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Abstract: Recently, considerable efforts have been devoted to the estimation of soil properties using
optical payloads mounted on drones or satellites. Nevertheless, many studies focus on diverse
pretreatments and modeling techniques, while there continues to be a conspicuous absence of
research examining the impact of parameters related to optical remote sensing payloads on predictive
performance. The main aim of this study is to evaluate how the spectral resolution and signal-to-
noise ratio (SNR) of spectrometers affect the precision of predictions for soil organic matter (SOM)
content. For this purpose, the initial soil spectral library was partitioned into to two simulated soil
spectral libraries, each of which were individually adjusted with respect to the spectral resolutions
and SNR levels. To verify the consistency and generality of our results, we employed four multiple
regression models to develop multivariate calibration models. Subsequently, in order to determine the
minimum spectral resolution and SNR level without significantly affecting the prediction accuracy, we
conducted ANOVA tests on the RMSE and R2 obtained from the independent validation dataset. Our
results revealed that (i) the factors significantly affecting SOM prediction performance, in descending
order of magnitude, were the SNR levels > spectral resolutions > estimation models, (ii) no substantial
difference existed in predictive performance when the spectral resolution fell within 100 nm, and
(iii) when the SNR levels exceeded 15%, altering them did not notably affect the SOM predictive
performance. This study is expected to provide valuable insights for the design of future optical
remote sensing payloads aimed at monitoring large-scale SOM dynamics.

Keywords: soil organic matter; optical remote sensing; spectrometers; multiple regression model;
spectral resolution; signal-to-noise ratio; analysis of variance

1. Introduction

Soil forms the foundation of the agricultural ecological system. Soil organic matter
(SOM) comprises a complex mixture of organic materials derived from plants and animals
in different stages of decomposition. It exerts a profound influence on soil nutrients, plant
development, human well-being, and the climate [1]. A decrease in SOM significantly
influences soil structural stability, water retention, infiltration capacity, nutrient holding,
soil biodiversity, fertility, and ultimately, ecological and agroecological productivity. Pre-
cisely assessing the SOM holds immense importance for food production, carbon cycling,
and climate regulation [2]. Conventional methods for estimating the SOM traditionally
rely on labor-intensive field soil sampling and subsequent laboratory analysis. These ap-
proaches are expensive, time-consuming, destructive, and have limited spatial coverage.
In contrast, spectroscopy technology offers distinct advantages, including high efficiency,
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speed, non-destructive detection, and ease of use. Over the past few years, with the rapid
development of spectral sensing technology, numerous researchers have been utilizing
visible and near-infrared (Vis–NIR) spectroscopy technology to estimate SOM content [3,4].
Furthermore, spectral sensors can be mounted on unmanned aerial vehicles and satellites
to achieve the purpose of real-time monitoring of the dynamic change in the SOM in a large
area [5–8]. Consequently, the utilization of spectroscopic techniques for SOM content deter-
mination holds significant importance in achieving precision agriculture and in advancing
agricultural modernization.

The spectral profile of soil results from the combination of various soil constituents,
which is characterized by its nonspecific, faint, and broad nature due to the overlap of
absorption bands and the low concentrations of soil components. Therefore, multivariate
calibration techniques are usually used to build the relation between the SOM content and
soil diffuse reflectance spectra [9]. Common multivariate linear regression models include
multiple linear regression, ridge regression (RR), principal component regression (PCR),
partial least squares regression (PLSR), and so on [8,10–12]. Linear regression models pro-
vide more interpretability. To be specific, RR, PCR, and PLSR are insensitive to collinearity
due to their mathematical principles. Moreover, the relationship between the dependent
variable (SOM content) and the spectral data may not be purely linear due to the complex
composition of soil properties. Machine learning methods, such as support vector machine
regression, (SVMR), the back propagation neural network (BPNN), the cubist regression
tree, random forests, and others, can be employed to address nonlinear problems [8,13,14].
The inherent structures of these methods makes it challenging for them to uncover the
functional relationship between Vis–NIR spectra and the SOM. Numerous studies have
utilized various multiple regression models to predict the SOM. However, there is no
consensus on which multiple regression model yields optimal prediction performance due
to variations in soil categories and measurement environments. Therefore, to validate the
consistency and generality of our findings, four regression techniques (RR, PLSR, SVMR,
and BPNN) were used in this study to demonstrate the effects of variations in two core
parameters (spectral resolution and signal-to-noise ratio (SNR) levels) of the spectrometer
on the estimation of SOM.

Different spectral treatments and modeling approaches can affect prediction accu-
racy [15,16]. Nevertheless, prediction accuracy is also contingent on the parameters of
Vis–NIR spectrometers. In general, a sensor with more spectral bands, higher spectral
resolution, and a SNR tends to produce more accurate data, albeit with potential data re-
dundancy. It is a well-known fact that hyperspectral data exhibit autocorrelation, meaning
that many wavelengths convey the same information about land cover properties. Can an
abundance of wavelengths, high spectral resolutions, and elevated SNR levels significantly
enhance SOM prediction accuracy? Or, how should we select spectral resolution and
the SNR to efficiently estimate the SOM? Currently, there is limited research analyzing
the influence of spectrometer core parameters on soil property estimation. Castaldi et al.
reported that introducing noise into the simulated spectra resulted in a decrease in the
prediction accuracy of the model. They also found that a spectral resolution of 40 nm could
yield soil texture estimation accuracy that was quite comparable to what sensors with
higher spectral resolutions achieved [17]. Knadel et al. conducted a comparative analysis
of the prediction performance using three Vis–NIR spectrometers that differed in spectral
resolutions, SNRs, and spectral bands. Their findings indicated that the spectral range had
the most significant impact on the prediction performance. Moreover, they emphasized that
when considering the trade-off between the spectral resolution and SNR, a high SNR played
a more crucial role [18]. Gomez et al. established ten spectral configurations featuring
various spectral resolutions. Their findings revealed that the spectral configurations within
the spectral resolution range of 5 to 100 nm delivered comparable and effective predictive
performance for clay estimation [19]. Jia transformed airborne hyperspectral images into
degraded hyperspectral libraries with different spectral resolutions, spatial resolutions,
and SNR levels. They subsequently assessed the classification accuracy of these degraded
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hyperspectral datasets for crop identification. The findings indicated that the accuracy
declined as the SNR levels decreased. Regarding spectral resolution, the accuracy exhibited
an initial increase, followed by stabilization and ultimately a decline [20]. This study
builds upon prior research and determines the ideal instrument parameters for accurate
SOM estimation.

The purpose of this work is to investigate how the spectral resolution and SNR
impact the accuracy of SOM estimation. We created two spectral libraries with varying
spectral resolutions and SNR levels using the initial spectral library. This allowed us to
individually manipulate the spectral resolution and SNR level. To ensure the consistency
and generalizability of our findings, we employed four regression models (RR, PLSR,
SVMR, and BPNN) with spectral data featuring different spectral resolutions and SNR
levels as input variables. We utilized the analysis of variance (ANOVA) technique to further
explore which factors significantly influenced the SOM predictive performance, and we
identified the lowest spectral resolution and SNR level that did not significantly affect the
prediction accuracy.

2. Materials and Methods
2.1. Study Area and Soil Data Collection

The study was carried out in Qiqihar, Heilongjiang Province, Northeast China, which
extends from 109◦26′15.86′ ′ to 126◦45′22.44′ ′ E and from 47◦24′31.40′ ′ to 48◦14′25.33′ ′ N
(Figure 1). The study area has a typical temperate continental monsoon climate with four
distinct seasons. Generally, the temperature varies between −24 ◦C and 27 ◦C and rarely
goes below −29 ◦C or above 32 ◦C during a year. The annual average rainfall varies
from 400 to 550 mm. The soil type in the study area is mainly black soil, which has the
characteristics of high heat, good permeability, light texture, and high soil organic carbon
content [21]. Corn, soybeans, and rice are presently the predominant crops grown in
this region
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Figure 1. Location of the study in China.

In October 2016, we randomly gathered 112 soil samples from the surface layers
(0–15 cm). In the field, we removed the surface litter, collected the soil samples, and sealed
them in plastic bags. Each sampling location was recorded using a portable GPS. Back in
the laboratory, we allowed the soil samples to air-dry naturally, gently ground them, and
sifted them through a 1 mm sieve to obtain the fine earth fraction, eliminating small stones,
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coarse roots, and fallen leaves. Subsequently, we conducted spectral analysis and chemical
determinations on the processed soil samples in the laboratory.

2.2. Analysis of SOM Content and Spectra Measurement

A conversion coefficient of 1.724 was applied to convert the soil organic carbon (SOC)
to SOM using the formula SOM (g kg−1) = 1.724 × SOC (g kg−1). In our study, SOC
was measured by the potassium dichromate oxidation–outer heating method. Vis–NIR
diffuse reflectance spectra of soil samples were measured in a dark room using an ASD
FieldSpec3 (Analytical Spectral Devices, Boulder, CO, USA) with a spectrum range of 350
to 2500 nm. For the spectral range of 350 to 1000 nm, the spectral sampling interval of the
ASD spectroradiometer is 1.4 nm, thus providing a spectral resolution of 3 nm. In the range
of 1000 to 2500 nm, the spectral sampling interval is 2 nm, with a spectral resolution of
10 nm. The reflectance data available to users were resampled with ViewSpecPro (version
6.0.0, ASD, Boulder, CO, USA) across both spectral ranges, thus resulting in 2151 spectral
bands. We used a 50 W halogen lamp with a 30◦ incident angle as a light source, located
at a distance of 10 cm from the soil samples. An optical probe with a field of view (FOV)
of 1◦ was vertically placed 5 cm from the center of the soil sample’s surface. Reflectance
was calibrated using a normalized white panel before the readings commenced and every
30 min thereafter. To reduce noise, we conducted ten measurements for each soil sample
and then averaged them to obtain the spectra. Splicing correction in the ViewSpecPro
software was applied to resolve the breakpoints near 1000 nm and 1800 nm. The spectral
regions of 350–450 nm and 2401–2500 nm were omitted due to significant instrumental
artifacts at the edges of the spectrum, thus resulting in a total of 1951 spectral bands.

2.3. Creation of Simulated Spectral Libraries

To investigate the effect of two core parameters, namely, spectral resolution and
SNR, of spectrometers on the SOM prediction performance, we transformed the initial
soil spectral library (comprising soil spectra measured by an ASD spectrometer) to create
two simulated spectral libraries. The first library, referred to as the spectral configuration
library, consists of nine degraded spectral configurations with regular spectral resolution
(i.e., the spectral resolution remains constant throughout the considered spectral field).
The number of spectral bands in these spectral configurations was reduced from 323 to
8, and the spectral resolution was coarsened from 3 and 10 nm for the 450–1000 nm and
1000–2400 nm, respectively, to 200 nm (Table 1). The second library, known as the spectral
SNR library, involved reducing the SNR of the spectral data to the desired SNR level by
introducing Gaussian noise to the original spectra. This SNR library contains a total of
15 spectral dataset, spanning SNR values from 100% down to 1%. By separately simulating
these two spectral libraries, we can assess the sensitivity of SOM prediction results to
spectral resolution and SNR, independent of other variables. The process of generating
these two simulated spectral libraries is detailed in the following section.

Table 1. Descriptions of ten spectral configurations. ASD_1/1 represents the initial spectral library.

Configurations N
450–1000 nm 1000–2400 nm

SSI SR SSI SR

ASD_1/1 1951 1 3 1 10
Con_3/10 323 3 3 10 10

Con_10/10 194 10 10 10 10
Con_20/20 96 20 20 20 20
Con_40/40 47 40 40 40 40
Con_60/60 31 60 60 60 60
Con_80/80 23 80 80 80 80

Con_100/100 18 100 100 100 100
Con_150/150 12 150 150 150 150
Con_200/200 8 200 200 200 200
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2.3.1. Spectral Configuration Library

The spectral configuration library contains a total of 10 spectral configurations, which
were divided into two categories: ASD_1/1 and 9 Con_X/Y (Table 1). The original soil
spectra were named ASD_1/1 because the original spectra measured by the ASD spectrom-
eter were sampled at intervals of 1 nm in the range of 450–1000 nm and 1000–2400 nm.
The other 9 Con_X/Y configurations were derived from ASD_1/1, where X represents the
spectral resolution from 450 to 1000 nm, and Y represents the spectral resolution from 1000
to 2400 nm. Con_X/Y reduces the number of spectral bands from 323 to 8, decreases the
spectral resolution from 3 nm to 200 nm, and sets the spectral sampling interval equal to
the spectral resolution. The spectral reflectance of Con_X/Y can be calculated as follows:

Firstly, three parameters are defined in the spectral configuration [22]: the number
of spectral bands (N), the spectral resolution (SR), and the spectral sampling interval
(SSI). The SR is also called the full half-width maximum (FHWM), and SSI represents the
interval between the acquisition of two signals (Figure 2). Then, the initial laboratory-
measured spectra are resampled with Gaussian filters whose tails are cut to twice their
width, following the filter response function G (λ):

G(λ) = exp

(
−(λ − λc)

2

2·σ2

)
withσ =

SR
2·
√

2·ln(2)
(1)

where λ represents the spectral step under different SSIs; λc denotes the central waveband
within the range of the spectral response to certain SSIs.
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Finally, the spectral reflectance of each Con_X/Y is determined as follows:

Ri =
∑λk

λs
r(λ)·G(λ)

∑λk
λs

G(λ)
(2)

where λs and λk represent the spectral reflectance of the starting and ending bands within
the spectral range, respectively.



Remote Sens. 2023, 15, 4623 6 of 23

2.3.2. Spectral SNR Library

The SNR is an important factor affecting the performance of a spectrometer, which
compares a signal value in the presence of a signal with a value for system noise in the
absence of a signal. In fact, due to the different principles and operating environments of
various spectrometers, the models for calculating the SNR differ. To study the impact of
SNR on SOM estimation performance, it is necessary to choose a reasonable range of SNR
values. In this study, the SNR of each soil spectrum was calculated as the ratio of the mean
value of the reference signal intensity to the standard deviation [23] (Figure 3). In this study,
the mean and standard deviation of spectral reflectance were obtained from 10 repeated
measurements of a soil sample.
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We repeated this operation for all spectral bands of the soil spectrum and obtained
SNRs for a total of 1951 bands from 450 nm to 2400 nm (Figure 3a). To better understand the
distribution of SNR data, we plotted a histogram of SNR data and estimated the probability
density function using the kernel density estimation (KDE) method (Figure 3b). KDE can
be seen as the smoothing result of the histogram and allows a better representation of
multimodality [24]. In this study, the Gaussian kernel was chosen as the kernel of KDE. We
set up a spectral SNR library containing 15 different SNRs from 100% to 1% SNR levels
(100%, 90%, 80%, 70%, 60%, 50%, 40%, 30%, 25%, 20%, 15%, 10%, 5%, 3%, and 1%). To
simulate the spectra with different SNR levels, we added random Gaussian noise to each
initial spectral. The process can be represented by the following equations [25]:

N (L) =
L

SNR (L)
(3)

Nd (L) =
√

Ni (L)
2 −N (L)2 (4)

Ld= L + Rnd (0, 1) · Nd (L) (5)

where L represents the measured raw radiance, Nd (L) represents the noise added to the
soil spectrum to degrade the SNR to the required noise Ni (L), and Rnd(0, 1) is used to
generate a Gaussian distribution that has a mean value of 0 and a standard deviation of 1.
Ld is the radiance after adding Gaussian noise.

In practice, the SNR (L) is calculated for each band as shown in Figure 3a, and then
the original noise level N (L) for radiance L is obtained using Equation (3). Similarly, the
noise Ni (L) corresponding to the different desired degradation SNRs for radiance L can
also be calculated using Equation (3). The noise Nd (L) to be added to the spectral data
can then be calculated using the fact that noise can add in an orthogonal manner (i.e., the
square of the noise can be considered as the sum of each individual noise source) as shown
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in Equation (4). Finally, the radiance Ld with different SNRs can be obtained in terms of the
original radiance L and the added noise Rnd (0, 1) · Nd (L) according to Equation (5).

2.4. Calibration and Validation of Prediction Models

The whole soil data set was randomly split into a calibration set and a validation
set at the ratio of 7:3. To more accurately assess the effect of instrumental parameters on
SOM estimation, the above process of partitioning the soil data set was repeated 20 times.
Levene’s test was performed on both the calibration sets and validation sets for each
group to ensure that they had the same data distribution. Four multivariate techniques
(RR, PLSR, SVMR, and BPNN) were used to build the relation between the spectra and
SOM on the calibration sets and to test them on the independent validation sets. Before
models’ development, the raw spectra were subjected to the Savitzky–Golay smoothing
(SG) smoothing with a second-order polynomial and window size of 11 wavelengths,
including first derivative (FD), second derivative (SD), absorbance (Abs), and multiplicative
scatter correction (MSC) and their combinatorial operations. Finally, normalization (NOR)
was carried. The prediction accuracy of the data using the normalized spectra achieved
the desired prediction results. In addition, our study mainly focused on the impact of
spectral resolution and SNR, two crucial parameters of spectroscopic instruments, on the
accuracy of SOM estimation, rather than on enhancing the prediction accuracy of the
models. Therefore, the we only normalized the raw spectra before modeling. A brief
description of each multiple regression technique is provided below.

Most of the spectral variables in the full Vis–NIR spectrum exhibit strong correlations,
indicating that the reflectance at one wavelength is very similar to the value at the adjacent
wavelength. Although RR and PLSR are linear models, they are particularly well-suited for
addressing multicollinearity issues due to their mathematical principles and are therefore
commonly used for the analysis of Vis–NIR spectroscopy data. RR is a modified least
squares estimation approach that applies a penalty on the size of the coefficients [26]. We
controlled the hyperparameter α to regulate the importance of features. A larger α value
indicates a stronger regularization. Typically, the optimal α strikes a balance between
calibration model prediction performance, introducing slight bias to the regression while
effectively addressing multicollinearity. PLSR integrates compression and regression steps
by extracting a fixed number of orthogonal factors called latent variables (LVs) to maximize
the covariance between the predictor and response variables [27]. Therefore, the essence
of PLSR lies in creating an appropriate linear combination of features that carry the most
information rather than processing a large set of correlated data. SVMR is a kernel-based
modeling technique rooted in statistical learning theory. It projects raw data from a low-
dimensional feature space into a high-dimensional feature space using an implicit mapping
(also called a kernel function). It constructs an optimal linear hyperplane as a decision
function for nonlinear regression problems and then inversely transforms in the nonlinear
space. In summary, SVMR simplifies the problem by converting nonlinear regression into
a linear problem in a high-dimensional feature space [28]. BPNN is a highly nonlinear
mathematical model composed of nodes (or neurons) organized in layers and connected
by links. BPNN optimizes the weights between neurons based on the backpropagation of
errors, minimizing backward learning error from the output layer to the input layer [29].

For these four types of multiple regression models mentioned above, it is necessary
to select appropriate hyperparameters to enhance the models’ performance. The α value
for RR is set in a geometric progression ranging from 0.001 as the minimum to 1 as the
maximum, with a total of 30 values. The maximum number of LVs for PLSR was set to 15.
In the case of SVMR, we opted for the Gaussian radial basis function (RBF) as the kernel
function, which involves two critical hyperparameters: regularization parameters C and
γ. We set the values for C as 0.1, 1, 10, 50, 80, 100, 120, 150,180, and 200 and γ as 0.0001,
0.001, 0.01, 0.1, and 10. For BPNN, we constructed a 4-layer perceptron network with one
input layer (spectra data), two hidden layers (the number of nodes per layer was set to 2, 4,
6, . . ., 20), and an output layer. We chose the Relu function as the activation function for
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the hidden layer, and L- BFGS was selected as the solver for weight optimization. In this
study, a grid search and 5-fold cross-validation were employed on the calibration sets to
determine the optimal hyperparameters for each model that minimized the cross validated
root mean square error (RMSECV). All four multivariate regression models in this study
were implemented in Python 3.8.5 and the scikit-learn package.

2.5. Evaluation of Models

The root mean squared error (RMSE), the coefficient of determination (R2), and the
ratio of performance to interquartile distance (RPIQ) are employed to assess the prediction
performance of the four models in both calibration sets and validation sets.

RMSE =

√
∑N

i=1(yi − ŷi)
2

N
(6)

R2= 1− ∑N
i=1(yi − ŷi)

2

∑N
i=1

(
yi −

−
y
)2 (7)

where yi and ŷi represent the observed values and the predicted values, respectively,
−
y is

the mean of the observed values, and N is the number of samples with i ranging from 1
to N.

RPIQ =
IQ

RMSE
(8)

where IQ represents the difference between the third and first quartiles.
RMSE quantifies the difference between observed values and predicted values, mea-

sured in the same units as the dependent variable. R2 signifies the proportion of variance
in the dependent variables explained by the independent variables in the regression mod-
els, and it is utilized to assess the goodness of fit of the models. RPIQ accounts for both
prediction error and the variation in observed values, providing a more objective and
easily comparable measure of model validity during model validation [30,31]. In our study,
RMSEcv, R2

cv, and RPIQcv represent the RMSE, R2 and RPIQ in cross-validation, respec-
tively. RMSEp, R2

p, and RPIQp represent the RMSE, R2 and RPIQ in independent validation
sets, respectively.

2.6. Application of ANOVA Technique

ANOVA is a statistical method used to compare whether the means of two or more
groups differ significantly and to assess the variance using a probability distribution [32].
It enables us to dissect the variation attributable to each factor in relation to the total
variation in the presence of random interference. ANOVA determines whether the variation
significantly affects the study population and rejects the null hypothesis. This is done by
comparing F values with the critical F value (Fcrit) to recognize the significance of each
factor’s contribution. Additionally, the p value can be computed to determine whether
a factor exerts a significant influence on the research subject. The p value indicates the
probability of the null hypothesis H0 being valid. H0 posits that that there is no difference
among the studied groups, while H1 suggests that a difference exists. We use the p value to
decide whether reject H0 by comparing it to the significance level, which represents the
probability of rejecting the null hypothesis when it is true. Therefore, a smaller p value
implies a higher likelihood of H1 being correct [33].

In this study, we employed ANOVA to assess the impact of the spectral resolution
and SNR on the accuracy of SOM estimation. Since different prediction models may
yield varying SOM estimates, we conducted two-way ANOVAs for spectral configuration
prediction models and SNR level prediction models. To delve deeper into the influence of
instrument parameters on SOM prediction performance, this study proceeded to conduct
one-way ANOVA under each of the four prediction models to determine whether different
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spectral configurations had a significant effect on the accuracy of SOM estimation. The
same approach was used to analyze the effect of SNR on SOM prediction performance.

3. Results
3.1. Analysis of SOM

The SOM content in the study area ranged from 29.308 g kg−1 to 59.650 g kg−1, with a
mean value of 42.780 g kg−1, a standard deviation of 8.198, and a coefficient of variation
of 19.16%, thus indicating a moderate level of variation. The entire soil data set (n = 112)
was randomly divided into two portions: calibration sets, comprising 7/10 of the total soil
samples (n = 78), and validation sets, comprising 3/10 of the total soil samples (n = 34),
which was done to provide a more accurately assessment of the impact of the instrumental
parameters on the SOM estimation. The aforementioned process of partitioning the soil
dataset was repeated 20 times. The statistical description of the results of the 20 divisions
of the soil data in this study is presented in Figure 4, and the outcomes of the Levine’s
variance test (p > 0.8) for all groups at a significance level of 0.05 indicated consistent
variance between the calibration and validation sets (Table 2). Therefore, we assumed that
the validation sets represented the data under investigation, and the calibrated model was
utilized to predict the SOM content of the validation sets.
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Table 2. Descriptive statistics of SOM for the calibration and validation sets, along with the probability
levels from Levene’s test under various groupings.

Calibration Sets (g kg−1) Validation Sets (g kg−1) Levene’s
TestMin Max Mean SD Min Max Mean SD

1 29.308 58.616 43.647 8.124 29.308 59.650 40.773 8.141 0.840
2 29.308 59.650 41.646 7.914 29.308 58.616 45.400 8.367 0.921
3 29.308 59.650 43.531 8.004 29.308 58.616 41.042 8.505 0.824
4 29.308 57.237 42.604 8.058 29.308 59.650 43.186 8.632 0.961
5 29.308 59.650 43.205 8.213 29.308 58.616 41.796 8.209 0.989
6 29.480 58.616 43.409 7.976 29.308 59.650 41.322 8.644 0.827
7 29.308 58.616 42.012 7.963 29.308 59.650 44.555 8.582 0.985
8 29.308 58.616 42.848 8.126 29.480 59.650 42.621 8.493 0.815
9 29.308 58.616 42.557 8.101 29.308 59.650 43.294 8.527 0.873
10 29.308 59.650 42.741 8.207 30.687 58.616 42.868 8.308 0.800
11 29.308 57.237 41.975 7.945 29.308 59.650 44.641 8.595 0.925
12 29.308 59.650 42.494 8.172 29.308 57.064 43.439 8.352 0.845
13 29.308 59.650 42.222 8.257 30.687 58.616 44.069 8.039 0.894
14 29.480 59.650 43.128 8.207 29.308 57.237 41.974 8.251 0.823
15 29.308 58.616 42.664 8.165 30.687 59.650 43.046 8.400 0.833
16 29.308 59.650 42.942 8.251 29.308 57.237 42.405 8.192 0.954
17 29.308 59.650 43.401 8.099 29.308 57.237 41.344 8.376 0.901
18 29.308 58.616 42.471 8.121 31.545 59.650 43.493 8.460 0.915
19 29.308 59.650 42.278 8.172 29.480 58.616 43.940 8.271 0.894
20 29.308 59.650 43.415 8.246 29.480 58.616 41.311 8.020 0.938

3.2. Spectral Characteristics of the Studied Soils

The spectral profiles of 112 soil samples (Figure 5) exhibited a decrease in reflectance
as the SOM content increased, thereby aligning with findings from previous studies [34–36].
These soil spectra profiles exhibited a general similarity, which was characterized by lower
reflectance in the visible (Vis) ranges and higher reflectance in the near-infrared (NIR)
ranges. Notably, three distinctive absorption peaks emerged near 1400 nm, 1900 nm, and
2200 nm. The absorption peaks around 1400 nm and 1900 nm are associated with crystal-
lized water and hydrated water [37]. The wavelengths near 2200 nm may be associated with
organic molecules, Si-OH bonds, and cation-OH bonds within phyllosilicate minerals [38].
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3.3. Reflectance Spectrum of Spectral Configuration Library

The spectral reflectance profiles of the nine spectral configurations provide a more
visually discernible representation of their distinctions (Figure 6). Upon visual inspection
of these spectra, it becomes evident that as the spectral resolution decreased, differences
in the profiles of the nine spectral configurations started to emerge, thereby resulting in
variations in the magnitude of the spectral band reflectance.
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3.4. Reflectance Spectrum of SNR Library

To investigate the effect of the spectrometer’s SNR on the accuracy of the SOM estima-
tion, we generated a spectral library with 15 different SNRs ranging from 1% to 100%, based
on Equations (3)–(5). From Figure 7, we can conclude that when the SNRs were low, the
spectral information of the objects became overwhelmed by noise, thus severely impacting
the quality of the spectral data. As the SNRs increased, the spectra profiles gradually
became clearer, and at high SNR levels, the spectral profiles appeared quite similar.

3.5. Prediction Results of Multiple Regression Models

We designed two independent experiments to analyze the effects of the spectral
resolution and SNR on the accuracy of the SOM estimation. The evaluation results were
derived from averaging the RMSEp, R2

p, and RPIQp values across 20 independent tests.
This section discusses the average statistics of these 20 groups. The RMSEcv_av, R2

cv_av,
and RPIQcv_av represent the averages of the RMSEcv, R2

cv, and RPIQcv, respectively, across
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the 20 groups. Similarly, the RMSEp_av, R2
p_av, and RPIQp_av represent the average of the

RMSEp, R2
p, and RPIQp, respectively, across the 20 groups.

Remote Sens. 2023, 15, x FOR PEER REVIEW 13 of 25 
 

 

 
Figure 7. Reflectance spectra for different SNR levels from 1% SNR to 100% SNR. 

3.5. Prediction Results of Multiple Regression Models 

Figure 7. Reflectance spectra for different SNR levels from 1% SNR to 100% SNR.



Remote Sens. 2023, 15, 4623 13 of 23

In the first experiment, we focused on investigating how the coarsened spectral
resolutions affected the SOM estimation. We built four prediction models for each spectral
configuration, which ranged from ASD_1/1 to Con_200/200 nm in terms of the spectral
resolution. The performance indicators (RMSE, R2, and RPIQ) obtained with these four
prediction models consistently exhibited the same trend concerning the spectral resolution
variation (refer to Table 3). As we transitioned from ASD_1/1 to Con_100/100 nm, there
was only a slight change in the RMSEp_av, R2

p_av, and RPIQp_av values for the independent
validation set. However, the prediction models constructed with spectral resolutions greater
than 100 nm showed notably worse prediction performance (see Figure 8a–c).

Table 3. Comparison of SOM prediction accuracy values of each model with different spectral
configurations.

Configurations Models RMSEcv_av R2
cv_av RPIQcv_av RMSEp_av R2

p_av RPIQp_av

ASD_1/1

RR 3.84 0.74 3.52 3.81 0.78 3.85
PLSR 3.85 0.74 3.51 3.83 0.78 3.82
SVMR 3.92 0.73 3.46 3.87 0.78 3.80
BPNN 3.91 0.73 3.45 3.81 0.78 3.85

Con_3/10

RR 3.84 0.74 3.51 3.81 0.78 3.85
PLSR 3.85 0.74 3.51 3.82 0.78 3.84
SVMR 3.93 0.73 3.45 3.88 0.77 3.79
BPNN 3.89 0.74 3.47 3.80 0.78 3.85

Con_10/10

RR 3.83 0.74 3.52 3.81 0.78 3.85
PLSR 3.83 0.74 3.52 3.82 0.78 3.83
SVMR 3.94 0.73 3.44 3.89 0.77 3.78
BPNN 3.89 0.74 3.48 3.83 0.78 3.83

Con_20/20

RR 3.83 0.74 3.53 3.81 0.78 3.85
PLSR 3.82 0.74 3.53 3.80 0.78 3.85
SVMR 3.93 0.73 3.44 3.87 0.78 3.80
BPNN 3.88 0.74 3.48 3.83 0.78 3.83

Con_40/40

RR 3.83 0.74 3.53 3.82 0.78 3.83
PLSR 3.82 0.74 3.54 3.83 0.78 3.82
SVMR 3.95 0.73 3.42 3.85 0.78 3.81
BPNN 3.88 0.74 3.48 3.83 0.78 3.82

Con_60/60

RR 3.82 0.74 3.54 3.82 0.78 3.84
PLSR 3.82 0.74 3.54 3.82 0.78 3.83
SVMR 3.94 0.73 3.43 3.86 0.78 3.80
BPNN 3.87 0.74 3.49 3.81 0.78 3.84

Con_80/80

RR 3.83 0.74 3.53 3.83 0.78 3.82
PLSR 3.82 0.74 3.53 3.86 0.78 3.79
SVMR 3.94 0.73 3.43 3.90 0.77 3.76
BPNN 3.88 0.74 3.48 3.82 0.78 3.83

Con_100/100

RR 3.85 0.74 3.50 3.83 0.78 3.82
PLSR 3.85 0.74 3.51 3.86 0.78 3.79
SVMR 3.97 0.73 3.41 3.94 0.77 3.73
BPNN 3.90 0.73 3.47 3.83 0.78 3.82

Con_150/150

RR 3.94 0.73 3.43 3.98 0.76 3.69
PLSR 3.96 0.73 3.41 3.97 0.76 3.68
SVMR 4.04 0.71 3.35 4.04 0.76 3.63
BPNN 3.98 0.72 3.40 3.99 0.76 3.68

Con_200/200

RR 4.09 0.71 3.31 4.11 0.75 3.58
PLSR 4.09 0.71 3.31 4.12 0.75 3.57
SVMR 4.09 0.71 3.31 4.10 0.75 3.58
BPNN 4.09 0.71 3.30 4.11 0.75 3.58

In the second experiment, we analyzed the effect of the SNR on the SOM estimation
using the RR, PLSR, SVMR, and BPNN prediction models. We assumed that the initial
spectral data, as measured by the ASD spectrometer, had a SNR of 100%. To reduce the
SNR of the data set from 100% to 1%, Gaussian random noise was introduced into the
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spectral data. The observed influence of the spectrometer’s SNR on the accuracy of the
SOM estimation aligned with our expectations. The results from these four regression
methods on the validation sets consistently indicated that there was no significant alteration
in the RMSE, R2, or RPIQ as the SNR decreased. However, as the SNR continued to drop
below a threshold, a notable decrease in the prediction accuracy became apparent (Table 4).
This trend was more vividly displayed through the RMSEp_av, R2

p_av, and RPIQp_av for
the independent validation set (Figure 8d–f). As illustrated in Figure 8d, this threshold was
approximately 15%. When the SNR exceeded 20%, any minor differences observed between
groups with varying SNRs could be attributed to the slightly different hyperparameters
selected for cross-validation, and this effect was relatively weak. However, when the SNR
fell below 15%, the prediction performance became highly sensitive to changes in the
SNR. Based on these findings, we can conclude that at lower SNR levels, the estimation
performance significantly improves with increasing SNR levels. In contrast, the influence
of the SNR on the SOM estimation diminishes as the SNR reaches higher levels.
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Table 4. Comparison of SOM prediction accuracy values of each model with different SNR levels.

SNR Levels Models RMSEcv_av R2
cv_av RPIQcv_av RMSEp_av R2

p_av RPIQp_av

100% SNR

RR 3.84 0.74 3.52 3.81 0.78 3.85
PLSR 3.85 0.74 3.51 3.83 0.78 3.82
SVMR 3.92 0.73 3.46 3.87 0.78 3.80
BPNN 3.91 0.73 3.45 3.81 0.78 3.85

90% SNR

RR 3.85 0.74 3.51 3.81 0.78 3.84
PLSR 3.86 0.74 3.50 3.86 0.78 3.80
SVMR 3.92 0.73 3.45 3.87 0.78 3.80
BPNN 3.91 0.73 3.46 3.82 0.78 3.85

80% SNR

RR 3.84 0.74 3.52 3.88 0.77 3.79
PLSR 3.87 0.74 3.49 3.90 0.77 3.76
SVMR 3.92 0.73 3.45 3.90 0.77 3.77
BPNN 3.91 0.73 3.46 3.83 0.78 3.83

70% SNR

RR 3.84 0.74 3.52 3.81 0.78 3.85
PLSR 3.87 0.74 3.49 3.86 0.78 3.80
SVMR 3.91 0.73 3.46 3.89 0.77 3.78
BPNN 3.89 0.73 3.47 3.81 0.78 3.85

60% SNR

RR 3.83 0.74 3.53 3.82 0.78 3.84
PLSR 3.87 0.74 3.49 3.88 0.78 3.78
SVMR 3.91 0.73 3.46 3.91 0.77 3.76
BPNN 3.87 0.74 3.49 3.85 0.78 3.81

50% SNR

RR 3.86 0.74 3.50 3.83 0.78 3.83
PLSR 3.90 0.73 3.46 3.92 0.77 3.74
SVMR 3.91 0.73 3.46 3.91 0.77 3.77
BPNN 3.92 0.73 3.45 3.91 0.77 3.75

40% SNR

RR 3.87 0.74 3.49 3.84 0.78 3.81
PLSR 3.90 0.73 3.46 3.98 0.76 3.68
SVMR 3.92 0.73 3.45 3.88 0.78 3.78
BPNN 3.93 0.73 3.44 3.90 0.77 3.76

30% SNR

RR 3.85 0.74 3.50 3.84 0.78 3.82
PLSR 3.88 0.74 3.48 3.95 0.77 3.71
SVMR 3.92 0.73 3.45 3.96 0.77 3.70
BPNN 3.88 0.74 3.48 3.86 0.78 3.80

25% SNR

RR 3.97 0.72 3.41 3.90 0.77 3.78
PLSR 3.95 0.73 3.42 3.98 0.76 3.68
SVMR 3.95 0.73 3.42 3.90 0.77 3.78
BPNN 4.00 0.72 3.38 3.94 0.77 3.73

20% SNR

RR 3.97 0.72 3.40 3.95 0.77 3.72
PLSR 3.96 0.72 3.41 4.02 0.76 3.65
SVMR 4.00 0.72 3.38 4.05 0.75 3.64
BPNN 4.04 0.71 3.35 4.06 0.75 3.61

15% SNR

RR 4.07 0.71 3.32 4.03 0.76 3.66
PLSR 4.06 0.71 3.33 4.01 0.76 3.68
SVMR 4.05 0.71 3.34 4.01 0.76 3.68
BPNN 4.11 0.70 3.29 4.04 0.76 3.65

10% SNR

RR 4.17 0.70 3.25 4.13 0.74 3.57
PLSR 4.17 0.70 3.25 4.20 0.74 3.51
SVMR 4.17 0.69 3.25 4.19 0.74 3.53
BPNN 4.22 0.69 3.21 4.13 0.74 3.58

5% SNR

RR 4.36 0.67 3.10 4.28 0.73 3.45
PLSR 4.33 0.68 3.12 4.45 0.70 3.33
SVMR 4.38 0.67 3.09 4.36 0.72 3.40
BPNN 4.43 0.66 3.06 4.32 0.72 3.42

3% SNR

RR 4.55 0.65 2.97 4.45 0.70 3.32
PLSR 4.51 0.65 3.00 4.60 0.68 3.21
SVMR 4.53 0.65 2.99 4.46 0.70 3.30
BPNN 4.61 0.64 2.93 4.54 0.69 3.25

1% SNR

RR 4.83 0.60 2.80 4.78 0.66 3.09
PLSR 4.76 0.61 2.84 4.73 0.67 3.12
SVMR 4.85 0.60 2.79 4.83 0.65 3.06
BPNN 4.84 0.60 2.79 4.81 0.65 3.07

In our current study, the effect of lower SNR levels on the performance of the SOM
estimation was more pronounced compared to the spectral resolutions. The results from
the independent validation set reveal that the models constructed using the spectral config-
uration Con_200/200 yielded subpar prediction performance, with an RMSEp_av > 4.10,
an R2

p_av < 0.75, and an RPIQp_av < 3.57 (Table 3). The prediction models using a 1%
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SNR level exhibited the poorest prediction performance, with an RMSEp_av > 4.83, an
R2

p_av < 0.65, and an RPIQp_av< 3.06 (Table 4). Furthermore, all four models (RR, PLSR,
SVMR, and BPNN) built using the spectral configuration library and the spectral SNR
library displayed similar trends. However, it remains unclear whether these four models
yielded significantly different results for the SOM estimation. While Figure 8 provides an
initial insight into the impact of the spectral resolution and SNR on the SOM estimation, it
does not ascertain whether this impact is statistically significant. Therefore, ANOVA was
employed to conduct a more in-depth analysis to identify the factors contributing to the
effect on the SOM estimation accuracy.

3.6. ANOVA Results

In our current study, we used ANOVA techniques to identify significant factors
influencing the SOM estimation and to determine the levels of these factors that contributed
to differences. Since RPIQ = IQ/RMSE, where IQ represents the difference between the
third and first quartiles of the true SOM values for each group, it introduces errors into
the dataset, thus leading to larger within-group errors and affecting the analysis results.
Therefore, we focused on conducting ANOVA with the two performance indicators, RMSEp

and R2
p. In our study, we employed four regression models to predict the SOM for

each spectral configuration and SNR level. Initially, we applied two-way ANOVAs to
analyze the contributions of the models and instrument parameters to the estimation of the
SOM. Subsequently, one-way ANOVAs were performed under each of the four prediction
models to investigate whether the spectral resolutions and SNRs had significant effects
on the SOM estimation. It is essential to note that for ANOVA to be valid, the data must
meet homogeneity and normal distribution requirements. Our analysis indicates that
the variances of the residuals for the RMSEp and R2

p in each group were equal, as was
demonstrated by Levene’s test. The significance of the Shapiro–Wilks test was greater than
0.05, thereby indicating that the data satisfied normality requirements and supported the
use of ANOVA.

3.6.1. Two-Way ANOVA Results

We considered the two performance indicators, RMSEp and R2
p, as the dependent

variables and examined the factors of the spectral configurations and prediction models.
Table 5 presents the results of the two-way ANOVA for the spectral configurations and
models. When the significance level was set at 0.05, it became evident that both the spectral
configurations and prediction models had a significant effect on prediction performance
(p < 0.05; F > Fcrit). However, their interaction did not appear to be significant (p > 0.05;
F > Fcrit). Notably, the p value associated with the spectral configurations was considerably
greater than the p value linked to the prediction models. This suggests that the spectral
configuration has a more substantial impact on the prediction performance and provides
stronger grounds for rejecting the null hypothesis. These findings, in conjunction with the
conclusions drawn in Section 3.3, underscore that the spectral resolution has a greater effect
on the prediction performance of the SOM compared to the prediction model used.

Table 6 presents the results of a two-way ANOVA in which the RMSEp and R2
p were

considered as the dependent variables. The SNR levels and prediction models were treated
as the two factors. With a significance level set at 0.05, it became evident that the main effects
of the SNR levels and prediction models were statistically significant, while their interaction
effects were not. The p value associated with the SNR levels was significantly larger than
the p value linked to the prediction models, thus indicating that the spectrometer’s SNR
had a more substantial impact on the SOM prediction performance.
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Table 5. Examining the outcomes of a two-way ANOVA involving RMSEp and R2
p as dependent

variables, with spectral configurations and prediction models considered as the influencing factors.

Indicator Source SS df MS F p Value Fcrit

RMSEp

Configuration 6.50 9 0.72 18.96 9.51 × 10−29 1.89
Model 0.49 3 0.16 4.33 0.0049 2.62

Interaction 0.16 27 0.0058 0.15 1.00 1.50
Error 28.96 760 0.038
Total 36.11 799

R2
p

Configuration 0.094 9 0.010 21.10 5.48 × 10−32 1.89
Model 0.0072 3 0.0024 4.86 0.0023 2.62

Interaction 0.0022 27 8.32 × 10−5 0.17 1.00 1.50
Error 0.38 760
Total 0.48 799

SS: Sum of squares; df: degree of freedom; MS: mean square.

Table 6. Examining the outcomes of a two-way ANOVA involving RMSEp and R2
p as dependent

variables, with SNR levels and prediction models considered as the influencing factors.

Indicator Source SS df MS F p Value Fcrit

RMSEp

SNR 91.82 14 6.56 79.05 8 × 10−157 1.70
Model 0.75 3 0.25 3.02 0.029 2.61

Interaction 1.14 42 0.027 0.33 1.00 1.39
Error 94.57 1140 0.083
Total 188.29 1199

R2
p

SNR 1.51 14 0.11 92.63 9.9 × 10−177 1.70
Model 0.011 3 0.0036 3.10 0.026 2.61

Interaction 0.019 42 0.0004 0.38 1.00 1.39
Error 1.33 1140 0.0012
Total 2.86 1199

The results obtained from the two-way ANOVA lead us to the conclusion that both
the instrument paraments and prediction models indeed exert a significant influence on the
accuracy of SOM estimation. Furthermore, it is evident that the instrument parameters had
a more pronounced impact, thereby underscoring the practical significance of our study. It
is worth noting that the primary objective of this paper was to assess the variation in the
SOM estimation accuracy under different spectral resolutions and SNR levels. Therefore,
we performed one-way ANOVA under the various prediction models to further scrutinize
the effect of the instrument parameters on the accuracy of the SOM estimation.

3.6.2. One-Way ANOVA Results

The present analysis includes one-way ANOVA results for the spectral configurations
and SNR levels, as displayed in Tables 7 and 8, respectively. ANOVA was conducted at a
95% confidence level, with a significance level set at 0.05. For all multiple regression models,
the outcomes in Tables 7 and 8 indicate that both the ANOVA for the spectral configuration
and the ANOVA for the SNR level yielded p values below 0.05. According to ANOVA
principles, if the p value is less than 0.05, and the calculated F-value exceeds the critical F
value (Fcrit), the null hypothesis is rejected. Therefore, our findings suggest that, regardless
of the choice of prediction models, the spectrometer’s parameters significantly influenced
the accuracy of the SOM prediction. Furthermore, as ANOVA alone does not specify which
groups differ from one another, post hoc tests using the Tukey method were employed to
further interpret the results of the ANOVA, which specifically focused on the R2

p. In this
study, post hoc tests were conducted using Python 3.8.5 and the statsmodels package.
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Table 7. Results of one-way ANOVA using spectral configurations as the independent variables.

Model Indicator Source SS df MS F p Value Fcrit

RR

RMSEp

Configuration 1.81 9 0.20 5.96 2.42 × 10−7 1.93
Error 6.42 190 0.034
Total 8.23 199

R2
p

Con 0.026 9 0.002 6.84 1.69 × 10−8 1.93
Error 0.081 190 0.0004
Total 0.11 199

PLSR

RMSEp

Con 1.79 9 0.20 7.46 2.61 × 10−9 1.93
Error 5.06 190 0.027
Total 6.85 199

R2
p

Con 0.026 9 0.0029 7.57 1.84 × 10−9 1.93
Error 0.073 190 0.0004
Total 0.099 199

SVMR

RMSEp

Con 1.29 9 0.14 2.39 0.014 1.93
Error 11.42 190 0.060
Total 12.72 199

R2
p

Con 0.018 9 0.002 2.69 0.0058 1.93
Error 0.14 190 0.0007
Total 0.16 199

BPNN

RMSEp

Con 1.82 9 0.22 6.48 4.97 × 10−8 1.93
Error 5.93 190 0.031
Total 7.75 199

R2
p

Con 0.026 9 0.0029 7.25 4.78 × 10−9 1.93
Error 0.076 190 0.0004
Total 0.10 199

Table 8. Results of one-way ANOVA using SNR level as the independent variable.

Model Indicator Source SS df MS F p Value Fcrit

RR

RMSEp

SNR 23.15 14 1.65 20.07 7.2 × 10−35 1.73
Error 23.47 285 0.082
Total 46.62 299

R2
p

SNR 0.38 14 0.027 23.88 3.21 × 10−40 1.73
Error 0.32 285 0.0011
Total 0.69 299

PLSR

RMSEp

SNR 22.95 14 1.64 21.60 4.49 × 10−37 1.73
Error 21.62 285 0.076
Total 44.57 299

R2
p

SNR 0.38 14 0.027 24.73 2.31 × 10−41 1.73
Error 0.31 285 0.0011
Total 0.69 299

SVMR

RMSEp

SNR 22.02 14 1.57 16.49 2.17 × 10−29 1.73
Error 27.19 285 0.095
Total 49.21 299

R2
p

SNR 0.36 14 0.026 19.80 1.8 × 10−34 1.73
Error 0.37 285 0.0013
Total 0.74 299

BPNN

RMSEp

SNR 24.85 14 1.77 22.69 1.35 × 10−38 1.73
Error 22.29 285 0.078
Total 47.14 299

R2
p

SNR 0.41 14 0.029 26.03 4.69 × 10−43 1.73
Error 0.31 285 0.0011
Total 0.72 299
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Figure 9 visualizes the results of the post hoc test of the spectral configurations, with
1 indicating a significant difference between the two groups and 0 signifying no signifi-
cant difference. While the results of the Tukey test exhibited slight discrepancies across
the different prediction models, a consistent observation emerged: there was no notable
distinction between the R2

p values for a 100 nm spectral resolution and those for higher
spectral resolutions. The variations observed among the groups are primarily attributed to
random factors introduced by the data, thereby mirroring the conclusions drawn from the
visual assessments in Figure 8a–c. Consequently, based on the aforementioned post hoc
test results, we can confidently assert that a similar SOM estimation performance can be
attained when employing a spectral resolution within 100 nm.
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Figure 10 shows the post hoc test results for R2
p across the four prediction models at

various SNR levels. Across the 15 distinct sets of SNR levels, all four models exhibited a
significant difference in prediction performance at the 10% threshold. Notably, there was
no significant difference in the R2

p values from 100% to 15%, thus aligning with the pattern
observed through visual inspection in Figure 8d–f. This pattern underscores that excessive
noise in the spectral data can obscure the characteristic information of the measured object,
thereby ultimately leading to reduced estimation accuracy.
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4. Discussion

The spectral resolution and SNR represent two crucial parameters in optical remote
sensing payloads. In our study, we ascertained that modeling approaches, spectral res-
olution, and SNRs collectively influence the SOM estimation through an analysis and
comparison of the results derived from the same original soil spectral library. The extent of
these factors’ impacts on the estimation performance has been previously elucidated. In
this section, we delve into how instrument parameters influence estimation performance
and provide pertinent recommendations for designing optical instruments dedicated to
SOM monitoring.

The SNR of spectrometers is intricately linked to the optical subsystem, detector
subsystem, and electronic subsystem. In practical spectrometer operation, the maximum
achievable SNR in a specific spectral channel is constrained by fluctuations in the detector
dark current, the noise associated with readout processes, the photon noise originating
from thermal emissions within the instrument, the nonuniformities within the detector
array, and the challenges related to detector calibration [39]. In the field, reduced solar
irradiance within the NIR region similarly diminishes the SNR within the NIR spectral
bands. Consequently, the SNR of spectroscopic instruments is affected by numerous
practical factors. In the actual design of a spectrometer, there exist trade-offs among these
parameters. Generally, enhancing the SNR leads to compromises such as reduced spectral
resolution and increased dimensions and weight of the optical components. [17,25].

The spectral configuration Con_200/200 provided poor prediction performance, as
indicated by an RMSEp_av > 4.10, an R2

p_av < 0.75, and an RPIQp_av < 3.57. The predic-
tion models using the 1% SNR level produced the worst prediction performance, with an
RMSEp_av > 4.83, an R2

p_av < 0.65, and an RPIQp_av < 3.06. When taken in conjunction
with the results of the ANOVA, it becomes evident that the SNR tends to exert a more
pronounced influence on SOM estimation compared to other factors. The phenomenon
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observed is that the prediction accuracy increases with higher SNR levels, but the rate of
improvement diminishes at elevated SNR levels. It is well known that the fundamental
principle underlying most machine learning methods involves regressors learning data fea-
tures and iteratively minimizing losses to make predictions on new data samples. Excessive
noise can overpower the inherent data features, thereby resulting in reduced prediction
accuracy. This is the reason why the SNR significantly impacts the prediction performance.
Furthermore, hyperspectral data typically encompass a multitude of wavelength variables
and, in practice, are susceptible to the challenges associated with the “curse of dimen-
sionality” [40]. Our research suggests that decreasing the spectral resolution by reducing
the number of spectral bands could alleviate the issues related to multicollinearity and
redundant information. This simplification of the prediction models can yield comparable
or even more efficient results compared to higher spectral resolutions. Nevertheless, an
excessively low number of spectral bands would result in insufficient valid information for
accurately estimating the SOM.

When considering optical remote sensing instruments intended for SOM monitoring,
it is advisable to prioritize addressing the design requirement for the SNR to mitigate
its influence on the precise estimation of the SOM. In certain situations, opting for a
lower spectral resolution may be suitable to meet the spectrometer’s SNR prerequisites.
Additionally, for hyperspectral instruments, reducing the spectral resolution also entails a
decrease in the number of bands, which equates to a reduction in the volume of the spectral
data. This approach also simplifies data processing, thus making it less cumbersome.
Consequently, investigating the impact of the spectral resolution and SNR levels on the
SOM estimation enhances the potential for utilizing spectroscopic techniques for SOM
estimation. This applicability can extend to various soil regions, and our findings can be
extrapolated to broader scales.

5. Conclusions

In this study, we simulated two spectral libraries using the spectra measured by
an ASD spectrometer. We evaluated the effect of the two fundamental spectrometer
parameters—the spectral resolution and SNR—on the estimation of the SOM using four
multivariate regression methods (i.e., RR, PLSR, SVMR, and BPNN). The following conclu-
sions are derived from our experimental analysis:

1. Various spectral resolutions, varying SNR levels, and the utilization of distinct multi-
variate regression models for prediction all exert noteworthy influences on the SOM
prediction performance. Notably, the variations in the prediction performance at-
tributed to instrument parameters surpassed those attributed to the prediction models.
The most substantial disparities stem from SNR levels, with the spectral resolution
differences following closely behind.

2. The ANOVA analysis of the performance indicator R2
p indicates that there is no

significant discrepancy in the SOM prediction performance when the spectral resolu-
tion falls within 100 nm. However, when the spectral resolution exceeds 100 nm, a
significant decline in the estimation accuracy becomes evident.

3. The SNR level of the spectroscopic instruments emerged as the most pivotal factor
for the precise estimation of the SOM. Typically, higher SNR levels correspond to
enhanced estimation accuracy. Nevertheless, as the SNR reaches higher levels, its
impact on the SOM estimation diminishes. The ANOVA results for R2

p suggest that
when the SNR level surpasses 15%, it no longer yields a significant difference in the
SOM estimation performance.

In conclusion, the spectral resolution and SNR are important indicators of a spectrom-
eter. Grasping the influence of these parameters on the SOM estimation paves the way
for the efficient design of optical remote sensing payloads aimed at monitoring large-scale
SOM variations in the future.
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