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Abstract: Realizing the high-precision monitoring of wheat stripe rust over a large area is of great
significance in ensuring the safety of wheat production. Existing studies have mostly focused on
the fusion of multi-source data and the construction of key monitoring features to improve the
accuracy of disease monitoring, with less consideration for the regional distribution characteristics
of the disease. In this study, based on the occurrence and spatial distribution patterns of wheat
stripe rust in the experimental area, we constructed a multi-source monitoring feature set, then
utilized geographical detectors for feature selection that integrates the spatial-distribution differences
of the disease. The research results show that the optimal monitoring feature set selected by the
geographical detectors has a higher monitoring accuracy. Based on the Random Forest (RF), eXtreme
Gradient Boosting (XGBoost), and Support Vector (SVM) models, the disease monitoring results
demonstrate that the monitoring feature set constructed in this study has an overall accuracy in
its disease monitoring that is 3.2%, 2.7%, and 4.3% higher, respectively, than that of the ReliefF
method, with Kappa coefficient higher by 0.064, 0.044, and 0.087, respectively. Furthermore, the
optimal monitoring feature set obtained by the geographical detectors method exhibits a higher
stability, and the spatial distribution of wheat stripe rust in the monitoring results generated by the
different models demonstrates good consistency. In contrast, the features selected by the ReliefF
method exhibit significant spatial-distribution differences in the wheat stripe rust among the different
monitoring results, indicating poor stability and consistency. Overall, incorporating information
on disease spatial-distribution differences in stripe-rust monitoring can improve the accuracy and
stability of disease monitoring, and it can provide data and methodological support for regional
stripe-rust detection and accurate preventions.

Keywords: wheat stripe rust; geographical detectors; remote sensing; spatial-distribution difference;
monitoring

1. Introduction

Wheat stripe rust is an airborne disease with a fast spreading speed and wide epi-
demiological range, occurring in more than 60 countries around the world [1]. It leads to
an annual yield reduction of more than 5 million tons globally, and it indirectly causes
economic losses of up to USD 1 billion [2,3]. China, in particular, is heavily affected by stripe
rust, with an annual occurrence area of approximately 4 million hectares, which results in
a wheat yield loss of over 1 million tons [4]. Given the severe damage caused by stripe
rust, the timely and accurate detection of infected wheat fields and the implementation of
control measures are of vital importance in safeguarding wheat yield, reducing pesticide
usage, and minimizing economic losses [5]. The traditional monitoring of wheat stripe
rust relies mainly on field surveys and visual discrimination, which has a high monitoring
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accuracy but is limited to point-based observations. These traditional methods are prone
to disease underreporting, leading to severe yield losses due to untimely control, and are
inadequate in terms of meeting the demands of large-scale crop disease monitoring and
precise control [6]. Remote sensing has been widely applied to crop and forest disease
monitoring in recent years due to its ability to rapidly acquire continuous spatio-temporal
observations over a wide area [7–9].

After being affected by diseases, crops undergo changes in their physiological, bio-
chemical, and structural parameters, resulting in symptoms such as chlorosis and
yellowing [10]. This leads to differences in the spectral reflectance between healthy and
diseased crops [11]. By utilizing these differences, spectral features can be constructed
for the remote sensing monitoring of crop diseases [12]. For instance, based on the spec-
tral response mechanism of wheat stripe rust, Zheng et al. constructed the Red Edge
Disease Stress Index (REDSI) by using the red edge and red bands of Sentinel-2 imagery
for the remote sensing monitoring of regional wheat stripe rust [13]. Singh et al. used
thermal infrared indices, such as the Crop Water Stress Index (CWSI) and the stomatal
conductance index (IG), to characterize the changes in the respiration and evapotranspira-
tion of wheat induced by stripe rust, and combined them with visible spectral signatures
for wheat-stripe-rust monitoring [14]. In some scenarios when changes in crop spectral
reflectance are caused by diseases that are prone to being confused with other factors,
such as nitrogen–water stress and the growth stage, the spectral features may not be
sufficient for mapping [15,16]. Certain researchers have aimed to enhance the accuracy
of crop disease monitoring by integrating spectral features with meteorological and tex-
tural features. Guo et al. combined vegetation indices with textural features to enhance
the monitoring accuracy of wheat stripe rust; they found that the textural features ex-
tracted at different spatial resolutions significantly influenced the monitoring accuracy [17].
Zheng et al. conducted regional wheat-stripe-rust monitoring by integrating meteorologi-
cal data and Sentinel-2 data, demonstrating that the combination of meteorological and
spectral features improved the monitoring accuracy of wheat stripe rust [18].

The progression of diseases from infection to symptom development is a continuous
process, and certain researchers have attempted to improve monitoring and prediction
accuracy by using multi-temporal remote sensing images within the disease develop-
ment cycle. Based on the number of remote sensing images used, such studies can be
classified into two categories: (1) dual-temporal and (2) multi-temporal. In the case of
dual-temporal approaches, one remote sensing image is typically acquired before or early
in the disease onset, while the other is obtained during the middle or late stages of disease
development [19,20]. For example, Shi et al. constructed normalized two-stage vegetation
indices using two PlanetScope images to map the damage from rice diseases. The research
results demonstrated that the use of dual-temporal remote sensing images can mitigate
the impact of phenological differences on rice disease monitoring [21]. Compared to dual-
temporal approaches, multi-temporal remote sensing images provide more temporal infor-
mation for disease monitoring [22]. Anderegg et al. utilized hyperspectral canopy data from
14 different dates to extract spectral–temporal features for the purpose of monitoring Septo-
ria tritici blotch (STB). The results showed that the temporal changes in spectral reflectance
could characterize the severity of STB, which is crucial for the efficient selection of resistant
wheat varieties under field conditions [23]. Based on multi-temporal MODIS, Pryzant et al.
utilized long short-term memory neural networks (LSTM) to extract the temporal features
for predicting wheat stripe rust, thus successfully forecasting the occurrence of stripe rust
in Ethiopia [24]. Based on multispectral data at multiple time points within the wheat-blast
disease cycle, Gongora-Canul et al. quantified the severity of spike blast using a digital ap-
proach based on nongreen pixels and found that it was accurate and precise at moderately
low to high visual wheat-spike-blast severity levels [25].

In addition to temporal information, spatial information such as heterogeneous spatial-
distribution characteristics and farmland landscape features have also been widely used.
For example, Zhao et al. found that spatial information is crucial in the classification of
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heterogeneous crops, and the inclusion of spatial information can improve the performance
of classification [26]. Liu et al. used a point process model to explore the spatial distribution
patterns of pine wilt disease and quantitatively analyzed the response relationships be-
tween terrain factors, vegetation factors, human factors, and pine wilt disease [27]. Zhang
conducted a landscape pattern analysis based on a land cover dataset and found that the
more complex the land cover types and the larger the rice planting patch area, the higher
the peak incidence of rice bacterial leaf blight was [28]. The occurrence and development
of crop diseases and pests are the result of interactions between pathogens, hosts, and
the environment [29]. Different periods of agricultural environmental conditions and
crop growth statuses result in different spatial-distribution characteristics of diseases and
pests within a region, which can be used for disease and pest monitoring. For example,
Backoulou et al. first used supervised classification to distinguish between healthy and
stressed wheat, and then combined spatial pattern indicators extracted from multispectral
imagery, such as connectivity and the aggregation of patches, with topographic and soil
variables to successfully distinguish wheat that was stressed by Russian wheat aphid from
wheat that was stressed by other factors, such as drought and agronomic conditions [30].

The occurrence and prevalence of wheat stripe rust are influenced not only by pathogen
and environmental conditions, but also by other factors such as wheat variety resistance,
cropping systems, and topography [31–33]. These multiple factors contribute to a spatially
heterogeneous distribution of wheat stripe rust at the regional scale. Existing studies have
mostly focused on the fusion of multi-source data and the construction of key monitoring
features to improve disease monitoring accuracy, while paying less attention to the regional
distribution characteristics of the disease. In light of this, the specific objectives of this study
are as follows: (1) Based on the developmental patterns of wheat stripe rust in the study
area, integrate multi-source data including remote sensing, meteorological, and phenolog-
ical data to construct monitoring features closely related to wheat stripe rust. (2) Utilize
geographical detectors to select the optimal feature set for wheat-stripe-rust monitoring,
considering the spatial distribution characteristics of wheat stripe rust in the study area.
(3) Based on the final monitoring results, evaluate the effectiveness of geographical detectors
for stripe-rust monitoring.

2. Materials and Methods
2.1. Field Survey and Data Collection
2.1.1. Study Area and Field-Experimental-Data Acquirement

Field surveys of wheat yellow rust were conducted in Qishan County, Baoji City,
Shaanxi Province, China (34◦18′–34◦30′N, 107◦33′–107◦47′E) (Figure 1). The county, which
is one of the major grain production counties in China, has a cultivated land area of
35.3 thousand hectares, with the main crop being winter wheat. It is adjacent to the
over-wintering and over-summer regions of the Chinese wheat stripe rust, with abundant
sources of the pathogen [4]. And the area is located in the western part of the Guanzhong
Plain, which experiences a temperate semi-humid climate with an average annual tem-
perature and precipitation of 6~13 ◦C and 500~700 mm, respectively [34]. The suitable
climatic conditions coupled with sufficient fungal sources make the stripe-rust disease a
frequent and severe occurrence in the area. According to the statistics from the Agro-Tech
Extension Service Center in Qishan County, a severe infestation occurred in the study area
in 2021, with significant differences in its occurrence levels among the different regions
(http://jcnj.cbpt.cnki.net, accessed on 25 July 2022).

http://jcnj.cbpt.cnki.net
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Figure 1. The geographical location of the study area and spatial distribution of sample points.
(a) The distribution of wheat fields and survey points within the study area. (b) The approximate
location of the study area in Baoji City, Shaanxi Province, China.

The field survey experiment was conducted from 28th to 30th April 2021. A total of
94 sample points were investigated, including the disease index (DI) of wheat stripe rust
and the latitude and longitude coordinates of the sample points. The DI was measured
according to the “National Rules for the Investigation and Forecasting of Crop Diseases”
(GB/T 15795-2011) [35], and the specific calculation formula is shown in Equation (1):

DI = α× θ × 100, θ =
∑ (i×mi)

M
, α =

m
M

(1)

where α is the rate of diseased leaves, θ is the average severity of infection at the sample
point, i is the severity level of the leaf, which is divided into nine categories (0%, 1%, 5%,
10%, 20%, 40%, 60%, 80%, and 100%), mi is the number of leaves of severity level i, m is the
total number of diseased leaves at the sample point, and M is the total number of leaves
observed at the sample point. To avoid the influence of mixed pixels on the monitoring
results, the experiment selected a 10 m× 10 m area within a relatively uniform 20 m × 20 m
wheat field as the survey sample point. The five-point sampling method was employed to
determine the DI for each sample point, an area of 1 m × 1 m was selected at the center,
four corners of each survey sample point were taken to record the DI, and then the average
value was taken as the DI of the survey sample point. The coordinates of the sample points
were measured using a handheld Global Positioning System (GPS) receiver.
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2.1.2. Meteorological Data and Preprocessing

The meteorological data used in this study include daily meteorological data and
agricultural meteorological data. The daily meteorological data consist of the average
temperature (TEM), maximum temperature (HTEM), minimum temperature (LTEM),
relative humidity (RHU), sunshine duration (SSD), precipitation (PRE), and average
wind speed (WIN) recorded at the meteorological stations, which were downloaded
from the China Meteorological Data Service Centre. Based on the occurrence patterns
of wheat stripe rust in the study area, the daily meteorological data from surrounding
meteorological stations for the period from January to June 2021 in the study area were
obtained. To obtain continuous surface gridded daily meteorological data, we utilized a
digital elevation model (DEM) as a covariate and employed a thin plate smoothing spline
provided by ANUSPLINE software for spatial interpolation, with a resolution of 10 m [36].
The DEM used in the study was ASTER GDEM, downloaded from the Google Earth Engine
(GEE). The agricultural meteorological data were the wheat phenological data recorded at
agricultural meteorological stations, which provided detailed information about the time
when most of the wheat in the vicinity of these stations reached specific growth stages
(e.g., planting, heading, milk stage, etc.). We obtained wheat phenological data from the
Fengxiang agricultural meteorological station (34◦31′N, 107◦23′E) for the years 2019 to
2021. Based on this data, the wheat phenology in the study area were extracted and the
accuracy was verified.

2.1.3. Remote Sensing Data and Preprocessing

Sentinel_2 satellite data with less than 20% cloud cover were acquired from the
GEE, and these were surface-reflectance products that had undergone atmospheric and
radiometric correction, as well as cloud detection. A total of 49 usable Sentinel-2 images
were available for the study area from August 2020 to July 2021. Additionally, for the
Fengxiang agricultural meteorological station, 46 images were available for the periods
August 2019 to July 2020, as well as 43 images for August 2020 to July 2021. Each Sentinel-2
image underwent two preprocessing steps: cloud masking and resampling. Cloud removal
was achieved by using the ‘probability’ band from the S2_CLOUD_PROBABILITY product,
where pixels that had values greater than 65 were identified as clouds and subsequently
removed; in addition, each band of the Sentinel-2 image was resampled to 10 m. Both
steps were performed within the GEE platform. We employed a combination of decision
trees and multi-temporal phenological information to extract the wheat planting area. The
overall accuracy of the extraction results was verified using survey points and found to
be 98% [37].

2.2. Remote Sensing Monitoring of Wheat Stripe Rust at a Regional Scale Based on
Geographical Detectors

The remote sensing monitoring of wheat stripe rust at a regional scale based on
geographical detectors mainly includes the following: (1) extracting key phenologi-
cal stages of stripe-rust occurrence and development using Sentinel-2 time-series data;
(2) the construction of monitoring features by integrating the multi-source data with
phenological information, incorporating the spatial-difference information of the dis-
ease; and (3) employing geographical detectors to perform feature selection based
on the spatial distribution of wheat stripe rust in the study area and establishing a
monitoring model for disease detection. The overall research framework is illustrated
in Figure 2.
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Figure 2. Methodological framework. The overall framework can be divided into three parts:
(1) Construction of monitoring features based on phenological information. (2) Optimal selection of
monitoring features using geographic detectors. (3) Monitoring model.

2.2.1. Extraction of Key Phenological Stages in Wheat

To address the limitations of the shape model fitting (SMF), through which it is difficult
to describe the relationship between multiple phenological stages and to simulate the spatial
and temporal variations of each phenological stage, Liu et al. developed shape model fitting
via the separate phenological stage method (SMF-S) [38]. This method modifies the fitting
function of SMF and employs an iterative approach within a locally adaptive window for
shape matching. Compared to SMF, SMF-S provides a more reasonable spatial distribution
of extraction results and lower extraction errors. Therefore, in this study, the SMF-S model
was used to extract the key phenological stages of wheat in the study area. In the years of
severe disease outbreaks in the study area, wheat stripe rust typically began to appear in
the middle or late periods of green-up, and a large-scale epidemic was experienced during
the heading period. Based on the occurrence and development patterns of wheat stripe
rust in the study area, we extracted the key phenological stages of wheat, which include
the green-up, jointing, and heading stages.

The process of wheat phenology extraction was as follows: (1) Reference curve con-
struction: Sentinel_2 time-series images from 2019 to 2020 at the Fengxiang agricultural
meteorological station were utilized to build an NDVI time-series curve. The Savitzky–
Golay filtering algorithm that was improved by Chen et al. was applied to smooth the
NDVI curve [39]. Based on the wheat phenological data recorded at the Fengxiang agricul-
tural meteorological station from 2019 to 2020, the position of each phenological point on
the smoothed NDVI curve was determined. (2) Accuracy validation and phenology extrac-
tion: This was based on the Sentinel_2 time-series images of the study area and Fengxiang
agrometeorological station from 2020 to 2021. The phenology extraction was carried out by
using the constructed reference curves and the SMF-S model, and the accuracy verification
was then performed.

2.2.2. Multi-Source Feature Construction for Wheat-Stripe-Rust Monitoring

After being infected by wheat stripe rust, the chlorophyll content in wheat decreases,
which will, thus, lead to a reduction in the photosynthetic rate. As the disease progresses,
the leaf surface becomes damaged, transpiration increases, and the plant water content
decreases, resulting in leaf curling [40]. Based on the mechanisms of stripe-rust infection,
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we selected the vegetation indices related to wheat water content, chlorophyll content,
canopy structure and coverage, and the stress status, for wheat-stripe-rust monitoring.
The formulas for calculating these vegetation indices are shown in Table 1. Building upon
the extracted wheat phenology, we computed the vegetation indices for wheat during the
green-up, jointing, and heading stages for each pixel. If there were no available Sentinel_2
remote sensing images for a specific period, the nearest image was used as a replacement.
Additionally, we calculated single-date vegetation indices via the Sentinel_2 image for the
study area on 1 May 2021. Furthermore, we computed the normalized values and ratios of
each vegetation index from the green-up to jointing stages and from the jointing to heading
stages, as shown in Formulas (2) and (3):

VIn =
VI2 −VI1

VI2 + VI1
(2)

VIr =
VI2

VI1
(3)

where VI1 represents the vegetation index at the previous moment, and VI2 represents the
vegetation index at the subsequent moment.

Table 1. Vegetation indices that are sensitive to wheat stripe rust.

Correlation Vegetation Indices Formula

Water
content

Moisture Stress index, MSI [41] RSWIR/RNIR
Disease Water Stress Index, DSWI [42] (RNIR + RG)/(RSWIR + RR)

Shortwave Infrared Water Stress Index, SIWSI [43] (RNIR − RSWIR)/(RNIR + RSWIR)

Pigment
content

Green Leaf Index, GLI [44] (2RG − RR − RB)/(2RG + RR + RB)
Greenness Ratio Vegetation index, GRVI [45] RG/RR

Modified Chlorophyll-Absorption-Ratio Index, MCARIn [46] ((Rren − RR)− 0.2(Rren − RG)) ∗ (Rren/RR)
Red–Green–Blue Vegetation Index, RGBVI [47] (R2

G − RB ∗ RR)/(R2
G + RB ∗ RR)

Structure-Independent Pigment Index, SIPI [48] (RNIR − RB)/(RNIR − RR)
Normalized Difference Vegetation Index, NDVI [49] (RNIR − RR)/(RNIR + RR)

Green-Normalized Difference Vegetation Index, GNDVI [50] (RNIR − RG)/(RNIR + RG)
Excessive Green Index, ExG [51] 2RG − RR − RB

Vegetation
coverage

Atmospherically Resistant Vegetation Index, ARVI [52] (RNIR − 2RR + RB)/(RNIR + 2RR − RB)
Difference Vegetation Index, DVI [53] (RNIR − RR)
Enhanced Vegetation Index, EVI [50] 2.5(RNIR − RR)/(RNIR + 6RR − 7.5RB + 1)

Modified Simple Ratio Index, MSR [54] (RNIR/RR − 1)/(
√

RNIR/RR + 1)
Optimized Soil-Adjusted Vegetation Index, OSAVI [55] (RNIR − RR)/(RNIR + RR + 0.16)
Renormalized Difference Vegetation Index, RDVI [56] (RNIR − RR)/(

√
RNIR + RR)

Simple Ratio Index, SR [57] RNIR/RR

Stress status

Normalized Difference Vegetation Index Red Edge, NDVIreln [49] (RNIR − Rren)/(RNIR + Rren)
Normalized Red-edge 1 Index, NREDI1 [58] (Rre2 − Rre1)/(Rre2 + Rre1)
Normalized Red-edge 2 Index, NREDI2 [58] (Rre3 − Rre1)/(Rre3 + Rre1)
Normalized Red-edge 3 Index, NREDI3 [58] (Rre3 − Rre2)/(Rre3 + Rre2)

Plant Senescence Reflectance Index, PSRIn [59] (RR − RG)/Rren
Red-edge Disease Stress Index, REDSI [13] ((705− 665)(RRe3 − RR)− (783− 665)(RRe1 − RR))/(2RR)

Red-edge Inflection Point, REIP [60] 705 + 35((RR + RRe2)/2− RNIR)/(RRe1 − RNIR)
Triangular Vegetation Index, TVI [61] 0.5(120(RNIR − RG)− 200(RR − RG))

Band RB, RG , RR, RNIR, Rre1, Rre2, Rre3, RSWIR

Note: RB, RG , RR, RNIR, Rre1, Rre2, Rre3, RSWIR represents the bands B2, B3, B4, B5, B6, B7, and B11 of the Sentinel_2
imagery. Rren where n = 1, 2, or 3, corresponds to the three red-edge bands of Sentinel_2 imagery, namely,
B5, B6, B7.

The occurrence and development of crop diseases are closely related to the status of the
hosts and the environmental factors within a certain time range. For instance, in the early
stages of stripe rust spread, wheat fields with early planting in favorable environmental
conditions are more susceptible to infection due to their close proximity. Therefore, in this
study, we combined wheat phenology with environmental factors to extract the meteorolog-
ical monitoring features that influence the occurrence and development of wheat stripe rust
through a window analysis approach. We considered the green-up and jointing stages as
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the midpoint of the window and the heading as the endpoint; furthermore, we calculated
the average values of the meteorological features within the windows of lengths of 7, 15,
and 21 days, respectively. These features included the maximum temperature, minimum
temperature, average temperature, sunshine duration, relative humidity, precipitation, and
average wind speed. To investigate the relationship between long-term meteorological
variables and wheat stripe rust during different phenological stages, we also calculated
the average values of the aforementioned meteorological features from the green-up to the
jointing stages and from the jointing to heading stages.

2.2.3. Feature Selection for Disease and Pest Monitoring Using Geographical Detectors

After constructing the multi-source features for stripe rust monitoring, the next step
is to select appropriate monitoring features for modeling. Due to the spatial variation in
the distribution of wheat stripe rust within the study area, geographical detectors were
introduced for feature selection. Geographical detectors are valuable tools for exploring
spatial-data analysis, and they are primarily used to detect spatial differentiation and to
reveal the underlying driving forces. The core idea is that if a certain independent variable
has a significant impact on a dependent variable, their spatial distributions should exhibit
similarity [62]. In this study, we mainly utilized factor detection for the geographical
detectors. The factor detection involved the use of the q-value to indicate the explanatory
power of the independent variable X on the spatial distribution of the dependent variable
Y, expressed as follows:

q = 1−

L
∑

h=1
Nhσ2

h

Nσ2 (4)

where h is the number of strata or categories of the dependent variable X, and Nh and
N are the numbers of units in stratum h and the entire population, respectively. σh

2 and
σ2 are the variances of the samples within stratum h and the entire population, respec-
tively. The q-value ranges from 0 to 1, where a higher value indicates a stronger similarity
between the spatial distributions of the independent X and dependent variables Y, indicat-
ing the greater importance of the independent variable X. It should be noted that factor
detection is suitable for handling categorical variables, while the features constructed in
this study are continuous variables. To address this, we utilized the Optimal Parameters-
Based Geographical Detector Model (OPGD) proposed by Song et al. to discretize the
continuous data [63].

Considering that redundant features can reduce model monitoring accuracy and in-
crease computational complexity, this study employed the Spearman correlation coefficient
to remove redundant features. If the correlation between two features was greater than 0.8,
then the feature with the lower q-value was removed, while the feature with the higher
q-value was retained. However, certain features may have low q-values, but when com-
bined with other features they significantly improve the model’s monitoring accuracy.
Using a threshold-based method alone to select features may not yield the optimal monitor-
ing feature set. Therefore, this study utilized a combination of recursive feature elimination
(RFE) and RF methods to achieve the optimal feature selection. RFE is a backward selection
method that iteratively trains the model and removes features to gradually reduce the size
of the feature set until the best feature subset is selected [64]. The combination of RFE
and RF provides a powerful approach for feature selection, helping to identify the most
informative features for the monitoring model [65].

In order to validate the effectiveness of the geographical detectors in wheat stripe rust
monitoring, this study selected the commonly used ReliefF feature selection algorithm
for comparison. In recent years, the ReliefF algorithm has been increasingly adopted by
scholars in the remote sensing field and applied to various related research studies [66–68].
The core idea of ReliefF is to assess the discriminative ability of each feature variable with
respect to the k-nearest neighbor samples [69]. It increases the weight of features that
contribute to distinguishing samples of different classes while reducing the weight of



Remote Sens. 2023, 15, 4631 9 of 23

features that have a negative impact on distinguishing different class samples. In the end,
ReliefF provides weights for each feature based on its discriminative power.

2.2.4. Monitoring Modeling

Considering that in the early stages of stripe-rust infection, there is little spectral dif-
ference between healthy and diseased wheat at the canopy scale, to improve the reliability
and accuracy of monitoring, we classified survey points with DI ≤ 10 as healthy samples,
and those with DI > 10 as diseased samples. This transformed the modeling problem into
a binary classification task. Due to the limited number of survey points, 10-fold cross-
validation was employed to train and validate the models. The overall accuracy (OA) and
Kappa coefficient were used to evaluate the monitoring accuracy of the models. We selected
the Random Forest (RF), eXtreme Gradient Boosting (XGBoost), and Support Vector (SVM)
models for stripe-rust monitoring modeling.

RF has been widely used in agricultural remote sensing, such as crop area extraction,
wheat yield estimation, and crop pest and disease monitoring [70–72]. RF is an ensemble
learning model that constructs a strong learner by combining multiple independent decision
trees [73]. Previous results have shown that RF can achieve superior generalization ability in
small-sample training, which is suitable for our research [74]. XGBoost is also an ensemble
learning model, but it differs from RF in that it trains multiple decision trees in a serial
manner, with each tree being based on the predictions of the previous one. Compared to
RF, its ensemble method is more efficient [75]. SVM is one of the most commonly used
machine learning algorithms in vegetation pest and disease monitoring [22]. It predicts
input samples based on a small number of support vectors, and the large number of
redundant samples in the training set does not affect the prediction results. This model has
good robustness and is particularly suitable for learning classification in small samples [76].
Previous research has demonstrated that these three classification algorithms can be used for
disease monitoring and have high monitoring accuracy [16,20]. Furthermore, their model
operating principles differ, making them suitable for testing the generalization ability of
the feature set. XGBoost and SVM, in particular, were used to test the generalization ability
of the feature set.

3. Results
3.1. Wheat Key-Phenological-Stage Extraction Results

The accuracy of the extracted key phenological stages of wheat was validated using
the phenological data from the Fengxiang agricultural meteorological station for the years
2020–2021, as shown in Figure 3. For the green-up stage, the field observation date was
February 3rd, and most of the wheat in the extraction results were located on 4th February
and 12th February. As for the jointing stage, the field observations were made on 26th
March, and the extraction results showed that 75% of the wheat were in the jointing stage
between 24th March and 1st April. Regarding the heading stage, the field observation date
was 23rd April, and the extraction results indicated that the majority of the wheat reached
the heading stage on 24th April. The phenological extraction results demonstrated that dur-
ing the early growth stages, there were significant differences in the growth status among
the different wheat plots. However, as the wheat continued to grow, the growth status
gradually became more consistent, which is consistent with previous research findings [77].
Through validation, the extracted dates for various wheat phenological stages were found
to be highly consistent with the dates recorded at the agricultural meteorological station.
Based on the SMF-S model and the established reference curve, we extracted the key phe-
nological stages of wheat in the study area, as shown in Figure 4. The extraction results
indicated that the northwest and central regions of the study area exhibited significantly
earlier jointing and heading dates compared to other regions, which aligns with the findings
from the field surveys.
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Figure 3. (Left) column shows the extracted results of the wheat phenological stages around the
Fengxiang agricultural meteorological station. The (right) column displays a statistical analysis of
the pixel count in each extraction result. The x-axis represents time, while the y-axis represents the
proportion of pixels corresponding to that time in the entire extraction result.
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3.2. Feature Importance Analysis

In this study, we utilized the geographical detectors and ReliefF methods to calcu-
late the importance of the various features, and the top 20 ranked features are listed in
Figure 5. The results from the geographical detectors method revealed a strong correla-
tion between the temperature and the occurrence and development of wheat stripe rust.
Among the top 10 ranked features, 9 were related to temperature. Furthermore, among the
top 20 ranked features, 13 were temperature-related. Besides temperature, the sunshine
duration before heading also exhibited significant importance. In the ReliefF calculation
results, the top 10 ranked features included precipitation, sunshine duration, relative humid-
ity, and temperature, with precipitation and temperature having higher importance. Among
the top 20 ranked features, 7 were temperature-related, and 5 were precipitation-related.
Both the geographical detectors and ReliefF results consistently demonstrated that meteo-
rological features hold a greater weight when compared to spectral features. HTEM_H21,
TEM_H21, LTEM_H21, LTEM_J15, LTEM_H15, SSD_H21, LTEM_H7, RHU_H21, WIN_H21,
and PRE_JH are features that appeared in the results of both methods. This indicates that
the pre-heading meteorological conditions, particularly temperature, significantly influence
the development of wheat stripe rust in the study area.

Remote Sens. 2023, 15, x FOR PEER REVIEW 12 of 25 
 

 

  
(a) (b) 

Figure 5. Top 20 ranked features in the geographical detectors� and ReliefF�s calculation results. (1) 
Naming rules for the spectral features: xxx_t, xxx represents vegetation index, t represents the initial 
letter of the phenology, and MSR_H corresponds to the modified simple ratio (MSR) for wheat on 
the date of heading. It is worth noting that the two-stage normalized vegetation indices and two-
stage ratio vegetation indices are named nxxx_t and rxxx_t, respectively. For example, nMSR_JH 
represents the normalized value of MSR from the jointing to heading stages. (2) Naming rules for 
the meteorological features: xxx_tm, xxx represents the meteorological variable, t represents the in-
itial letter of the phenology, and m represents the window size or the initial letter of the phenology, 
e.g., SSD_H15 represents the average sunshine duration in the 15 days before the date of heading. 
(a) Geographical detectors� results; and (b) ReliefF results. 

In order to further explore the differences between the top-ranked features in the Ge-
ographical detector and ReliefF calculation results, we performed normalization on the 
top 20 features from both methods. Subsequently, we calculated the mean differences and 
F-statistic between the healthy and diseased samples. The F-statistic expressed the signif-
icance of the differences between the healthy and diseased samples, which is calculated 
as the ratio of the variance between the groups to the variance within groups. A higher F-
statistic value indicates a more significant difference between the healthy and diseased 
samples. Regarding the mean differences among the top 10 ranked features, except for the 
2nd and 6th features (where the geographical detectors� mean differences were signifi-
cantly larger than ReliefF), the mean differences for the other features were comparable 
between the two methods. As for the F-statistic, among the top 10 ranked features (with 
the exception of the 4th and 9th features), the geographical detectors exhibited much 
larger F-statistic values for the remaining 8 features when compared to ReliefF. From Fig-
ure 6, it can be observed that in the last 10 features, for the F-statistic values, ReliefF pro-
duced mostly larger values than the geographical detector method. The reason for this is 
that the top 10 features in the geographical detectors� results were ranked from 10th to 
20th in the ReliefF results. The results of the mean differences and F-statistic demonstrate 
that the top-ranked features selected by the geographical detector method, such as 
HTEM_H21, LTEM_H21, SSD_H21, etc., have better discriminative capabilities between 
the healthy and diseased samples. 

Figure 5. Top 20 ranked features in the geographical detectors’ and ReliefF’s calculation results.
(1) Naming rules for the spectral features: xxx_t, xxx represents vegetation index, t represents the
initial letter of the phenology, and MSR_H corresponds to the modified simple ratio (MSR) for wheat
on the date of heading. It is worth noting that the two-stage normalized vegetation indices and
two-stage ratio vegetation indices are named nxxx_t and rxxx_t, respectively. For example, nMSR_JH
represents the normalized value of MSR from the jointing to heading stages. (2) Naming rules for
the meteorological features: xxx_tm, xxx represents the meteorological variable, t represents the
initial letter of the phenology, and m represents the window size or the initial letter of the phenology,
e.g., SSD_H15 represents the average sunshine duration in the 15 days before the date of heading.
(a) Geographical detectors’ results; and (b) ReliefF results.

In order to further explore the differences between the top-ranked features in the
Geographical detector and ReliefF calculation results, we performed normalization on the
top 20 features from both methods. Subsequently, we calculated the mean differences and
F-statistic between the healthy and diseased samples. The F-statistic expressed the signif-
icance of the differences between the healthy and diseased samples, which is calculated
as the ratio of the variance between the groups to the variance within groups. A higher
F-statistic value indicates a more significant difference between the healthy and diseased
samples. Regarding the mean differences among the top 10 ranked features, except for
the 2nd and 6th features (where the geographical detectors’ mean differences were signifi-
cantly larger than ReliefF), the mean differences for the other features were comparable
between the two methods. As for the F-statistic, among the top 10 ranked features (with
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the exception of the 4th and 9th features), the geographical detectors exhibited much larger
F-statistic values for the remaining 8 features when compared to ReliefF. From Figure 6,
it can be observed that in the last 10 features, for the F-statistic values, ReliefF produced
mostly larger values than the geographical detector method. The reason for this is that
the top 10 features in the geographical detectors’ results were ranked from 10th to 20th in
the ReliefF results. The results of the mean differences and F-statistic demonstrate that the
top-ranked features selected by the geographical detector method, such as HTEM_H21,
LTEM_H21, SSD_H21, etc., have better discriminative capabilities between the healthy and
diseased samples.
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3.3. Monitoring Feature Selection

After removing the redundant features, as based on feature importance and the
correlation between features, we obtained the optimal monitoring feature set by using a
combination of RFE and RF, named RFE_RF. To prevent overfitting caused by having too
many features, we set a maximum limit of 30 features in the feature set. The final results
are presented in Table 2 and Figure 7. The optimal monitoring feature set obtained through
the combination of the geographical detectors and RFE_RF consisted of 11 features, while
the optimal monitoring feature set obtained through the ReliefF and RFE_RF combination
consisted of 6 features. The above two methods were named GD_RFE_RF and R_RFE_RF,
respectively. The optimal feature sets obtained by GD_RFE_RF and R_RFE_RF were
both composed of meteorological features and spectral features. It is noteworthy that
the spectral features in both optimal monitoring feature sets represented wheat pigment
content and stress status, e.g., SIPI and MCARI2 were used to characterize the wheat
chlorophyll content, while NREDI2 and REDSI were used to represent the wheat stress
status. Regarding the meteorological features, there were significant differences between
GD_RFE_RF and R_RFE_RF. The former set included features like wind speed, relative
humidity, temperature, and rainfall, while the latter set included features like sunshine
duration, temperature, and rainfall. Notably, HTEM_J21, PRE_GJ, and SIPI were present
in both optimal feature sets. Figure 7 shows that, compared to R_RFE_RF, most of the
feature sets obtained using GD_RFE_RF with different numbers of features exhibited
a higher accuracy.
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Table 2. The optimal monitoring feature sets obtained through GD_RFE_RF and R_RFE_RF.

Method Number Feature

Geographical
detectors 11 HTEM_H21, LTEM_H7, HTEM_GJ, HTEM_J21, PRE_GJ,

RHU_H15, WIN_J7, WIN_G21, NREDI2, SIPI, MCARI2
ReliefF 6 SSD_H21, PRE_H15, HTEM_J21, PRE_GJ, SIPI, REDSI
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GD_RFE_RF and R_RFE_RF. For GD_RFE_RF, the highest monitoring accuracy for the RF model
was achieved when the feature set contained 11 features. For R_RFE_RF, the RF model exhibited the
highest monitoring accuracy when the feature set contained 6 features.

Although the geographical detector method is based on the spatial distribution of the
independent variable X and the dependent variable Y for model computation, its resultant
value, the q-value, is a global value and cannot depict the spatial-distribution details of each
independent variable. To clarify the spatial relationships between the features in the optimal
monitoring feature set and DI, this study employed the multiscale geographically weighted
regression (MGWR) method for further exploration. MGWR allows for the weighting and
modeling of observation points at different spatial scales. During the MGWR modeling
process, we standardized each feature to eliminate the dimensional differences between
the different features. Figure 8 illustrates the regression coefficients of the 11 features at all
sample points.

The constant term, also known as the intercept, represents the average level of the
dependent variable’s predicted values. In this study, it was correlated with the average
DI, where higher values indicated more severe disease in the sampled points. The spatial
distribution of the intercept revealed a gradual reduction in the severity of wheat stripe rust
from the north to south. After standardization, the absolute values of the coefficients
of the independent variables can be used to evaluate their impact on the dependent
variable. Larger absolute values indicate a greater importance in the variable. Based
on the absolute values of the regression coefficients, the features can be categorized into
four levels as follows: (1) 0~0.1: LTEM_H7, PRE_GJ, RHU_H15, MCARI2—these features
had the smallest importance. (2) 0.1~0.2: HTEM_H21, HTEM_GJ, NREDI2—these features
had a relatively smaller importance. (3) 0.2~0.3: WIN_J7, WIN_G21—these features had a
relatively higher importance. (4) 0.3~0.4: HTEM_J21, SIPI—these features had the highest
importance. The spatial distribution of the regression coefficients of all the features showed
that HTEM_H21, HTEM_J21, SIPI, and WIN_J7 exhibited significant differences in the
coefficients across different regions. For example, the spatial distribution of the regression
coefficient for HTEM_H21 indicated that the average maximum temperature in the 21 days
before heading had a greater impact on the occurrence and development of wheat stripe
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rust in the northern region compared to the southern and central regions. Apart from
the above four features, the regression coefficients of the other features did not exhibit
significant spatial-distribution differences across the entire study area.
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3.4. Accuracy Validation of Monitoring Results

After obtaining the optimal monitoring feature set, we further optimized the RF
monitoring model by using a grid parameter search. XGBoost and SVM were primarily
used to test the stability of the optimal monitoring feature set. Six monitoring models
were constructed, namely GD_RF, GD_XGBoost, GD_SVM, R_RF, R_XGBoost, and R_SVM.
The optimal parameters for each monitoring model and the confusion matrices for the
monitoring results are presented in Tables 3 and 4, respectively. The monitoring results
show that GD_RF achieved the highest overall accuracy and Kappa coefficient, with 87.2%
and 0.743, respectively. Compared to R_RF, it exhibited an improvement of 3.2% in its
overall accuracy and 0.064 in its Kappa coefficient. When applying the optimal monitoring
feature sets to XGBoost and SVM, there was a certain degree of decline in the monitoring
accuracy. However, the optimal feature set obtained using the geographical detector
method still demonstrated the highest monitoring accuracy. For XGBoost, GD_XGBoost
achieved an overall accuracy of 80.9% and a Kappa coefficient of 0.614, which were 2.7%
and 0.044 higher, respectively, than R_XGBoost. For SVM, GD_SVM achieved an overall
accuracy of 74.5% and a Kappa coefficient of 0.484, which were 4.3% and 0.087 higher,
respectively, than R_SVM. The model monitoring results indicate that the consideration of
the spatial distribution characteristics of the disease can enhance the monitoring accuracy
of wheat stripe rust.



Remote Sens. 2023, 15, 4631 16 of 23

Table 3. Optimal parameter settings for each monitoring model.

Method
Parameters of RF Parameters of XGBoost Parameters of SVM

n_Estimators max_Depth n_Estimators max_Depth C Gamma

Geographic
Detector 23 5 14 2 2 0.05

ReliefF 15 3 11 3 1 0.05

Table 4. Confusion matrix of the monitoring results of each model.

Method Model Healthy Infected Sum UA OA Kappa

Geographic
Detectors

RF

Healthy 45 5 50 90.0%

87.2% 0.743
Infected 7 37 44 84.9%

Sum 52 42 94

PA 86.5% 88.1%

XGBoost

Healthy 40 10 50 80.0%

80.9% 0.614
Infected 8 36 44 81.8%

Sum 48 46 94

PA 83.3% 78.3%

SVM

Healthy 40 10 50 80.0%

74.5% 0.484
Infected 14 30 44 68.2%

Sum 54 40 94

PA 74.1% 75.0%

ReliefF

RF

Healthy 43 7 50 86.0%

84.0% 0.679
Infected 8 36 44 81.8%

Sum 51 43 94

PA 84.3% 83.7%

XGBoost

Healthy 42 8 50 84.0%

78.7% 0.570
Infected 12 32 44 72.7%

Sum 54 40 94

PA 77.8% 80.0%

SVM

Healthy 39 11 50 78.0%

70.2% 0.397
Infected 17 27 44 61.4%

Sum 56 38 94

PA 69.6% 71.1%
Note: OA, PA, and UA represent overall accuracy, producer accuracy, and user accuracy, respectively.

Based on the above monitoring models, we mapped the occurrence of the wheat-
stripe-rust area across the entire study area, as shown in Figure 9. It can be observed that,
except for R_SVM, the monitoring results of all other models exhibited the same spatial-
distribution trend: the most severe disease occurrence was in the northwest wheat fields,
while the central fields showed relatively mild occurrences, and the southern and other
regions had the lowest occurrence rates. Further analysis of the spatial distribution details
in the GD_RF and R_RF monitoring results revealed that the distribution of wheat stripe
rust in GD_RF was more concentrated. For instance, in the central region, wheat stripe rust
was mainly concentrated along the riverbanks, with particularly few occurrences in other
fields. On the other hand, in the R_RF monitoring results, aside from the riverbanks, wheat
stripe rust appears in patches in other fields, rather than being concentrated in specific
areas. As the study area is one of China’s major grain-producing counties, the timely
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prevention and control of wheat stripe rust is a key focus of the local government’s work.
The government implements various measures, such as spraying pesticides in advance,
to prevent the large-scale spread of stripe rust (http://nyncj.baoji.gov.cn/, accessed on
11 September 2022). Compared to R_RF, GD_RF’s monitoring results are more consistent
with the actual situation. When applying the two optimal monitoring feature sets to
XGBoost and SVM, the feature set derived from the geographical detector model still
showed a higher stability, with no significant spatial-distribution differences in the three
models’ monitoring results regarding wheat-stripe-rust occurrences. However, when
applying the feature set derived from ReliefF to SVM, substantial discrepancies were
observed when compared to XGBoost and RF. These results demonstrate that the feature
set extracted based on the geographical detector model exhibits a higher stability compared
to ReliefF.
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4. Discussion
4.1. Analysis of Spatial-Distribution Differences of Wheat Stripe Rust in the Study Area

According to the theory of disease triangle, the occurrence and epidemiology of wheat
stripe rust is the result of the interaction of fungal sources, hosts and habitat conditions [78].

http://nyncj.baoji.gov.cn/


Remote Sens. 2023, 15, 4631 18 of 23

The spores of the rust fungus are transmitted over long distances by the wind, and rely
on their own gravity or rainfall for landing [79]. Figure 10 shows that the northwestern
wheat fields are close to the foothills; the complex terrain can provide more obstruction
during spore transport. Compared to the flat central and southern regions, spores are
more likely to accumulate in the northwestern region, providing ample pathogens for
the occurrence of stripe rust. At the same time, the intricate terrain also increases the
difficulty of wheat-stripe-rust prevention and control, leading to potential gaps in rust
control measures. Previous studies have found a close relationship between the timing
of crop planting and the severity of disease occurrence [80]. For example, Pan found
that the earlier winter wheat is planted, the earlier stripe rust occurs and the more severe
the disease becomes [81]. As indicated by the results of wheat phenology extraction in
Section 3.1, wheat planting generally occurs earlier in the northwestern region. The early
enclosure of wheat fields in this region creates a closed and conducive environment for
the early spread of wheat stripe rust. In addition, the above-average rainfall in the first
half of 2021 compared to previous years further accelerated the spread of stripe rust. These
multiple factors have led to a higher incidence of wheat stripe rust in the northwestern
region compared to other areas. Additionally, in the central region, wheat stripe rust mainly
occurred in fields located near riverbanks. These areas received more irrigation due to their
proximity to rivers, resulting in higher soil moisture levels. The moist field environment
facilitates the infection and transmission of wheat stripe rust [82].
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4.2. Analysis of the Performance of Spectral Features and Meteorological Features

After infection with stripe rust, physiological and biochemical parameters of wheat
undergo changes, leading to differences in canopy spectra between healthy and infected
wheat [11]. The current main research direction focuses on selecting or constructing key
vegetation indices for stripe-rust monitoring based on the spectral response mechanism of
infected wheat [12]. For example, Ruan et al. used a combination of ReliefF and sequential
forward selection to obtain the optimal feature set for stripe-rust monitoring at different
growth stages [35]. Their research results showed that at the heading stage, NDVI for rep-
resenting wheat pigment content, DSWI for representing wheat water content, and REDSI,
TVI, PSRIre2, NDVIre2 for representing wheat stress status were the optimal monitoring
feature set. In this study, only SIPI, MCARI2, and NREDI2 were used, and spectral features
representing wheat water content were not included. In the study area, farmers select
wheat varieties under the guidance of local governments, primarily including XiNong822,
BaiNong207, and others. These wheat varieties exhibit a certain level of resistance to stripe
rust while maintaining relatively high yields. Wu et al. found that disease-resistant wheat
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showed a slow decline in its relative water content after infection with stripe rust, followed
by a recovery, thus leading to a lower reduction in relative water content compared to
healthy wheat [83]. Additionally, the study did not incorporate spectral features represent-
ing wheat canopy structure. Wheat typically exhibits leaf curling symptoms only in the
later stages of infection, leading to a reduction in canopy cover [40]. However, the most
infected wheat was at the early and middle stages of disease development. These factors
contribute to the diminished significance of spectral features used to characterize the water
content and the canopy structure of wheat.

The propagation, infestation, and reproduction of stripe rust require suitable environ-
mental conditions; for example, high-humidity and low-temperature environments are
more favorable for spore infestation and reproduction [84]. Figure 8 demonstrates the close
correlation between wind speeds (WIN_J7, WIN_G21) during the green-up and jointing
stages and the development of wheat stripe rust. This is mainly attributed to the study area
being located in a spring epidemic region of wheat stripe rust in China, where the severity
of the disease depends on the timing and quantity of spore introduction in the spring [4].
Wind serves as a crucial carrier for spore dissemination, controlling the spread distance
and density of spores, thus influencing the early spread of wheat stripe rust. Temperature
and humidity are key factors influencing the occurrence and development of wheat stripe
rust [85]. Spore infection requires dew, and higher relative humidity leads to increased dew
formation, subsequently elevating the incidence of stripe rust [80,86]. Temperature mainly
affects the efficiency of spore infection. The MGWR regression coefficients showed that
temperature (HTEM_J21 and HTEM_H21) had a relatively higher importance. However,
humidity (RHU_H15) contributed the least to the development of wheat stripe rust in the
study area. This was mainly because, in 2021, the precipitation in the study area was much
higher than usual for the same period. Spore invasion in wheat requires a suitable relative
humidity that is sustained over a period of time; moreover, excessive precipitation can
have an adverse effect, leading to the decreased importance of humidity.

4.3. Discussion for Next Steps for Research

This study has improved the accuracy of stripe-rust monitoring by incorporating the
spatial-distribution differences of the disease. However, there are still some limitations that
need to be addressed in future research. Firstly, under complex field conditions, crops are
affected by multiple biotic and abiotic stressors (water, nutrients, pests and diseases, etc.),
which leads to changes in physicochemical parameters [87,88]. Multi-spectral satellite data,
due to their lower spectral resolution, have limited capability in distinguishing among
multiple stressors. So how to utilize hyper-spectral data with higher spectral resolution
to construct key vegetation traits for distinguishing multiple stressors is the focus of our
next research. Secondly, this study only utilized meteorological and remote sensing data.
Considering that wheat stripe rust is also influenced by multiple factors, such as topography
and soil moisture, future research should incorporate more factors to improve the model’s
interpretability and applicability [31,82]. Additionally, this study only obtained one year of
survey data for method validation. To further validate the effectiveness and applicability
of this method, we plan to conduct multi-year continuous surveys in multiple wheat-rust
epidemic areas in the future to obtain sufficient data to support our research. Finally,
the spatial distribution information of the disease was only used during feature selection.
In the future, it is worth considering incorporating this information into the monitoring
model-building process. For instance, this could be achieved by adopting deep learning
frameworks like Spatial_Net, where the study area could be adaptively divided into several
sub-regions, and using neural network models to explain the spatial-distribution process
of the disease [89].

5. Conclusions

Based on the spatial-distribution characteristics of wheat stripe rust in the experimental
area, this study proposed a wheat-stripe-rust monitoring feature selection method that
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uses the geographical detectors. The research results demonstrate that, compared to
ReliefF, the top-ranking features obtained through geographical detectors exhibit a stronger
discriminative ability to the disease. Simultaneously, the optimal monitoring feature set
selected using geographical detectors displays a higher monitoring accuracy and stability.
The findings of this study demonstrated that consideration for the spatial-distribution
differences of the disease can enhance monitoring accuracy and reliability, thus providing
valuable data and methodological support for the precise prevention of wheat stripe rust
and the ensuring of food security.
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