
Citation: Neupane, A.; Sawada, Y.

Performance Assessment of Irrigation

Projects in Nepal by Integrating

Landsat Images and Local Data.

Remote Sens. 2023, 15, 4633. https://

doi.org/10.3390/rs15184633

Academic Editors: No-Wook Park,

Kiwon Lee and Kwangseob Kim

Received: 31 July 2023

Revised: 13 September 2023

Accepted: 19 September 2023

Published: 21 September 2023

Correction Statement: This article

has been republished with a minor

change. The change does not affect

the scientific content of the article and

further details are available within the

backmatter of the website version of

this article.

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Performance Assessment of Irrigation Projects in Nepal by
Integrating Landsat Images and Local Data
Adarsha Neupane * and Yohei Sawada

Department of Civil Engineering, The University of Tokyo, Tokyo 113-8656, Japan;
yohei.sawada@sogo.t.u-tokyo.ac.jp
* Correspondence: neupane-adarsha123@g.ecc.u-tokyo.ac.jp

Abstract: With growing global concern for food and water insecurity, an efficient method to monitor
irrigation projects is essential, especially in the developing world where irrigation performance is
often suboptimal. In Nepal, the irrigated area has not been objectively recorded, although their
assessment has substantial implications for national policy, project’s annual budgets, and donor
funding. Here, we present the application of Landsat images to measure irrigated areas in Nepal
for the past 17 years to contribute to the assessment of the irrigation performance. Landsat 5 TM
(2006–2011) and Landsat 8 OLI (2013–2022) images were used to develop a machine learning model,
which classifies irrigated and non-irrigated areas in the study areas. The random forest classification
achieved an overall accuracy of 82.2% and kappa statistics of 0.72. For the class of irrigation areas,
the producer’s accuracy and consumer’s accuracy were 79% and 96%, respectively. Our regionally
trained machine learning model outperforms the existing global cropland map, highlighting the need
for such models for local irrigation project evaluations. We assess irrigation project performance and
its drivers by combining long-term changes in satellite-derived irrigated areas with local data related
to irrigation performance, such as annual budget, irrigation service fee, crop yield, precipitation, and
main canal discharge.

Keywords: Landsat; random forest classification; performance assessment; irrigation; cropland map;
remote sensing; satellite image

1. Introduction

With the rapid increase in population and growing threat of climate change, there is a
global concern for food security [1–3] and water security [4]. It emphasizes the importance
of proper irrigation facilities, reliable cropland maps, and agricultural intensification,
particularly in developing countries whose economies are dependent on agriculture. Thus,
the improvement of the performance of existing irrigation projects has become important.
To improve the performance of irrigation projects, cost-efficient and objective assessments
of the performance of irrigation projects are necessary.

Data of irrigated areas have various applications in diverse fields such as water
resources management [5], assessment of climate change impacts on irrigation [6], and
modeling water exchange in a coupled atmosphere and land surface models [7]. However,
in developing countries, like Nepal, the irrigated area has been recorded non-scientifically,
relying on visual inspection and local information from local people. However, the recorded
irrigated area has substantial implications for donor funding, national policy, annual
budgets of projects, and other relevant decision-making processes.

To improve the capability of monitoring the irrigated areas in developing countries,
remote sensing serves as a promising tool because of its ability to monitor land surface
conditions in a cost-effective way [8] with high accuracy [2,9]. While there are several
global land use land cover (LULC) products that provide information about global crop-
land extent, such as Globcover (GLC; 1 km), Moderate Resolution Imaging Spectrora-
diometer (MODIS) land cover data (MCD12Q1; 500 m), and the European Space Agency’s
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land cover product (300 m) [10], numerous studies [2,11] map the global cropland extent.
Pittman et al. [11] used multi-temporal MODIS data to prepare a global cropland extent
map, whereas Potapov et al. [2] conducted a global analysis of cropland area changes from
2000 to 2019 using Landsat ARD (Analysis Ready Data). However, the applicability of such
globally trained cropland maps for a local or regional irrigation performance assessment
was unclear.

Furthermore, at local and regional scales, numerous studies have employed various
machine learning algorithms on satellite-derived images to calculate irrigated areas, utiliz-
ing different types of sensors, as summarized in Table 1. However, in these studies, they
either took the satellite image of a particular period or used only a single sensor to perform
the time series evaluation before the classification, so that their study periods were not long
enough to investigate the long-term changes in irrigation performance. Moreover, they
focused only on the computation of the irrigated area without any complex quantitative
analysis governing the performance of the irrigation system.

Table 1. Current trends to classify irrigated area using remote sensing.

Satellite Type Sources Classification
Algorithm Purpose

Landsat

[1] Random Forest Quantify the performance of 79 irrigation
schemes across Sub-Saharan Africa for 2014–2018

[9] Support Vector Machine Quantify changes in irrigated areas between 1987
and 2015 in Burkina Faso

[12] Maximum Likelihood Monitor the expansion of Irrigated Areas for
1988, 2000, and 2009 in Kou Watershed

Landsat + MODIS

[13] Single Decision Tree Map irrigated agricultural area of Ghana for
2000–2001

[14] Random Forest Monitor agricultural expansion for the years
2001, 2007, and 2014 in Burkina Faso

MODIS

[15] Single Decision Tree Develop high-resolution irrigated area map of
India for 2000 to 2015

[16] Single Decision Tree Map annual irrigated areas in Afghanistan from
2000 to 2013

[17] Unsupervised Map irrigated area of Krishna River Basin, India
for 2000–2001

Landsat + Sentinel-2 [18]

Random Forest
Comparison of six supervised classification

approaches in the detection of irrigated areas in
Southern Italy and found Random Forest as one

of the best performers

Support Vector Machine Boosted
Decision Tree

Single Decision Tree
Artificial Neural Network

k-Nearest Neighbor

It is beneficial to evaluate the performance of irrigation projects and its drivers by
integrating satellite-based irrigation maps and other local data. The performance of several
irrigation projects has been assessed utilizing both remotely sensed irrigation performance
indicators, such as relative evapotranspiration, delivery performance ratio, drainage ratio,
depleted fraction, crop water productivity, and so on by [19–21], and socio-economic in-
dicators, such as grain yield, price ratio, and water productivity by [22]. Kumar [23] and
Nikam et al. [24] combined the remote-sensing-based estimates with the water release data
from the project and other field observations data. Similarly, Higginbottom et al. [1] exam-
ined the relationship between irrigation scheme performance and explanatory variables,
the underlying drivers, with a tendency to over-promise and under-deliver in scheme
planning for irrigation schemes of Sub-Saharan Africa. However, a thorough evaluation of
an irrigation project’s performance and its drivers have not been carried out by comparing
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the irrigation performance indicators based on relevant local data with the satellite-derived
irrigation area.

In the context of Nepal, national-scale agricultural land cover maps were developed
using MODIS 250 m NDVI time series data for the year 2016 [25], temporal rice-growing
area and land-use change maps were provided using MODIS 500 m time series data [26],
and 30 m resolution maps were generated through land suitability assessments and a
land allocation model [27]. However, there is a gap in the availability of local-level crop-
land maps utilizing high-resolution satellite imagery for evaluating long-term changes in
cropland areas. Additionally, while several studies assessed the performance of irrigation
projects in Nepal [28–30], these assessments primarily focused on the physical structure
and institutional performance of Water User’s Associations, the effects of engineering in-
frastructure and governance structure, or the examination of the design aspects of irrigation
systems. A comprehensive assessment of irrigation projects using irrigation performance
indicators and local data has not yet been conducted.

Within this context, the objectives of this study were to

• Develop a locally trained cropland classification map and quantify changes in cropland
areas from 2006 to 2022 using Landsat 5 TM and Landsat 8 OLI for irrigation projects
in Nepal;

• Assess the performance of irrigation projects by utilizing remote-sensing-derived
irrigated area data in conjunction with local data;

• Analyze the effectiveness of global datasets at the local or regional levels by comparing
the global cropland map with our locally trained map.

In Section 2, we show the location map of the irrigation projects selected for this study.
In Section 3, we first describe the relevant data used and the general image preprocessing
steps, and then, we discuss the methodology used to classify irrigated areas from non-
irrigated ones. Subsequently, in Section 4, we present the results, including locally trained
cropland classification maps obtained from the study, accuracy assessments, comparisons
with the global cropland map, and the variables used to assess the performance of the
irrigation project. Next, in Section 5, the Discussion section, we compare the findings of
this study with previous studies and discuss the limitations and implications of the applied
techniques. Finally, in the last section of the paper, we draw conclusions from the study.

2. Study Area

Sunsari–Morang Irrigation Project (SMIP) is the largest irrigation project in Nepal,
whose command area is 68,000 ha. We focused on SMIP to collect training and valida-
tion points to develop our cropland classification method. To check the robustness of the
methodology, our developed methods were also applied to the Bagmati Irrigation System
(BIS), Nepal′s second-largest irrigation project with a command area of 45,600 ha. Figure 1
shows the location of these two irrigation projects. During monsoon-driven agricultural
season, typically known as Kharif season in South Asia, the irrigated areas of SMIP and BIS,
recorded by the Department of Water Resources and Irrigation, Nepal, were 66,000 ha and
39,700 ha, respectively, for every year since 2010 [31] (p. 73), [32] (p. 55), [33] (p. 62), [34]
(p. 64), [35] (p. 67), [36] (p. 65), [37] (p. 71), [38] (p. 81), [39] (p. 79), [40] (p. 83), [41] (p. 87).
These irrigated areas are, in fact, recorded non-scientifically by the authorized governmental
body.

In both regions, farmers grow a variety of crops throughout the year. Major field crops
in these areas are paddy, wheat, maize, sugarcane, and several other vegetable crops. In
Nepal, a subsistence-based economy, most farmers use the staple crop, paddy, as their
primary production, especially in the Kharif season. Due to the reliability of irrigations
service in the Kharif season, supported by the rainfall due to the ongoing monsoon, the
farmers of the study areas plant paddy as their principal crop during this season. During
the Kharif season, the usual planting dates for paddy vary from June to July, and harvesting
dates are from late September to early November.
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3. Materials and Methods
3.1. Methodological Framework

In our proposed method, the cropland classification maps from 2006 to 2022 in the
study areas were provided using the Random Forest classifier in the Google Earth Engine
platform. We focused on classifying irrigated areas for paddy so that Landsat images
for July to October, the growing season of paddy, were collected throughout the study
period. Typically, there is an active monsoon during the majority of chosen time; thus,
almost all the satellite images retrieved in this study had cloud cover. Cloud masking was
performed in every image to make cloud-free composites. Depending upon the quality
of the cloud-free image collections, the cloud-free composites were grouped as 2-year
period in the case of Landsat 8 OLI and 3-year period in the case of Landsat 5 TM. The
image composites were enhanced by adding NDVI and EVI bands, as those spectral indices
were highly sensitive to vegetation. Spectral matching of Landsat 5 TM images with the
reference image, obtained by taking the median of Landsat 8 OLI image collections from
2013–2014 to 2021–2022 periods, was performed using NDVI and EVI bands. The median
image of those enhanced image composites was used for classification using the Random
Forests classifier. Training points were taken from high-resolution Google Earth images
and Landsat 8 2021–2022 images for three different classes: Agriculture, Forest/Pastures,
and Non-Agriculture. Those training points were used to train the classifier. After that,
the classified images were smoothed to remove the noises and enhance the image′s visual
quality. Then, the irrigated area was separated from the non-irrigated area, and the sum
of pixels classified as Agriculture class in the smoothed image was designated as the total
irrigated area.

The irrigation project’s performance assessment was performed using the cropland
classification maps and variables collected from various sources. The delivered irrigated
area from the classified satellite imageries was compared with the irrigated area recorded
by the authorized governmental body, the Department of Water Resources and Irrigation
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(DWRI). The discrepancy in those two irrigated areas was analyzed. The overall assessment
of the irrigation projects was performed by comparing the satellite-derived irrigated area
with various variables such as yield, irrigation service fee (ISF), project annual budget,
main canal discharge, and amount of precipitation contributing to the command area.
Those variables included (1) socio-economic performance indicators: yield and ISF and
(2) factors that influenced the performance of an irrigation project: project annual budget,
main canal discharge, and amount of precipitation. Figure 2 shows the general overview of
the proposed method.
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3.2. Remote Sensing
3.2.1. Data Used

We used Landsat 5 TM and Landsat 8 OLI surface reflectance Level 2, Collection 2, and
Tier 1 image collections from July to October for the time series evaluation of the irrigation
projects. Those images were downloaded from Earth Engine Data Catalog [42,43] from
United States Geological Survey (USGS). Blue, Green, Red, and Near-Infrared (NIR) bands
were used for the image classification, and a QA_PIXEL band was used for masking the
clouds. Landsat 5 TM image collections were used from 2006 to 2011, and Landsat 8 OLI
from 2013 to 2022. Due to the unavailability of images in 2012, no analysis was performed
for that particular year. Through visual interpretation, the training samples were manually
selected using high-resolution Google Earth imagery along with the Landsat 8 metrics for
the 2021–2022 period [1,2]. The GPS coordinates were collected during the field visit to the
project’s command area, which was later used for validation.

3.2.2. Google Earth Engine

We used the Google Earth Engine (GEE) cloud environment for the entire assessment,
which includes satellite image visualization, classification, and command area computation
of this study. GEE is a cloud-based platform that provides the capability to retrieve
massive satellite images and perform advanced image processing using machine learning
algorithms, enabling scientific analysis and visualization of geospatial datasets [44,45].
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3.2.3. Image Preprocessing

We used atmospherically corrected surface reflectance derived from the data produced
by Landsat 5 TM and Landsat 8 OLI. Such Level 2 surface reflectance products already
include several preprocessing steps, such as atmospheric correction, which enhances the
usability of the data for various applications. However, image mosaicking, cloud masking,
and implementation of the scaling factor were necessary before the images were used for
further analysis and classification.

Image Mosaicking

To create a cohesive and continuous composite image for the study area, image
mosaicking, which involves combining multiple satellite images [46], was conducted. The
study area, Sunsari–Morang Irrigation Project (SMIP), falls on two Landsat tiles, having
a path/row combination of 140/41 and 140/42. That is why the region of interest (ROI)
was defined to cover the entire study area, including the mosaicked images. The image
mosaicking was implemented in GEE. However, Bagmati Irrigation System (BIS) only
falls on one Landsat tile—141/41. In this case, we defined the region of interest without
performing the image mosaicking.

Cloud Masking

The satellite images used in this study were masked for cloud cover before classifica-
tion and further analysis. Cloud masking aims to separate cloud pixels from the rest of the
image, allowing for a more accurate and reliable analysis of the underlying features. Since
the study area had monsoon seasons throughout the study period from July to October,
most of the images had cloud cover, making it challenging to obtain cloud-free images
that could be used for cropland classification. Thus, the cloud masking algorithm was
employed for masking the clouds. A binary mask was created for Bit 0, Bit 1, Bit 2, Bit 3,
and Bit 4 of the QA_PIXEL band for both Landsat 5 TM and Landsat 8 OLI. Similarly, a
binary mask was also created for the QA_RADSAT band for both satellites.

Scaling Factor

The optical and thermal bands were converted from digital number (DN) to reflectance
and brightness temperature, respectively, using the scaling factor in this study prior to
further analysis and classification of the image. The data provided for ‘Scale’ and ‘Offset’
for various optical and thermal bands on the Earth Engine Data Catalog for both the
satellites, [42] for Landsat 5 TM and [43] for Landsat 8 OLI, were used for this operation.

3.2.4. Image Composites

We took two years of image composites for Landsat 8 OLI and three years for Landsat
5 TM. From several sensitivity analyses, we found two years of cloud-free image composites
yielded a complete image throughout the composite periods, a total of five, from 2013 to
2022 for Landsat 8 OLI. However, the three-year cloud-free image composite only yielded
a reasonable result for Landsat 5 TM for two composite periods from 2006 to 2011. No
retrievable image was available for 2012 in Landsat 5 TM, so this particular year was
neglected in our study.

3.2.5. Spectral Indices

We chose spectral indices, NDVI and EVI, which are highly sensitive to vegetation’s
presence and vigor. NDVI has been widely used as an indicator for irrigated areas [18]
since it detects changes in vegetation reflectance, especially for the forest, agriculture, and
crop types [15]. Similarly, EVI for cropland mapping [8] can provide valuable insights
into vegetation conditions, stress levels, and crop health. Thus, NDVI and EVI bands
were added to the original bands of the collection of images grouped as cloud-free image
composites, and enhanced collection composites were obtained. Then, the median images
for each enhanced collection composite were computed and used for classification.
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3.2.6. Spectral Matching

Spectral matching [26,47] was performed on enhanced image composites of Landsat
5 TM before classification. We obtained unsatisfactory results when we directly applied the
same classifier trained with high-resolution Google Earth image and Landsat 8 OLI image
to Landsat 5 TM images due to the differences in spectral characteristics between the two
satellite sensors.

To address this issue, a two-step approach was taken. Firstly, a reference image was
obtained by computing the median of all the enhanced image composites for Landsat 8 OLI.
Secondly, the NDVI and EVI bands of the enhanced images of Landsat 5 TM were then
subtracted and multiplied from the corresponding NDVI and EVI bands of the reference
image. The NDVI difference and NDVI ratio were applied to the NIR band of Landsat
5 TM enhanced image, producing a matched NDVI band. The same technique was applied
to compute the matched EVI band. Adding these matched NDVI and EVI bands to the
Landsat 5 TM enhanced image composites, a set of matched image composites suitable for
classification was obtained.

The NIR band was explicitly chosen for spectral matching due to its significance in
vegetation analysis, as it captures the reflectance of healthy vegetation, which is typically
higher in the NIR region. Applying spectral matching to the NIR band aims to ensure
consistent and comparable spectral information related to vegetation, including crops,
across different images. This process enhances the accuracy and comparability of cropland
classification by reducing spectral variations and ensuring consistent representation of
vegetation-related features across different images or datasets.

3.2.7. Feature Extraction

The extraction of features for the training dataset was performed, covering the spatial
extent of the entire study for the 2021–22 period. The training points were collected for
three classes: Agriculture, Non-Agriculture, and Forest/Pastures. The number of training
samples used per class was
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3.2.8. Cropland Classification

We performed the cropland classification of the median image using the Random
Forest (RF) classifier [1,8,10], a supervised classification technique. The RF classifier′s
accuracy and output were insensitive to variations in the number of trees and the maximum
depth of each tree. This feature demonstrates the classifier′s robustness against overfitting in
various settings. We performed the experiments with the various combinations, including
50/50, 75/75, 100/75, 100/100, 200/100, 200/200, 500/100, and 1000/100 for the number of
trees and maximum depth. The overall accuracy (OA) ranged from 0.809 to 0.8219, kappa
metrics from 0.697 to 0.721, and Out-of-Bag Error Estimate from 0.126 to 0.136 for these
combinations. Notably, when the number of trees was tuned to 200 and the maximum
depth of each tree was set to 75, a slightly better result was obtained with an overall
accuracy (OA) of 82.19%, kappa coefficient of 0.721, and Out-of-Bag Error Estimate of the
classifier at 0.1258, compared to different combinations of these parameters. We show the
results obtained by this hyperparameter set in this paper.

3.2.9. Smoothing of Classified Image

We performed spatial smoothing (neighborhood mode), which includes erosion and
dilation. The circular kernel of radius 1 was slid through the image. During erosion, a
pixel in the original image (1 or 0) was considered 1 only if all the pixels under the kernel
were 1. Otherwise, it was eroded (made to 0). Through this process, all the pixels near the
boundary were discarded, decreasing the foreground object′s thickness or size. It helped
remove small noises.
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Dilation is conceptually opposite to erosion. A pixel element was considered 1 if
at least one pixel under the kernel was 1. It increased the size of the foreground object.
Totally, two iterations were performed for both the erosion and dilation processes during
the smoothing operation.

3.2.10. Delivered Irrigation Area

The irrigated area map was created by separating irrigated and non-irrigated areas
from the smoothed image. The Agriculture class of the smoothed image was separated from
the other two classes: Non-Agriculture class and Forest/Pastures class. The area covered
by the Agriculture class was designated as irrigated area, whereas the other two classes
were designated as non-irrigated areas. We assumed that the Agriculture class is associated
with irrigation water supply in our study areas. Subsequently, a binary map of the irrigated
area was generated for the study period.

3.2.11. Validation

The ground truth samples collected during the field visit from March 6 to March 15,
2023, were used to validate the classification result. GPS coordinates representing all three
classes (Agriculture, Non-Agriculture, and Forest/Pastures) were collected during the visit.
While collecting the coordinates, we made sure that the ground truth samples included the
data from head- to tail-end of the command area and are representative of both Sunsari and
Morang districts to minimize any biases in the data. The number of the validation samples
collected per class was
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3.2.12. Accuracy Assessment

In this study, overall accuracy (OA), producer’s accuracy (PA), consumer’s accuracy
(CA), and kappa coefficient (k̂) were used to assess the accuracy of Random Forest classi-
fier [10,48–53]. The classifier′s overall accuracy was assessed by dividing the total count
of pixels that were correctly classified by the total count of reference pixels, as shown in
Formula (1) [10]. Producer’s accuracy, shown in Formula (2) [10], for each category was
calculated by dividing the number of correctly classified pixels in each category (found
along the major diagonal; see Table 2) by the total count of test set pixels used for that
specific category (the column total; see Table 2). On the other hand, consumer’s accuracy
was determined by dividing the number of correctly classified pixels in each category be-
longing to that category by the total count of pixels in that category’s row and is provided
in Formula (3) [10].

OA(%) =
Σ Number of pixels correctly classified

Total count of reference pixels
(1)

PA(%) =
Number of pixels correctly classified in a class

Number of training pixels in that class
(2)

CA(%) =
Number of pixels correctly classified in a class
Total number of pixels classified in that class

(3)

The kappa statistic was computed using the following formula [50]:

k̂ =
N∑r

i=1 xii − ∑r
i=1(xi+.x+i)

N2 − ∑r
i=1(xi+.x+i)

(4)

where

r = number of rows in the error matrix;
xii = number of observations in row i and column i;
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xi+ = total number of observations in row i;
x+i = total number of observations in column i;
N = total number of observations included in matrix.

Table 2. Confusion Matrix.

Class Agriculture Forest/Pastures Non-
Agriculture Row Total Consumer′s

Accuracy

Agriculture 228 9 1 238 0.96
Forest/Pastures 53 125 22 200 0.63
Non-Agriculture 9 5 104 118 0.88

Column Total 290 139 127 556
Producer′s
Accuracy 0.79 0.90 0.82

Overall accuracy = 82.20%; kappa coefficient = 0.72.

3.3. Performance Assessment of Irrigation Projects

Our performance assessment of irrigation projects includes the evaluation of irrigation
performance, its drivers, and the value added by the irrigation systems. ISF was used
as the proxy of the irrigation performance, whereas paddy yield represents both the
performance indicators and the value for farmers added by the irrigation system. Both the
data of ISF collected from the project’s beneficiary farmers [31] (p. 82), [32] (p. 62), [33]
(p. 69), [34] (p. 69), [35] (p. 72), [36] (p. 70), [37] (p. 76), [38] (p. 86), [39] (p. 84), [40]
(p. 88), [41] (p. 92), and paddy yield (MT/ha) for the Kharif season [31] (p. 86), [32]
(p. 67), [33] (p. 74), [34] (p. 74), [35] (p. 76), [36] (p. 74), [37] (p. 80), [38] (p. 90), [39]
(p. 88), [40] (p. 92), [41] (p. 96) were obtained from the DWRI, Nepal. National average
yield of paddy [54] (p. 5), [55] (p. 11), and [56] was also obtained from the Ministry of
Agricultural Development (MoALD) of Nepal. The variables that impact the project’s
performance, which we call drivers, such as amount of precipitation, project’s annual
budget [31] (p. 73), [32] (p. 55), [33] (p. 62), [34] (p. 64), [35] (p. 67), [36] (p. 65), [37]
(p. 71), [38] (p. 81), [39] (p. 79), [40] (p. 83), [41] (p. 87), and discharge in the main canal,
were collected. Monthly (July to October) precipitation data from five rainfall stations that
lied within or contributed to the command area runoff were collected from the Department
of Hydrology and Meteorology (DHM), Nepal. Discharge of the main canal was obtained
from the project office. The monetary variables, i.e., ISF and the project’s annual budget,
were converted using Consumer Price Index (CPI), taking the year 2014.15 as the base
period according to the guidelines provided by Nepal Rastra Bank (NRB), the central bank
of Nepal [57] (p. 419), [58] (p. 447).

4. Results
4.1. Accuracy Assessment of the Classifier

Table 2 shows the confusion matrix obtained from the classified map 2021–2022 to
evaluate the performance of our classifier. The overall accuracy and kappa coefficient
were 82.2% and 0.72, respectively. The producer’s and consumer’s accuracies for the
Agriculture class, the class used to separate the irrigated area in this study, were 79% and
96%, respectively. The Non-Agriculture class had consistently better accuracies, with both
producer’s and consumer’s accuracies above 80%; however, there was greater variability in
the Forest/Pastures class. This class had an excellent producer’s accuracy of 90%, whereas
the consumer’s accuracy was insufficient (63%). In fact, the 53 samples of the Agriculture
class were misclassified, thus resulting in a lower producer’s accuracy for the Agriculture
class (79%) and lower consumer’s accuracy for the Forest/Pastures class (63%). From the
spectral signature shown in Figure 3, the spectral characteristics of the Agriculture class
and Forest/Pastures class were similar, although the Agriculture class had a slightly higher
reflectance value in the NIR region. This is why the samples of the Agriculture class were
usually misclassified as the Forest/Pastures class.
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4.2. Cropland Classification

The cropland classification maps were obtained for the study areas by separating
the irrigated areas from non-irrigated ones. Figure 4 shows the cropland classification
maps of SMIP from 2006 to 2022, where the classified image obtained from Landsat 5 TM
was represented in a three-year period, i.e., 2006–2008 and 2009–2011, and for the one
obtained from Landsat 8 OLI, in a two-year period—2013–2014, 2015–2016, 2017–2018,
2019–2020, and 2021–2022. There are two important implications in Figure 4. First, the
tail-end portion, the southern part of the command area, was not fully irrigated although
some improvements can be found in the later years (2017–2018 and 2021–2022 periods).
The tail-end portions of the command area lack irrigation facilities necessary for surface
irrigation. However, the gradual increment in 2017–2018 and 2021–2022 shown in Figure 4
implies that the irrigation system was adequately managed and there was proper water
management. Second, the irrigated area in the 2019–2020 period significantly declined
especially in the eastern part of the command area of the project. This is because the major
flood occurred in 2017 [59], which damaged the aqueduct of the main canal, which deprives
the irrigation facility in that part of the command area.

Figure 5 shows the cropland classification maps of BIS from 2013 to 2022. Due to the
unavailability of good-quality images obtained from Landsat 5 TM for the command area
during the study period 2006 to 2012, the satellite images obtained from Landsat 8 OLI were
only used. We found that the area under agriculture significantly increased in 2017–2018,
2019–2020, and 2021–2022 compared to the initial years.
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4.3. Recorded vs. Satellite-Derived Irrigated Areas

Figure 6 compares the satellite-derived irrigated area and the irrigated area recorded
by the DWRI for both SMIP and BIS throughout the study period. The irrigated area of the
irrigation projects obtained from our cropland classification maps substantially changes
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over time. However, DWRI reported the constant values of irrigated area, which were
66,000 ha for SMIP and 39,700 ha for BIS during the Kharif season. In the case of SMIP, the
satellite-derived irrigated area was less than the area recorded by the DWRI by at least
8000 ha every year. As we discussed, the total irrigated area increased from 2006 to 2018
and suddenly declined in the 2019–2020 period due to the effect of flooding. The dynamics
of the irrigated area were not recorded by the DWRI. For BIS, the irrigated area consistently
improved over the years, surpassing the DWRI’s recorded values for the 2017–2018 and
2021–2022 periods. It indicates a significant achievement by BIS in expanding the irrigated
area, which has been overlooked by DWRI.
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4.4. Comparison of Classification Result with Globally Trained Cropland Classification

Our cropland classification map trained by the local dataset is substantially different
from the globally trained cropland classification map provided by [2]. When the Global
Cropland Classification Map (GCCM) provided by [2] was compared with our estimated
cropped area, as shown in Figure 7, GCCM classified most of the command area as stable
cropland, which was inconsistent to our findings. Regarding the tail-end portions of the
command area, the globally trained cropland classification map overestimated the cropland
area throughout the study period, as shown in Figure 7a–f. Most importantly, the global
cropland map only showed a minor change in the cropland area throughout the study
period, and it did not replicate the cropland area loss caused by a major flood event in
2019–2020, as shown in Figure 7f. These results indicate that an existing global cropland
map cannot accurately reproduce the small-scale distribution of irrigated land.
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4.5. Performance Assessment of the Project
4.5.1. Performance Indicators

Socio-economic indicators were used to assess the performance of the projects. For
that purpose, paddy yield and ISF of the command area were compared with the irrigation
area discussed above.

Yield

Figure 8 shows the time series of paddy yield, measured in metric ton per hectare
(MT/ha) with the change in irrigated area. As far as SMIP is concerned, the annual yield
of paddy was meager in the year 2009–2010; however, with the increase in irrigated areas,
there was almost a linear increase till 2019–2020. The SMIP irrigation project successfully
increased not only irrigated areas, but also the production performance per area. For BIS,
the yield remained relatively constant until 2019–2020, although in the last two years,
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2020–2021 and 2021–2022, there was an increase in yield, accompanied by an increase in
the irrigated area. As the cropped area expanded, there was a tendency for higher yields.
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The provision of irrigation facilities substantially improved the paddy yield compared
to the ones that did not acquire those facilities, thus justifying the value added by those
irrigation projects. Figure 9 compares the projects’ annual paddy yields (MT/ha) with the
national average. There was an increase in paddy yield over time, with an almost linear
trend observed across all three sectors: SMIP, BIS, and national average. Both irrigation
projects consistently showed higher yields than the nationwide-averaged yield, with only
one exception for SMIP in 2009–2010 when the yield was less by 0.255 MT/ha compared to
the national average. In the case of BIS, this difference with the national average reached as
high as 2.246 MT/ha during 2015–2016.
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Irrigation Service Fee Collection

Fluctuations in the collection of ISF can be seen in both the irrigation projects, SMIP
and BIS, as shown in Figure 10. In the case of SMIP, there was a significant fluctuation in
ISF throughout the study period, with the least ISFs collected in 2011–2012. After 2012, the
ISF collection improved almost linearly till reaching the peak in 2016–2017, accompanied
by the project office′s delivery of constantly increased irrigated areas. This was followed
by a sharp drop till 2019–2020 due to decreased irrigated areas. With an increase in the
irrigated areas in 2021–2022, there was a significant improvement in ISF collection. In the
case of BIS, although there was an almost linear increase in the irrigated area throughout
the study period, the ISF collection displayed a different trend. There was an increase
in the second year of collection compared to the first year (2015–2016), which remained
relatively constant the following year. Then, there was a steep drop in 2018–2019, followed
by a linearly increasing trend. One of the reasons behind this could be the reduction
in the annual budget allocated to BIS for 2019–2020 (refer to Figure 11). Generally, in
Nepal, the ISF of a particular year is collected at the end of that fiscal year. In contrast, the
annual budget for the upcoming year is allocated at the end of the previous fiscal year.
Therefore, the annual budget of BIS for 2019–2020 was allocated at the end of 2018–2019,
and a sharp decline in this value may have impacted the farmer′s reluctance to give the ISF,
thus reducing ISF collection for 2018–2019.
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4.5.2. Variables Impacting Project Performance
Project Annual Budget

The operation and maintenance of large irrigation projects like SMIP and BIS required
a substantial amount of annual budgets, and variations in those funds had a significant
impact on the performance of the projects. Figure 11 shows the time series of the annual
budgets as well as the estimated irrigated areas in SMIP and BIS. An increasing trend in
the allocation of annual budgets for SMIP can be observed from 2006–2007 to 2016–2017,
while for BIS, a similar trend was seen only from 2013–2014 to 2014–2015 and then it was
almost constant till 2018–2019. An increase in the irrigated area accompanied those periods
of increased or constant budget allocation. Conversely, a decline in the budget can be
observed for SMIP from 2016–2017 to 2019–2020 and for BIS, from 2018–2019 to 2019–2020,
which corresponded to a decrease in the irrigated area.

Furthermore, after 2019–2020, an increase in the budget was followed by a corre-
sponding increase in the irrigated area for both projects. In particular, in SMIP, the annual
budget allocated for 2021–2022 is twice as much as the amount allocated in 2020–2021. This
increased budget was primarily directed toward repairing the canals damaged by floods
with a specific focus on constructing the damaged aqueduct.

Discharge of Main Canal

The fluctuations in the discharge diverted to the main canal had a minimal impact on
the irrigated area of the project, as shown in Figure 12. Although the discharge in the main
canal of SMIP was fluctuating, the irrigated area remained relatively constant throughout
the study period, except for a decrease in the irrigated area for the years 2019–2020 and
2020–2021 due to the damage caused by flood, as explained in Section 4.2. Despite the vari-
ations in the main canal discharge, water management plans were implemented correctly
and the project effectively managed the irrigation system.
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Amount of Precipitation

The data of precipitation amounts were collected from the rainfall stations within the
command area or the ones that had the runoff contribution to the command area of SMIP.
Figure 13 shows how the variation in rainfall amount in the rainfall stations was related to
the irrigated area. From 2006–2007 to 2010–2011, an increase in rainfall within the command
area also led to an increase in the irrigated area. Despite a decreasing trend in rainfall from
2010–2011 to 2018–2019, the irrigated area remained almost constant, indicating effective
water management and overall system management. However, a significant increase in
rainfall occurred in 2019–2020 and 2020–2021, causing floods and damaging the irrigation
system, which resulted in a substantial drop in the irrigated area.
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5. Discussion

Classifiers for cropland detection were trained and validated using training data
collected from visual interpretation of Landsat and Google Earth images by [1,2,9]. In this
study, we utilized training data from Landsat 8 OLI 2021–2022 and Google Earth images,
validated using ground truth points, thus offering local relevance and accurate results. The
producer’s accuracy we obtained in this classification for the Agriculture class of 79% was
comparable with [1] for the irrigated class, which was 80%. Our obtained accuracy is also
comparable with the global study [2], which ranged from 70.3% to 86.4% for cropland.

The method we employed in this study provides a real-world representation of spatial
patterns of irrigated areas, allows scalability, and reduces cost compared to the use of
ground truth points alone, as conducted by [18]. However, the overall accuracy and kappa
statistics of [18], which are 90.6% and 0.82, respectively, were higher than our method. Note
that we trained our classifier using visual interpretation of images and validated it using
ground truth data, so that our training and validation data come from different sources.
This problem setting may make it more difficult to obtain better accuracies than [18], in
which both training and validation data came from ground truth points.
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In Sub-Saharan Africa, over-optimistic planning as a response to political pressure
results in poor projections, over-promising benefits, and underestimating costs [1]. Similarly,
in Nepal, the same reason has caused overestimation and under-delivering as far as the
official record of the irrigated area is concerned in the case of SMIP. Regarding irrigation
system management, SMIP demonstrates strong performance in its ability to recover
swiftly from significant flooding events that caused a decline in the irrigated area during
the 2019–2020 and 2020–2021 periods. BIS exhibits consistent improvement in performance,
specifically regarding the expansion of the irrigated area, throughout the study period.
These observations highlight the favorable performance of both SMIP and BIS compared to
Sub-Saharan African irrigation projects shown in [1].

This study demonstrates that effective management has played a pivotal role in
maintaining a consistent irrigated area for the irrigation projects. In the global context, there
is growing concern over the impacts of global warming and climate change, which have led
to an increase in the frequency, duration, and intensity of hydrological extremes, such as
short-term extreme precipitation events, flash floods, and droughts worldwide [60–64]. It
is worth noting that, in this study, we did not explore the direct effects of climate change on
the performance of irrigation systems. However, it is a compelling area for future research
to investigate how climate change could potentially impact irrigation projects in this region.

The globally trained cropland classification map [2] substantially overestimates crop-
land areas and is inconsistent with our locally trained cropland maps. Therefore, for
accurate local or regional performance assessments of cropland classification, relying solely
on globally trained results is not advisable.

In this study, the performance of the irrigation project was assessed using both socio-
economic performance indicators (yield and ISF) and factors influencing the project’s perfor-
mance (project annual budget, main canal discharge, and precipitation levels). For a more
comprehensive evaluation of the irrigation project, the inclusion of remote-sensing-based
indicators, such as relative evapotranspiration, depleted fraction, delivery performance
ratio, drainage ratio, and crop water productivity, as suggested by [19–22], alongside the
existing indicators used in this study could be considered.

Only one growing season is considered in this study, as performed by [9,18,22,23].
Paddy, as used by [22,23], the staple food crop in developing countries, is used for the
analysis in this study for one growing season. While we have focused on mapping the
irrigated areas for paddy at a local level, a similar methodology of cropland mapping can
be performed on regional and local scales for diverse crop types, extending beyond the
scope of the current study.

The accuracy of the classifier employed in this study yielded favorable results; how-
ever, there may be some misclassifications in the classified maps. It is evident from Figure 3
that there is spectral similarity between the Agriculture class and the Forest/Pastures
class, which may have caused misclassification of pixels under the Agriculture class as
the Forest/Pastures class and vice versa. This could have led to poor accuracy due to
the mixed-class problem. A potential solution to address this issue could be conducting
a multi-temporal study of the irrigated area on different dates within a single growing
season, as suggested by [10]. Additionally, other factors influencing classification accuracy,
such as the number of classes, training sample size, size of the selected region of interest
(ROI), satellite image quality, and the choice of classifier [65], should also be considered.

Most of the study period considered in this research, spanning from July to October,
fell within the monsoon season, leading to significant cloud coverage issues. Since optical
sensors, Landsat 5 TM and Landsat 8 OLI, were leveraged for this study, the imageries
used were substantially affected by cloud cover, which, in turn, impacted the accuracy of
cropland mapping. As Synthetic Aperture Radar (SAR) data can penetrate cloud cover,
combining optical and radar data may offer a solution to obtain more accurate cropland
classification maps in regions where cloud coverage poses a significant challenge [10,66–68].

It would be intriguing to conduct a comparison between the classification outcomes
achieved in this study and those obtained through the implementation of alternative
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methodologies, such as transfer learning, which considers the spatial diversity of class
distributions [69], and deep learning approaches, which can effectively handle substantial
training datasets [70]. Complex quantitative analysis of various climatic and economic
factors (other than the ones discussed in this study) and socio-political factors governing
scheme performance is promising for future works.

This study has provided accurate and up-to-date data on irrigated areas within the
irrigation project, which is crucial for decision makers and stakeholders. The information
regarding cropland changes over the years and the performance of the irrigation project
can benefit both the Project Manager and the Water User’s Association. It can assist in
improving the monitoring of irrigated agricultural areas, coordinating managerial plans
and policies related to croplands, enhancing agricultural water management, optimizing
crop scheduling, and preparing crop calendars.

6. Conclusions

Despite significant implications for national policy, project annual budgets, and donor
funding, the objective recording of irrigated areas in Nepal has been lacking. Therefore,
this study addressed this gap by developing a locally trained machine-learning-based
cropland map. Through the analysis of cropland dynamics, this research sheds light on
the changes in the cropped area within Nepal′s two largest irrigation projects, namely
the Sunsari–Morang Irrigation Project (SMIP) and the Bagmati Irrigation System (BIS),
spanning from 2006 to 2022. The results reveal that the DWRI overestimated the irrigated
area for SMIP throughout the entire study period. In contrast, the satellite-derived irrigated
area exceeded the data records for 2017–2018 and 2021–2022 in the case of BIS.

The accuracy assessment showed an overall accuracy of 82.2% and a kappa coefficient
of 0.72, with producer’s and consumer’s accuracies for the Agriculture class, the class
used to separate irrigated from the non-irrigated areas, were 79% and 96%, respectively.
The thorough assessment of the performance of the irrigation project was performed in a
cost-effective and timely manner. This method can be employed by the DWRI, Nepal, as an
assessment method for other irrigation projects throughout the country.

This study also evaluated the importance of locally calibrated cropland maps. We
discovered that only locally trained maps, compared to global cropland classification maps,
could accurately replicate the precise allocation of irrigated land at a small scale. Therefore,
these maps are necessary for conducting performance assessments of irrigation projects at
the local level.

As a follow-up to this study, our intention is to employ similar methodologies to
generate an updated, regionally trained, high-resolution seasonal cropland classification
map of Nepal, leveraging the capabilities of Sentinel-2 imagery. This effort is motivated
by the current lack of detailed, high-resolution cropland maps for the region, with only a
coarser resolution map utilizing MODIS NDVI time series [25] currently available.
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