are processed with Non-Maximum Suppression
(NMS) [49] to output the final detection results.

2.3.2. Faster R-CNN

Faster R-CNN, derived from the frameworks of R-CNN and Fast R-CNN, is a two-
stage object detection network [50]. Faster R-CNN utilizes VGG16 [51] for feature extraction;
after which, the RPN is utilized to generate anchors and filter the suggestion frames [52].
The selected candidate regions are then fed into a target classification network for target
classification and location regression. In this process, Faster R-CNN utilizes the region of
interest pooling (ROI pooling) [53] operation to fix the different sizes of proposals to the
same size, which facilitates the convolutional network operation.

2.3.3. Mask R-CNN

Mask R-CNN includes the backbone network, RPN, ROI Align, and classification
section [37]. There are several steps in the Mask R-CNN network detection procedure. First,
in the backbone, Resnet and FPN are used to extract multiscale feature data. Then, the
ROI is generated using the shared convolutional layer of the RPN and fed into the later
target classification and mask prediction network for further processing. Then, the ROI
feature maps are extracted using the ROI Align part, and the proposals generated by the
RPN network are pooled to fix the feature maps of different scales into a uniform scale
for the convolutional network to predict the categories. Finally, fully connected networks
(FCNs) are used to obtain the detection categories and bounding boxes while achieving
semantic level segmentation.

2.4. MCAN
2.4.1. The Overall Framework of MCAN

Figure 2 depicts the MCAN urban forest individual tree identification and segmenta-
tion model. The network replaces the backbone of the Mask R-CNN with a Cross Stage
Partial Residual Net (CSPResNet) and also utilizes Sigmoid Linear Unit (SiLU) as an
activation function and incorporates a channel–spatial attention module in the FPN.

2.4.2. CSPResNet

MCAN’s backbone feature extraction network, CSPResNet, incorporates CSPNet.
CSPNet consists of the convolutional framework module Conv Batch Normalization SiLU
(CBS) and Bottleneck module, which divides the input features into the same two parts
and improves the model accuracy by adding skip connections of the residual blocks, which
alleviates the gradient disappearance problem and overfitting associated with increasing
the depth of deep neural networks (see the CSPLayer (Cross Stage Partial Layer) module
in the figure). CSPResNet incorporates the focus layer and spatial pyramid pooling (SPP)
module. The focus layer is a special convolutional layer for the target detection task, mainly
used for small target detection. The framework first splits a large input image into 4 copies
and then performs convolutional operations on these 4 copies to extract the features of
interest. By pooling the input features three times with different size pooling kernels and
stacking them with the original features, the SPP module is able to increase the perceptual
field of the feature network and effectively separate the most significant contextual features
with little or no slowdown in the network operations [17]. The SiLU activation function [54],
which is an improved version of the sigmoid activation function and the ReLU activation
function and is now widely used in deep learning, is shown in Equation (1).

f(x) = x ∗ σ(x) = x ∗ 1
1 + e−x (1)
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2.4.3. Channel–Spatial Attention Module

This study integrated an attention mechanism module into FPN to increase the pre-
cision of individual tree detection in complex environments. The attention mechanism
enhances the model’s performance and interpretability by helping it better focus on the
key elements. The two basic types of attention mechanisms are channel attention (CA) and
spatial attention (SA) [55]. CA refers to the channel dimensions of the input features and
assigns different weights according to the importance of each channel [27]. It is generally
used with operations such as pooling to generate the importance ranking of channels and
then performs the convolution operation with the input features. SA refers to giving dif-
ferent weights to different spatial locations in a feature map, which is generally generated
using a CNN, and then convolving with the input features.

As indicated in Figure 3, the convolutional block attention module (CBAM) [56] was
employed in this investigation. This module consists of a channel attention module (CAM)
and a spatial attention module (SAM). The channel attention weight is denoted by Mc, and
the spatial attention weight is denoted by Ms.
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Figure 3. Overall framework of the CBAM.

The CBAM first uses the CAM to compute channel attention weights on input feature
F to obtain the weight vector Mc and performs the convolution operation of Mc with input
feature F to obtain F1; after which, F1 is used as the input of the SAM to compute spatial
attention weights Ms and performs the convolution operation of Ms with F1 to obtain the
output feature F.

The CAM compresses the spatial dimensions of the input features by MaxPool and
AvgPool, sends them to the shared multilayer perceptron (MLP) for two full-connection op-
erations, and obtains the channel weights Mc using ADD and activation function operations.
The CAM framework is shown in Figure 4 and Equation (2).
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Mc(F) = σ(MLP(AvgPool(F)) + MLP(MaxPool(F))) (2)

where σ is the Softmax activation function, AvgPool and MaxPool are the average pooling
operation and the maximum pooling operation, respectively, and MLP is the shared fully
connected operation.

Additionally, SAM first pools the input features using MaxPool and AvgPool to
compress the channel dimensions and stack the results, respectively, before performing the
convolution operation with the calculation of the activation function to produce the spatial
attention weights Ms. The SAM framework is shown in Figure 5 and Equation (3).
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Ms(F) = σ
(

Conv7×7(Concat[AvgPool(F), MaxPool(F)])
)

(3)

where Conv7×7 represents a convolution operation employing a kernel size of 7 × 7.

2.5. Dataset Production

To facilitate the training of the deep learning model, we cropped the preprocessed
images and excluded multiple scene prediction region ranges. In the end, we obtained
967 images with a resolution of 512 × 512 pixels. The 967 cropped photos were supple-
mented to create a dataset size of 3868 to increase the diversity of the sample data and
lower the possibility of overfitting of the network model [57]. The enhancement methods
included changing the brightness, rotation, and contrast of the image, as well as adding
noise. To circle the canopy area and create example segmentation labels, we performed
canopy contouring and labeling of the images based on visual interpretation and the la-
belme tool. We separated the dataset into a training set, a validation set, and a test set
according to a ratio of 6:2:2. The tree crowns of some trees are totally hidden by the upper
branches and foliage, rendering them unrecognizable; hence, they are not included in
the label manufacturing. The total number of labeled individual woods in the expanded
dataset is 56,020. The statistics of the number of individual trees for these data are shown
in Table 1, while some of the sample images can also be seen in Figure 6.

Table 1. Statistics on the number of individual trees in the dataset.

Dataset Number of Individual Trees

Training 32,840
validation 12,110

Test 11,070
Total 56,020
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2.6. Loss Function and Training Experiment

The loss function of the MCAN network consists of two parts, LRPN and LFPN head,
where LRPN includes the classification loss Lrpncls and target box offset loss Lrpnbbox , and
LFPN head includes the classification loss Lheadcls

, target box offset loss Lheadbbox, and mask
loss Lmask [58]. The overall formula and each loss formula are shown in Equations (4)–(15).

L = LRPN + LFPN head (4)

LRPN = Lrpncls + Lrpnbbox (5)

LFPN head = Lheadcls
+ Lheadbbox

+ Lmask (6)

Lrpncls =
1

Nrpncls
∑

i
Lcls(pi, p∗i ) (7)

Lrpnbbox = +λ1
1

Nrpnbbox
∑

i
p∗i Lreg(ti, t∗i ) (8)

Lheadcls
=

1
Nheadcls

∑
i

Lcls(pi, p∗i ) (9)

Lheadbbox
= λ2

1
Nheadbbox

∑
i

p∗i Lreg(ti, t∗i ) (10)

Lmask = γ
1

Nmask
∑

i
Lmask(si, s∗i ) (11)

Among them,

Lcls(p
∗
i , pi) = −log[p∗i pi + (1− p∗i )(1− pi)] (12)

Lreg(ti, t∗i ) = smoothL1(ti − t∗i ) (13)

Lreg(ti, t∗i ) =
{

0.5(ti − t∗i )
2 if|ti − t∗i | < 1

|ti − t∗i | − 0.5 otherwise
(14)

Lmask(s
∗
i , si) = −(s∗i logsi + (1− s∗i )log(1− si)) (15)

where i represents the anchor frame, pi represents the probability that the ith anchor frame
is predicted to be the target, and p∗i represents whether the ith anchor frame is the target
(p∗i = 1 when the anchor is the target, and p∗i = 0 when the anchor is the background);
ti represents the four parameterized coordinates obtained from the prediction of the ith
anchor frame; t∗i represents the four parameterized coordinates corresponding to the real
frame; and λ1, λ2, and γ are parameters for balancing the number of anchor boxes Ncls and
the number of bounding boxes Nreg.

The operating system of this network training environment is Windows 10 Profes-
sional, the processor is Intel core i5-12400, the RAM capacity is 16 GB, and the NVIDIA
GeForce GTX 3060 (12 GB) graphics card is used. The Python version is 3.7, and the deep
learning framework is TensorFlow2.4.0-gpu.

To compare the performance difference after the model improvement, a comparison
with other classical models is necessary. YOLOv5 and Faster R-CNN are both classical
models for target detection and have also achieved good accuracy in individual tree
detection [31,59,60], so this study compares MCAN with Mask R-CNN, YOLOv5, and
Faster R-CNN. The training dataset, training parameters, and hardware configurations
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were set consistently while keeping the same number of training rounds for all models
to evaluate the differences for each metric. To save model training time, avoid the time
required to train the network from scratch, and improve the training accuracy, this study
conducted model training based on a migration learning approach. Transfer learning is
a method that uses information obtained from a previous task, such as data features and
model parameters, to help learn for a new task. This approach reduces the cost of training
data and increases the efficiency of model application [61]. All four network models were
trained using pretrained weights on the COCO dataset [62] as the initialization weights,
while cosine annealing [63] was used to optimize the learning rate. Specifically, the updated
learning rate newlr was calculated as shown in (16).

newlr = etamin + ( initial_lr− eta_min) ∗

1 + cos
( curepoch

T_max ∗ π
)

2

 (16)

The predetermined parameters include the initial learning rate initial_lr, the mini-
mum learning rate eta_min, and the maximum number of epochs T_max. The value that
represents the quantity of training rounds completed to date is the current training epoch
number curepoch, the evaluation of each model’s performance in terms of metrics pertaining
to the detection of individual trees. The detailed parameters of the network are shown in
Table 2.

Table 2. Network detailed parameters table.

Parameters
Network

MCAN Mask R-CNN Faster R-CNN YOLOv5

Optimizer Adam Adam Adam Adam
Initial learning rate 0.001 0.001 0.001 0.001

Momentum 0.937 0.937 0.937 0.937
Learning rate decay mode Cosine annealing Cosine annealing Cosine annealing Cosine annealing

Weight decay 0.0005 0.0005 0.0005 0.0005
epoch 100 100 100 100

batch size 16 16 16 16
Backbone network CSPResNet Resnet101 Resnet50 CSPDarkNet
Activation function SiLU SiLU SiLU SiLU

2.7. Accuracy Assessment

The accuracy of individual tree detection and segmentation was assessed individually
in this study to compare the quantitative performance of various algorithms. By comparing
them to the expected outcomes of the models in the test set using the accurate annotation
of the UAV pictures, the positions and contour ranges of individual trees were assessed.
Recall, precision, F1 score, and average precision (AP) were the four measures that were
employed in this study to assess each model’s strengths and flaws. The most fundamental
accuracy evaluation metrics for classification problems are precision and recall. Precision
measures the proportion of detected objects that are actually objects, and recall measures
the proportion of all objects correctly identified. To evaluate the precision of object detection
in a particular category, the AP is one of the assessment metrics most frequently used in
target detection. The precision–recall curve is used as the foundation for calculating the
AP. The area under the precision–recall curve for each category is determined as the AP.
This calculation’s formula is displayed below, where TP stands for the number of correctly
recognized individual trees, FN for the number of undetected individual trees, and FP for
the number of mistakenly detected individual trees. The formulas are defined as shown
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in (17)–(20) These measurements enable a more scientific and unbiased assessment of the
performances of various models.

Precision =
TP

TP + FP
∗ 100% (17)

Recall =
TP

TP + FN
∗ 100 (18)

F1 Score = 2 ∗ precision ∗ recall
precision + recall

∗ 100% (19)

AP =
∫ 1

0
p(r)dr (20)

3. Results
3.1. Model Training Results and Accuracy Evaluation

After 100 iterations, Figure 7 displays the loss curves of the training set for the four
models MCAN, Faster R-CNN, YOLOv5, and Mask R-CNN, as well as the comparison
of the PR curves on the test set following network convergence. The loss curves show
that the loss values of the four models start off high during training and subsequently
oscillate downward as the number of training epochs rises. Faster R-CNN has the slowest
convergence pace among them, while the Mask R-CNN network and MCAN decrease faster
during the initial training phase and reach convergence after 20 and 60 rounds, respectively.
Faster convergence rates may result in fast learning and prediction capabilities but may
also lead to overfitting [64]. Slower convergence rates may improve model stability and
reduce the risk of overfitting [43]. Analysis of the PR curves shows that, when the recall is
higher than 0.35, the precision rates of MCAN are all higher than the remaining networks,
and the curves of MCAN are fuller and the best.
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Each trained model is used for individual tree detection in the test dataset when the
training procedure is complete. The precision rate, recall rate, F1 value, and AP metrics
of an individual tree in the test set under each model were computed based on the label
production outcomes and field survey data. The confidence level used for this accuracy
assessment metric was 0.5, and the IoU threshold range for calculating the AP was 0.5–
0.95 with a step size of 0.05. Table 3 displays the accuracy comparison results of the four
networks on the test set.
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Table 3. Comparisons of model detection accuracy.

Model Recall Accuracy F1 Score AP (@.5:.95)

YOLOv5 69.26% 95.22% 80.19% 79.87%
Faster RCNN 71.80% 89.01% 79.48% 88.56%
Mask R-CNN 72.40% 96.14% 82.60% 88.70%

MCAN 75.74% 97.84% 87.48% 92.40%

The information in Table 3 indicates that MCAN outperforms the other three networks
in terms of detection outcomes. The recall rate is above 75%, the accuracy rate is above
95%, the F1 value is above 85%, and the AP is above 90%. The recall, accuracy, F1 and AP
values of the other three networks, which were all below those of MCAN, ranged from 69%
to 53%, 89% to 97%, 79% to 89%, and 79% to 89%, respectively.

3.2. Comparison of Individual Tree Segmentation Results

The segmentation accuracy metrics on the test sets of both networks were calculated
to compare the benefits and drawbacks of MCAN and Mask R-CNN for segmenting
individual trees, and the results are displayed in Table 4. With an 8.9% improvement in
the AP, a 10.9% improvement in recall, a 0.82% improvement in accuracy, and a 7.23%
improvement in the F1 score, MCAN is superior in all the accuracy evaluation criteria in
Table 4.

Table 4. Comparison of model segmentation accuracy.

Model Recall Accuracy F1 Score AP

Mask R-CNN 62.60% 87.22% 72.89% 88.80%
MCAN 73.50% 88.04% 80.12% 97.70%

As shown in Figure 8, MCAN has higher feature detection and differentiation abilities
for trees and other locations compared to Mask R-CNN. It also minimizes the amount of
non-forest or shrub objects that are mistakenly classified as individual trees. By using an
attention mechanism, MCAN enables the reduction of both the number of instances in
which multiple individual trees are mistakenly identified as individuals and the number of
instances in which individual trees are mistakenly identified as multiple trees.
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By including CSPNet in the backbone feature extraction network, MCAN also increases
the accuracy of small item recognition. This decreases the number of missing individual
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trees and raises the recall rate. As seen in Figure 9, Mask R-CNN misses the solitary trees
in the image with small crown sizes, whereas MCAN is able to identify them. Due to their
similar colors and few pixels in comparison to the background, these missing individual
trees are readily disregarded, which lowers the recall rate of the network.
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3.3. MCAN in Multi-Scene Urban Forest Canopy Segmentation Application

We use MCAN to detect canopies in four different scenes on campus—namely, a dense
forest distribution, building forest intersection, street trees, and active plaza vegetation—to
fully verify the effectiveness and multi-scene performance of MCAN in large-scale canopy
segmentation detection in urban forests. First, the scene area images are cropped to images
512 × 512 in size while maintaining a 10% overlap rate and sent to the model for prediction;
after which, the prediction results are stitched together, and the duplicate detection areas
are removed according to NMS. The prediction results are shown in Figure 10 and Table 5.
The total pixel size of the four regions is 4096 pixels× 4096 pixels, and the spatial resolution
is approximately 0.1 m. The prediction results can allow us to understand the segmentation
statuses of different scales, different backgrounds, and different shapes of individual trees.

The analysis in Figure 10 and Table 5 shows that the MCAN model achieved good
results in canopy detection in campus urban forests. Out of the total 1863 individual
woods detected, the model detected 1850 individual woods, of which 119 individual
woods were mistakenly identified as targets. In addition, the number of correctly detected
individual woods was 1731, and the number of missed individual woods was 132. In
addition, 1731 individual trees were accurately detected, whereas 132 individual trees were
overlooked. MCAN’s recall and precision rates in the four campus settings that were
chosen were both above 90%. Scenario a has the highest precision rate among the four
scenarios at 95.55%, while scenario b has the highest recall rate among the four scenarios at
94.62%. The other two scenarios also both achieved an accuracy rate of 92% and a recall
rate of 90%. This shows that the MCAN has a good generalization ability and prediction
capability to adapt to different scenarios and can be effectively used for canopy detection
tasks over large areas.
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Table 5. Statistics of the prediction results of improved model scenes.

Scenario Number of
Tested Plants

Number of
Real Plants

Number of
Missed Plants

Number of
Wrong Plants Accuracy Recall

Dense forest distribution a 696 704 39 31 95.55% 94.46%
Building forest intersection b 421 409 22 34 91.92% 94.62%

Active plaza vegetation c 355 364 34 25 92.96% 90.66%
Street trees d 378 386 37 29 92.33% 90.41%

Total 1850 1863 132 119 93.57% 92.91%

4. Discussion

MCAN is based on the Mask R-CNN network framework with three improvements:
first, the integration of CSPNet in the backbone feature extraction network to improve the
feature extraction capability and reduce the missed detection of small targets; second, the
use of the SiLU activation function to improve the nonlinearity and fitting capability of the
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model; and third, the addition of a hybrid channel space attention mechanism in the FPN
to improve the model’s ability to recognize targets and remove background interference.

The original ResNet101 [65] backbone feature extraction network of the Mask RCNN
network has a lengthy feature extraction path that loses a significant amount of spatial
information and ignores the finer details of the image, which easily causes issues such as
the missed or false detection of small targets [66] while also increasing the computational
complexity and training difficulty. Compared with Resnet101, CSPResNet not only en-
hances the learning ability of the CNN but also reduces the size of the model so that it can
maintain sufficient accuracy while being lightweight. This ensures the effectiveness and
efficiency of the individual wood segmentation network. In addition, CSPResNet is able to
improve the model’s ability to capture image details and reduce the information loss in
ResNet due to the deep network framework, making CSPResNet more suitable for remote
sensing images with rich details.

Additionally, the SiLU activation function used in this network performs computations
more quickly than other functions, such as ELU and GELU, and does not experience data
overflow problems [54]. Compared to the ReLU activation function, the SiLU function’s
derivatives are smoother and continuous throughout the definition domain [67]. Addi-
tionally, by utilizing the SiLU function, the gradient on the deep model can be kept from
vanishing, making it easier to extract features. In conclusion, adopting the SiLU activation
function can enhance the model’s nonlinearity and capacity to fit data, making it simpler to
learn the precise details of the target shape and resulting in superior detection outcomes.
Therefore, CSPResNet and SiLU activation functions have advantages in improving model
representation, feature fusion, parameter reduction, maintaining gradient stability, and
feature enhancement [54].

The attention mechanism emulates the cognitive awareness of humans, enabling a
computer to zoom in on crucial details and prioritize the essential aspects of the data [68].
With the ongoing advancement and use of deep learning technology, attention mechanisms
have been extensively used and investigated in a variety of contexts. For example, attention
mechanisms are used to enhance the performances of neural networks in computer vision
tasks, such as image classification, target detection, and image segmentation. The FPN of
the Mask R-CNN network is fused without considering the feature map importance, which
leads to the low accuracy of individual wood extraction in a complex background environ-
ment. Most of the existing methods assign the same weight to different channels when
convolutionally extracting features without channel importance ranking. CA effectively
compresses the feature dimensions and boosts the model’s effectiveness by focusing greater
attention on the channels containing key information while ignoring other noncritical
channels [69]. Unlike conventional CNNs, which give different weights to each pixel in
the feature map, SA focuses more on the key regions in the spatial location of the image
and ignores some noncritical regions in the spatial location, which allows more attention
to be focused on the pixels belonging to the foreground region of interest, thus reducing
background interference and improving detection accuracy [38]. In this study, a SAM and
CAM are fused in the FPN, which not only improves the differentiation of foreground
and background in a complex urban forest environment but also increases the detection
accuracy of small canopy individual wood and prevents the loss of information in the
feature fusion process.

Although the accuracy of the method used in this work to identify individual trees
in urban forests is high, there are still some drawbacks. The following areas will be
addressed in future research: (1) To further validate and optimize the model’s robustness
and generalizability, we should collect more data containing complex scenarios and samples
with complexity and label them accurately so as to reduce the false-positive rate and false-
negative rate. (2) To further improve the model’s accuracy, additional attention mechanisms
and network framework improvement techniques should be considered. (3) This study
area is an urban forest, and the training and testing of the network model is also based
on urban forest UAV images. In addition, the stand structure and tree species of urban
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forests are very different compared to natural forests, so the applicability and accuracy of
the network for natural forests or other vegetation should be further discussed.

5. Conclusions

In this study, inspired by the Mask R-CNN network framework, we innovatively
proposed the MCAN network and applied it to urban forest individual wood canopy
detection. The results showed that (1) the individual tree detection AP value of the MCAN
network is 92.40%, which is 3.7%, 3.84%, and 12.53% higher than that of Mask R-CNN,
Faster R-CNN, and YOLOv5, respectively, demonstrating that the improved network can
enhance canopy detection accuracy. (2) MCAN’s segmentation AP value is 97.70%, which is
8.9% higher than that of Mask R-CNN, suggesting that the upgraded network’s accuracy in
canopy contour segmentation is higher than the original network, and the contour drawing
error is lower. (3) By detecting the large-scale individual wood canopy in four typical scenes
of urban forests, the accuracy rate is 93.57% and the recall rate is 92.91%, which indicate
a good detection effect, demonstrating that the improved network has good detection
capability for large scenes and is suitable for the segmentation and detection of individual
wood in urban forests with high-resolution UAV remote sensing images.

Author Contributions: L.L.: Writing—original draft, Data curation, Methodology, Software, Vali-
dation, and Visualization. X.L., J.X. and F.M.: Writing—review and editing and Formal analysis.
H.D.: Writing—review and editing, Conceptualization, Funding acquisition, Supervision, and Project
administration. L.Z.: Writing—review and editing and Data curation. Y.Z.: Data curation. J.Y.: Data
curation. L.H. and M.S.: Data curation. All authors have read and agreed to the published version of
the manuscript.

Funding: The research was supported by the Leading Goose Project of Science Technology Depart-
ment of Zhejiang Province (No. 2023C02035), the National Natural Science Foundation of China (No.
32201553 and 32171785), the Scientific Research Project of Baishanzu National Park (No. 2022JBGS02),
the Talent launching project of scientific research and development fund of Zhejiang A & F University
(No. 2021LFR029), and the Key Research and Development Program of Zhejiang Province (No.
2021C02005).

Conflicts of Interest: The authors declare that they have no known competing financial interest or
personal relationships that could have appeared to influence the work reported in this paper.

References
1. Nowak, D.J.; Greenfield, E.J.; Hoehn, R.E.; Lapoint, E. Carbon storage and sequestration by trees in urban and community areas

of the United States. Environ. Pollut. 2013, 178, 229–236. [CrossRef]
2. Wagner, F.H.; Ferreira, M.P.; Sanchez, A.; Hirye, M.C.M.; Zortea, M.; Gloor, E.; Phillips, O.L.; de Souza Filho, C.R.; Shimabukuro,

Y.E.; Aragão, L.E.O.C. Individual Tree Crown Delineation in a Highly Diverse Tropical Forest Using Very High Resolution Satellite
Images. ISPRS J. Photogramm. Remote Sens. 2018, 145, 362–377. [CrossRef]

3. Harding, D.J.; Lefsky, M.A.; Parker, G.G.; Blair, J.B. Laser Altimeter Canopy Height Profiles: Methods and Validation for
Closed-Canopy, Broadleaf Forests. Remote Sens. Environ. 2001, 76, 283–297. [CrossRef]

4. Bai, Y.; Walsworth, N.; Roddan, B.; Hill, D.A.; Broersma, K.; Thompson, D. Quantifying Tree Cover in the Forest–Grassland
Ecotone of British Columbia Using Crown Delineation and Pattern Detection. For. Ecol. Manag. 2005, 212, 92–100. [CrossRef]

5. Zhang, W.; Ying, H.; Ke, Y.; Lindi, J.; QuackenbushL, J.; Quackenbush; Lian, J.; Zhang, L. Using error-in-variable regression to
predict tree diameter and crown width from remotely sensed imagery. Can. J. For. Research 2010, 40, 1095–1108. [CrossRef]

6. Popescu, S.C. Estimating Biomass of Individual Pine Trees Using Airborne Lidar. Biomass Bioenergy 2007, 31, 646–655. [CrossRef]
7. Crowther, T.W.; Glick, H.B.; Covey, K.R.; Bettigole, C.; Maynard, D.S.; Thomas, S.M.; Smith, J.R.; Hintler, G.; Duguid, M.C.;

Amatulli, G.; et al. Mapping Tree Density at a Global Scale. Nature 2015, 525, 201–205. [CrossRef]
8. Sun, Y.; Li, Z.; He, H.; Guo, L.; Zhang, X.; Xin, Q. Counting Trees in a Subtropical Mega City Using the Instance Segmentation

Method. Int. J. Appl. Earth Obs. Geoinf. 2022, 106, 102662. [CrossRef]
9. He, S.; Du, H.; Zhou, G.; Li, X.; Mao, F.; Zhu, D.; Xu, Y.; Zhang, M.; Huang, Z.; Liu, H.; et al. Intelligent Mapping of Urban Forests

from High-Resolution Remotely Sensed Imagery Using Object-Based U-Net-DenseNet-Coupled Network. Remote Sens. 2020,
12, 3928. [CrossRef]

10. Ampatzidis, Y.; Partel, V. UAV-Based High Throughput Phenotyping in Citrus Utilizing Multispectral Imaging and Artificial
Intelligence. Remote Sens. 2019, 11, 410. [CrossRef]

https://doi.org/10.1016/j.envpol.2013.03.019
https://doi.org/10.1016/j.isprsjprs.2018.09.013
https://doi.org/10.1016/S0034-4257(00)00210-8
https://doi.org/10.1016/j.foreco.2005.03.005
https://doi.org/10.1139/X10-073
https://doi.org/10.1016/j.biombioe.2007.06.022
https://doi.org/10.1038/nature14967
https://doi.org/10.1016/j.jag.2021.102662
https://doi.org/10.3390/rs12233928
https://doi.org/10.3390/rs11040410


Remote Sens. 2023, 15, 4420 17 of 19

11. Dash, J.P.; Watt, M.S.; Paul, T.S.H.; Morgenroth, J.; Pearse, G.D. Early Detection of Invasive Exotic Trees Using UAV and Manned
Aircraft Multispectral and LiDAR Data. Remote Sens. 2019, 11, 1812. [CrossRef]

12. Pearse, G.D.; Tan, A.Y.S.; Watt, M.S.; Franz, M.O.; Dash, J.P. Detecting and Mapping Tree Seedlings in UAV Imagery Using
Convolutional Neural Networks and Field-Verified Data. ISPRS J. Photogramm. Remote Sens. 2020, 168, 156–169. [CrossRef]

13. Wang, X.; Zhao, Q.; Jiang, P.; Zheng, Y.; Yuan, L.; Yuan, P. LDS-YOLO: A Lightweight Small Object Detection Method for Dead
Trees from Shelter Forest. Comput. Electron. Agric. 2022, 198, 107035. [CrossRef]

14. Mohan, M.; Silva, C.A.; Klauberg, C.; Jat, P.; Catts, G.; Cardil, A.; Hudak, A.T.; Dia, M. Individual Tree Detection from Unmanned
Aerial Vehicle (UAV) Derived Canopy Height Model in an Open Canopy Mixed Conifer Forest. Forests 2017, 8, 340. [CrossRef]

15. Jing, L.; Hu, B.; Noland, T.; Li, J. An Individual Tree Crown Delineation Method Based on Multi-Scale Segmentation of Imagery.
ISPRS J. Photogramm. Remote Sens. 2012, 70, 88–98. [CrossRef]

16. Liu, T.; Im, J.; Quackenbush, L.J. A Novel Transferable Individual Tree Crown Delineation Model Based on Fishing Net Dragging
and Boundary Classification. ISPRS J. Photogramm. Remote Sens. 2015, 110, 34–47. [CrossRef]

17. Bochkovskiy, A.; Wang, C.; Liao, H. YOLOv4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934.
18. Zhang, J.; Sohn, G.; Brédif, M. A Hybrid Framework for Single Tree Detection from Airborne Laser Scanning Data: A Case Study

in Temperate Mature Coniferous Forests in Ontario, Canada. ISPRS J. Photogramm. Remote Sens. 2014, 98, 44–57. [CrossRef]
19. Hao, Z.; Lin, L.; Post, C.J.; Mikhailova, E.A.; Li, M.; Chen, Y.; Yu, K.; Liu, J. Automated Tree-Crown and Height Detection in a

Young Forest Plantation Using Mask Region-Based Convolutional Neural Network (Mask R-CNN). ISPRS J. Photogramm. Remote
Sens. 2021, 178, 112–123. [CrossRef]

20. Yu, K.; Hao, Z.; Post, C.J.; Mikhailova, E.A.; Lin, L.; Zhao, G.; Tian, S.; Liu, J. Comparison of Classical Methods and Mask R-CNN
for Automatic Tree Detection and Mapping Using UAV Imagery. Remote Sens. 2022, 14, 295. [CrossRef]

21. Zheng, Y.; Wu, G. Single Shot MultiBox Detector for Urban Plantation Single Tree Detection and Location With High-Resolution
Remote Sensing Imagery. Front. Environ. Sci. 2021, 9, 755587. [CrossRef]

22. Kattenborn, T.; Leitloff, J.; Schiefer, F.; Hinz, S. Review on Convolutional Neural Networks (CNN) in Vegetation Remote Sensing.
ISPRS J. Photogramm. Remote Sens. 2021, 173, 24–49. [CrossRef]

23. Weimer, D.; Scholz-Reiter, B.; Shpitalni, M. Design of Deep Convolutional Neural Network Architectures for Automated Feature
Extraction in Industrial Inspection. CIRP Ann. 2016, 65, 417–420. [CrossRef]

24. Yun, L.; Zhang, X.; Zheng, Y.; Wang, D.; Hua, L. Enhance the Accuracy of Landslide Detection in UAV Images Using an Improved
Mask R-CNN Model: A Case Study of Sanming, China. Sensors 2023, 23, 4287. [CrossRef] [PubMed]

25. Yuan, Q.; Shen, H.; Li, T.; Li, Z.; Li, S.; Jiang, Y.; Xu, H.; Tan, W.; Yang, Q.; Wang, J.; et al. Deep Learning in Environmental Remote
Sensing: Achievements and Challenges. Remote Sens. Environ. 2020, 241, 111716. [CrossRef]

26. Mahmud, M.S.; Zahid, A.; Das, A.K.; Muzammil, M.; Khan, M.U. A Systematic Literature Review on Deep Learning Applications
for Precision Cattle Farming. Comput. Electron. Agric. 2021, 187, 106313. [CrossRef]

27. Zhu, L.; Geng, X.; Li, Z.; Liu, C. Improving YOLOv5 with Attention Mechanism for Detecting Boulders from Planetary Images.
Remote Sens. 2021, 13, 3776. [CrossRef]

28. Yang, L.; Xu, Y.; Wang, S.; Yuan, C.; Zhang, Z.; Li, B.; Hu, W. PDNet: Toward Better One-Stage Object Detection with Prediction
Decoupling. IEEE Trans. Image Process. 2022, 31, 5121–5133. [CrossRef]

29. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27 June 2016; pp. 779–788.

30. Huang, H.; Liang, Q.; Luo, D.; Lee, D. Attention-Enhanced One-Stage Algorithm for Traffic Sign Detection and Recognition. J.
Sens. 2022, 2022, 3705256. [CrossRef]

31. Jintasuttisak, T.; Edirisinghe, E.; Elbattay, A. Deep Neural Network Based Date Palm Tree Detection in Drone Imagery. Comput.
Electron. Agric. 2022, 192, 106560. [CrossRef]

32. He, H.; Xu, H.; Zhang, Y.; Gao, K.; Li, H.; Ma, L.; Li, J. Mask R-CNN Based Automated Identification and Extraction of Oil Well
Sites. Int. J. Appl. Earth Obs. Geoinf. 2022, 112, 102875. [CrossRef]

33. Zhang, S.; Wen, L.; Lei, Z.; Li, S. RefineDet plus plus: Single-Shot Refinement Neural Network for Object Detection. IEEE Trans.
Circuits Syst. Video Technol. 2021, 31, 674–687. [CrossRef]

34. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. In Proceedings
of the International Conference on Neural Information Processing Systems 28, Montreal, QC, Canada, 7–12 December 2015;
pp. 91–99.

35. Mubin; Nurulain, A.; Nadarajoo, E.; Shafri, H.Z. Young and mature oil palm tree detection and counting using convolutional
neural network deep learning method. Int. J. Remote Sens. 2019, 40, 7500–7515. [CrossRef]

36. Xi, X.; Xia, K.; Yang, Y.; Du, X.; Feng, H. Urban individual tree crown detection research using multispectral image dimensionality
reduction with deep learning. Natl. Remote Sens. Bulletin. 2022, 26, 711–721. [CrossRef]

37. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. In Proceedings of the IEEE International Conference on Computer
Vision, Venice, Italy, 22–29 October 2017.

38. Wang, D.; He, D. Fusion of Mask RCNN and Attention Mechanism for Instance Segmentation of Apples under Complex
Background. Comput. Electron. Agric. 2022, 196, 106864. [CrossRef]

39. Iqbal, M. Coconut trees detection and segmentation in aerial imagery using mask region-based convolution neural network.
arXiv 2021, arXiv:2105.04356. [CrossRef]

https://doi.org/10.3390/rs11151812
https://doi.org/10.1016/j.isprsjprs.2020.08.005
https://doi.org/10.1016/j.compag.2022.107035
https://doi.org/10.3390/f8090340
https://doi.org/10.1016/j.isprsjprs.2012.04.003
https://doi.org/10.1016/j.isprsjprs.2015.10.002
https://doi.org/10.1016/j.isprsjprs.2014.08.007
https://doi.org/10.1016/j.isprsjprs.2021.06.003
https://doi.org/10.3390/rs14020295
https://doi.org/10.3389/fenvs.2021.755587
https://doi.org/10.1016/j.isprsjprs.2020.12.010
https://doi.org/10.1016/j.cirp.2016.04.072
https://doi.org/10.3390/s23094287
https://www.ncbi.nlm.nih.gov/pubmed/37177491
https://doi.org/10.1016/j.rse.2020.111716
https://doi.org/10.1016/j.compag.2021.106313
https://doi.org/10.3390/rs13183776
https://doi.org/10.1109/TIP.2022.3193223
https://doi.org/10.1155/2022/3705256
https://doi.org/10.1016/j.compag.2021.106560
https://doi.org/10.1016/j.jag.2022.102875
https://doi.org/10.1109/TCSVT.2020.2986402
https://doi.org/10.1080/01431161.2019.1569282
https://doi.org/10.11834/jrs.20220163
https://doi.org/10.1016/j.compag.2022.106864
https://doi.org/10.1049/cvi2.12028


Remote Sens. 2023, 15, 4420 18 of 19

40. Zhang, C.; Zhou, J.; Wang, H.; Tan, T.; Cui, M.; Huang, Z.; Wang, P.; Zhang, L. Multi-Species Individual Tree Segmentation and
Identification Based on Improved Mask R-CNN and UAV Imagery in Mixed Forests. Remote Sens. 2022, 14, 874. [CrossRef]

41. Lumnitz, S.; Devisscher, T.; Mayaud, J.R.; Radic, V.; Coops, N.C.; Griess, V.C. Mapping Trees along Urban Street Networks with
Deep Learning and Street-Level Imagery. ISPRS J. Photogramm. Remote Sens. 2021, 175, 144–157. [CrossRef]

42. Ocer, N.E.; Kaplan, G.; Erdem, F.; Kucuk Matci, D.; Avdan, U. Tree Extraction from Multi-Scale UAV Images Using Mask R-CNN
with FPN. Remote Sens. Lett. 2020, 11, 847–856. [CrossRef]

43. Zimmermann, R.S.; Siems, J.N. Faster Training of Mask R-CNN by Focusing on Instance Boundaries. Comput. Vis. Image Underst.
2019, 188, 102795. [CrossRef]

44. Yang, M.; Mou, Y.; Liu, S.; Meng, Y.; Liu, Z.; Li, P.; Xiang, W.; Zhou, X.; Peng, C. Detecting and Mapping Tree Crowns Based on
Convolutional Neural Network and Google Earth Images. Int. J. Appl. Earth Obs. Geoinf. 2022, 108, 102764. [CrossRef]

45. Wang, C.; Liao, H.; Yeh, I.; Wu, Y.; Chen, P.; Hsieh, J. CSPNet: A New Backbone that can Enhance Learning Capability of CNN.
arXiv 2019, arXiv:1911.11929.

46. Xue, J.; Zheng, Y.; Dong, C.; Wang, P.; Yasir, M. Improved YOLOv5 Network Method for Remote Sensing Image-Based Ground
Objects Recognition. Soft Comput. 2022, 26, 10879–10889. [CrossRef]

47. Yang, G.; Feng, W.; Jin, J.; Lei, Q.; Li, X.; Gui, G.; Wang, W. Face Mask Recognition System with YOLOV5 Based on Image
Recognition. In Proceedings of the 2020 IEEE 6th International Conference on Computer and Communications (ICCC), Chengdu,
China, 11 December 2020; pp. 1398–1404.

48. Lin, T.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature Pyramid Networks for Object Detection. In Proceedings
of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21 July 2017; pp. 936–944.

49. Neubeck, A.; Gool, L.V. Efficient non-maximum suppression. In Proceedings of the 18th International Conference on Pattern
Recognition (ICPR’06), Hong Kong, China, 20–24 August 2006; pp. 850–855.

50. Wang, S.; Qu, Z. Multiscale Anchor Box and Optimized Classification with Faster R-CNN for Object Detection. IET Image Process.
2023, 17, 1322–1333. [CrossRef]

51. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556.
[CrossRef]

52. Chen, Y.P.; Li, Y.; Wang, G. An Enhanced Region Proposal Network for Object Detection Using Deep Learning Method. PLoS
ONE 2018, 13, e0203897. [CrossRef] [PubMed]

53. Wei, X.; Wu, Y.; Dong, F.; Zhang, J.; Sun, S. Developing an Image Manipulation Detection Algorithm Based on Edge Detection
and Faster R-CNN. Symmetry 2019, 11, 1223. [CrossRef]

54. Elfwing, S.; Uchibe, E.; Doya, K. Sigmoid-Weighted Linear Units for Neural Network Function Approximation in Reinforcement
Learning. Neural Netw. 2018, 107, 3–11. [CrossRef]

55. Hassanin, M.; Anwar, S.; Radwan, I. Visual Attention Methods in Deep Learning: An In-Depth Survey. arXiv 2022,
arXiv:2204.07756.

56. Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. CBAM: Convolutional Block Attention Module. In Proceedings of the Computer
Vision—ECCV 2018: 15th European Conference, Munich, Germany, 8–14 September 2018; pp. 3–19. [CrossRef]

57. Simard, P.Y.; Steinkraus, D.; Platt, J.C. Best practices for convolutional neural networks applied to visual document analysis. In
Proceedings of the 7th International Conference on Document Analysis and Recognition (ICDAR 2003), Edinburgh, UK, 3–6
August 2003; Volume 3.

58. Wang, W.; Shi, Y.; Zhang, J.; Hu, L.; Li, S.; He, D.; Liu, F. Traditional Village Building Extraction Based on Improved Mask R-CNN:
A Case Study of Beijing, China. Remote Sens. 2023, 15, 2616. [CrossRef]

59. Li, Z.; Li, Y.; Yang, Y.; Guo, R.; Yang, J.; Yue, J.; Wang, Y. A High-Precision Detection Method of Hydroponic Lettuce Seedlings
Status Based on Improved Faster RCNN. Comput. Electron. Agric. 2021, 182, 106054. [CrossRef]

60. Xia, K.; Wang, H.; Yang, Y.; Du, X.; Feng, H. Automatic Detection and Parameter Estimation of Ginkgo Biloba in Urban
Environment Based on RGB Images. J. Sens. 2021, 2021, 6668934. [CrossRef]

61. Pan, S.J.; Yang, Q. A Survey on Transfer Learning. IEEE Trans. Knowl. Data Eng. 2010, 22, 1345–1359. [CrossRef]
62. Lin, T.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C. Microsoft COCO: Common Objects in

Context. arXiv 2014, arXiv:1405.0312. [CrossRef]
63. Jouhari, H.; Lei, D.; Al-qaness, M.A.A.; Elaziz, M.A.; Ewees, A.A.; Farouk, O. Sine-Cosine Algorithm to Enhance Simulated

Annealing for Unrelated Parallel Machine Scheduling with Setup Times. Mathematics 2019, 7, 1120. [CrossRef]
64. Kim, Y.; Ohn, I.; Kim, D. Fast Convergence Rates of Deep Neural Networks for Classification. Neural Netw. 2021, 138, 179–197.

[CrossRef] [PubMed]
65. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016.
66. Liu, H.; Zhang, L.; Wang, F.; He, R. Object detection algorithm based on attention mechanism and context information. J. Comput.

Appl. 2023, 43, 1557–1564.
67. Li, W.; Zhan, W.; Zhou, W.; Han, T.; Wang, P.; Liu, H.; Xiong, M.; Sun, Y. Research and Application of Lightweight Yolov7-TSA

Network in Tea Disease Detection and Identification. J. Henan Agric. Sci. 2023, 52, 162–169.

https://doi.org/10.3390/rs14040874
https://doi.org/10.1016/j.isprsjprs.2021.01.016
https://doi.org/10.1080/2150704X.2020.1784491
https://doi.org/10.1016/j.cviu.2019.102795
https://doi.org/10.1016/j.jag.2022.102764
https://doi.org/10.1007/s00500-022-07106-8
https://doi.org/10.1049/ipr2.12714
https://doi.org/10.48550/arXiv.1409.1556
https://doi.org/10.1371/journal.pone.0203897
https://www.ncbi.nlm.nih.gov/pubmed/30235238
https://doi.org/10.3390/sym11101223
https://doi.org/10.1016/j.neunet.2017.12.012
https://doi.org/10.1007/978-3-030-01234-2_1
https://doi.org/10.3390/rs15102616
https://doi.org/10.1016/j.compag.2021.106054
https://doi.org/10.1155/2021/6668934
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.48550/arXiv.1405.0312
https://doi.org/10.3390/math7111120
https://doi.org/10.1016/j.neunet.2021.02.012
https://www.ncbi.nlm.nih.gov/pubmed/33676328


Remote Sens. 2023, 15, 4420 19 of 19

68. Wang, X.; Liang, Z.; Liu, T. Feature attention pyramid-based remote sensing image object detection method. Natl. Remote Sens.
Bulletin. 2023, 27, 92–501. [CrossRef]

69. Gong, H.; Mu, T.; Li, Q.; Dai, H.; Li, C.; He, Z.; Wang, W.; Han, F.; Tuniyazi, A.; Li, H.; et al. Swin-Transformer-Enabled YOLOv5
with Attention Mechanism for Small Object Detection on Satellite Images. Remote Sens. 2022, 14, 2861. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.11834/jrs.20235011
https://doi.org/10.3390/rs14122861

	Introduction 
	Materials and Methods 
	Study Area 
	Datasets and Processing 
	Introduction to Object Detection Algorithms 
	YOLOv5 
	Faster R-CNN 
	Mask R-CNN 

	MCAN 
	The Overall Framework of MCAN 
	CSPResNet 
	Channel–Spatial Attention Module 

	Dataset Production 
	Loss Function and Training Experiment 
	Accuracy Assessment 

	Results 
	Model Training Results and Accuracy Evaluation 
	Comparison of Individual Tree Segmentation Results 
	MCAN in Multi-Scene Urban Forest Canopy Segmentation Application 

	Discussion 
	Conclusions 
	References

