
Citation: Bai, J.; Wu, G.; Mao, Y.

Significant Disparity in

Spatiotemporal Changes of

Terrestrial Evapotranspiration across

Reanalysis Datasets in China from

1982 to 2020. Remote Sens. 2023, 15,

4522. https://doi.org/10.3390/

rs15184522

Academic Editor: Gabriel Senay

Received: 14 July 2023

Revised: 9 September 2023

Accepted: 12 September 2023

Published: 14 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Significant Disparity in Spatiotemporal Changes of Terrestrial
Evapotranspiration across Reanalysis Datasets in China from
1982 to 2020
Jiaxin Bai, Guocan Wu and Yuna Mao *

State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science,
Beijing Normal University, Beijing 100875, China; 202221490001@mail.bnu.edu.cn (J.B.); gcwu@bnu.edu.cn (G.W.)
* Correspondence: myn@bnu.edu.cn

Abstract: Due to limited observational data, there remains considerable uncertainty in the estimation
and spatiotemporal variations of land surface evapotranspiration (ET). Reanalysis products, with
their advantages of high spatiotemporal resolution, global coverage, and long-term data availabil-
ity, have emerged as powerful tools for studying ET. Nevertheless, the accuracy of reanalysis ET
products varies among different products and the reasons for these accuracy differences have not
been thoroughly investigated. This study evaluates the ability of different reanalysis ET products to
reproduce the spatiotemporal patterns and long-term trends of ET in China, using remote sensing
and water-balance-derived ET as reference. We investigate the possible reasons for their disparity
by analyzing the three major climatic factors influencing ET (precipitation, solar radiation, and tem-
perature). The findings reveal that compared to the water balance ET, the Global Land Evaporation
Amsterdam Model (GLEAM) product is capable of reproducing the mean, interannual variability,
and trends of ET, making it suitable for validating reanalysis ET products. In comparison to GLEAM
ET, all reanalysis ET products exhibit consistent climatology and spatial distribution but show a
clear overestimation, with multi-year averages being overestimated by 16–40%. There are significant
differences among the reanalysis products in terms of interannual variability, long-term trends, and
attribution. Within the common period of 2003–2015, GLEAM and water balance ET products demon-
strate consistent increasing trends. The second-generation Modern-Era Retrospective analysis for
Research and Applications (MERRA2) and the offline (land-only) replay of MERRA (MERRA-Land)
could produce similar increasing trends because of the consistent precipitation trends with observed
precipitation. The European Centre for Medium-Range Weather Forecasts reanalysis (ERA5) and
ERA5-Land cannot capture the consistent increasing trends as they obtain decreasing precipitation.
These findings have significant implications for the development of reanalysis products.

Keywords: evapotranspiration; reanalysis data; GLEAM; water balance; attribution analysis

1. Introduction

Evapotranspiration (ET) represents the transfer of water and energy between the land
surface, the atmosphere, and the biosphere, serving as a vital link in hydrological and energy
cycles [1,2]. Accurate estimation of ET is of great significance for a better understanding
of global water resource changes, energy balance, ecosystem carbon storage, and extreme
drought events. In recent years, ET products have undergone rapid development and
significant improvement in accuracy. However, each product still has its limitations, and
enhancing ET accuracy remains a hot and frontier research topic in hydrological and
meteorological studies [3,4].

The measurement of actual ET is primarily accomplished through site-scale eddy
covariance systems and Bowen ratio energy balance observation tower systems. However,
due to the limited number of ET measurement sites, short-term observation periods, limited
spatial representativeness, and the challenge of energy closure, regional-scale ET estimation
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heavily relies on methods, such as surface water balance, remote sensing estimation, and
model simulations [5–9]. Due to the significant differences in input data, model structure,
and model parameters among various ET estimation and simulation methods, coupled
with the limited availability of site observation data for validating the simulation accuracy,
each method yields different levels of ET accuracy. As a result, there is still considerable
uncertainty associated with ET estimation, leading to substantial inconsistencies in the
study of ET spatial distribution, long-term trends, and driving factors [10–15]. Different
methods yield global average annual terrestrial ET values ranging from 417 to 650 mm yr−1,
with a maximum difference of up to 1.5 times [2,11,15–18]. Pan et al. (2020) found sig-
nificant differences in the long-term trends of global terrestrial ET data obtained from
remote sensing estimation models, machine learning algorithms, and land surface models.
Although the multi-year average ET values were similar, the remote sensing estimation
models and machine learning algorithms showed a significant increasing trend in ET from
1982 to 2011, while the ET data obtained from the land surface models did not exhibit any
significant change.

Reanalysis products, with their advantages of high spatiotemporal resolution, global
coverage, and long-term duration, have become powerful tools for studying evapotranspi-
ration [19–22]. Reanalysis data are a collection of objectively analyzed data obtained by
assimilating various observational data (including surface observations, satellites, radars,
radiosondes, buoys, etc.) into climate models after quality control. They simulate and
predict the evolution of water and energy fluxes between the land surface and the atmo-
sphere, incorporating various thermodynamic and aerodynamic equations. Reanalysis
data provide a global and comprehensive dataset spanning several decades, and they are
widely used in the field of atmospheric science. They are commonly utilized to assess
the impact of changes in observational systems, measure the development of models and
assimilation capabilities, and obtain state-of-the-art meteorological datasets for evaluating
forecast errors and anomalies [23].

Reanalysis products can be categorized into atmospheric reanalysis and offline land
surface reanalysis. The land surface reanalysis products are driven by atmospheric reanaly-
sis products and generated using offline land surface models to simulate a high-quality
dataset of land surface variables. These datasets are considered reliable and widely used
for monitoring long-term climate variability [24,25]. Commonly used reanalysis products
include the fifth-generation reanalysis data ERA5, recently released by the European Centre
for Medium-Range Weather Forecasts [26,27], and the ET products from the Modern-Era
Retrospective analysis for Research and Applications (MERRA) and the second-generation
MERRA2 datasets, published by the Global Modeling and Assimilation Office (GMAO) at
NASA [28]. Several studies have investigated the spatiotemporal variations of land surface
evapotranspiration using reanalysis products. These studies have found that reanalysis
products are capable of reproducing the spatial distribution of ET. However, they exhibit
limitations in capturing interannual variability and long-term trends [21,29]. Moreover,
there are significant differences in the accuracy of ET estimates among different reanalysis
products [20,30]. The causes of the discrepancies in accuracy among various reanalysis
products have not been thoroughly investigated, and some studies have only explored
possible reasons in a preliminary manner. For example, it has been suggested that reanal-
ysis models may not adequately account for changes in reservoir storage or vegetation
dynamics [29]. In addition, limitations in rainfall simulations [31] and the representation
of hydrological processes [32] have been identified as potential factors contributing to the
differences in reanalysis product accuracy.

To address these issues, this study first evaluates the applicability of five widely
used reanalysis products in terms of their ability to capture the climatology, interannual
variability, and long-term trends of ET, using both surface water balance calculations
and high-accuracy remote sensing ET products. The study analyzes the spatiotemporal
differences among the different reanalysis products and investigates the main factors
(precipitation, solar radiation, and temperature) influencing the accuracy of each reanalysis
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ET product. This research highlights the discrepancies in accuracy among the different
reanalysis ET products and provides insights into the main climate factors contributing
to these differences. It emphasizes the importance of advancing reanalysis models and
providing more reliable climate data.

2. Research Area

The research area of this study is continental China, as shown in Figure 1. China is
situated in the southeastern part of the Eurasian continent, adjacent to the Pacific Ocean.
It boasts a vast land area of approximately 9.6 million square kilometers [33,34], with
considerable north–south and east–west extents (approximately 5500 km north–south and
5200 km east–west).
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Figure 1. Research area map. The map depicts elevation data, geographical boundaries, and climate
zones within China.

Geographically, China’s topography is complex, featuring mountains, plateaus, basins,
plains, and hills, which, respectively, account for approximately 1/3, 1/4, 1/5, 1/8, and
1/10 of the total land area. The terrain generally slopes from west to east, forming a three-
tiered elevation pattern [33]. The first tier encompasses the Qinghai-Tibet Plateau region in
western China, with an average elevation exceeding 4000 m. The second tier comprises
the Loess Plateau, Inner Mongolian Plateau, Sichuan Basin, Tarim Basin, Junggar Basin,
Yunnan-Guizhou Plateau, among others, with elevations generally ranging from 1000 to
2000 m. The third tier comprises the plains and hills in eastern China, with elevations
predominantly below 500 m. Notable regions in this tier include the Northeast Plain, the
middle and lower reaches of the Yangtze River Plain, and the North China Plain.

Due to its vast expanse across multiple latitude zones, China exhibits a diverse range
of climate types [35,36]. There is a significant difference in the annual average temperature
between northern and southern regions. As one moves from the southern to the north-
ern parts of the country, temperatures gradually decrease. Consequently, China can be
classified into four temperature zones: tropical, subtropical, temperate, and frigid. Pre-
cipitation across China exhibits distinct spatial and temporal variations [34]. Generally,
precipitation decreases from the southeastern coastal areas to the northwestern inland
regions. Additionally, mountainous areas tend to receive higher levels of precipitation
compared to plains. Based on the contrast between evaporation and precipitation, China
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can be categorized into several climatic regions, including the Qinghai-Tibet Plateau region,
arid regions, humid regions, and semi-humid/semi-arid regions [20,33]. The humid region
encompasses diverse topographies, while arid regions are primarily located in plateaus
and basins, and semi-humid/semi-arid regions are predominantly plains and plateaus.
In terms of climate, China experiences both monsoon and non-monsoon climates. Specif-
ically, the humid region falls under the subtropical monsoon climate, with much of the
semi-humid/semi-arid region sharing similar characteristics [33]. The arid region, however,
features a non-monsoon climate.

3. Materials and Methods

This study investigates the spatiotemporal characteristics of actual evapotranspiration
over China using eight ET datasets derived from three commonly used methods in the
field of ET estimation: remote sensing retrieval, reanalysis, and surface water balance.
The detailed information of each dataset, including the time range, calculation method,
input data, spatiotemporal resolution, and data type, is provided in Table 1. To facilitate
comparison, the study first employs an interpolation method to unify the spatial resolution
of all datasets to 1◦ × 1◦ grid.

Table 1. The attribute information of eight ET datasets used in this study.

Dataset Data
Type Model Input

Data
Temporal

Resolution
Spatial

Resolution
Time
Span References

MERRA Atmospheric
reanalysis

GEOS-5 *
CLSM * Rs *, Ta *, P * 3 Hourly 0.5◦ × 0.667◦ 1979–2019 [37]

MERRA2 Atmospheric
reanalysis

GEOS
5.12.4 Rs, Ta, P Hourly 0.5◦ × 0.625◦ 1980–present [28]

ERA5 Atmospheric
reanalysis

IFS * Cycle
41r2

CHTESSEL *
Rs, Ta, P Hourly 0.25◦ × 0.25◦ 1950–present [27]

ERA5-
Land

Land surface
reanalysis

IFS Cycle
45r1

CHTESSEL
Rs, Ta, P Hourly 0.1◦ × 0.1◦ 1950–present [38]

MERRA-
Land

Land surface
reanalysis

GEOS-5
CLSM Rs, Ta, P 3 Hourly 0.5◦ × 0.667◦ 1979–2015 [39]

GLEAM
Remote
Sensing
retrieval

Priestley-
Taylor

equation
Gash analysis

model

Rs, Ta (MSWX)
P (MSWEP *

(v2.8))
soil moisture
(ESA-CCI *

v6.2)
VODCA VOD

Daily 0.25◦ × 0.25◦ 1980–present [40]

WB-TWSA Water
balance

Water
balance

equation

P and R from
Water

Resources
Bulletin
GRACE
∆TWSA

Annual National
scale 1997–2020 [41]

WB Water
balance

Water
balance

equation

P and R from
Water

Resources
Bulletin

Annual National
scale 1997–2020 [41]

* GEOS-5: Goddard Earth Observing System 5.2.0; CLSM: Catchment Land Surface Model; IFS: Integrated
Forecast System; CHTESSEL: Carbon Hydrology-Tiled ECMWF Scheme for Surface Exchanges over Land; ESA-
CCI: European Space Agency-Climate Change Initiative; MSWEP: Multi-Source Weighted-Ensemble Precipitation;
Rs: Surface Incident Solar Radiation; Ta: Air temperature; P: Precipitation.
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3.1. Remote Sensing-Derived ET

The GLEAM (Global Land Evaporation Amsterdam Model) global evapotranspiration
product is currently recognized for its high accuracy and widespread application in the
field of ET estimation. Many studies have shown that the GLEAM product outperforms
other ET products [9,14,21,42] and is widely used for validating other remote sensing
retrieval models, model simulations, and machine learning-based ET products [43–45].
GLEAM employs a physics-based and complex hydrological model that considers multiple
factors influencing evapotranspiration, such as energy balance, water balance, soil moisture
dynamics, and vegetation characteristics. The model structure is relatively complex but
allows for a more accurate representation of the detailed processes of land surface evapo-
transpiration. GLEAM estimates the different components of land evaporation, including
transpiration, bare soil evaporation, interception loss, and evaporation and sublimation
over open water bodies and snow/ice-covered surfaces. Additionally, GLEAM provides
information on surface and root zone soil moisture, potential evaporation, and evaporative
stress conditions [40,46]. The basic principle of this method is to maximize the retrieval of
evaporation information from the climate and environmental variables currently observed
by satellites.

In the GLEAM model, potential evaporation is calculated using the Priestley–Taylor
equation based on observed surface net radiation and near-surface air temperature. Evap-
otranspiration is then computed as a function of potential evaporation and soil moisture
stress. A three-layer soil moisture balance model is employed, considering the constraints of
bare soil and high/low canopy soil moisture on evaporation, using microwave Vegetation
Optical Depth (VOD) and root zone soil moisture data [14]. The estimated potential evapo-
ration is converted into actual evaporation, and interception loss is separately calculated
using the Gash analytical model. Actual evaporation over water bodies and ice/snow-
covered areas is determined using a modified Priestley–Taylor equation. Precipitation input
data for GLEAM ET are obtained from the Multi-Source Weighted-Ensemble Precipitation
(MSWEP) product, while temperature and radiation inputs are derived from satellite and
reanalysis data (Multi-Source Weather, MSWX).

3.2. Atmospheric Reanalysis Data

This study utilizes the fifth-generation reanalysis data, ERA5, which were recently
released by the European Centre for Medium-Range Weather Forecasts [26,27]. Addition-
ally, the ET products from the MERRA and MERRA2 datasets, provided by the Global
Modeling and Assimilation Office (GMAO) at NASA, were used [28].

3.2.1. ERA5

ERA5 utilizes the Integrated Forecasting System (IFS) Cy41r2, which began operation
in 2016. The data have a temporal resolution of 1 h and a spatial resolution of 31 km.
The atmospheric vertical discretization consists of 137 levels, with the model top located at
0.01 hPa [27].

The land surface model in ERA5 incorporates the more advanced HTESSEL [47,48],
which addresses some of the deficiencies in land surface hydrological simulations that
were present in the previous generation ERA-Interim, particularly the omission of surface
runoff and the assumption of globally uniform soil texture [26]. HTESSEL incorporates
new infiltration and runoff modules that depend on soil texture and topography, a new
snow parameterization scheme, and improved bare soil evaporation formulation [26,27].
Several studies have found that the meteorological forcing data in ERA5 outperform other
reanalysis datasets and are suitable for hydrological research [49–51].

3.2.2. MERRA

MERRA is a reanalysis dataset generated using the Grid point Statistical Interpolation
(GSI) scheme based on the GEOS (Global Earth Observing System) version 5.2.0. It utilizes
a three-dimensional variational (3D-VAR) data assimilation analysis algorithm. The tem-
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poral resolution of MERRA is 1 h, and the spatial resolution is 0.5◦ × 0.667◦. In the land
surface model component of MERRA, the Community Land Surface Model (CLSM) is em-
ployed [37]. The MERRA reanalysis dataset incorporates observations from NASA’s Earth
Observing System satellites into earlier reanalysis data, such as ERA-Interim, and improves
the parameterization of hydrological cycle processes [29]. However, it is important to note
that the atmospheric reanalysis system of MERRA does not involve land data assimilation,
which can have an impact on ET estimation.

3.2.3. MERRA2

MERRA2 utilizes the GEOS-5.12.4 version of the atmospheric data assimilation system.
The atmospheric vertical discretization consists of 72 levels, with the model top located at
0.01 hPa. Compared to the first-generation MERRA data, MERRA2 has made improvements
in various aspects, including forecast models, analysis algorithms, observation systems,
radiation assimilation, and water balance mass conservation. Similar to MERRA-Land,
MERRA2 further calibrates simulated precipitation using observational data before driving
the land surface model.

However, the observational datasets and calibration algorithms used in MERRA2
have been further optimized. In addition to the Climate Prediction Center Unified Gauge-
Based Analysis of Global Daily Precipitation (CPCU) observations used in MERRA-Land,
MERRA2 incorporates observational data from CPC Merged Analysis of Precipitation
(CMAP) and implements the calibration algorithm in the coupled land–atmosphere re-
analysis system. As a result, the simulation of land surface variables has been greatly
improved [28]. MERRA2 employs a land surface model similar to MERRA/MERRA-
Land, known as the Catchment model. However, in addition to the improvements made
in the rainfall interception module, snow parameterization, and soil parameters as in
MERRA-Land, MERRA2 has further made several enhancements related to land surface
processes [52]. Research has found that by correcting the simulated precipitation in the
land–atmosphere coupled simulation system, MERRA2 provides more internally consistent
surface meteorological data compared to MERRA-Land [53]. Multiple comparative studies
have shown that, overall, MERRA2 produces better land surface hydrological parameters
such as soil moisture, snowfall, land surface water storage, and runoff data compared to
MERRA and MERRA-Land products [32,52,53].

3.3. Land Surface Reanalysis Data
3.3.1. ERA5-Land

ERA5-Land is a land surface reanalysis dataset derived from the downscaled ERA5
atmospheric reanalysis product, driving the high-resolution offline land surface model
HTESSEL. Compared to ERA5, the land surface model in ERA5-Land still utilizes HTESSEL
with mostly consistent parameterization schemes. The temporal resolution remains at 1
h, but the spatial resolution has been improved from 31 km to 9 km [38]. The technical
differences between ERA5-Land and ERA5 primarily include updated parameterization
of soil thermal conductivity, consideration of ice composition in frozen soil, improved
soil water balance, separate calculation of rain on snow accumulation, and correction
of the erroneous estimation of potential evaporation in the IFS Cy41r2 version used in
ERA5. These changes imply that there may be differences in the estimation of ET compared
to ERA5. Through validation against independent station observations, global models,
or satellite-based reference datasets, ERA5-Land has shown significant improvements in
simulating the water cycle, particularly in soil water and lake simulations. Additionally,
the simulated runoff is more consistent with observed runoff [38].

3.3.2. MERRA-Land

MERRA2 does not provide a corresponding offline version of the land surface model
dataset. In this study, we utilized the MERRA-Land land surface reanalysis product, which
consists of land surface reanalysis data obtained by driving the offline land surface model
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Catchment using MERRA data [39]. In the MERRA-Land product, the meteorological
variables of the land surface model (including temperature, humidity, radiation, wind
speed, and surface pressure) are directly obtained from the hourly output data of the
MERRA product. However, one notable difference is that the precipitation data in MERRA-
Land are calibrated using the GPCP (Global Precipitation Climatology Project) 2.1 pentad
product, which incorporates observations from instruments and satellites. Additionally,
parameter values in the precipitation interception and snow accumulation models have
been revised [39]. This means that the MERRA-Land dataset is more suitable for land
surface hydrology research.

3.4. Meteorological Observations

In order to enable a comprehensive comparison of the meteorological input data for
each Evapotranspiration (ET) product, we have incorporated meteorological observations
from the China National Stations’ Fundamental Elements Datasets V3.0 into our analysis.
This dataset spanned from 1951 to the present and consisted of more than 2400 stations [54].
The selected variables included precipitation and air temperature. To reduce the impact of
the spatial heterogeneity, we transform the observation stations into 1◦ × 1◦ grid cells, and
the value of each grid cell is the average of all of the stations located in that grid cell.

The raw observations of surface incident solar radiation from the China Meteorological
Administration exhibit low spatial coverage (approximately 122 stations) and considerable
inhomogeneity owing to factors such as instrument replacement and sensitivity drift. To
address this, SunDu-derived solar radiation calculated from sunshine duration observations
was utilized, which has high spatiotemporal coverage over China from 1951 to the present
at more than 2400 stations [55,56]. Furthermore, SunDu-derived solar radiation was merged
with satellite cloud and aerosol retrievals to produce a high-resolution long-term dataset
over China called the High-resolution Geographically Weighted Regression (HGWR) solar
radiation dataset by Feng and Wang [57]. The HGWR dataset, with a spatial resolution of
10 km and a period covering July 1983 to December 2017, was utilized as a reference to
verify the accuracy of solar radiation input of reanalysis ET.

3.5. Method
3.5.1. Surface Water Balance Method

According to the surface water balance equation, ET can be expressed as

ET = P − R − ∆S (1)

where P represents precipitation, ∆S represents the change in water storage, and R repre-
sents surface runoff. In the annual or longer time scales, it is commonly assumed that ∆S is
negligible. Therefore, evapotranspiration can be directly estimated from P and runoff R.
In this study, it is referred to as WB-ET [58–60]. P and R used in this formula are obtained
from the annual precipitation and runoff (including discharge from foreign countries, to
foreign countries, and to the ocean) published by the Ministry of Water Resources of China
(http://www.mwr.gov.cn/zwzc/hygb/szygb/, accessed on 21 September 2022).

However, factors such as human water use (irrigation, etc.), reservoir construction, and
land use can cause significant variations in water storage at seasonal and interannual scales
in different basins. Ignoring ∆S can introduce biases in regional ET estimates, especially in
areas with lower ET [41,61,62].

The Gravity Recovery and Climate Experiment (GRACE) satellite, launched in March
2002, can monitor monthly variations in Terrestrial Water Storage Anomaly (TWSA) within
a range of approximately 300 km [63]. The annual variation in terrestrial water storage ∆S
can be calculated from the TWSA data provided by the GRACE satellite, which represents
the monthly deviations from the long-term average. Consistent with previous studies, ∆S
is obtained by subtracting the TWSA data for December from each year [17,64,65].

∆S(n) = TWSA(12, n) − TWSA(12, n − 1) (2)

http://www.mwr.gov.cn/zwzc/hygb/szygb/
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In this study, the TWSA data are obtained from the Jet Propulsion Laboratory (JPL) at
NASA. Specifically, we use the JPL Mascon RL06 Release 2, which has a monthly temporal
resolution and covers the time period from April 2002 to the present [17,63]. Therefore, the
calculation of water balance results in an ET product covering the years 2003 to 2020. In
this study, it is referred to as WB-TWSA ET.

3.5.2. Trend Analysis and Significance Test

We conducted a spatial and temporal analysis of evapotranspiration (ET) patterns
from 1982 to 2020 in different periods due to variations in the temporal coverage of existing
global ET datasets. Among the six global ET datasets used in this study, all commenced
in 1982 and, except for MERRA and MERRA-Land, which ended in 2015, have continued
up to the present. In contrast, the ET dataset for China, calculated using a water balance
method, began in 1997 (WB) and 2003 (WB-TWSA), respectively, and ended in 2020.

The selection of analysis periods was based on two criteria: (i) to choose periods as
long as possible, and (ii) to select periods containing as many ET datasets as possible to
ensure a greater number of ensemble members. Consequently, we conducted spatial ET
analysis for the period 1982–2015, which was a common period for all six global ET datasets.
For temporal analysis, four time periods were selected: 1982–2002, 2003–2015, 1982–2015,
and 1982–2020. The first and third time periods included six ET datasets (ERA5, ERA5-
Land, GLEAM, MERRA, MERRA-Land, and MERRA2), the second time period included
all eight ET datasets (ERA5, ERA5-Land, GLEAM, MERRA, MERRA-Land, MERRA2, WB,
and WB-TWSA), and the fourth time period included four datasets (ERA5, ERA5-Land,
GLEAM, and MERRA2).

This study utilizes a linear regression method to calculate the spatiotemporal trends of
different ET products at an annual scale, which is also used to examine the spatiotemporal
trends of ET-influencing factors. Additionally, a statistical significance test using the t-test
is conducted, with a significance level of t = 0.05.

3.5.3. Partial Correlation Analysis

Based on partial correlation analysis, the second-order partial correlation coefficients
between the major meteorological variables (air temperature, solar radiation, precipitation)
and the estimated ET from various datasets were calculated to analyze the main driving
factors of ET in different geographical regions.

3.5.4. Taylor Diagram

The Taylor diagram, originally proposed by Taylor (2001) [66], quantifies the degree
of match between an evaluation object and validation data. It is particularly effective in
assessing various aspects of models or comparing the relative merits of different models.
This method primarily quantifies the relationship between the evaluation object and vali-
dation data by evaluating their correlation, root mean square error, and standard deviation.
When the distance between the evaluation object and validation data points is shorter, the
correlation coefficient is higher, and the distance to the origin is closer to 1, which indicates
better performance of the evaluation object.

4. Results
4.1. Climatology of ET

Based on the average monthly ET values over multiple years, Figure 2 shows the
climatology of various ET products from 1982 to 2015. The different ET products exhibit
consistent distribution patterns, generally showing a unimodal distribution: ET increases
from January to reach its peak in July, followed by a gradual decrease until December,
consistent with previous studies [14,67,68]. However, there are substantial differences in the
specific values among the different methods: compared to the corresponding land surface
reanalysis products, the atmospheric reanalysis products overestimate ET in most months,
with MERRA ET showing the most pronounced overestimation. The reanalysis-based ET
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data are higher than the ET derived from the remotely sensing GLEAM product, with
MERRA-Land showing the closest agreement with GLEAM.
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Figure 2. Climatology of six ET products (ERA5, ERA5-Land, MERRA2, MERRA-Land, MERRA, and
GLEAM).

4.2. The Spatial Pattern of the Multiyear Average ET

Figure 3 illustrates the spatial distribution of the multiyear average of six ET products
in China for the period 1982–2015. Overall, the ET products exhibit a gradual decrease
in spatial distribution from southeast to northwest, which is consistent with the spatial
distribution of precipitation in China. In the arid and semi-arid regions of northwest China
and the humid tropical–subtropical regions, all ET products display distinct low-value and
high-value areas. When examining specific regions, significant differences are observed in
the values and distribution characteristics of ET obtained from different methods.

In the Tibet Plateau region, reanalysis products still tend to overestimate ET compared
to GLEAM. Although the three MERRA ET products have higher values than GLEAM ET,
their spatial distribution patterns are more similar, especially MERRA2 and MERRA-Land.
GLEAM and the three MERRA ET products show an increasing spatial distribution pattern
from northwest to southeast, which closely corresponds to the decreasing elevation of the
Qinghai-Tibet Plateau and the characteristics of the dry–wet climate zones. High ET values
are mainly observed in the southeastern part, characterized by forests, croplands, and
mixed agricultural–forest areas, which are influenced by the summer monsoon and have
a relatively mild climate and abundant precipitation. Low ET values are predominantly
found in the northwest, which experiences a hot and arid climate with mainly grassland
and sparse grassland vegetation cover [69–71]. The changes in ERA5 and ERA5-Land are
not as pronounced in this region.
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4.3. The Spatial Pattern of Long-Term Trend of ET and Its Main Influencing Factors from 1982
to 2015

Figure 4 displays the spatial distribution of long-term trends of six ET products from
1982 to 2015. The figure reveals significant variations in the long-term trends among the
different ET products. GLEAM shows a prominent increasing trend across the entire
country. Compared to GLEAM, MERRA2 and MERRA-Land exhibit the most similar
spatial patterns. However, MERRA shows significant spatial variability, with notable
decreases observed in the Songliao River Basin, the lower reaches of the Yellow River Basin,
the Haihe River Basin, and the western part of the Tibet Plateau, and significant increases
in the upper reaches of the Yellow River Basin. These variations could be attributed to
the lower accuracy of precipitation estimation [29]. ERA5 and ERA5-Land ET exhibit
significant spatial variations, with a decreasing trend observed in the northern regions and
a consistent increasing trend in the southern regions, which significantly differ with the
GLEAM product.
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indicates that the trends are statistically significant at a 95% (p < 0.05) confidence level.

Precipitation, surface incident solar radiation, and air temperature are the three main
environmental control factors for ET on a global scale [29,72,73]. Figures 5–7 illustrate the
spatial distribution of long-term trends in the three variables for each ET product from 1982
to 2015.

Figure 5g demonstrates that there are no discernible changes in precipitation from 1982
to 2015. Among all the Evapotranspiration (ET) products examined, only GLEAM exhibits
the closest alignment with observed data. Conversely, ERA5 and ERA5-Land indicate
notable declines in the eastern and northwest regions of China, with concurrent significant
increases observed in the Tibet plateau. MERRA exhibits a similar spatial distribution to
ERA5 and ERA5-Land in eastern China but presents contrasting trends in the northwest
and Tibet plateau. Meanwhile, both MERRA2 and MERRA-Land indicate a significant
overall increase in precipitation across the entirety of China.
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Figure 5. Spatial pattern of long-term trends of precipitation input of seven gridded products from
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(g) observed precipitation. The black dot in a grid indicate that the trends are statistically significant
at a 95% (p < 0.05) confidence level.

Figure 6f presents observed solar radiation data, which predominantly reveal decreas-
ing trends in eastern China, particularly in the North China region. However, none of
the reanalysis models were able to replicate a similar spatial pattern as observed. Among
the remaining six Evapotranspiration (ET) products, only MERRA2 managed to partially
reproduce the declines observed in eastern China, while the others consistently exhibited
significant increasing trends. GLEAM, ERA5, and ERA5-Land showed highly coherent
changes, which can be attributed to the utilization of a solar radiation dataset known as
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the MSWX data, incorporated by GLEAM. The MSWX data were derived through bias
correction and downscaling of ERA5 using high-resolution monthly or annual reference
climatologies [74]. MERRA2′s ability to capture observed solar radiation changes may be
attributed to its assimilation of both meteorological and aerosol observations [75]. Although
ERA5 has made notable advancements in estimating total cloud cover by integrating im-
proved model physics and resolution, it still exhibits biases in replicating long-term trends.
One potential explanation for these biases could be the oversight of aerosol-related changes
on interannual or decadal time scales within ERA5 [76].
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Figure 6. Spatial pattern of long-term trends of surface incident solar radiation (Rs) input of six grid-
ded products from 1982 to 2015. (a) ERA5, (b) ERA5-Land, (c) MERRA2, (d) MERRA-Land\MERRA,
(e) GLEAM, and (f) SunDu-derived solar radiation. The black dot in a grid indicates that the trends
are statistically significant at a 95% (p < 0.05) confidence level.

Figure 7 illustrates that all the reanalysis data for air temperature successfully replicate
the observed significant increasing trends. Consequently, the uniformity in air temperature
changes may offer limited explanatory value in accounting for the variations in ET trends.
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Figure 7. Spatial pattern of long-term trends of air temperature input of six gridded products from
1982 to 2015. (a) ERA5, (b) ERA5-Land, (c) MERRA2, (d) MERRA-Land\MERRA, (e) GLEAM,
and (f) observed air temperature. The black dot in a grid indicates that the trends are statistically
significant at a 95% (p < 0.05) confidence level.

In the northwest region of China, for the GLEAM product, precipitation, solar radia-
tion and temperature all show significant increasing trends, which align with the regional
warming and moistening trend in the northwest [77–80]. The significant increasing pre-
cipitation has been attributed to the strengthening of the West Pacific Subtropical High
and the North America Subtropical High [81] and the increasing precipitation recycling
ratio [78]. In this region, which is characterized by arid climate, ET changes are primarily
controlled by precipitation. The partial correlation analysis in Figure 8f, which shows the
partial correlation of GLEAM ET with the three main factors, confirms that precipitation is
the primary controlling factor for ET in the northwest region. The other reanalysis products
can reproduce the dominant role of precipitation in determining ET, especially for MERRA,
MERRA2 and MERRA-Land. An increase in solar radiation promotes the rise of air temper-
ature and supplies more energy to favor the evaporation process of vaporization, while
an increase in precipitation fulfills this evaporation demand, explaining the significant
increase in ET in the northwest region [77,78,82,83]. For ERA5 and ERA5-Land products,
Figure 8a,b also exhibit consistent partial correlation patterns with GLEAM, indicating
the dominant influence of precipitation in the northwest region. However, in terms of
input data, while solar radiation and temperature replicate the increasing trend observed
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in GLEAM, precipitation shows a contrasting decreasing trend, which may explain the
decreasing trend in ET observed in Figure 4a,b. For the MERRA, MERRA2, and MERRA-
Land products, both precipitation and temperature show significant increasing trends,
while solar radiation exhibits a decreasing trend, particularly pronounced in MERRA2.
However, the decreasing trend in radiation is not sufficient to counterbalance the increase
in ET caused by the increasing precipitation and temperature, resulting in a consistent
increasing trend observed in these products in the northwest region, similar to GLEAM.
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Figure 8. Spatial distribution of three potential climatic constraints on ET: precipitation (P), surface
incident solar radiation (Rs) and air temperature (Ta). (a) ERA5, (b) ERA5-Land, (c) MERRA2,
(d) MERRA-Land, (e) MERRA, and (f) GLEAM. Each color corresponds to a unique combination of
the partial correlations of the three constraints on ET.

In the North China region, GLEAM ET shows a significant increasing trend (Figure 4f),
while precipitation exhibits a less apparent decreasing trend, and solar radiation and tempera-
ture show significant increasing trends. Figure 8f also indicates that the North China region
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is influenced not only by precipitation but also by radiation and temperature inputs. Thus,
the slight decrease in precipitation does not offset the contribution of increasing radiation
and temperature to ET. For ERA5 and ERA5-Land, ET displays a significant decreasing trend,
driven by the pronounced decreasing trend in precipitation, despite the significant increasing
trends in solar radiation and temperature. Similarly, MERRA ET also exhibits a significant
decreasing trend, primarily due to the substantial decrease in precipitation, as indicated by
Figure 8e, where precipitation is identified as the main controlling factor for ET. MERRA2 and
MERRA-Land can better reproduce the increasing trend in ET in the region, but their reasons
for the increase differ from GLEAM. While GLEAM attributes the ET increase mainly to the in-
crease in radiation and temperature, with a smaller contribution from precipitation, MERRA2
and MERRA-Land show significant increasing trends in precipitation, solar radiation, and
temperature (Figures 7d and 8c), indicating that the increase in these three controlling factors
drives the ET increase in the northern region.

In the Northeast region, GLEAM ET also exhibits a significant increasing trend in
most areas. Similar to the North China region, the increase in ET in the Northeast region
is primarily attributed to the increase in solar radiation and temperature, despite a weak
decreasing trend in precipitation. Precipitation is not the dominant factor controlling ET
in this region. Consistent with the performance in the North China region, only MERRA2
and MERRA-Land can better reproduce the increasing trend in ET in the Northeast region,
while ERA5 and ERA5-Land capture the increase in ET in some areas but not as consistently,
and MERRA performs the worst, showing a significant decreasing trend. The reasons for
the differences in performance among the products are consistent with those in the North
China region.

In southern China, the reasons for the increase in GLEAM ET are similar to those in North
China and the Northeast, where the significant increase in solar radiation and temperature
contribute to the ET increase. All the reanalysis products capture the increasing trend in ET,
but with some variations in the magnitude of the increase. Among them, MERRA-Land shows
the largest increase. Although all the reanalysis products reproduce the increasing trend in
ET in this region, the reasons for the increase differ. ERA5, ERA5-Land, and MERRA exhibit
a significant decreasing trend in precipitation, while solar radiation and temperature show
significant increasing trends. Figure 8a,b,e also indicate that temperature and radiation are the
main factors influencing ET, explaining why these three products reproduce the increasing
trend in ET, primarily attributed to the increase in radiation and temperature. MERRA2
shows significant increasing trends in precipitation and temperature but exhibits a decreasing
trend in solar radiation. However, Figure 8c reveals that precipitation is the main controlling
factor for ET, indicating that the decrease in solar radiation does not lead to a decrease in
ET. Therefore, MERRA2 can reproduce the increase in ET in this region primarily due to the
increase in precipitation. As for MERRA-Land, all three factors (precipitation, solar radiation,
and temperature) show significant increasing trends, and Figure 8d also indicates that all three
factors influence ET. Thus, the increase in MERRA-Land is primarily attributed to the increase
in these three controlling factors.

In the Tibet Plateau region, except for the MERRA product, the other products show a
significant increasing trend in ET. The reasons for the increase also differ among the products.
ERA5, ERA5-Land, and GLEAM exhibit significant increasing trends in precipitation and
temperature, while solar radiation shows a weakening trend. Figures 7f and 8a,b reveal that
precipitation and temperature are the main controlling factors for ET in this region, indicating
that the increase in precipitation and temperature contributes to the increasing trend observed
in these three products. MERRA-Land shows significant increasing trends in precipitation,
solar radiation, and temperature, and all three factors contribute to the increase in ET, as
indicated by Figure 8d. Therefore, the increasing trend in ET captured by MERRA-Land
can be attributed to the increase in precipitation. Although MERRA2 exhibits increasing
trends in precipitation and temperature, solar radiation shows a weakening trend. However,
Figure 8c suggests that precipitation is the main controlling factor for ET, indicating that the
decrease in solar radiation does not result in a decrease in ET. Thus, MERRA2 can reproduce
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the increase in ET in this region primarily due to the increase in precipitation. In contrast to
the increasing trends in precipitation observed in other products, MERRA shows a significant
decreasing trend, and although solar radiation and temperature exhibit increasing trends, they
are insufficient to offset the decrease in precipitation. Figure 8e also indicates that precipitation
is the main controlling factor for ET in this region.

Overall, the analysis suggests that the changes in ET in different regions of China
are influenced by various combinations of precipitation, solar radiation, and temperature.
Precipitation plays a dominant role in controlling ET in the northern China and western
Tibet Plateau regions, while solar radiation and temperature are the main factors affecting
ET in the southern China, and eastern Tibet Plateau regions. The reanalysis products show
differences in their ability to reproduce the trends in ET, primarily due to variations in the
representation of precipitation, solar radiation, and temperature in the input data. It is
important to consider these factors when interpreting the trends in ET and understanding
the underlying mechanisms driving the changes in different regions.

4.4. Time Series of Annual ET and Its Main Influencing Factors from 1982 to 2020

Figure 9 presents the annual time series of eight ET products and their corresponding
input, i.e., precipitation, radiation, and temperature from 1982 to 2020. In addition to the
six ET products (ERA5, ERA5-Land, MERRA2, MERRA-Land, MERRA, and GLEAM), two
ET datasets obtained using the surface water balance method (WB, and WB-TWSA) are
included, with WB-TWSA serving as the reference ET product to validate the other seven
ET products. The overlapping period for the ET time series of all datasets is from 2003 to
2015. Figure 10a,b represent Taylor diagrams for various ET datasets during the time series
of 2003–2015 and 1982–2015, respectively. Figure 11 summarizes the multi-year average
values and trends of each ET product from 1982 to 2020.
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and air temperature (Ta) (d) in China.

From Figures 9a and 11a,e, it can be observed that there are significant differences
among the ET products in terms of multi-year annual averages, interannual variability, and
long-term trends. From 2003 to 2015, WB and WB-TWSA have a similar annual average
value of around 400 mm yr−1, and their trends are also very similar, indicating that the
variation in surface water storage has a minimal impact on annual ET. Therefore, it is
suitable to neglect water storage change at an annual scale, as widely used in previous
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studies [29,59]. Compared to WB-TWSA, the remote sensing derived GLEAM is the closest,
with an annual average of 373.21 mm yr−1. The reanalysis products show a significant
overestimation, with the multi-year average of ET ranging from 466.13 to 562.31 mm yr−1

from 1982 to 2015. Among them, MERRA has the most pronounced overestimation,
reaching 40%, while MERRA-Land has the least overestimation, but still reached 16%.
This overestimation of ET by the reanalysis products is consistent with the findings in
Figures 2 and 3.

Figure 10a,b were generated using WB-TWSA and GLEAM as reference datasets.
The Taylor diagrams provide a quantitative assessment of how closely each ET dataset
matches the reference data, with better model performance indicated by closer proximity
to the reference dataset in the diagrams. In the results, it is observed that MERRA exhibits
negative correlations with the reference data in both time periods, accompanied by rela-
tively large standard deviations and root mean square errors (RMSEs). This suggests poor
model performance for MERRA in the corresponding time series. During the period of
2003–2015, ERA5, while having standard deviations similar to the reference dataset, still
shows negative correlations with the validation data and relatively high RMSE. On the
other hand, the modeling performance of WB, GLEAM, MERRA2, MERRA-Land, and
ERA5-Land appears relatively better. Among these, GLEAM stands out as it combines
the best performance in all three parameters in the Taylor diagram, making it the chosen
reference dataset for the 1982–2015 time frame. For the 1982–2015 period, ERA5 and ERA5-
Land perform well, particularly in terms of standard deviations and RMSE. However,
they exhibit lower correlations with GLEAM. In contrast, MERRA2 and MERRA-Land
show higher correlations with the reference data but come with larger standard deviations
and RMSEs. In summary, the land surface reanalysis datasets tend to outperform the
atmospheric reanalysis datasets in terms of modeling capability. Please note that these
observations are based on the analysis of the Taylor diagrams for the specified time periods
and reference datasets.
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Figure 10. Taylor diagram of annual ET computed from each reanalysis dataset versus that computed
from the reference dataset: (a) 2003–2015; (b) 1982–2015. Datasets with correlation coefficients less
than 0 are omitted. In each plot, the distance between each colored dot which represents result of
a reanalysis dataset while the hollow dot represents the result of the observed dataset, which is a
measure of how well the statistics obtained for each reanalysis dataset agree with that of the observed
dataset. For each reanalysis dataset, three statistics are presented, which are the correlation coefficient
(blue lines), the centered root mean square error (green lines) and standard deviation (black lines).

Among the input data of the ET products, GLEAM shows the closest agreement
with observed precipitation in all time periods, followed by MERRA2 and MERRA-Land.
However, ERA5, ERA5-Land, and MERRA exhibit a significant overestimation in their
multi-year average precipitation. Compared to observed solar radiation, GLEAM still
shows the closest agreement, while the reanalysis products consistently exhibit signifi-
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cant overestimation, with the MERRA series having higher values than the ERA5 series.
In comparison to observed temperature, all products show an underestimation.
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In terms of interannual variability, the ET products exhibited significant annual fluc-
tuations. WB-TWSA has the largest interannual variability, at around 40 mm yr−1, while
GLEAM, ERA5, and ERA5-Land have smaller fluctuations, around 30 mm yr-1. MERRA,
MERRA2, and MERRA-Land have the highest interannual variability, reaching up to
70 mm yr−1. Regarding the trends, from 2003 to 2015, the water balance ET products
WB and WB-TWSA show a significant increasing trend, at 1.36 mm yr−2 (p = 0.29) and
1.60 mm yr−2 (p = 0.09), respectively. The increasing ET in China has been widely reported
in previous studies [84–86]. Among the other products, GLEAM, MERRA2, and MERRA-
Land exhibit a consistent increasing trend, at 1.24 mm yr−2 (p = 0.03), 1.34 mm yr−2

(p = 0.17), and 1.35 mm yr−2 (p = 0.11), respectively. The superior accuracy of MERRA2
may be attributed to the measures used to minimize the spurious variations related to
inhomogeneity in the observation record [87]. In contrast, MERRA, ERA5, and ERA5-Land
show a decreasing trend, with MERRA experiencing a significant decline of−3.69 mm yr−2

(p = 0.01). Figure 11f shows that the increase in ET based on the water balance approach is
primarily attributed to the observed increase in precipitation, as there are no significant
changes in radiation and temperature. The role of precipitation in determining ET changes
is consistent with the finding by Fu, Gong [86]. Among all the products, only GLEAM,
MERRA2, and MERRA-Land are able to reproduce the increasing trend in observed precip-
itation, which may explain why these three ET products perform well. A comparison of
multi reanalysis datasets also indicates that precipitation is best represented by MERRA2
across China [88].

Compared to the water balance ET products, GLEAM ET demonstrates the best
performance in terms of average values, interannual variability, and trend, mainly due
to the high accuracy of its precipitation, radiation, and temperature products. MERRA2
and MERRA-Land exhibit a pronounced overestimation in average values, with significant
interannual variability, but they can capture the consistent increasing trend observed in
water balance ET, which is attributed to their ability to reproduce the observed changes in
precipitation. On the other hand, ERA5, ERA5-Land, and MERRA exhibit a clear decreasing
trend in ET, primarily due to the simulated decline in precipitation.

5. Discussion

Compared to GLEAM ET and water balance ET, all reanalysis products tend to over-
estimate ET on a national scale, particularly in humid and semi-humid regions. Among
the atmospheric reanalysis products, MERRA and MERRA2 exhibit the most pronounced
overestimation, while MERRA-Land is relatively closer to GLEAM. Compared to MERRA,
MERRA2 has made improvements in forecasting models, analysis methods, and observa-
tional systems [28]. It has also corrected precipitation based on observational data, and
previous studies have found significant improvements in land surface simulations with
MERRA2 [32,52,53]. MERRA-Land corrects MERRA’s rainfall product using observational
data, which improves rainfall accuracy [39]. However, in this study, it was observed that the
degree of improvement in precipitation simulation accuracy had different impacts on the
ET estimation accuracy between these two products, with MERRA2 not performing as well
as MERRA-Land. The superior accuracy of land surface reanalysis data than atmospheric
reanalysis data in ET simulation has been demonstrated in previous studies [29]. ERA5
and ERA5-Land show consistent spatial distributions, likely due to ERA5-Land being
downscaled directly from ERA5 [38].

All the reanalysis ET datasets used in this study could reproduce the similar climatology
and spatial pattern of multiyear average ET, while indicating substantial discrepancies in
depicting interannual variability and trends, consistent with previous studies that different ET
products indicate dramatically different performance across China [25,42,89,90]. In the four pe-
riods (1982–2002, 2003–2015, 1982–2015 and 1982–2020), both GLEAM and MERRA2 indicate
obvious increasing ET trends, consistent with most findings [13,22,33,85,91,92]. MERRA2-
Land can obtain similar increasing trends in the first three periods owing to the unavailability
in the fourth time period. MERRA, ERA5 and ERA5-Land ET products perform differently in
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the different time periods, which indicate their unstable accuracy. The different performance
in simulation of ET should be due to the different accuracy in simulating the three main
determining factors (precipitation, solar radiation and air temperature), as these three factors
indicate much difference in depicting trends. The significant discrepancy in spatial pattern
of partial correlation analysis between three factors and ET can explain their difference in
ET accuracy.

Specifically, at a national scale, among all the reanalysis ET products, only MERRA2
and MERRA-Land can also reproduce the consistent increasing trend at a similar increasing
rate as water balance ET during the common period of 2003–2015. The attribution analysis
indicate that this is mainly because these two products can simulate precipitation changes
that are consistent with observations and show a significant increasing trend nationwide.
However, ERA5 and ERA5-Land show a decreasing trend in ET, primarily because they
fail to simulate the increasing trend in precipitation, possibly due to the absence of aerosol
assimilation [75,93]. From 1982 to 2020, both GLEAM and MERRA2 ET exhibit a significant
increasing trend attributed to the significant increases in precipitation and temperature
during this period.

The differences in the accuracy of ET products have significant potential implications
across various domains [94,95]. In terms of water resource management, the use of different ET
products can lead to varying results, affecting the assessment of available water resources [95].
This can have substantial consequences for water resource planning and allocation. Addition-
ally, ET serves as a critical indicator in drought monitoring [96,97]. Inaccurate ET estimations
may result in misjudgments or delays in responding to drought conditions, impacting mea-
sures and resource allocation for drought mitigation. Agriculture, which heavily relies on
water resources, is similarly affected. The accuracy of ET data directly influences irrigation
planning and execution [98]. Inaccurate ET estimations can lead to the wastage or insufficiency
of water resources. Furthermore, crop growth and yield are closely related to soil moisture
levels. Accurate ET data help optimize irrigation plans, enhance crop yields, and reduce
agricultural risks [99]. Moreover, ET is a crucial process within the climate system and plays a
vital role in climate prediction and modeling [94,100]. Inaccurate ET estimations can intro-
duce biases into climate models, subsequently affecting the accuracy of climate predictions.
Research on climate change trends requires precise ET data. If significant differences exist
among ET products, this can impact our understanding and prediction of climate change.
Therefore, in these domains, selecting appropriate sources of ET data and understanding the
differences in their accuracy are of paramount importance.

This study conducted a detailed accuracy evaluation of different ET products. How-
ever, it should be noted that this study tries to answer the question why the reanalysis
differ in the performance of ET from the aspect of its main climate control variables and
neglect the impact of other factors, such as vegetation impact [61,101,102], land use/cover
changes [62,103], carbon dioxide effect [104,105] and aerosol effect [106,107], which should
be investigated in detail in future studies to provide a more comprehensive understanding
of the disparities in different ET products’ performance.

6. Conclusions

Based on the water balance product and the remote sensing-derived ET product
GLEAM, we evaluated the ability of different reanalysis products to reproduce the spa-
tiotemporal distribution and long-term trends of ET in China. We investigated the possible
reasons for their performance disparity by analyzing the three major climatic factors in-
fluencing ET (precipitation, solar radiation, and temperature). The findings reveal that
compared to the water balance ET, GLEAM product is capable of reproducing the mean,
interannual variability, and trends of ET, making it suitable for validating reanalysis ET
products. In comparison to GLEAM ET, all reanalysis ET products exhibit consistent clima-
tology and spatial distribution but show a clear overestimation, with multi-year averages
being overestimated by 16–40%. There are significant differences among the reanalysis
products in terms of interannual variability, long-term trends, and attribution. Within the
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common period of 2003–2015, GLEAM shows a consistent increasing trend with the water
balance ET. Among all the reanalysis ET products, only MERRA2 and MERRA-Land can
also reproduce the consistent increasing trend at a similar increasing rate. This is mainly
because these two products simulate precipitation that is consistent with GLEAM and
shows a significant increasing trend nationwide. However, ERA5 and ERA5-Land show
a decreasing trend in ET, primarily because they fail to simulate the increasing trend in
precipitation, possibly due to the absence of aerosol assimilation. From 1982 to 2020, both
GLEAM and MERRA2 ET exhibit a significant increasing trend attributed to the signifi-
cant increases in precipitation and temperature during this period. The findings of this
study are of great significance for the development of reanalysis products, improvement of
ET simulation accuracy, and accurate assessment of the impact of climate change on the
water cycle.
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