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Abstract: Ship detection based on remote sensing images holds significant importance in both
military and economic domains. Ships within such images exhibit diverse scales, dense distributions,
arbitrary orientations, and narrow shapes, which pose challenges for accurate recognition. This
paper introduces an improved S2A-Net (Single-shot Alignment Network) based oriented object
detection algorithm for ship detection. In network structure, pyramid squeeze attention is embedded
in order to focus on key features and a context information module is designed to enhance the
context understanding capability of the network. In the training strategy, considering the distortion
problems such as blurring and low contrast in remote sensing images, a fog density and depth
decomposition-based unpaired image dehazing network D4 is adopted to improve the image quality,
besides, an image weight sampling strategy is proposed to enhance the training opportunities of
small and difficult samples, thereby mitigating the issue of imbalanced ship category distribution.
Experimental results demonstrate that the improved S2A-Net algorithm achieves the mean average
precision of 77.27% for ship detection in the FAIR1M dataset, which is 5.6% better than the original
S2A-Net algorithm, and outperforms the current common object detection algorithms.

Keywords: ship detection; S2A-Net; pyramid squeeze attention; context information module; image
weights sampling

1. Introduction

Implementing the accurate extraction of ships in optical remote sensing images finds
widespread utility in domains of fishing, maritime search and rescue, maritime traffic
management, and combating marine smuggling, and it stands as a prominent research
avenue within computer vision. Compared with infrared remote sensing images and
synthetic aperture radar (SAR) remote sensing images, optical remote sensing images
have richer texture and color information, which aligns more closely with human visual
perception and underscores their considerable research potential [1].

Traditional methodologies for ship detection can be categorized into segmentation
methods based on gray-scale statistics [2], methods based on frequency domain analysis [3]
and methods of local feature extraction [4]. However, such methods usually have poor
generalization and tend to be affected by disturbing factors such as complex backgrounds
and variable targets. Besides, the computational efficiency of these algorithms is intricately
tied to the complexity of their design, which renders it challenging to cater to the recognition
requisites of the diverse array of ship targets present within remote sensing images.
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In recent years, the continual enhancement of GPU (Graphics Processing Unit) comput-
ing power has ushered in significant advancements in data-driven deep learning method-
ologies, which wield a pronounced advantage in extracting complex features and feature
discrimination, bringing new development opportunities for the research of ship detection
within remote sensing images. Deep learning-based generic object detection algorithms fall
broadly into two-stage and one-stage methods, two-stage methods are represented by the
Region-based Convolutional Neural Network (RCNN) series of algorithms [5–8], which
first generate a region of interest (ROI) and then a detection head is used to regress bound-
ing boxes and complete classification; one-stage methods do not require the generation of
ROI for classification and regression, so these methods can achieve faster detection speed
compared to two-stage methods, with representative algorithms such as YOLO (You Only
Look Once) series [9–12], SSD (Single Shot MultiBox Detector) [13], RetinaNet [14]. Numer-
ous researchers adopted generic object detection algorithms to accomplish the automatic
recognition of ships, such as the remote sensing image detection framework proposed
in [15] is split into three steps, first, selective search is leveraged to generate region propos-
als, then using AlexNet or GoogleNet to extract features for classification, and finally, the
NMS (Non-Maximum Suppression) method and proposed USB-BBR method are used to
obtain the precise location of bounding boxes; Li et al. [16] introduced a hierarchical selec-
tive filtering layer (HSF layer) and introduced it into Faster RCNN [7] to extract multi-scale
features of ships, realizing the detection of ships in various scenarios and scales.

Compared with natural scenes, ships in remote sensing images exhibit distinct char-
acteristics such as narrow shapes, variable sizes, and dense arrangements. Horizontal
detection boxes often fall short in accurately discerning different ship targets. As a result,
numerous researchers have endeavored to employ oriented object detection algorithms
for conducting detection tasks in remote sensing image scenes, which predicts one more
rotation parameter on the basis of the generic object detection algorithm to enable the
detection of objects with arbitrary orientations. Figure 1 provides a visual comparison
between the detection outcomes achieved by horizontal and oriented boxes.

Remote Sens. 2023, 15, 4559 2 of 20 
 

 

recognition requisites of the diverse array of ship targets present within remote sensing 
images. 

In recent years, the continual enhancement of GPU (Graphics Processing Unit) com-
puting power has ushered in significant advancements in data-driven deep learning meth-
odologies, which wield a pronounced advantage in extracting complex features and fea-
ture discrimination, bringing new development opportunities for the research of ship de-
tection within remote sensing images. Deep learning-based generic object detection algo-
rithms fall broadly into two-stage and one-stage methods, two-stage methods are repre-
sented by the Region-based Convolutional Neural Network (RCNN) series of algorithms 
[5–8], which first generate a region of interest (ROI) and then a detection head is used to 
regress bounding boxes and complete classification; one-stage methods do not require the 
generation of ROI for classification and regression, so these methods can achieve faster 
detection speed compared to two-stage methods, with representative algorithms such as 
YOLO (You Only Look Once) series [9–12], SSD (Single Shot MultiBox Detector) [13], Reti-
naNet [14]. Numerous researchers adopted generic object detection algorithms to accom-
plish the automatic recognition of ships, such as the remote sensing image detection 
framework proposed in [15] is split into three steps, first, selective search is leveraged to 
generate region proposals, then using AlexNet or GoogleNet to extract features for classi-
fication, and finally, the NMS (Non-Maximum Suppression) method and proposed USB-
BBR method are used to obtain the precise location of bounding boxes; Li et al. [16] intro-
duced a hierarchical selective filtering layer (HSF layer) and introduced it into Faster 
RCNN [7] to extract multi-scale features of ships, realizing the detection of ships in vari-
ous scenarios and scales. 

Compared with natural scenes, ships in remote sensing images exhibit distinct char-
acteristics such as narrow shapes, variable sizes, and dense arrangements. Horizontal de-
tection boxes often fall short in accurately discerning different ship targets. As a result, 
numerous researchers have endeavored to employ oriented object detection algorithms 
for conducting detection tasks in remote sensing image scenes, which predicts one more 
rotation parameter on the basis of the generic object detection algorithm to enable the de-
tection of objects with arbitrary orientations. Figure 1 provides a visual comparison be-
tween the detection outcomes achieved by horizontal and oriented boxes. 

  
(a) (b) 

Figure 1. Detection results of two kinds of bounding boxes. (a) the detection results of horizontal 
boxes; (b) the detection results of oriented boxes. 

RRPN [17] generated oriented region proposals by introducing six different rotation 
angles based on the horizontal anchor boxes of Faster RCNN and introduced Rotation RoI 
(RRoI) pooling layer to transform region proposals with varying orientations, aspect ra-
tios, and scales into a uniform size. R2CNN [18] is also improved based on Faster RCNN, 

Figure 1. Detection results of two kinds of bounding boxes. (a) the detection results of horizontal
boxes; (b) the detection results of oriented boxes.

RRPN [17] generated oriented region proposals by introducing six different rotation
angles based on the horizontal anchor boxes of Faster RCNN and introduced Rotation
RoI (RRoI) pooling layer to transform region proposals with varying orientations, aspect
ratios, and scales into a uniform size. R2CNN [18] is also improved based on Faster
RCNN, where the RPN network still generates horizontal region proposals but uses two
corner point coordinates and one side length (x1, y1, x2, y2, h) to represent an oriented
bounding box. RoI Transformer [19] proposed RRoI learner module for autonomous
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learning to transform horizontal proposals into oriented proposals, avoiding the memory
overhead associated with processing numerous rotated anchor boxes, and then using
RRoI Warping to extract rotation invariant features. The two-stage algorithms, while
effective, often grapple with time-intensive tasks like region proposal transformation
and ROI pooling for feature alignment, which hinders their capacity for efficient and
real-time detection. Yang et al. [20] proposed a one-stage algorithm called R3Det, which
adopts a coarse-to-fine strategy to obtain the preliminary predicted boxes using horizontal
anchor boxes first, and then re-encode the position information of the preliminary boxes
to the corresponding feature points through the feature refinement module to achieve
feature reconstruction and alignment. Inspired by the coarse-to-fine idea of R3Det, S2A-
Net [21] achieves feature alignment by applying alignment convolution to the preliminary
predicted boxes, and then obtains rotation-sensitive features and rotation-invariant features
by ARF (Active Rotating Filters) [22] and pooling module to perform coordinate regression
and classification, respectively. Wang et al. [23] attempted to introduce the large-scale
visual model, Vision Transformer, into the field of remote sensing image detection, a new
rotated varied-size window attention mechanism was proposed to replace the attention
operations in the transformer, which contributes to the creation of more influential remote
sensing benchmark models. LSKNet [24] can dynamically adjust its large spatial receptive
field, allowing it to better simulate the ranging context information of various objects in
remote sensing scenes, thereby achieving accurate recognition of objects of various sizes.
Pu et al. [25] proposed an adaptive rotated convolution module, which can adaptively
rotate based on the different orientations of objects in the image, enabling the model to
have greater flexibility in capturing directional information from multiple oriented objects.

This paper presented an improved S2A-Net algorithm to achieve accurate detection of
various ships within optical remote sensing images. Contributions can be summarized below:

(1) On the basis of origin S2A-Net, pyramid squeeze attention is embedded in order
to accentuate salient features within the images, which empowers the network to
more effectively discern critical information within input data, thereby substantially
bolstering its overall performance.

(2) The context information module was meticulously devised to augment the network’s
proficiency in comprehending contextual intricacies, thereby bolstering the neural
network’s task comprehension and enabling it to better handle remote sensing image
detection tasks.

(3) An image weight sampling strategy is proposed, which can improve the training op-
portunities for small and difficult samples, so as to alleviate the problem of unbalanced
distribution of ship categories to a certain extent.

2. Datasets

The FAIR1M dataset [26] serves as an expansive and high-resolution benchmark
dataset for optical remote sensing images, it was released by the Chinese Aerospace In-
formation Research Institute, with more than 1 million instances and over 15,000 images,
containing various remote sensing images in different scenes, different geographical loca-
tions and different time periods. In this paper, the remote sensing ship dataset is derived
from the FAIR1M dataset, the targets are labeled in the format of four corner point coordi-
nates, and images of various ships are shown in Figure 2.

Since the resolution of remote sensing images in the FAIR1M dataset can reach several
thousand pixels, it is not conducive to fast model training. In this paper, remote sensing
images were cut into 800 × 800 to facilitate the training process. Then 6622 images of the
training set and 1126 images of the testing set were obtained.

Table 1 provides an enumeration of ship targets across nine distinct categories in the
training set. A glance at Table 1 underscores the stark disparities in the distribution of
object instances among these nine ship categories, with the largest number of Dry Cargo
Ship (Dc) accounting for more than 30%, while the two categories with the smallest number
of Passenger Ship (Ps) and Warship (Ws) account for only about 2%.
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Figure 2. Nine types of ship targets in dataset. (a) Passenger Ship (Ps); (b) Motorboat (Mb); (c) Fishing
Boat (Fb); (d) Tugboat (Tb); (e) Engineering Ship (Es); (f) Liquid Cargo Ship (Lc); (g) Dry Cargo Ship
(Dc); (h) Warship (Ws); (i) Other Ship (Os).

Table 1. Number of targets in each category in dataset. Abbreviations are used for the category
names in this paper, specifically: Passenger Ship (Ps), Motorboat (Mb), Fishing Boat (Fb), Tugboat (Tb),
Engineering Ship (Es), Liquid Cargo Ship (Lc), Dry Cargo Ship (Dc), Warship (Ws), Other Ship (Os).

Category Ps Mb Fb Tb Es Lc Dc Ws Os

Training set Number 792 7434 4791 1472 1485 3428 10,627 761 2314
Proportion 2.2% 22.5% 14.5% 4.5% 4.5% 10.4% 32.1% 2.3% 7.0%

Testing set Number 121 1393 1061 250 300 602 1962 101 601
Proportion 1.9% 21.8% 16.6% 3.9% 4.7% 9.4% 30.7% 1.6% 9.4%

3. Methodology

3.1. S2A-Net Algorithm

S2A-Net (Single-shot Alignment Network) is an algorithm specifically designed for
solving the problem of oriented object detection in remote sensing images. It effectively
addresses the misalignment between axis-aligned convolutional features and arbitrarily
oriented objects. It achieves high accuracy while maintaining a good detection speed.
Moreover, each module of the network exhibits excellent scalability, making it well-suited
for the ship detection task in this study. The overall structure of S2A-Net can be seen in
Figure 3. Its structure is improved on the basis of RetinaNet, ResNet50 [27] is harnessed
as the backbone network, responsible for the extraction of features, then shallow texture
features and profound semantic features are fused through a feature pyramid network [28]
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to obtain a multiscale feature map pyramid, finally the class and bounding box coordinate
information of ship target is obtained through detection head.
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Figure 3. S2A-Net structure. (a) backbone; (b) feature pyramid network (FPN); (c) feature alignment
module (FAM); (d) oriented detection module (ODM).

S2A-Net network realizes lightweight detection by sharing weights between different
detection heads. The feature alignment module contains two components: anchor refine-
ment network (ARN) and alignment convolution layer (ACL). ARN sets the parameters for
ACL by using two convolution layers to output bounding boxes in the format (x, y, w, h, θ)
based on the pre-defined horizontal anchor boxes. Illustration of the bounding box in (x, y,
w, h, θ) format is exemplified in Figure 4, where (x, y) denote the coordinates of the center
point, w and h indicate the long and short sides of bounding box, θ conveys the orientation
between w and horizontal axis, in the range [−(π/4), (3π/4)].
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For each position p on the input feature map X, the calculation of ACL can be
expressed as:

Y(p) = ∑
r∈R;o∈O

W(r)·X(p + r + o) (1)

where W(r) is the learnable weight, and R is the traversal interval of the convolution kernel
with R = {(−1, −1), (−1, 0), . . ., (0, 1), (1, 1)}. O indicates the offset filed, which can be
represented as:

O =
{

Lr
p − p− r

}
r∈R

(2)
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For each r ∈ R, the sampling position Lr
p is calculated as:

Lr
p =

1
S

(
(x, y) +

1
k
(w, h)·r

)
RT(θ) (3)

where (x, y, w, h, θ) indicates the oriented bounding box output from ARN, k denotes the
kernel size, S is the stride of ACL, R(θ) = (cosθ, − sinθ; sinθ, cosθ)T is the rotation matrix.

In an oriented detection module (ODM), a technique known as active rotating filters
(ARF) is used to encode feature information in different orientations to obtain rotation-
sensitive features for coordinate regression of bounding boxes, and rotation-invariant
features can be obtained after passing a pooling layer, which proves advantageous in
empowering the network to effectively execute classification tasks.

3.2. Improved Network Structure

The holistic architecture of the improved S2A-Net is depicted in Figure 5. Building
upon the original S2A-Net method, pyramid squeeze attention (PSA) [29] is embedded
between the backbone and FPN, with the aim of extracting more complex shallow and
deep features through the attention mechanism before building the pyramid of feature
map, and then going through FPN for feature fusion to bolster the efficacy of multi-scale
feature extraction. Since in the larger receptive field it is easier to capture small targets,
the context information module (CIM) is used in the shallowest path of FPN, which is
aimed at amplifying the network’s proficiency in recognizing small targets by directing the
network’s attention toward the context information enveloping ships.
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Figure 5. The holistic architecture of improved S2A-Net network. PSA is embedded to extract more
complex convolution features, CIM is used in the shallowest path of FPN to amplify the network’s
proficiency in recognizing small targets.

3.2.1. Pyramid Squeeze Attention (PSA)

In this paper, pyramid squeeze attention (PSA) is embedded in the origin model, its
structure can be seen in Figure 6. The initial step involves subjecting the input feature map
to the Squeeze and Concat (SPC) module to yield multi-scale feature maps in the channel
direction, then the attention weight vectors corresponding to diverse scale feature maps are
obtained by SEWeight module and calibrated by Softmax; finally, the multi-scale feature
maps are recalibrated by using these attention weight vectors. The outcome of this process
is a concatenated feature map, boasting a wealth of richer multi-scale information, tailored
to facilitate the ship detection task.

The SPC module of PSA is used to extract multi-scale information in the input feature
map X. The structure is shown in Figure 7. The module uses four parallel convolutions
of different kernel sizes to extract feature information under various sizes of receptive
fields, K0–K3 is the kernel size. Group convolution is used in order to reduce the increased
model parameters due to large kernels, G0–G3 indicates the number of groups. Finally, the
extracted muti-scale feature maps are aggregated in the channel direction and then output.
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3.2.2. Context Information Module (CIM)

In the object detection task, the target does not exist alone, the surrounding context
and other related information can often provide great help for object inference. In order to
improve the context understanding of the S2A-Net network, a context information module
(CIM) is devised in this study with the structure depicted in Figure 8.

CIM has four parallel branches containing a GC block (Global Context Block) [30]
and three dilated convolutions with different rates. The GC block serves the purpose of
extracting global context information and capturing long-range dependent features, while
the dilated convolution is strategically employed to extract local context information under
different sizes of receptive fields. The global context and local context information are summed,
yielding an output feature map boasting enhanced context comprehension, which is more
helpful for detection in small targets and complex background scenes than normal convolutions.



Remote Sens. 2023, 15, 4559 8 of 19
Remote Sens. 2023, 15, 4559 8 of 20 
 

 

 
Figure 8. The structure of CIM. 

CIM has four parallel branches containing a GC block (Global Context Block) [30] 
and three dilated convolutions with different rates. The GC block serves the purpose of 
extracting global context information and capturing long-range dependent features, while 
the dilated convolution is strategically employed to extract local context information un-
der different sizes of receptive fields. The global context and local context information are 
summed, yielding an output feature map boasting enhanced context comprehension, 
which is more helpful for detection in small targets and complex background scenes than 
normal convolutions. 

Dilated convolution involves the insertion of zero elements amidst adjacent positions 
of the convolution kernel, rate r refers to the count of inserted zero elements. In this paper, 
dilated convolution is used with r = (1, 3, 5), which can effectively expand the receptive 
fields, extract the local context information around the feature points, and assist the current 
feature points for the differentiation of the target class and regression of the bounding box. 

Notwithstanding the receptive field expansion facilitated by dilated convolution, the 
number of sampled points remains unchanged in comparison to normal convolution, so 
the extracted information is still local context information, which lacks the perception of 
long-range dependencies. GC block can encapsulate long-range dependencies and model 
the global context, its structure is visually outlined in Figure 9. 

 
Figure 9. The structure of GC block. 

The improvement of GC block over Non-local [31] is that the use of a 1 × 1 convolu-
tion (Wk in Figure 9) simplifies the context modeling and all query locations in the input 
feature map x share a global attention map, significantly reducing the parameter compu-
tation. The calculation process can be expressed as: 

Figure 8. The structure of CIM.

Dilated convolution involves the insertion of zero elements amidst adjacent positions
of the convolution kernel, rate r refers to the count of inserted zero elements. In this paper,
dilated convolution is used with r = (1, 3, 5), which can effectively expand the receptive
fields, extract the local context information around the feature points, and assist the current
feature points for the differentiation of the target class and regression of the bounding box.

Notwithstanding the receptive field expansion facilitated by dilated convolution, the
number of sampled points remains unchanged in comparison to normal convolution, so
the extracted information is still local context information, which lacks the perception of
long-range dependencies. GC block can encapsulate long-range dependencies and model
the global context, its structure is visually outlined in Figure 9.
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The improvement of GC block over Non-local [31] is that the use of a 1× 1 convolution
(Wk in Figure 9) simplifies the context modeling and all query locations in the input feature
map x share a global attention map, significantly reducing the parameter computation. The
calculation process can be expressed as:

zi = xi + Wv2ReLU

LN

Wv1

NP

∑
j=1

eWkxj

NP
∑

m=1
eWkxm

xj


 (4)

where xi indicates the i-th feature point of the input feature map, zi is the i-th feature point
of the output feature map, Np = H ×W denotes the total resolution of the input feature
map. The calculation first iterates through all feature points xj in the feature map models
the global context, captures the dependency among any two points in the feature map, and
then adds up the residual structure with the input xi after the feature transformation by
1 × 1 convolution, LayerNorm, etc. The final output feature map captures the dependency
between two feature points in the feature map and extracts the global context features,
which is helpful for the visual understanding of the object detector.
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3.3. Improved Training Strategy
3.3.1. Remote Sensing Image Dehazing

When remote sensing satellite imaging, the dust, particles and water vapor floating in
the atmosphere have certain absorption, reflection and even blocking effects on the atmo-
spheric light, so the reflected light from the surface of the ship target will be attenuated
when it reaches the imaging equipment, the image quality will be degraded, specifically
in terms of contrast reduction, blurring of the target and loss of scene details. The resul-
tant distorted remote sensing image poses challenges for effective feature extraction by
convolutional neural networks, ultimately culminating in a loss of detection accuracy. In
this research, the remote sensing images are dehazed by the D4 network [32] to restore the
image quality, which lays a solid foundation for further ship detection.

The formation of atmospheric scattering can be represented as:

I(z) = J(z)t(z) + A(1− t(z)) (5)

where I(z) denotes the hazy image, J(z) indicates the clean image, A is the global atmospheric
light, t(z) = e−βd(z) refers to the transmission map, where β is the scattering coefficient, which
can be used to reflect the fog density; d(z) is the scene depth.

D4 is a convolutional neural network based on fog density and depth decomposition,
which can be trained without paired images, and is divided into a dehazing-rehazing
branch and a hazing-dehazing branch, where the dehazing-rehazing branch is used to
complete the transformation of Hazy domain → Clean domain → Hazy domain; the
hazing-dehazing branch is used to complete the transformation of Clean domain→ Hazy
domain→ Clean domain. The network structure is vividly depicted in Figure 10.
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clear image ĉ can be derived from Equation (5), as shown in Equation (6): 

ˆ( ) ˆˆ( ) ˆ( )
H z Ac z A
t z

−= +  (6)

Depth ˆ
Hd  is obtained by depth estimator gE, and then sent to calculate the coarse 

hazy image ˆ
coarseH   by Equation (7) with ˆ

Hβ  . Finally, ˆ
coarseH   is processed by refining 

network gR to obtain the final hazy image Ĥ . 
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In the dehazing-rehazing branch, the hazy image H is input into dehazer gD to obtain
the predicted transmission map t̂H and scattering coefficient β̂H , the calculation of a clear
image ĉ can be derived from Equation (5), as shown in Equation (6):

ĉ(z) =
H(z)− Â

t̂(z)
+ Â (6)
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Depth d̂H is obtained by depth estimator gE, and then sent to calculate the coarse hazy
image Ĥcoarse by Equation (7) with β̂H . Finally, Ĥcoarse is processed by refining network gR
to obtain the final hazy image Ĥ.

Ĥcoarse(z) = ĉ(z)e−β̂H d̂H(z) + A(1− e−β̂H d̂H(z)) (7)

In the hazing-dehazing branch, the clean image C is input to depth estimator gE to
obtain the depth map d̂C, and the scattering coefficients βC are randomly sampled from the
uniform distribution U(0.6,1.8), coarse hazy image ĥcoarse is obtained according to:

ĥcoarse(z) = C(z)e−βC d̂C(z) + A(1− e−βC d̂C(z)) (8)

ĥcoarse is refined by the refined network gR to obtain the hazy image ĥ, the transmission
map t̂C and the scattering coefficient β̂C are obtained by dehazer gD, and finally the clean
image Ĉ is calculated by Equation (6).

3.3.2. Image Weights Sampling Strategy

In remote sensing image datasets, the distribution of various types of ship targets
often presents an inherent imbalance. Categories with a limited count of targets tend to
have a diminished probability of being included in the training process. This inherent
imbalance consequently exerts a detrimental influence on the overall detection accuracy
achieved by neural networks. In this paper, an image weights sampling strategy is adopted
to effectively assign a weight to each category based on the number of targets and the
category’s AP value. The smaller the number of targets and the lower the AP value, the
larger the calculated weights will be. The neural network will improve the training chance
of difficult categories by considering the size of each category’s weight during training,
thus alleviating the problem of unbalanced category distribution to a certain extent and
finally improving the overall recognition accuracy of the model.

The implementation of the image weights sampling strategy unfolds through a two-
tiered process: first compute the weights of each ship category, and then calculate the
weight of each image based on the frequency of each category appearing in an image. The
higher the value of an image’s weight during training, the greater the probability that the
image will be sampled.

The category weights are calculated considering the number of targets and the AP
value. The weight of the i-th category ci is calculated as:

ci = λ1

1
Ni

9
∑
i

1
Ni

+ λ2(1−APi)
2 (9)

where Ni refers to the number of targets in the i-th category, APi refers to the Average
Precision (AP) value for the i-th class in the current training epoch. The number of targets
in each category is taken as the inverse and then normalized to realize that the fewer the
number of targets, the higher the weight value, which is in line with the requirement that
neural networks should focus on training small samples; the consideration of AP value is
reflected in the second term, the closer a category’s AP value is to 1, the closer its weight
is to 0, which is in line with the idea that neural networks should focus on hard example
mining. λ1 and λ2 are used to balance the size of the two terms.

Based on the frequency of each category appearing in the image, the weight of i-th
image imgi can be calculated as shown in Equation (10). where nj denotes the number of
occurrences of category j in that image.

imgi =
9

∑
j=0

cinj (10)
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After completing the calculation of image weights, the probability that the i-th image
is sampled at training time Pi is shown in Equation (11), the higher the image weight, the
greater the probability that the image is sampled. L is the length of the dataset.

Pi =
imgi

L
∑
i

imgi

(11)

4. Results and Discussion
4.1. Evaluation Metric

In the context of object detection tasks, IoU serves as a pivotal metric, assessing the
extent of spatial overlap between two bounding boxes. Three distinct metrics can be
delineated contingent on whether the IoU between a detection box and its corresponding
ground truth box surpasses the threshold value (in this paper it is set to 0.5): TP, FP and
FN. TP is the number of IoUs greater than the set threshold value, indicating that the target
is correctly identified; FP is the number of IoUs less than the set threshold value, indicating
that the detection box fails to predict and FN indicates the number of no detection boxes
corresponding to ground truth box. Based on these three metrics, the Precision (p) and
Recall (r) can be obtained as:

Precision =
TP

TP + FP
, Recall =

TP
TP + FN

(12)

Average Precision (AP) encapsulates the region enclosed between the p-r curve and
the coordinate axis, the calculation formula is:

AP =
∫ 1

0
p(r)dr (13)

The mean Average Precision (mAP) is obtained by averaging the AP of all ship
categories, as shown in Equation (14):

mAP =

N
∑
i

APi

N
(14)

4.2. Remote Sensing Image Dehazing Experiment

The D4 convolutional neural network can be trained on unpaired image datasets,
where the hazy ship dataset is from the FAIR1M dataset and contains real ship targets in
various scenes, most of which are more or less hazy. The clean image dataset is from the
Boat types recognition dataset of Kaggle [33]. Images of hazy and clean datasets can be
seen in Figure 11. The training set contains 5403 hazy images and 1291 clean images, and
the testing set contains 1219 hazy images.

The environment used for the experiments is Ubuntu, Intel(R) Xeon(R) Gold 6330
CPU, NVIDIA A40 graphics card with 48 GB memory, CUDA 11.6, cuDNN 8.5, Pytorch
1.12, Python 3.8. The hyperparameters used for the experiments are: learning rate = 0.0001,
batch size = 2, input image size = 256 × 256 × 3, Adam optimizer, momentum β1 = 0.9,
β2 = 0.999, maximum iterations = 20,000.

The dehazing effect was evaluated using no-reference image quality assessment met-
rics NIQE (Natural Image Quality Evaluator) [34] and FADE (Fog Aware Density Evalua-
tor) [35], the smaller the metric, the smaller the disparity between the statistical attributes
of the evaluated image and a reference natural image, that is, the closer the test image is to
clean image, which represents the higher image quality. Table 2 shows the average metric
size before and after dehazing in the training set and testing set; an observant analysis of
the table reveals that both images in the training set and the testing set show a decrease in
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NIQE and FADE after dehazing using the D4 network, which indicates that the dehazed
images are closer to the natural images.
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Table 2. Metrics before and after dehazing of training and testing sets.

Training Set
(before Dehazing)

Training Set
(after Dehazing)

Testing Set
(before Dehazing)

Testing Set
(after Dehazing)

NIQE 11.15 10.37 10.06 9.15
FADE 0.84 0.45 0.63 0.33

The effect of remote sensing image dehazing is shown in Figure 12.
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4.3. Ablation Study of Ship Detection

The experiment environment for object detection model training is consistent with
that described in Section 4.2 of this paper. The hyperparameter settings for training are:
the optimizer selects SGD, the initial learning rate is 0.0025, and in the training process a
multi-step decay strategy is used to decay the learning rate to 1/10 of the original in 24 and
33 epochs, the batch size is 2, the maximum epochs is set to 50. The results of the ablation
experiments are comprehensively presented in Table 3.

Table 3. Ablation study result. “
√

” refers to the method used in the improved model.

S2A-Net PSA CIM D4 Image
Dehazing

Image Weights
Sampling mAP/%

√
71.67√ √
72.84√ √ √
74.47√ √ √ √
74.73√ √ √ √ √
77.27

As can be seen from Table 3, all four methods used in this paper can lead to the increase
in mAP, specifically, the improvement was 1.17%, 1.63%, 0.26%, and 2.54%, respectively.
The mAP of the original S2A-Net network is 71.67% and the mAP of the final improved
model is 77.27%, the improvement of mAP is 5.6%. Table 4 shows the AP value of nine types
of ships before and after improvements, the improved S2A-Net has the most significant
improvement in AP for categories of Motorboat (Mb), Fishing boat (Fb), and Other Ship
(Os), which are 14.9%, 16.3%, and 16.2%, respectively.

Table 4. Accuracy of nine types of ships before and after improvements.

Ps Mb Fb Tb Es Lc Dc Ws Os mAP/%

S2A-Net 63.8 72.0 58.3 76.1 78.4 86.8 87.0 84.6 38.0 71.67
Improved S2A-Net 68.3 86.9 74.6 76.6 80.4 89.1 88.6 76.9 54.2 77.27

Since the mAP improvement of D4 image dehazing in Table 3 is not obvious, this paper
attempted repeating training several times based on the S2A-Net + PSA + CIM network,
the results are presented in Table 5. It is proved that after image dehazing using the D4
network, the difference in mAP obtained from multiple repetitions of training experiments
is not significant, which can prove the improvement of remote sensing image dehazing for
ship object detection.

Table 5. Results of multiple repetition experiments of image dehazing.

Ps Mb Fb Tb Es Lc Dc Ws Os mAP/%

First 66.8 73.7 60.6 78.9 82.4 88.6 88.1 85.1 49.9 74.89
Second 67.7 73.2 60.0 77.7 84.3 88.8 87.9 83.7 48.0 74.60
Third 67.8 73.2 61.6 79.1 85.0 89.0 87.8 82.3 46.8 74.73

4.4. Discussions of Model Parameter Setting

To verify the effects of the parameters in PSA, CIM and image weights sampling
strategy on the detection accuracy, the following experiments were conducted.

4.4.1. The Setting of the Convolution Kernel Size of PSA

In PSA, the SPC module obtains a multiscale feature map by convolutions of four
different sizes. In this section, based on the S2A-Net network, which reaches mAP of 71.67%
in the remote sensing ship dataset, the sizes of the convolution kernels of the SPC module
are changed to (1, 3, 5, 7), (3, 5, 7, 9) and (5, 7, 9, 11), its effects on mAP can be seen in
Table 6, from which we can see that the model lost mAP by 1.51% when choosing (1, 3, 5, 7)
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as the kernel sizes of SPC module, this decrease may be attributed to the fact that small
convolution kernels have a limited receptive field, capturing information only from a local
pixel region, and they cannot gather information from pixels far away from the center pixel.
Additionally, small convolution kernels are highly sensitive to minor changes in local pixels,
which can cause the model to produce excessive responses to noise or small variations,
thereby reducing the robustness of contextual information. However, if choosing large
kernel sizes: (5, 7, 9, 11), the model showed a recognition decline in Motorboat (Mb), whose
ship targets are relatively small. When setting kernel sizes to (3, 5, 7, 9), S2A-Net + PSA
achieved the highest mAP, so (3, 5, 7, 9) were selected as the kernel sizes in improved
S2A-Net.

Table 6. Comparison experiment of kernel size setting in SPC module.

Ps Mb Fb Tb Es Lc Dc Ws Os mAP/%

(1, 3, 5, 7) 65.7 67.8 53.9 74.3 74.5 86.1 86.9 83.7 38.5 70.16
(5, 7, 9, 11) 67.9 65.8 57.0 74.1 76.9 86.6 87.2 84.4 42.8 71.41
(3, 5, 7, 9) 63.0 73.0 60.7 76.1 77.5 87.5 87.9 84.8 45.1 72.84

4.4.2. CIM Ablation Study

In CIM, the global context information is extracted by GC block and the local context
information is extracted using dilated convolution. On the basis of S2A-Net + PSA, Table 7
displays the ablation study of CIM structure. We can see that adding a GC block brings a
0.08% improvement in mAP, and adding dilated convolution of four different kernel sizes
improves mAP by 0.4%. When both adding GC block and dilated convolution, the mAP
of the improved model reaches 74.47%, which is 1.63% higher than the origin S2A-Net.
Experiment results verified the effectiveness of the GC block and dilated convolution for
mAP improvement.

Table 7. Ablation study of CIM structure. “
√

” refers to the method used in the improved model.

S2A-Net + PSA GC Block Dilated Convolution mAP/%
√

72.84√ √
72.92√ √
73.24√ √ √
74.47

4.4.3. The Calculation Form of ci in Image Weights Sampling Strategy

In Equation (9), the category weights ci are calculated considering two factors: the
number of targets and AP value, then the two factors are weighted and summed. In
this section, three different ci calculation forms are tried with the network structure: S2A-
Net+PSA+CIM+D4 network dehazing and the comparison experimental results are pre-
sented in Table 8, from which we can see whether the two sub-terms take the form of
multiplication or summation, both can bring improvement in mAP, which are 1.58% and
2.35%, respectively, and the summed form has a greater mAP improvement. Further, λ1
and λ2 were used to balance the two sub-terms after carefully adjusting the parameters; it
was determined that the model is optimally primed to realize its zenith detection accuracy
when λ1 = 0.4, λ2 = 0.6.
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Table 8. Comparison of experimental results for changing ci computational form.

Ps Mb Fb Tb Es Lc Dc Ws Os mAP/%

ci =
1

Ni
9
∑
i

1
Ni

(1− APi)
2 68.9 85.3 72.2 72.1 79.6 88.9 87.9 76.0 55.7 76.31

ci =
1

Ni
9
∑
i

1
Ni

+ (1− APi)
2 67.9 86.5 73.5 76.9 78.1 88.9 88.3 78.1 55.4 77.08

ci = 0.4
1

Ni
9
∑
i

1
Ni

+ 0.6(1− APi)
2 68.3 86.9 74.6 76.6 80.4 89.1 88.6 76.9 54.2 77.27

4.5. Detection Results and Comparisons

Figure 13 shows the comparison between the detection effect of the improved S2A-Net
and the original S2A-Net network. We can see that the original S2A-Net algorithm has
missed recognition in detecting both the first and second images, while the improved
S2A-Net algorithm successfully completed the detection; the original S2A-Net algorithm
has the problem of inaccurate localization in identifying the third image, and the improved
S2A-Net algorithm can better complete the object localization.
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Figure 14 shows the detection effect of the improved S2A-Net network. Results show
that it can perform well in various complex air and sea scenarios.

Several common deep learning models were selected to compare their performance
on remote sensing image ship datasets with improved S2A-Net, including generic object
detection methods: YOLOv5, Cascade R-CNN, FCOS [36], and ATSS [37] and current
oriented object detection methods: GWD [38], KLD [39] and Gliding Vertex [40], the
comparison results are shown in Table 9. We can see that among generic object detection
methods, YOLOv5 achieved the highest mAP as it performed well in all ship categories.
In oriented object detection methods, GWD and KLD because of their poor performance
on Passenger Ship (Ps), Motorboat (Mb) and Other Ship (Os), thus resulting in a low
overall recognition rate compared with Gliding Vertex. The improved S2A-Net network
has significantly surpassed the AP values on the difficult categories like Motorboat (Mb),
Fishing boat (Fb) and Other Ship (Os) compared to other networks, achieving a quite
excellent mAP value of 77.27%.
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Table 9. Cont.

Ps Mb Fb Tb Es Lc Dc Ws Os mAP/%

KLD 40.8 62.7 46.4 65.4 71.9 75.0 74.9 56.0 24.1 57.44
Gliding Vertex 69.7 74.2 53.5 74.1 78.5 75.6 75.5 51.0 44.0 66.25

Improved S2A-Net 68.3 86.9 74.6 76.6 80.4 89.1 88.6 76.9 54.2 77.27

5. Conclusions

In this paper, the current research background and related works on remote sens-
ing ship detection are analyzed in detail, a deep learning based oriented object detection
method S2A-Net is selected as baseline and then improved, in network structure, pyramid
squeeze attention is embedded to engender an elevation in feature extraction proficiency
and the neural network’s capacity for generalization, then adding context information
module to bestow the network with an enhanced capacity for contextual comprehension;
in training strategy, a convolutional neural network D4 based on fog density and depth
decomposition is used for remote sensing image dehazing, which improves the image
quality, besides, in training process, image weights sampling strategy is adopted to im-
prove the training opportunities of small samples and difficult categories, which serves
to alleviate the conundrum of imbalanced category distribution to a notable extent. Ex-
perimental results show that the mAP of the improved S2A-Net network is improved by
5.6% compared to baseline and outperforms other common deep learning object detection
algorithms. Accurate ship detection is beneficial to various application scenarios such as
the localization of dense ships in port, timely warning of suspicious ships, and maritime
traffic management, which are important for navigation safety at sea, ocean monitoring,
marine resource exploration.
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