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Abstract: Poverty is a social issue of global concern. Although socioeconomic indicators can easily
reflect poverty status, the coarse statistical scales and poor timeliness have limited their applications.
While spatial big data with reasonable timeliness, easy access, and wide coverage can overcome
such limitations, the integration of high-resolution nighttime light and spatial big data for assessing
relative poverty is still limited. More importantly, few studies have provided poverty assessment
results at a grid scale. Therefore, this study takes the Pearl River Delta, where there is a large disparity
between the rich and the poor, as an example. We integrated Luojia 1-01, points of interest, and
housing prices to construct a big data poverty index (BDPI). To evaluate the performance of the BDPI,
we compared this new index with the traditional multidimensional poverty index (MPI), which
builds upon socioeconomic indicators. The results show that the impoverished counties identified
by the BDPI are highly similar to those identified by the MPI. In addition, both the BDPI and MPI
gradually decrease from the center to the fringe of the study area. These two methods indicate
that impoverished counties were mainly distributed in ZhaoQing, JiangMen and HuiZhou Cities,
while there were also several impoverished parts in rapidly developing cities, such as CongHua and
HuaDu Counties in GuangZhou City. The difference between the two poverty assessment results
suggests that the MPI can effectively reveal the poverty status in old urban areas with convenient but
obsolete infrastructures, whereas the BDPI is suitable for emerging-development areas that are rapidly
developing but still lagging behind. Although BDPI and MPI share similar calculation procedures,
there are substantial differences in the meaning and suitability of the methodology. Therefore, in
areas lacking accurate socioeconomic statistics, the BDPI can effectively replace the MPI to achieve
timely and fine-scale poverty assessment. Our proposed method could provide a reliable reference
for formulating targeted poverty-alleviation policies.

Keywords: poverty assessment; spatial big data; nighttime light; remote sensing; targeted poverty
alleviation

1. Introduction

Poverty is a global social problem, and poverty eradication is the first of the 17 sustainable
development goals proposed by the United Nations [1–5]. The issue of poverty is particu-
larly prominent in China. Although all previous national-level impoverished counties in
China were lifted out of poverty in 2020, China is still facing a serious problem of relative
poverty and a huge disparity between the rich and the poor [6–9]. Unlike absolute poverty
(e.g., food poverty), relative poverty refers to individuals whose income can ensure food
supplies only and cannot meet other basic living needs [10–13]. Therefore, during the
relative poverty stage with multidimensional poverty as the main feature, it is of great
importance to conduct poverty assessments to ensure the effectiveness and sustainability
of targeted poverty alleviation.
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Traditional poverty assessments rely mainly on official statistics or field surveys [14–18].
Since such methods cannot comprehensively reflect poverty status, many studies have
gradually constructed different poverty assessment systems by considering various factors
(e.g., personal income and consumption level) [19–24]. These attempts include the human
poverty index, multidimensional poverty index (MPI), and multiple deprivation index
established by the United Nations Development Programme considering three dimensions
of health, education, and living standards. For example, Li et al. [25] used multidimensional
statistical data to analyze the poverty status at county scales in China from 2000 to 2010 and
revealed the spatial distribution characteristics of poverty over this period. Previous studies
have demonstrated the effectiveness of various poverty indices from the perspectives of
multidimensional poverty and relative poverty. Although the traditional statistical data at
the county level in China are complete and accessible, the coarse statistical scales and poor
timeliness have limited their applications. For example, the complete statistical data of 2023
will be available only one or two years later. In addition, there exist some inconsistencies
caused by the change in administrative units [26–31].

To overcome these limitations, remote sensing data have been increasingly used to
assess socioeconomic conditions and poverty status [32–40]. For example, Yong et al. [41]
combined DMSP-OLS and NPP-VIIRS data to assess poverty in Southwest China from 2000
to 2019. Liu et al. [42] used NPP-VIIRS data to identify relative poverty in the surrounding
areas of Beijing and Tianjin during the period of 2012–2020. Yu et al. [43] constructed the
average light index using NPP-VIIRS data and then analyzed the correlation between the
average light index and poverty status. Pan et al. [44] used nighttime light data to build
a multidimensional poverty model and verified the validity of the average light index
using linear regression. However, as mentioned above, poverty is reflected in not only the
economic dimension but also other aspects, such as health, education, and environment.
Since nighttime light data reflect only nighttime economic activities, it is difficult to com-
prehensively measure poverty based on nighttime light data alone [45–53]. For example,
Pokhriyal et al. [54] pointed out that it is necessary to integrate multidimensional data so
that poverty status can be reflected more accurately.

To this end, spatial big data have been gradually considered to overcome the limi-
tations of nighttime light data. In particular, a number of previous studies have shown
that POIs can effectively reflect socio-economic activities and urban vitality [51,55], while
housing price is also an important indicator of economic and residential conditions [56,57].
Therefore, it is feasible to combine these various different data sources for fine-scale poverty
estimation. For example, Ni et al. [58] indicated that combining nighttime lights with
daytime remote sensing data can improve the accuracy of poverty prediction. Shi et al. [59]
combined topography, vegetation index, points of interest (POIs), and nighttime light data
to identify poverty in Chongqing, China. Lin et al. [60] found that POI data can reflect
urban poverty to a certain extent, and thus, a combined use of POI and nighttime light
data can improve the accuracy of poverty assessment. Although spatial big data have
been increasingly used in poverty assessments, previous studies have relied greatly on the
coarse-resolution DMSP-OLS and NPP-VIIRS data, and most of them have focused on re-
gions with absolute poverty [61–66]. More importantly, few studies have provided poverty
assessment results at a grid scale. Therefore, it is still necessary to analyze the performance
of multisource spatial big data in assessing regions with relative poverty [67–71].

In fact, housing price is an important indicator for measuring the level of regional
economy and living conditions [56,57]. Housing expenditure varies greatly among different
income groups [72]. For example, Delang and Ho [73] analyzed the influence of public
housing policy on the phenomenon of poverty concentration and found that poor people
tend to concentrate in public housing areas that do not require much expenditure. Nev-
ertheless, traditional housing price data were usually collected based on official statistics,
censuses, and surveys, which cannot provide accurate fine-scale information [72,74]. For
example, Yi and Huang [75] stressed the lack of housing price data in China. In this regard,
online house price data can offer the possibility to measure poverty degrees at the micro
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scale [74,76]. Previous studies have also demonstrated that advanced machine learning
techniques can be used to estimate fine-scale housing prices based on proxy variables in
regions where offline housing transaction data are not available [76,77]. Therefore, this
research employed online housing price data as one of the poverty indicators, which can
compensate for the deficiency of nighttime light data and measure relative poverty more
comprehensively.

In summary, this study aims to apply multisource spatial big data to relative poverty
assessment. A big data poverty index (BDPI) was constructed by integrating high-resolution
Luojia 1-01 data, housing prices, and POIs. In addition, we also constructed the traditional
MPI by selecting 17 indicators from six dimensions (human capital, natural capital, financial
capital, physical capital, social capital, and environmental vulnerability) according to the
vulnerability–sustainable livelihood analysis framework established by the Department
for International Development (DFID). We compared the poverty assessment results of
the BDPI and MPI to analyze the performance of these two methods. We took the Pearl
River Delta in China, where the disparity between the rich and the poor is huge, as a case
study area. The conclusions could provide support for local governments to formulate
poverty-alleviation policies and implement development plans for underdeveloped areas.

2. Case Study and Data
2.1. Study Area

In this study, county-level administrative districts were regarded as the research unit.
For clarity, we referred to all county-level administrative districts as “counties” in this
manuscript. The study area includes 50 counties in the nine cities of the Pearl River Delta, of
which Dongguan and Zhongshan were special cities with no counties (Figure 1). Located on
the southern coast of China, the Pearl River Delta is one of the most populated areas in the
Asia-Pacific region [78]. As an economically developed area, the Pearl River Delta generates
85% of Guangdong Province’s GDP and accounts for 70% of this province’s population.
However, some counties in the Pearl River Delta have witnessed different degrees of
relative poverty. Since it is extremely important to accurately identify relative poverty
within developed regions, taking the Pearl River Delta as a case study is of universal
significance [79–81].
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2.2. Data

This study adopted data that are easy to obtain and have reasonable timeliness, in-
cluding: (1) high-resolution LuoJia 1-01 nighttime light data (with a spatial resolution of
130 m) in 2018 from Wuhan University (http://www.hbeos.org.cn/, accessed on 6 May
2023) [82–84]. This high-quality dataset has been pre-processed by constructing the geomet-
ric processing model of the whole link network for image-to-ground target positioning, and
has been geo-referenced based on the ground control points participating in the processing
of regional network adjustment. Therefore, the original spatial positioning errors have
been adequately corrected. Lastly, the background noise for LuoJia 1-01 nighttime light
data was removed by using the same period of NPP/VIIRS image as the mask data; (2) POI
data in 2018 from AutoNavi Map (https://www.amap.com/, accessed on 6 May 2023),
including corporates, scenic spots, scientific, educational and cultural services, transporta-
tion facilities, living facilities, and sports and leisure services. The attributes of the POIs
include the specific geographic location information and detailed information on service
facilities; (3) housing price data in 2021 and 2022 from Anjuke (https://www.anjuke.com/,
accessed on 6 May 2023) and Loupan (https://www.loupan.com/, accessed on 6 May
2023), two of the most influential real estate platforms in China. All the housing price
data were captured through the web crawler, and each data record includes name, area,
price, address, and coordinate. A total of 64,750 valid records were obtained; (4) data
on social, economic, population and other basic indicators from the 2019 County-level
Statistical Yearbook and the Seventh Population Census in China, including population
aged 0–14 years and over 65 years old, rural population, ethnic minority population, pro-
portion of population with primary education, proportion of population with secondary
education, proportion of population with college or higher education, illiterate popula-
tion over 15 years old, average years of education completed, number of professional
technicians, number of people engaged in agriculture, forestry, animal husbandry and
fishery, number of tertiary sectors, income in local government budget, and proportion
of jobholders; (5) digital elevation model (DEM) (with a spatial resolution of 30 m) and
precipitation data (with a spatial resolution of 1 km) in 2018 from the China Earth System
Science Data Center (http://www.geodata.cn/, accessed on 6 May 2023); and (6) road
network data in 2018 from OpenStreetMap (https://download.geofabrik.de/, accessed on
6 May 2023), including main roads and other roads.

It should be noted that there is only one high-quality pre-processed dataset of LuoJia
1-01 nighttime light remote sensing image, from the year 2018. To reduce the negative
influence caused by the inconsistent data year, we collected data from the same year as
much as possible. However, the housing price platforms only provide the data of the latest
year; thus, we cannot obtain the housing price data of the study area in 2018. At the same
time, the most recent population census data of China come from the seventh population
census. Therefore, we have to adopt the house price data of 2021–2022 as well as the census
data of 2019.

2.2.1. LuoJia 1-01

The radiance of LuoJia 1-01 nighttime light data was converted using the following
formula given on the official website [85–88]:

L = DN
3
2 ·10−5 (1)

where L is the corrected radiance (W/
(
m2·sr·µm

)
), and DN is the original digital number

value of the data. The mean, maximum, standard deviation, sum, and Moran’s I Index
of the converted nighttime light data for each county were regarded as the nighttime
light-related indicators (Table 1).

http://www.hbeos.org.cn/
https://www.amap.com/
https://www.anjuke.com/
https://www.loupan.com/
http://www.geodata.cn/
https://download.geofabrik.de/
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Table 1. Indicators for measuring nighttime light data.

Indicator Explanation

Average value L/G, L means the total values of all land use grids, G means the
number of grids

Average light index L/G0, G0 means the number of land use grids in lighting parts

Standard deviation

√
∑G

i=1(xi−x)2

G−1 , xi means the value for the ith grid, x means the average

score for every grid

Maximum value Maximum value for every land use grid

Moran’s I Index Relationship between pixel light values for each county, which
represents spatial correlation

2.2.2. POI

POI can effectively reflect socio-economic activities and urban vitality. The POI data
were preprocessed to eliminate incomplete and inconsistent data. Then, we calculated the
POI densities of various categories for each county.

2.2.3. Housing Price

Housing prices can comprehensively reflect the built environment, such as housing
conditions, public facility configurations, traffic conditions, as well as the economic condi-
tions of residents [89,90]. While online housing price data are available at the community
level, traditional statistical data are usually available at the county level. In order to com-
pare the performance of the MPI and BDPI, it is necessary to rescale the housing price data
to the county level. Therefore, we collected housing price data and then calculated the
average housing price in each county.

3. Method

As shown in Figure 2, this study includes five major steps: (1) dimensionless processing
of all data; (2) reducing the dimensionality of 11 indicators related to nighttime light data,
housing prices, and POIs by principal component analysis (PCA) to obtain the BDPI scores;
(3) reducing the dimensionality of 17 indicators related to socioeconomic statistics by factor
analysis to obtain the MPI scores; (4) comparing the spatial characteristics of these two
poverty assessment results; (5) using random forest to estimate grid-scale housing price
data according to road network and POI; (6) constructing grid-scale BDPI by combining
grid-scale house price data, POI, and nighttime light; and (7) using the BDPI to measure
grid-scale poverty conditions in the study area.

3.1. Big Data Poverty Index (BDPI)

This study integrated three types of indicators (nighttime light, housing price, POI)
to construct the BDPI. First, the dimensionality of the original data was reduced by using
PCA to eliminate duplicate information. Second, the dimensionally reduced data were
assessed by using Kaiser–Meyer–Olkin (KMO) and Bartlett’s sphericity tests. A KMO score
greater than 0.6 indicates a good performance of PCA (Table 2). Finally, the weight of each
principal component was assigned based on the ratio of the variance contribution rate to
the cumulative contribution rate of the principal component. Note that the sum of the
variance contribution rates of all principal components is 100%. The formula for calculating
the BDPI is given as follows:

BDPIi = ∑n
k=1(αk × αik) (2)

where αik is the score of indicator k for the i-th county; and αk is the variance contribution
rate of indicator k. A lower value of BDPI suggests a higher degree of poverty.
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Table 2. KMO and Bartlett’s test for the BDPI.

KMO 0.635

Bartlett’s test
Degree of freedom 55

Significance 0.000

PCA was performed on multisource spatial data to generate the BDPI. The indicators
with a factor loading greater than 0.6 were extracted as the main contribution indicators
of the principal component. The results show that the first three principal components
should be preserved, as they can explain approximately 79.96% of the original information
(Table 3).

Table 3. BDPI indicators, principal factor eigenvalues, explanatory contribution, and load matrix.

Category Indicator
Principal Component

First Second Third

Nighttime light

Mean 0.952
Maximum 0.639

Standard Deviation 0.847
Sum 0.890

Moran’s I Index −0.603

POI

Corporates
Scenic spots 0.875

Scientific, educational and
cultural services 0.689

Transportation facilities 0.938
Living and leisure services 0.930

Housing price Average housing price −0.836
Eigenvalue of the principal component 5.690 1.812 1.294

Contribution rate of the principal component (%) 51.729 16.473 11.763
Cumulative contribution rate of the principal components (%) 51.729 68.202 79.964
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3.2. Multidimensional Poverty Index (MPI)

Based on the vulnerability-sustainable livelihood analysis framework and data avail-
ability, we adopted 17 indicators from 6 dimensions (human capital, natural capital, fi-
nancial capital, physical capital, social capital, and environmental vulnerability). The
dimensionality of the data was reduced by factor analysis, and the dimensionally reduced
data were assessed by KMO and Bartlett’s tests. A KMO value greater than 0.6 indicates a
good performance of the factor analysis (Table 4).

Table 4. KMO and Bartlett’s tests for the MPI.

KMO 0.794

Bartlett’s test
Degree of freedom 136

Significance 0.000

The weight of each principal component was assigned based on the ratio of the
variance contribution rate to the cumulative contribution rate of the component, and the
sum of the variance contribution rates of all principal components is 100%. Finally, the MPI
value of each county was calculated as follows:

Fi = ∑j WjYij (3)

where Fi is the MPI value of the i-th county, reflecting its poverty degree; Wj is the weight
of the j-th common factor, which can be represented by the variance contribution rate of
each common factor; and Yij is the single-item score of the j-th common factor in the i-th
county, which can be calculated from the factor score coefficient matrix and the observed
value of the variable. A lower value of MPI indicates a higher degree of poverty.

Factor analysis was performed on traditional statistical data to generate MPI (Table 5).
The indicators with a factor loading greater than 0.9 were extracted as the main contribution
indicators of each principal component. The maximum variance method was used to obtain
the rotated component matrix. The cumulative explained variance after rotation reaches
89.51%, which indicates that the information of the original data can be well preserved.

Table 5. MPI indicators, principal factor eigenvalues, explanatory contribution, and load matrix.

Indicator
Principal Component

First Second Third Fourth Fifth

Population aged 0–14 years and over
65 years old 0.917

Rural population 0.894

Ethnic minority population −0.595

Proportion of population with
primary education −0.861

Proportion of population with
secondary education −0.908

Proportion of population with college or
higher education 0.800

Illiterate population over 15 years old 0.829

Average years of education completed 0.737

Number of professional technicians 0.764

Number of people engaged in
agriculture, forestry, animal husbandry

and fishery
0.914
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Table 5. Cont.

Indicator
Principal Component

First Second Third Fourth Fifth

Number of tertiary sectors 0.873

Income in local government budget 0.807

Proportion of jobholders 0.587

Average elevation 0.948

Average topographic relief 0.926

Proportion of areas with slopes greater
than 15◦ 0.901

Average precipitation 0.954

Eigenvalue of the principal component 7.905 2.852 2.283 1.199 0.978

Rotated variance contribution rate of the
principal component (%) 33.996 25.051 16.420 7.075 6.965

Cumulative variance contribution rate of
the principal component (%) 33.996 59.047 75.466 82.541 89.506

3.3. Housing Price Estimation Based on Machine Learning

Since the valid housing price data did not completely cover the study area, we need to
estimate the missing data based on advanced machine learning methods [91,92]. Random
forest (RF) is one of the most effective and efficient machine learning methods and has been
commonly used in various research fields [93,94]. Compared with other machine learning
methods, RF can effectively handle high-dimensional data and missing values [95,96]. RF
regression is an algorithm based on ensemble learning that completes the regression task
by building multiple decision trees and integrating their prediction results.

In RF, each decision tree is trained independently using randomly selected subsamples,
which effectively reduces the risk of overfitting. For each node of the decision tree, only
part of the features is considered when selecting the best partition features to improve the
robustness of the model. RF offers the final regression result by averaging the prediction
results of multiple decision trees. In this study, the housing price estimation model was con-
structed based on RF by taking points of interest, road networks as independent variables
and housing price data as dependent variable, according to previous findings [74,76,77].

Specifically, the distance to subway stations, distance to bus stops, distance to main
roads, distance to ordinary roads, distance to medical facilities, distance to living facilities,
and distance to school were used as independent variables, and the existing house price
data were used as dependent variable. Then, the model trained by the RF was further used
to estimate the unknown housing price data at the grid scale. Finally, the housing price
data covering all the grids of the study area were obtained, and thus the grid-scale BDPI
can be further constructed.

4. Results
4.1. BDPI Results

Figure 3 presents the results of the first, second, and third principal components
and the associated BDPI. These three principal components can reveal the poverty status
from different dimensions. Although the main components from the PCA may only have
statistical meaning, researchers can interpret the substantive meaning of every principal
component based on specialized knowledge [97]. Specifically, since the first component
includes five high loading factors: mean, standard deviation, scenic spots, transportation
facilities, and living and leisure services, it primarily represents the relative poverty caused
by the lack of social capital. In addition, the second component exhibits high loadings
on sum, which primarily indicates the relative poverty caused by the lack of economic
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capital. Similarly, the third component primarily reflects the relative poverty caused by the
living environment.

Social capital (Figure 3a) can reflect the basic resources (e.g., transportation, education,
and medical conditions) within the study area and is a key indicator of poverty status. We
found that YueXiu County of GuangZhou City and FuTian County of ShenZhen City had
higher social capital scores and belonged to highly urbanized areas. The counties with
moderate to high social capital scores were clustered in ShenZhen City and the junction
of GuangZhou and FoShan Cities. By comparison, the counties located on the fringe of
the Pearl River Delta generally suffer a shortage of social capital, and most of them are in
ZhaoQing, JiangMen and HuiZhou Cities.

Economic capital can reflect the degree of economic development within the study
area. Figure 3b indicates that the central and eastern regions of the Pearl River Delta
had higher economic capital scores, forming agglomeration centers with high economic
potential. Most of the counties outside agglomeration centers had lower economic capital
scores and relatively low degrees of economic development.

For the dimension of the living environment (Figure 3c), most counties had moderate
to high scores, which suggests that the overall living environment in the Pearl River Delta is
desirable. However, there still exist some counties with a relatively poor living environment,
such as HuiCheng County of HuiZhou City and DeQing County of ZhaoQing City.
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Overall, the BDPI score generally gradually decreases from the center to the fringe
of the study area, exhibiting an obvious spatial agglomeration pattern. The regions in the
western Pearl River Delta were relatively poor since the counties with higher degrees of
poverty were distributed mainly in ZhaoQing, JiangMen, and HuiZhou Cities. Neverthe-
less, rapidly growing cities also contain some impoverished counties, such as the CongHua
and ZengCheng Counties of GuangZhou City.

4.2. MPI Results

In general, the MPI score in the Pearl River Delta also gradually decreases from the
center to the fringe, and the further away from the center, the higher the poverty level
(Figure 4). Relatively impoverished counties were mainly distributed in ZhaoQing, Jiang-
Men, and HuiZhou Cities. By comparison, most well-developed counties were distributed
in GuangZhou, ShenZhen, and ZhuHai Cities, all of which belong to the pilot zones of the
Pearl River Delta.
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4.3. Comparison of Two Poverty Assessment Results

The results of the MPI and BDPI were further compared to evaluate the rationality
of the BDPI. Due to differences in the principles and calculation processes of these two
methods, analyzing the ranking of the index scores (i.e., ranking according to the index
score, and a lower ranking means a more severe poverty status) is more in line with
the definition of relative poverty. Therefore, we quantified the consistency of these two
results using the Wilcoxon signed-rank test and presented the visualization of the z-score
in Figure 5. The significance level of the test is 0.898 (greater than 0.05), which indicates
that there is no significant difference in the score ranking of the two poverty assessment
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results. According to Figure 5, we also found that these two results show similar overall
trends. In summary, the above validation has indicated a strong agreement between the
poverty assessment results from the BDPI and MPI.
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Figure 5. Z-scores of the results from BDPI and MPI.

In addition, the top 20% and top 30% impoverished counties in these two results
share coincidence degrees of 70% and 87%, respectively, which also demonstrates that the
impoverished counties identified by the two methods are similar (Table 6). Nevertheless,
we noticed that the impoverished counties identified by the MPI are concentrated in
the fringe areas of the Pearl River Delta, while the BDPI can identify underdeveloped
counties in some cities with rapid economic development, such as Guangzhou and Foshan.
The difference between these two poverty assessment results suggests that the MPI can
effectively reveal poverty status in old urban areas with convenient infrastructure but
lagging behind, whereas the BDPI is suitable for emerging-development areas that are
rapidly developing but still lagging behind.

Table 6. Consistency and difference between the results from BDPI and MPI.

Top N% City
Number of Impoverished County

BDPI MPI

Top 20%

Guangzhou 1 0
Dongguan 0 0
Zhongshan 0 0

Foshan 1 0
Huizhou 1 3
Jiangmen 1 0
Shenzhen 0 0

Zhuhai 1 1
ZhaoQing 5 6

Top 30%

Guangzhou 1 1
Dongguan 0 0
Zhongshan 0 0

Foshan 1 0
Huizhou 1 3
Jiangmen 4 3
Shenzhen 0 0

Zhuhai 2 1
Zhaoqing 6 7
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The proposed BDPI and traditional MPI have different applicabilities for identifying
different types of impoverished counties. To reveal the differences between the two poverty
assessment results, the MPI ranking of every county was subtracted from its BDPI ranking.
The BDPI poverty degree of a county is more severe than its MPI poverty degree if the
ranking difference of the county is positive. In contrast, the MPI poverty degree of the
county is more severe than its BDPI poverty degree if the ranking difference of this county
is negative. The result in Figure 6 shows that the counties with positive ranking differences
were mainly located in FoShan, ZhongShan, DongGuan, and HuiZhou Cities, whereas the
counties with negative ranking differences were generally located in ZhuHai, JiangMen,
GuangZhou, and ShenZhen Cities.
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Among the counties with positive ranking differences, DingHu County, DongGuan
City, and ZhongShan City had relatively larger differences. After the implementation of
reform and opening-up policies, these areas rapidly promoted industries and handicrafts,
and the supporting facilities gradually improved. They have considerable economic capital
and can easily attract a large number of migrant workers. However, these areas contain a
large number of urban villages with poor living spaces and low densities of basic living
facilities. Therefore, the BDPI poverty degrees of these areas were more severe than the
corresponding MPI poverty degrees.

Among the counties with negative ranking differences, JinWan County, GaoMing
County, and YanTian County had relatively larger differences. Most of these areas were
emerging-development zones with relatively complete basic living facilities, desirable
living environments, and convenient transportation systems. However, they were still
economically underdeveloped compared with the developed urban districts. Therefore,
the MPI poverty degrees of these counties were more severe than the corresponding BDPI
poverty degrees.
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4.4. Grid-Scale BDPI-Based Poverty Assessment

The above comparisons have demonstrated that the proposed BDPI is feasible and
effective for poverty assessment. Therefore, this study further estimated the poverty
conditions at the grid scale by taking Guangzhou and Foshan as examples. These regions
were divided by a grid of 500 m × 500 m. All the independent variables and the resultant
grid-scale housing price data are shown in Figures 7 and 8, respectively. The training
and testing accuracies of the RF model reached 0.9590 and 0.9035, respectively. This
phenomenon has indicated that the RF model can effectively estimate missing housing
price data at the grid scale.
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Finally, the grid-scale BDPI-based poverty assessment result is displayed in Figure 9.
This result was classified into five levels, and a lower level indicates a more impoverished
region. It is found that the center parts are well developed. With the increase in distance
from the urban center, an increasing number of counties are lagging behind to varying
degrees, especially CongHua, ZengCheng, SanShui, and GaoMing Counties. For example,
the southern part of the boundaries between BaiYun, LiWan, YueXiu, and TianHe Counties
are in a better development condition with higher BDPI levels. By comparison, most of the
eastern part of BaiYun County and NanHai and ShunDe Counties are relatively lagging
behind. We also noticed that level 1 regions also exist around the regions with higher BDPI
levels, such as the central and eastern parts of ShunDe County. In summary, the application
of the BDPI can effectively identify relative poverty at a finer scale.
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5. Discussion and Conclusions
5.1. Advantages and Disadvantages of the BDPI

The above analysis shows that compared with the MPI, the BDPI proposed by this
study has three major advantages. First, the BDPI was constructed by integrating multi-
source spatial big data, including high-resolution Luojia 1-01 nighttime light, housing price,
and POI data. Our experiments have suggested that the proposed BDPI can identify areas
that are relatively lagging behind in emerging-development cities. Second, the BDPI can
reduce the cost of poverty assessment and enhance the timeliness of results due to the use of
easily accessible, low-cost, and rapidly updated data. Third, the BDPI can effectively reflect
social, economic, living environment, and other conditions. Therefore, it provides a new
approach to poverty assessment for developing countries lacking accurate socioeconomic
statistics.

It should also be noted that the people in some less developed counties are more
inclined to complete housing transactions offline, and these data cannot be acquired online.
Fortunately, the difference between online and offline data is not significant in many regions.
In addition, as mentioned above, previous studies have demonstrated that advanced
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machine learning techniques can be used to estimate fine-scale housing prices based
on proxy variables in regions where offline data are not available. Although there are
uncertainties and limitations in data preparation, BDPI still has distinct advantages in
fine-scale poverty assessment. Compared with MPI, which relies on dated indicators and
periodic data collection, BDPI can capture changes in poverty status instantly and provide
more timely support for policy making. In addition, the use of spatial data can reflect
regional differences at a grid scale.

Notwithstanding these advantages, the BDPI still has the following disadvantages.
First, online housing price data may not be available in some underdeveloped areas. In that
case, advanced machine learning techniques and offline data, such as local government
statistics and survey data, should be used to supplement the BDPI’s data sources. Second,
the indicators used to construct the BDPI also have some limitations. Poverty is a multidi-
mensional phenomenon involving not only social, economic, and natural aspects but also
humanities, policies, and other factors. Therefore, although the BDPI can be used as an
indirect indicator, the associated assessment results may overestimate or underestimate
the actual poverty status, and the BDPI needs to be further enhanced. Third, it is difficult
for the BDPI to assess the poverty status from a long time ago due to the unavailability of
historical data. The inconsistency of data years may affect the poverty assessment results
to some degree. In future research, we will adopt long-term time-series data for poverty
assessment to further test the applicability of the BDPI. Fourth, we will consider more
spatial big data and higher-resolution nighttime light data, compare the poverty assessment
results of the Pearl River Delta with other regions, and analyze the differences in poverty
issues in those regions.

5.2. Policy Recommendations

In this research, the internal development of a city is unbalanced if this city contains
both counties with positive ranking differences and counties with negative ranking dif-
ferences, such as DingHu County and DuanZhou County in ZhaoQing City. DingHu
County has an average living environment and a relatively remote location, but as a new
developing zone of ZhaoQing City, this county has desirable social and economic resources.
As the central urban area of ZhaoQing City, DuanZhou County has a satisfactory living
environment and relatively complete supporting facilities. However, there is basically
no more space for urban expansion since the amount of land available for development
is decreasing gradually. Therefore, the urban development costs are relatively higher in
DuanZhou County.

Overall, the poverty assessment results obtained in this study can offer the following
policy recommendations for poverty alleviation. The huge disparity between the rich and
the poor in the Pearl River Delta shows that poverty-alleviation operations require not only
raising social income but also reducing inequality in regional development. For areas with
a shortage of social resources, it is necessary to improve the diversity of their resources, for
example, enhancing infrastructures such as those for medical care, public transportation,
and education, to improve urban vitality. For the fringe areas of the Pearl River Delta,
which are greatly affected by natural conditions, the development strategy should be
carefully designed according to local characteristics. In relatively underdeveloped areas of
rapidly developing cities, the government needs to offer more support, carry out detailed
strategic planning, and allocate more socioeconomic resources to areas with unbalanced
development to reduce the disparity between the rich and the poor. In addition, the
government should further upgrade the poverty assessment method in the context of big
data and improve the accuracies and pertinence of the assessment results. Taking the Pearl
River Delta region as an example, this study has demonstrated that the proposed BDPI
could provide technical support for poverty assessment in many other regions.
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5.3. Main Conclusions

The significance and novelty of this research are twofold. Firstly, high-resolution
nighttime light and spatial big data have been integrated to construct the novel big data
poverty index (BDPI) for relative poverty assessment. Secondly, a poverty assessment has
been conducted in the regions with relative poverty at a grid scale after the validation of
the BDPI. Both the traditional MPI and BDPI were used to assess the poverty status of the
Pearl River Delta, where there is a considerable disparity between the rich and the poor.
We analyzed the differences in the poverty assessment results obtained by the two methods.
These two methods generated similar assessment results, which verify the effectiveness of
the BDPI. Overall, the results of the two poverty assessment methods show that the poverty
index gradually decreases from the center to the fringe of the study area. The counties in
the western Pearl River Delta were relatively impoverished, and even fast-growing cities
also contained some impoverished counties.

The statistical-based MPI is more suitable for old urban areas with convenient but
obsolete infrastructures, while the BDPI is more suitable for emerging-development areas
that are rapidly developing but still lagging behind. Therefore, combining these two types
of indices for poverty assessment can yield optimal results if the data are well-prepared.
The BDPI can also successfully replace the traditional MPI if the statistical data are not
updated in time. The BDPI proposed by this study can effectively assess regional poverty
status and provide a new method of poverty assessment for developing countries lacking
accurate socioeconomic statistics. The results of this study could help local governments
to fully understand the multidimensional characteristics of poverty and could provide
decision support for formulating targeted poverty-alleviation policies.
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