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Abstract: Object detection in remote sensing images (RSIs) has become crucial in recent years.
However, researchers often prioritize detecting small objects, neglecting medium- to large-sized
ones. Moreover, detecting objects hidden in shadows is challenging. Additionally, most detectors
have extensive parameters, leading to higher hardware costs. To address these issues, this paper
proposes a multi-scale and high-precision lightweight object detector named MHLDet. Firstly,
we integrated the SimAM attention mechanism into the backbone and constructed a new feature-
extraction module called validity-neat feature extract (VNFE). This module captures more feature
information while simultaneously reducing the number of parameters. Secondly, we propose an
improved spatial pyramid pooling model, named SPPE, to integrate multi-scale feature information
better, enhancing the model to detect multi-scale objects. Finally, this paper introduces the convolution
aggregation crosslayer (CACL) into the network. This module can reduce the size of the feature
map and enhance the ability to fuse context information, thereby obtaining a feature map with more
semantic information. We performed evaluation experiments on both the SIMD dataset and the
UCAS-AOD dataset. Compared to other methods, our approach achieved the highest detection
accuracy. Furthermore, it reduced the number of parameters by 12.7% compared to YOLOv7-Tiny.
The experimental results illustrated that our proposed method is more lightweight and exhibits
superior detection accuracy compared to other lightweight models.

Keywords: object detection; remote sensing images (RSIs); lightweight network; attention mechanism;
spatial pyramid pooling

1. Introduction

Object detection plays a crucial role in remote sensing image processing, enabling the
automated extraction of objects of interest from RSIs, including buildings, roads, vehicles,
and more. In the past, manual visual interpretation was the predominant method for
acquiring geographic information. However, with the ongoing advancements in remote
sensing technology and the continuous innovation of image-processing algorithms, object
detection for RSIs has become one of the essential means to obtain large-scale geographic
information efficiently. Currently, object detection technology in RSIs has found widespread
applications across diverse domains, including urban planning [1], environmental moni-
toring [2], agricultural production [3], and other fields. This technology holds promising
application prospects.

Traditional object-detection methods, such as scale-invariant feature transform (SIFT) [4],
support vector machine (SVM) [5], and histogram of oriented gradients (HOG) [6], have
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certain limitations due to manual features extraction and classifier construction. With the
development of deep learning, object-detection methods can automatically learn features
and construct efficient classifiers, resulting in higher accuracy and faster processing speeds.
For example, Edge YOLO [7] can run in real-time on edge devices while maintaining high
accuracy. At present, object detectors can be categorized into two main types: two-stage
object detectors and one-stage object detectors. Two-stage detectors are represented by
Faster R-CNN [8], Mask R-CNN [9], Cascade R-CNN [10], etc. Faster R-CNN is among the
early pioneers of two-stage object detectors, distinguished in achieving both high detection
accuracy and precise localization. The region proposal network (RPN) has been introduced
to generate object candidate regions, followed by performing object classification and
localization on these candidate regions. Mask R-CNN is a further advancement built
upon the foundation of Faster R-CNN, which is able to not only detect object location and
category, but also to generate accurate segmentation masks of objects. This makes Mask
R-CNN perform well in image segmentation tasks. Cascade R-CNN is a two-stage detector
proposed for small object detection, it significantly enhances the detection accuracy of small
objects by means of cascade classifiers. Compared with other two-stage object detectors,
Cascade R-CNN has higher detection accuracy for small objects, but slightly decreased
detection accuracy for large objects.

Although two-stage detectors excel in high detection accuracy and positioning ac-
curacy, their calculation speed is relatively slow. Moreover, training a two-stage object-
detection model requires substantial data, and its efficiency diminishes when faced with a
high volume of objects to detect. This situation is a challenge for both data acquisition cost
and time cost. One-stage object detection models represented by SSD [11], RetinaNet [12],
and you only look once (YOLO) [13] exhibit the advantages of high speed and applicability
to scenarios such as real-time detection. With the continuous development of algorithms,
their detection accuracy is gradually improved. However, the disadvantages of the one-
stage detection model are low positioning accuracy, insensitivity to complex backgrounds,
and occlusion, and these problems may have a certain impact on the target-detection effect
of remote sensing images. In 2016, YOLOv1 [13] was proposed by Redmon et al., renowned
for its fast detection speed, but the positioning accuracy of object detection is low. In 2017,
Redmon et al. introduced YOLOv2 [14], which used DarkNet-19 as its backbone archi-
tecture. Despite achieving higher detection accuracy, it is still not friendly to small target
recognition. In 2018, Redmon et al. introduced YOLOv3 [15], which used DarkNet-53
with the residual network to extract features from images. In 2019, Bochkovskiy proposed
YOLOv4 [16]; he embedded the cross-stage partial (CSP) module into DarkNet-53, improv-
ing the accuracy and speed. In 2020, YOLOv5 was proposed with the Focus architecture,
and it speeded up the training and improved the detection accuracy. In 2022, YOLOv7 [17]
was proposed by Wang et al., which maintained a fast running speed and small memory
consumption and achieved ideal results in detection accuracy. Although the YOLO series
models have become some of the representative algorithms for object detection, single-stage
object-detection methods still have certain limitations in object detection on large images
such as RSIs.

In recent years, researchers have achieved notable advancements in the detection of
small [18] or rotating object detection [19]. Yang et al. [20] proposed the sampling fusion net-
work (SF-Net) to optimize for dense and small targets. Fu et al. [21] constructed a semantic
module and a spatial layout module and then fed both into a contextual reasoning module
to integrate contextual information about objects and their relationships. Han et al. [22]
proposed the rotation-equivariant detector (ReDet), which explicitly codes rotational equiv-
alence and rotational invariance to predict the direction accurately. Li et al. [23] proposed a
model named OrientedRepPoints and a novel adaptive point learning quality assessment
and sample allocation method, and they achieved more-accurate performance by accurately
predicting the direction. However, while many researchers concentrate on challenges such
as small object detection or the detection of rotating objects, they often overlook other
common issues in RSIs’ object detection. These issues include enhancing the detection of
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multi-scale objects, tackling the difficulties of identifying objects concealed in shadows or
with colors resembling the ground, and detecting objects with only partial features exposed
in RSIs, as illustrated in Figure 1.

Considering the multi-faceted nature and complexity of current RSI problems, this
paper proposes an enhanced detector, MHLDet, so as to address the issues mentioned
above. Firstly, the VNFE is designed to alleviate the surroundings’ impact and obtain
more-robust feature information. In addition, it can concentrate more effectively on crucial
regions to address the issue of partial feature detection. Secondly, we propose the SPPE
with large receptive fields to fuse better multi-scale features to enhance the network’s
ability to detect targets of various scales. Finally, we introduce the CACL to preserve more
feature information by minimizing the information loss during downsampling. Therefore,
this model holds an advantage in detecting objects with colors close to the ground and
in detecting multi-scale targets. In addition, it achieves higher precision and is more
lightweight than existing methods. The primary contributions of this paper are outlined
as follows:

1. This paper proposes a novel method for object detection in RSIs, which achieves a
preferable balance between lightweight and accuracy.

2. We propose the VNFE module for more-effective feature extraction and integrated
the SimAM attention mechanism into the backbone to focus on the key features.
The VNFE module has fewer parameters, so it can reduce the computational cost
more effectively and make the model lighter. In addition, the VNFE module can
also enhance the generalization ability of the detector, as it can reduce the risk of
overfitting while maintaining high accuracy.

3. This paper introduces a novel SPPE module by optimizing the SPPCSPC of YOLOv7-
Tiny [17]. The SPPE is designed to enhance detection accuracy for medium- to large-
sized objects while preserving the original advantages. As a result, it effectively fulfills
the demands for detecting objects of various scales and addresses the application
requirements.

4. The CACL module is designed to minimize the loss of feature information during the
downsampling process in the neck network. This module can focus on feature regions
with higher discrimination by performing attention calculations on the feature map
and enriching the semantic information by fusing feature elements. Consequently, it
improves the accuracy and robustness of the model.

The remainder of this study is structured as follows: Section 2 reviews related work
on lightweight object detection algorithms and outlines the details of the proposed model.
Section 3 introduces the implementation details of the experiments conducted on the
SIMD and the UCAS-AOD datasets, and we present the results obtained from the ablation
experiments. Section 4 carries out the discussion. Finally, Section 5 provides the conclusions
from the study.

(a) (b) (c)

Figure 1. The object-detection issues in remote sensing images from the UCAS-AOD and the SIMD
datasets. (a) represents the multi-scale objects of RSIs; (b) represents the objects hidden in shadow in
RSIs; (c) represents the objects with only partial features exposed in RSIs.
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2. Materials and Methods
2.1. Related Work
2.1.1. Lightweight Object-Detection Algorithms

In recent years, the one-stage detectors have garnered significant attention due to their
fast execution speed and fewer parameters than two-stage detectors. YOLT [24] excels in
multi-scale detection, precise localization, and real-time performance, making it particu-
larly suitable for applications requiring high-quality detection of small objects. FCOS [25]
regresses the bounding boxes at each position on the feature map to their corresponding
positions on the original image. DETR [26] can predict the positions and categories of all
objects in an image simultaneously. Zhu et al. proposed Deformable DETR [27], which
achieves higher accuracy while reducing the training time. EfficientDet [28] introduced
the bi-directional feature pyramid network (BiFPN) to achieve efficient multi-scale feature
fusion. VFNet [29] introduced varifocal loss and an IoU-aware classification score to en-
hance the detection accuracy of dense objects. Aiming to obtain more-accurate features
and enhance detection performance, R3DET [30] introduces the feature refinement module
to address the misalignment between feature regions and feature maps in one-stage de-
tectors. Moreover, it reduces the overall training memory consumption by approximately
two-times.

Based on one-stage detectors, numerous scholars have proposed lightweight models.
ShuffleNetV2 [31] stands out for its channel shuffling and efficient group convolutions,
offering low computational costs for real-time applications. MobileNetV3 [32] introduces
architectural optimizations, achieving improved accuracy while maintaining efficiency.
YOLOv3-Tiny [15] is the earliest lightweight model in the YOLO series. By designing
a simpler and more-efficient network structure, it achieves faster inference speed with
fewer parameters in the YOLO series. With the proposal of the YOLOv7-Tiny network, it
has reached a new peak in lightweight object-detection methods. However, there is still
scope for further improvement in terms of both the detection accuracy and parameter
optimization. Therefore, this paper proposes a new lightweight object-detection method
aimed at improving the detection accuracy of medium- to large-sized objects and objects
with no obvious features.

2.1.2. Attention Mechanism

The visual attention mechanism is a specialized process within human vision, aiding
in swiftly identifying crucial information amidst cluttered surroundings. It establishes
the focal point of attention, thus enhancing the efficient processing of visual information.
The attention mechanism was applied to computer vision as early as 1998 by Laurent
Itti [33], inspired by the neurons of the primate visual system, to merge multi-scale feature
maps and select focal regions in order of saliency. In 2014, Google’s DeepMind first applied
the method of the attention mechanism on the recurrent neural network (RNN) model for
image classification tasks, which attracted more people’s attention [34].

In the field of computer vision, attention mechanisms can be categorized into two
types: channel attention and spatial attention. Channel attention is represented by the
squeeze-and-excitation network (SENet) model [35]. SENet initially compresses the feature
map’s spatial dimensions, subsequently employing network model learning to ascertain
the significance of individual feature channels autonomously. This approach can assign
varying weight coefficients to each channel, amplifying critical features while attenuating
less-relevant ones. Spatial attention, such as spatial transformer networks (STNs) [36], can
enable the transformation of data with different spatial deformations. It has the ability to
automatically capture important regional features by adjusting and aligning the input data
in a spatially adaptive manner.

However, it is essential to note that channel attention is a one-dimensional atten-
tion mechanism, which treats different channels differently, but treats all spatial locations
equally. Spatial attention is a two-dimensional attention mechanism that treats different
locations within the feature map differently while giving equal importance to all chan-
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nels. SimAM [37] is a 3D parameter-free attention mechanism that enhances the feature
extraction capability of neural networks. SimAM attaches 3D attention weights to feature
maps, unlike traditional one-dimensional or two-dimensional weight attention methods.
By considering the interdependencies among channels, spatial locations, and different
depth levels, SimAM captures more-comprehensive and fine-grained information from
the feature maps. This allows the network to focus on relevant features and improve its
ability to extract meaningful representations, enhancing performance in various computer
vision tasks.

2.1.3. Partial Convolution

Convolution is a common operation in object detection, extracting feature information
by accessing all input channels. Multiple convolutional layers are employed for dimension
transformation and feature extraction. However, this approach may encounter computation
bottlenecks when dealing with huge input images or using larger convolutional kernels,
augmenting the model’s complexity. This solution leads to an increase in the number of pa-
rameters and computational requirements. For a feature map with the input I ∈ RC×H×W ,
using c filters F ∈ RK×K, the FLOPs would be:

h× w× k2 × c2 (1)

The partial convolution (PConv) mentioned in FastNet [38] exploits the redundancy
in the feature map and systematically applies regular convolution (Conv) on only a portion
of the input channels without affecting the remaining channels to maintain high FLOPS at
reduced FLOPs, as a way to reduce latency and, thus, the parameters and computational
effort of the model. The formula for calculating latency is as follows:

Latency =
FLOPs
FLOPS

(2)

The FLOPs of PConv are:
h× w× k2 × c2

p (3)

where cp = c/4, and the FLOPs of PConv are only 1/16 of the conventional convolution.
Therefore, in the proposed VNFE module, we utilized PConv to effectively reduce the
number of model parameters.

2.2. Proposed Method

The overall architecture of our MHLDet is depicted in Figure 2. In the backbone
network, we embedded the VNFE module and SimAM to enhance the feature extraction
ability while reducing the model’s parameters. We introduced the SPPE module within the
neck network that executes the pyramid pooling operations on the feature maps, which
are obtained from the backbone network. This process aims to acquire multi-scale feature
representations. The CACL module has been proposed to enhance feature expression
capabilities and reduce information loss. Table 1 summarizes the main parameters of the
proposed method.

In the backbone, Input ∈ R1024×1024×3 represents the input images. It is downsam-
pled by two CBL modules (consisting of convolutional layers, batch normalization, and
the LeakyRELU activation function [39]); the convolution kernel size is 3× 3, and the stride
is set to 2. Moreover, the SimAM attention mechanism is embedded after max pool to help
the network focus on key features, which can better represent important information in the
input images to enhance the performance and the expression ability of the model. Then,
we used the VNFE module to make the feature mapping improved, accelerate the training
and convergence speed, and make the model more lightweight. The SPPE module is used
to extract feature vectors of objects with multiple scales and expand their receptive fields.
Feature maps of size 128× 128, 64× 64, and 32× 32 are extracted from the backbone P3, P4,
and P5 layers, respectively, and sent to the neck network, where feature fusion is performed.
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As we all know, low-level features encompass local information such as edges and textures
of objects, providing more spatial information, but limited semantic information. On the
other hand, high-level features tend to possess richer semantic information. To address the
loss of feature information due to downsampling and to make the neural network more
robust and accurate for recognition, the features of the P3, P4, and P5 layers are fused by
the CACL module.

Figure 2. The overall structure of the MHLDet. We embedded the SimAM attention mechanism
and VNFE module in the backbone and used the SPPE and CACL structure in the neck network.
H, W, and C represent height, width, and channels, respectively. Cls represents the number of class
predictions. Pre presents the bounding box predictions.

Table 1. Parameters of MHLDet.

Number Module From N Output Params

Input 1024× 1024× 3
0 CBL −1 1 512× 512× 32 928
1 CBL −1 1 256× 256× 64 18,560
2 ELAN −1 1 256× 256× 128 31,104
3 max pool −1 1 128× 128× 128 0
4 SimAM −1 1 128× 128× 64 0
5 ELAN −1 1 128× 128× 128 115,456
6 max pool −1 1 64× 64× 128 0
7 VNFE −1 1 64× 64× 256 242,432
8 max pool −1 1 32× 32× 256 0
9 VNFE −1 1 32× 32× 512 966,144

10 SPPE −1 1 32× 32× 256 936,448
11 CBL −1 1 32× 32× 128 33,024
12 Upsample −1 1 64× 64× 128 0
13 CBL 7 1 64× 64× 128 33,024
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Table 1. Cont.

Number Module From N Output Params

14 Concat (−1,12) 1 64× 64× 256 0
15 ELAN −1 1 64× 64× 128 140,032
16 CBL −1 1 64× 64× 64 8320
17 Upsample −1 1 128× 128× 64 0
18 CBL 5 1 128× 128× 64 8320
19 Concat (−1,17) 1 128× 128× 128 0
20 ELAN −1 1 128× 128× 64 35,200
21 CACL −1 1 64× 64× 128 82,432
22 Concat (−1,15) 1 64× 64× 256 0
23 ELAN −1 1 64× 64× 128 140,032
24 CACL −1 1 32× 32× 256 328,704
25 Concat (−1,10) 1 32× 32× 512 0
26 ELAN −1 1 32× 32× 256 558,592
27 CBL 20 1 128× 128× 128 73,984
28 CBL 23 1 64× 64× 256 295,424
29 CBL 26 1 32× 32× 512 1,180,672
30 Detect 1 3 55,016

Total 5,283,848

2.2.1. Validity-Neat Feature Extract Module

For the original image input to the model, excessive convolutional and pooling lay-
ers in the backbone network will not only lead to feature redundancy but also lead to
computational redundancy. We propose using the VNFE module to replace the regular
convolutional layers of the original backbone network.

As shown in Figure 3, the PBL module plays a role in downsampling the feature
map and extracting high-level features. Specifically, the PConv within this module extracts
spatial features from the input channels, leaving the other channels unaltered. This strategic
approach reduces redundant computations and minimizes memory usage, contributing
to the overall lightweight nature of the model. Furthermore, SimAM is integrated into
the second branch of the VNFE module. It aims to assist the network in emphasizing key
features and appending crucial information onto the feature maps without introducing
extra parameters. The formula is as follows:

Y1 = P3,1(P3,1(F1,1(X))) (4)

Y2 = P3,1((F1,1(X)) + (SimAM(X))) (5)

Y3 = F1,1(Y1 ⊕Y2) (6)

where X represents the feature input, F1,1 denotes a convolution operation with a filter size
1× 1 and stride of 1, P3,1 is a PConv operation with a filter size of 3× 3 and stride of 1,
SimAM represents the attention operation, and ⊕ is the concatenate operation.

SimAM attention distinguishes the importance of neurons by defining an energy
function for each neuron. Specifically, an energy function is defined for each neuron using
the following formula:

et(wt, bt, y, xi) =
1

M− 1

M−1

∑
i=1

(−1− (ωtxi + bt))
2

+ (1− (ωtt + bt))
2 + λω2

t

(7)

where t denotes the target neuron while xi denotes the other neurons in a single channel of
the input feature X ∈ R(C×H×W), i is the index in the spatial dimension, and M = H ×W
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is the number of all neurons in a single channel. ωt and bt are the weights and biases of the
transformation, which can be expressed as follows:

ωt = −
2(t− µt)

(t− µt)2 + 2σ2
t + 2λ

(8)

bt = −
1
2
(t + µt)ωt (9)

Figure 3. Structure of the VNFE module.

µt and σ2
t are the mean and variance of all neurons in this channel, except t:

µt =
1

M− 1

M−1

∑
i=1

xi (10)

σ2
t =

1
M− 1

M−1

∑
i=1

(xi − µt)
2 (11)

Assuming the same distribution among all the pixels in a single channel, we can
calculate the mean and variance of all the neurons, which allows us to derive the minimum
energy formula:

e∗t =
4(σ̂2 + λ)

(t− µ̂)2 + 2σ̂2 + 2λ
(12)

Equation (12) indicates that the energy value of e∗t reflects the significance of the
contrast between neuron t and nearby neurons, and a lower energy value indicates a
more-pronounced difference and higher importance of neuron t in the context of nearby
neurons. λ is the regularization coefficient. The entire refinement phase of SimAM can be
calculated as follows:

SimAM(X) = sigmoid(
1
E
)× X (13)

where E groups all e∗t from the spatial and channel dimensions. Besides, we used sigmoid
activation to constrain excessive E values.

2.2.2. Spatial Pyramid Pooling Enforce Module

The current spatial pyramid pooling method still has potential for improvement when
detecting medium- to large-sized targets. In order to better enhance the detection ability of
the model for multi-scale targets, we learned from the SPPCSPC [17] module and propose
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a new spatial pyramid pooling enforce (SPPE) module. In the first branch, multi-scale
feature information is captured by constructing pyramid levels at different scales. Pooling
operations at different scales enable the network to perceive and process target objects
of different scales and sizes of the input image, thereby improving the adaptability and
generalization ability of the model. The larger pooling operation can retain the overall
features and spatial layout of the target object. By increasing the convolution kernel size,
the model can cover more details and context information of the target area, which is
helpful in detecting medium- to large-sized targets more accurately. Therefore, we changed
the connection mode of the maximum pooling layers. The receptive fields increased to 5,
13, and 25, respectively, so as to enhance the detection capability for multi-scale objects.
The receptive field can be calculated using the following formula:

r0 = 1,
r1 = k1,

rn = rn−1 + (kn − 1)
n−1
∏
i=1

si. (n ≥ 2)
(14)

The input is passed through the CBL and PBL in the second branch, respectively.
The number of output channels is reduced by half compared to the original without chang-
ing the feature map size. These channels are subsequently element by element multipliedto
increase the amount of information in each dimension of the feature map, which can
supplement the feature detail information to obtain a richer and more-comprehensive
feature representation. In addition, it makes up for the attenuation of the small target
detection ability due to the increase of the receptive field. Finally, the two branches are
concatenated in the channel dimension. Then, the number of output channels of the SPPE
was adjusted to be consistent with the input through a CBL with a 1× 1 convolutional
kernel size. The SPPE structure is illustrated in Figure 4.

(a) (b)

Figure 4. Structure of the SPPCSPC and SPPE. (a) represents the SPPCSPC; (b) represents the SPPE.

2.2.3. Convolution Aggregation Cross Layer

Using a CBL with only a 3 × 3 convolution for downsampling can result in infor-
mation loss and decrease feature quality. To minimize the information loss caused by
downsampling, we embedded the CACL module within the network, allowing the feature
map to retain more feature information. In the first branch of the CACL, compared with
the max pooling layer, using the average pooling layer can better preserve the spatial infor-
mation of the feature map and effectively utilize the global information. After that, a 1× 1
convolution is used to deepen the network, introduce more nonlinearity, and enhance the
neural network’s expressive capability without expanding the receptive field. The feature
map’s channel count is doubled as well. Then, the network model focuses on the feature
regions with higher discrimination by using the SimAM attention mechanism.
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We used a CBL module with a convolution kernel size of 3× 3 and a stride of 2 in the
second branch to reduce the feature map size through downsampling. This downsampling
process helps maintain crucial feature information while enhancing the model’s robustness.

By adding the two branches, the module can fuse different feature expressions, im-
prove the diversity of features and the expression ability, and enhance the representation
ability and detection performance. Its structure is illustrated in Figure 5, and the formula is
as follows:

O = SimAM(F1,1(AvgPool(X))) + F3,2(X) (15)

where O and X represent the output and input feature maps of this module, SimAM
represents the attention operation, F3,2 represents a convolution operation with filter size
3× 3 and a stride of 2, and AvgPool represents the average pooling operation.

Figure 5. Structure of the CACL module.

3. Results
3.1. Datasets

We conducted the experiments using the SIMD [40] and UCAS-AOD [41] datasets to
evaluate the effectiveness. Figure 6 shows some examples of the datasets this paper used.

The SIMD dataset is a recently released high-resolution remote sensing dataset. It is
characterized by its high resolution and the inclusion of multi-scale imagery. This dataset
contains 5000 high-resolution images with 15 categories, Car, Truck, Van, Long Vehicle,
Bus, Airliner, Propeller Aircraft, Trainer Aircraft, Chartered Aircraft, Fighter Aircraft,
Others, Stair Truck, Pushback Truck, Helicopter, Boat, respectively. There are a total of
45,096 instances, and the image size is 1024 × 768 pixels. We used 4000 images for training
and 1000 images for validation according to the division of the original dataset.

The UCAS-AOD dataset is specifically designed for the detection of airplanes and
cars. The image size is 1280 × 659 pixels, and it contains two categories of airplane
and car. The objects in the images are evenly distributed in terms of their orientations.
In this experiment, we removed the negative example images that did not contain any
example images and only kept the images that contained the two classes of airplane and
car. The training set, validation set, and test set of the UCAS-AOD dataset were randomly
divided with a ratio of 7:2:1.
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Figure 6. Some examples of the remote sensing images utilized for training and evaluating our
method from the SIMD and UCAS-AOD datasets.

3.2. Evaluation Criteria

To evaluate the performance of our proposed detector, we used several widely used
evaluation metrics. These metrics included the precision (P), recall (R), average preci-
sion (AP), and mean average precision (mAP). The formulas for precision and recall are
as follows:

Precision =
TP

TP + FP
(16)

Recall =
TP

TP + FN
(17)

AP =
∫ 1

0
P(R)dR (18)

where TP is true positive and is the number of positive samples that were correctly pre-
dicted to be positive. FP is false positive, which is the number of false positives that were
incorrectly predicted. FN is false negative and is the number of positive samples that
were incorrectly predicted as negative. AP is the area under the precision–recall curve
(P–R curve) and ranges from 0 to 1. mAP is a commonly used comprehensive evaluation
metric in object detection, which comprehensively considers the precision and recall of
different categories. We calculated the area under the P–R curve for each class and, then,
averaged the AP across all classes to obtain the mAP. The mAP provides an overall evalua-
tion of model performance and can be used to compare the strengths and weaknesses of
different models.

mAP =
1
n

n

∑
i=1

APi (19)

where n represents the total number of categories in the detection task.
The intersection over union (IoU), is a metric used to measure the degree of over-

lap between the predicted bounding box (Bp) and the true bounding box (Bgt) in the
object-detection task. It is defined by computing the ratio between the intersection area
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of the predicted bounding box and the true bounding box and the area of their union.
The calculation formula is as follows:

IoU =
area(Bp ∩ Bgt)

area(Bp ∪ Bgt)
(20)

In addition, we followed the COCO evaluation metrics [42], including the mAP
(IoU threshold = 0.5), mAP0.75, and mAP0.5:0.95, and it also includes APs (for small objects,
area < 322), APm (for medium objects, 322 < area < 962), and APl (for large objects,
962 < area).

These metrics can help us understand the efficiency of the model in practical applica-
tions. Combining these evaluation metrics, we can comprehensively assess the performance
of our proposed method in regard to accuracy, efficiency, and practicality and compare it
with current methods.

3.3. Parameter Setting

The experimental environment was configured as follows: the computer was equipped
with an NVIDIA GeForce RTX 3070 graphics card (8GB); the CPU was an Intel Core
i7-10700K; the operating system was Ubuntu 20.04.4 LTS. We used the PyTorch deep
learning framework (Version 1.13.1) for model development and training in Python 3.8 and
CUDA 11.4.

The input image size was 1024× 1024; the batch size was four; the optimization
was stochastic gradient descent (SGD); the momentum was 0.937; the weight decay was
set to 0.0005. To improve the convergence and training efficiency of the model, we per-
formed three epochs of warm-up training and set the warm-up momentum to 0.8 initially.
The initial train parameters are shown in Table 2.

Table 2. The initialization training parameters on the SIMD dataset.

Input Size Batch Size Momentum Warm-Up
Momentum

Weight
Decay

Learning
Rate

1024× 1024 4 0.937 0.8 0.0005 0.01

3.4. Experimental Results
3.4.1. Experimental Results on the SIMD Dataset

This paper took YOLOv7-Tiny [17] as the baseline and conducted experiments on
the SIMD dataset to validate the effectiveness of our method and compare it with other
one-stage detectors. The detectors for comparison were the anchor-free detector FCOS [25],
TOOD [43], PP-Picodet-m [44], YOLOX-S [45], YOLOv6-N, YOLOv6-S [46], and YOLOv8-
N [47], and the anchor-based detectors were RetinaNet [12], YOLOv5-N, YOLOv5-S [48],
YOLO-HR-N [49], and YOLOv7-Tiny. We did not compare with two-stage detectors. In our
experiments, we focused on proposing a lightweight model designed to meet the needs
of scenarios with limited computational resources, and our approach focused more on
reducing the complexity and computational overhead of the model while maintaining high
performance compared to traditional two-stage models. Our experiments on the SIMD
dataset used the K-Means++ [50] algorithm to generate a new anchor, and the experimental
data after using the new anchor are shown in Table 3. In addition, to display the results
more directly, this paper assigned an abbreviation name (AN) to each category in the
dataset, as shown in Table 4.
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Table 3. The results of YOLOv7-Tiny with and without the K-Means++ algorithm on the SIMD dataset.

Algorithm mAP (%) mAP0.5:0.95
(%) Params (m) FLOPs (G)

YOLOv7-Tiny 82.3 64.2 6.05 13.3
YOLOv7-Tiny+K-Means++ 82.7 64.8 6.05 13.3

Table 4. Categories and their corresponding names on the SIMD dataset.

Category AN Category AN Category AN

Car CR Airliner AL Others OT

Truck TR Propeller
Aircraft PA Stair Truck ST

Van VAN Trainer
Aircraft TA Pushback

Truck PT

Long Vehicle LV Chartered
Aircraft CA Helicopter HC

Bus BUS Fighter
Aircraft FA Boat BO

Table 5 shows the detection accuracy results of our detector and other detectors in
various categories on the SIMD dataset. It is evident that our method achieved optimal
accuracy across the majority of categories, with the mAP reaching 84.7%. As shown in the
table, our mAP was 2.4% higher than YOLOv7-Tiny. Additionally, it was nearly 10% higher
than YOLOv5-N.

Table 5. The detection accuracy of each category on the SIMD dataset.

Model CR TR VAN LV BUS AL PA TA CA FA OT ST PT HC BO mAP

TOOD [43] 63.7 58.9 57.2 56.7 67.9 83.0 78.4 78.5 78.9 76.5 10.9 24.1 15.2 30.8 75.5 74.3

RetinaNet [12] 66.5 54.6 57.9 52.9 62.3 84.7 72.6 76.6 77.0 84.6 7.2 21.6 5.3 33.4 73.3 71.7

FCOS [25] 69.5 58.2 61.7 52.5 59.9 79.1 70.7 73.9 72.1 82.5 16.2 26.2 9.1 42.0 72.5 75.9

YOLOv5-N [48] 94.2 83.2 84.5 83.2 91.8 96.3 85.2 95.2 92.9 88.8 23.1 44.6 15.5 58.3 97.9 75.7

YOLOv5-S [48] 94.4 85.2 86.7 83.4 92.7 96.4 94.8 96.5 96.3 92.6 33.8 54.2 47.7 88.9 98.4 82.8

YOLOv7-Tiny [17] 94.5 85.6 86.2 86.3 93.7 97.6 96.6 95.9 94.2 99.5 28.1 50.5 48.3 78.2 98.6 82.3

Ours 94.7 85.7 87.5 87.2 94.7 97.6 96.1 97.8 95.8 94.6 30.1 54.5 58.8 96.8 98.9 84.7

Bold text is the optimal value for the column.

There are 15 categories in the SIMD dataset, and our detection efficiency in most
categories reached an optimal level. In dense scenes, such as Car (CR) and Long Vehicle
(LV), our MHLDet achieved the best performance. At the same time, it had a significant
improvement compared with other models on medium- to large-sized targets such as Air-
liner (ALR), Chartered Aircraft (CA), and Fighter Aircraft (FA). The observed improvement
can be attributed to the proposed VNFE module and the embedded SimAM attention
mechanism, which effectively leverages the feature information within the backbone and
enhances the feature representation, while the inclusion of the SPPE module expands the
receptive fields, making it more conducive for detecting medium- to large-sized objects,
and the CACL module reduced the feature loss in the process of downsampling. The exper-
imental results further validated the effectiveness and robustness of the proposed method.
Table 6 shows the performance comparison of MHLDet with other one-stage methods.

On the SIMD dataset, our MHLDet detector achieved an 84.7% mAP with 5.28 m
model parameters. As shown in Figure 7, the proposed method outperformed all compared
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one-stage methods, achieving the highest detection accuracy with fewer parameters. This
excellence enabled our model to excel in resource-constrained environments. Compared
with the baseline, the parameters of the model proposed by us decreased by 12.7%, and the
mAP increased by 2.4%; the mAP0.75 and mAP0.5:0.95 also increased by 2.9% and 2.6%,
respectively. On medium- to large-sized objects, APm and APl increased by 2.4% and 1.3%,
respectively, compared to the baseline. In particular, the proposed model achieved the high-
est performance scores the mAP, mAP0.75, mAP0.5:0.95, and small-, medium-, and large-scale
AP values, while maintaining fewer parameters. Compared with the anchor-free detectors
PP-PicoDet-m, YOLOv6-N, and YOLOv8-N, these detectors’ parameters were slightly fewer
than MHLDet, but our mAP showed an increase of 11.8%, 10.3%, and 3.1%. In comparison
to the anchor-based detectors, YOLOv5-N had the fewest parameters, but we were 9% and
8.9% higher in the mAP and mAP0.5:0.95, respectively. In the aspect of multi-scale object
detection, our APm and APl were 12.3% and 10.1% higher than their counterparts.

Table 6. Comparison with state-of-the-art lightweight detectors on the SIMD dataset.

Method mAP mAP0.75 (%) mAP0.5:0.95 (%) APs (%) APm (%) APl (%) Params (m) FLOPs (G)

Anchor-free
FCOS (2019) [25] 75.9 67.2 56.4 5.9 47.4 61.2 31.87 201.9
TOOD (2021) [43] 74.3 68.8 57.1 12.3 49.4 63.3 31.98 188.7

PP-PicoDet-m (2021) [44] 72.9 67.7 56.7 15.7 50.3 61.6 3.43 -
YOLOX-S (2021) [45] 80.3 74.8 62.7 12.2 59.5 67.8 8.94 68.5

YOLOv6-N (2022) [46] 74.4 69.0 58.5 8.2 49.3 63.1 4.7 11.4
YOLOv6-S (2022) [46] 78.9 73.1 62.7 8.5 57.8 69.2 18.5 45.3
YOLOv8-N (2023) [47] 81.6 - 65.9 - - - 3.01 8.2

Anchor-based
YOLO-HR-N (2022) [49] 83.0 - 64.0 - - - 3.34 4.4

RetinaNet (2017) [12] 71.7 65.5 55.4 5.4 47.7 61.5 36.39 215.5
YOLOv5-N (2020) [48] 75.7 69.3 57.9 15.1 49.6 62.0 1.78 4.3
YOLOv5-S (2020) [48] 82.8 74.9 64.4 11.2 61.9 68.0 7.06 16.1

YOLOv7-Tiny (2022) [17] 82.3 75.4 64.2 19.3 59.5 70.8 6.05 13.3
MHLDet (ours) 84.7 78.3 66.8 20.1 61.9 72.1 5.28 12.2

By comparing the APs, APm, and APl with each model, we found that the gains of
our model mainly came from medium objects and large objects. Although the accuracy on
medium objects was the same as that of YOLOv5-S, the accuracy on APs and APl improved
by 8.9% and 4.1%, respectively. Despite the MHLDet model having 3.5 M more parameters
compared to YOLOv5-N, it remains categorized as a lightweight model.

Figure 8 depicts the visual comparison of the heat map of the baseline with our
proposed method, and it can be seen that our proposed method excels in predicting objects
with only partial features and objects that are close to the surface color. To be specific,
the heatmap’s colors transition from blue to red on the images, symbolizing the probability
of target presence increasing from low to high. Blue areas indicate the potential absence of
targets, while red regions signify a high likelihood of target presence. Figure 8(b1–b3) are
the results of YOLOv7-Tiny, and Figure 8(c1–c3) are the results of our proposed model.
From Figure 8(b1,c1), it can be observed that we also had a heatmap representation on
the ship just below, where only a portion of the features was exposed. As shown in
Figure 8(b2,c2), YOLOv7-Tiny overlooked the middle vehicle, where our model correctly
annotated it. From Figure 8(b3,c3), it is evident that our model provided more-accurate
and continuous annotations for vehicles in shadow. As a result, our model can accurately
depict the distribution of data. The visualization detection results are shown in Figure 9.

To visually illustrate the improvement achieved by our proposed model, this paper
presents the detection results for some typical scenes. Figure 9(b1–b6) are the results of
YOLOv7-Tiny, and Figure 9(c1–c6) are the results of our proposed model. From Figure 9(b1,c1),
our model performed significantly better than YOLOv7-Tiny in terms of detecting small
objects. From Figure 9(b2–b4,c2–c4), it can be observed that our model detected more
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objects that closely matched the color of the ground. As shown in Figure 9(b5,c5), our
model detected the object that exhibited only partial features. In addition, our model
detected a higher number of densely arranged objects in Figure 9(b6,c6).

Figure 7. Comparison of the mAP and parameters of different detectors on the SIMD dataset.

(a1) (b1) (c1)

(a2) (b2) (c2)

Figure 8. Cont.
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(a3) (b3) (c3)

Figure 8. Heatmap visualization results on the SIMD dataset. (a1–a3) represents the original images;
(b1–b3) represents the heatmap visualization results of YOLOv7-Tiny; (c1–c3) represents the heatmap
visualization results of the method we proposed.

(a1) (b1) (c1)

(a2) (b2) (c2)

(a3) (b3) (c3)

Figure 9. Cont.
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(a4) (b4) (c4)

(a5) (b5) (c5)

(a6) (b6) (c6)

Figure 9. The visualization results of baseline and MHLDet on the SIMD dataset. (a1–a6) represents
the original images; (b1–b6) represents the visualization results of YOLOv7-Tiny; (c1–c6) represents
the visualization results of the method we proposed. The yellow boxes show the differences between
YOLOv7-Tiny and MHLDet.

3.4.2. Experimental Results on the UCAS-AOD Dataset

Table 7 shows the accuracy comparison of our method with other methods on the
UCAS-AOD dataset. It is evident from the table that our proposed method achieved
the highest mAP among all the compared methods. Our method demonstrated a 4.6%
improvement over the second-best method for small and 2% for large objects.

Table 7. The detection accuracy of different methods on the UCAS-AOD dataset.

Method APs (%) APm (%) APl (%) mAP

YOLOv5-N [48] 17.2 54.5 50.1 95.9
YOLOv6-N [46] 11.4 53.8 44.2 93.63
YOLOv6-S [46] 9.5 57.4 49.1 94.9

YOLOv7-Tiny [17] 18.2 57.4 48.2 95.4
MHLDet (Ours) 23.8 57.6 52.1 96.4
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Based on the data presented in Table 7, our proposed method improved in all scales
compared to other methods, and it can be competent for the vast majority of object-detection
tasks by the excellent performance compared to current state-of-the-art methods. Figure 10
shows the visualization results on the UCAS-AOD dataset, further supporting the effective-
ness of our proposed method.

(a1) (b1) (c1)

(a2) (b2) (c2)

(a3) (b3) (c3)

(a4) (b4) (c4)

(a5) (b5) (c5)

Figure 10. Cont.
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(a6) (b6) (c6)

Figure 10. Comparison of different visualization results on the UCAS-AOD dataset. (a1–a6) repre-
sents the original image; (b1–b6) represents the visualization results of YOLOv7-Tiny; (c1–c6) repre-
sents the visualization results of the method we proposed. The yellow boxes show the differences
between YOLOv7-Tiny and MHLDet.

3.5. Ablation Study

To verify the effectiveness of our proposed detector, we conducted ablation studies
on the SIMD dataset using the same hyperparameters and parameter settings for each
module to ensure a fair and unbiased comparison. We used the precision, recall, mAP,
Params, and floating point operations (FLOPs) to verify the availability of the module we
proposed. It can be seen in Table 8 and Figure 11 that each of our proposed modules had
some improvements over the baseline.

It can be observed from the second and third row of Table 8 that, with the help of
SimAM, the mAP improved from 82.3% to 83.6%. Furthermore, with the help of the VNFE,
the mAP increased to 83.7%, and the Params and FLOPs decreased by 18% and 10.5%,
respectively. This was caused by the absence of semantic information in the backbone
before the use of both of them, resulting in less-prominent features. The addition of
SimAM enhanced the features of objects to be detected, while VNFE effectively reduced
the parameters when extracting the features, which also explains the reason the mAP value
improved when the parameters were reduced.

In order to prove the SPPE, we replaced the original SPPCSPC with the SPPE, with
the rest of the model remaining the same, from Table 8. In the fourth row, the mAP
improved from 82.3% to 83.7%. In the SPPE, we changed the connection mode of the
maximum pooling layer and increased its receptive fields from the original 5, 9, and 13 to 5,
13, and 25, so as to enhance the model’s detection performance for multi-scale objects.

The validity of the CACL module can be seen from the fifth row in Table 8. The
mAP increased from 82.3% to 83.4%. The CACL module effectively utilized the global
information and preserved the crucial details in the feature map during downsampling,
which led to the enhanced robustness of the model.

Table 8. The experimental results of the ablation of each module.

Method SimAM VNFE SPPE CACL mAP Precision Recall Params (m) FLOPs (G)

Baseline 82.3 77.3 79.5 6.05 13.3
A ! 83.6 84.1 78.6 6.05 13.3
B ! 83.7 76.4 82.7 4.96 11.9
C ! 83.7 76.6 82.7 6.09 13.4
D ! 83.4 77.2 82.0 6.33 13.5
E ! ! 84.1 76.3 83.8 4.96 11.9
F ! ! ! 84.4 77.6 82.4 5.24 12.1
G ! ! ! ! 84.7 77.1 82.5 5.28 12.2

Bold text is the optimal value for the column.
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Figure 11. Comparison of experimental mAP for ablation. A: SimAM; B: VNFE; C: SPPE; D: CACL;
E: SimAM + VNFE; F: SimAM + VNFE + SPPE; G: SimAM + VNFE + SPPE + CACL.

From the sixth and seventh rows of Table 8, it can be observed that stacking multiple
modules progressively yielded increasing gains, reaching 84.1% and 84.4%, surpassing the
results obtained from using a single module. Additionally, as the achieved mAP continued
to rise, the increase in the parameter count also remained within an acceptable range.

Finally, in the eighth row of Table 8, it is evident that the mAP value of applying all the
improved modules surpassed that of any individual module alone. It balanced the precision
and light weight, enabling higher accuracy even with limited computing resources.

4. Discussion

The comparison of the first and eighth rows in Table 8 reveals that, while precision
decreased by 0.2%, both the recall and mAP increased by 3% and 2.4%, respectively. This
indicates an enhanced ability of the proposed detector to detect objects within remote sens-
ing images, reducing instances of missed detections and facilitating a more-comprehensive
recognition of critical features and objects. Furthermore, there was a reduction in the num-
ber of parameters and FLOPs by 0.77 m and 1.1 G, respectively. In summary, depending on
the specific application and requirements, trading off a slight decrease in precision for an
improved recall and mAP can be a justifiable choice.

In addition to the above successes, the proposed detector had certain limitations.
MHLDet exhibits suboptimal performance on unmanned aerial vehicle (UAV) images.
UAVs can capture images from various poses and viewpoints, leading to variations in
the appearance of the same target across different images. This highlights the need for
improving the model’s generalization ability. Furthermore, when detecting a multitude of
rotated objects in RSIs, it can result in horizontal detection boxes containing background
regions and overlapping detection boxes, which adversely affects precision. Therefore,
the detection performance of MHLDet in this scenario needs to be improved.
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5. Conclusions

This paper proposes a more-lightweight object detector, MHLDet, based on YOLOv7-
Tiny. We integrated SimAM and our proposed VNFE into the backbone network to enhance
the model’s feature-extraction capability. The improved backbone network also helps
the model focus more on critical regions in the feature maps to alleviate the challenge of
detecting objects affected by shadows. It can be observed in Figure 9 that MHLDet detects
more objects that closely resemble the ground color. Furthermore, the SPPE fuses multi-
scale features, enabling the network to handle targets of various scales effectively. Finally,
we used the CACL module for downsampling instead of using regular convolution in order
to reduce the feature map size and preserve more feature information. The experimental
results on the SIMD dataset demonstrated the efficacy of our proposed model. It achieved
a reduction in parameters by 12.7% while improving the mAP by 2.4% compared to the
baseline and outperformed the majority of the current object-detection models. In our
future work, we will focus on dense and rotated objects and enhance the model’s detection
performance for these objects while maintaining a lightweight design.
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