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Abstract: Convolutional neural networks (CNNs) have shown outstanding feature extraction capabil-
ity and become a hot topic in the field of hyperspectral image (HSI) classification. However, most of
the prior works usually focus on designing deeper or wider network architectures to extract spatial
and spectral features, which give rise to difficulty for optimization and more parameters along with
higher computation. Moreover, how to learn spatial and spectral information more effectively is still
being researched. To tackle the aforementioned problems, a decompressed spectral-spatial multiscale
semantic feature network (DSMSFNet) for HSI classification is proposed. This model is composed of a
decompressed spectral-spatial feature extraction module (DSFEM) and a multiscale semantic feature
extraction module (MSFEM). The former is devised to extract more discriminative and representative
global decompressed spectral-spatial features in a lightweight extraction manner, while the latter is
constructed to expand the range of available receptive fields and generate clean multiscale semantic
features at a granular level to further enhance the classification performance. Compared with pro-
gressive classification approaches, abundant experimental results on three benchmark datasets prove
the superiority of our developed DSMSFNet model.

Keywords: hyperspectral image classification; decompressed global spectral-spatial features; multiscale
semantic features; convolutional neural network

1. Introduction

Hyperspectral image (HSI), generally captured by hyperspectral remote sensing sen-
sors or imaging spectrometers, combines subdivisional spectroscopy with 2D imaging
technology [1]. HSI utilizes subdivisional spectroscopy to decompose the total radiation of
each pixel into the radiation spectrum of different bands and exploits 2D imaging technol-
ogy to collect the spatial information of the surface, generating a 3D data cube containing
rich spectrum, space, and radiation [2—4]. Owning to the abundant spatial and spectral
information, HSI plays an important role in many practical applications, such as urban
planning, land-cover investigation, precision agriculture, military detection, and environ-
mental monitoring [5-9]. In the last few decades, HSI classification has been one of the
most popular research fields [10] and attracted multitudinous scholars to devote great
efforts to improving classification accuracy [11-15].

In the early period, plentiful HSI classification approaches based on machine learning
(ML) utilizing spectral information were presented. Representative methods included
support vector machine (SVM) [16], random forest (RF) [17], neural network [18], multi-
nomial logistic regression (MLR) [19], and so on. Although these methods could obtain
good classification results, the pure spectra contained much redundant information and
noise, which were adverse to the classification performance. Therefore, researchers gave
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more attention to dimension reduction by using decomposition functions, for example,
factor analysis (FA) [20], linear discriminant analysis (LDA) [21], principal component
analysis (PCA) [22], and independent component analysis (ICA) [23]. The spatial features
included the dependence between the central pixel and its neighborhood pixels, which
were introduced into HSI classification to greatly improve the classification performance.
An algorithm combining the band selection (BS) with a Markov random field (MRF) was
proposed [24]. Jiang et al. designed a random label propagation algorithm (RLPA), which
was based on spatial-spectral constraint knowledge, to cleanse the labelled noise [25]. The
traditional classification approaches, whether spectral features-based or spatial-spectral
features-based, all depended on handcraft features that lacked sufficient representation
ability and poor generalization performance.

Of late, deep learning (DL) has developed rapidly and received a substantial amount of
attention. Due to excellent performance, DL has been broadly applied to HSI classification.
Chen et al. used an autoencoder to classify hyperspectral pixels, which was the first time
DL was introduced into the field of HSI classification [26]. Hu et al. introduced 1D CNN
into HSI classification for the first time, and the classification accuracy obtained by this
method exceeded the traditional ML methods [27]. A 1D CNN model was designed by
Li et al., which extracted pixel pairs from the raw HSI as the input data and obtained the
spectral relationship between pixels [28]. Although these approaches could obtain good
classification results, the input data of them needed to be flattened into alDvector, which
seriously ignored the rich spatial information. Therefore, many methods integrated the
spatial context with spectral information to improve classification accuracy. For example,
Yang et al. presented a double-channel CNN to capture the spatial features and spectral
features separately [29]. Li et al. developed a two-stream CNN with deep feature fusion to
enhance spatial-spectral feature representative power [30]. An end-to-end residual spectral-
spatial attention network without additional feature engineering was presented [31]. To
reduce the computational complexity and obtain better classification results, Zhang et al.
combined 2D CNN with spectral partition [32]. Considering the 3D characteristics of
HSI data, plentiful classification algorithms based on 3DCNN were constructed. For
example, Wang et al. [33] and Zhong et al. [34] devised spatial and spectral blocks under
the construction of 3DCNN to obtain spectral-spatial information. To directly learn joint
spatial-spectral features from the original HSI, Li et al. designed a 3D CNN algorithm [35].
To deal with the loss of vast initial information problems, Lin et al. constructed an attention-
aware pseudo-3D CNN [36]. The 3D CNN framework was built to capture spatial-spectral
joint features [37,38].

With the development of DL, many ancillary strategies have emerged, such as multi-
scale feature extraction, dense connection, multilayer feature fusion, and residual learning.
For example, Gao et al. developed a network framework based on 3D convolution, which
not only adopted multiscale blocks to extract spatial-spectral information at different scales
but also introduced the dense connection to boost feature propagation and reuse [39]. Xue
et al. utilized the shortcut connection structure to learn discriminative spatial-spectral
features [40]. Safari et al. designed a multiscale DL learning approach to effectively capture
spectral-spatial joint information over different scales [41]. To increase the network depth,
Song et al. embedded residual learning into the built-deep feature fusion network [42].
To make full use of HSI's data, Paoletti et al. presented a deep and dense 3DCNN frame-
work [43]. To achieve complementary spatial-spectral information from different levels, Li
et al. combined multilevel fusion with multiattention mechanisms [44].

Although the above-described CNN-based methods obtained promising classification
accuracy, two challenging problems remain. The first challenge is that most of the prior
works usually focus on wider or deeper network structures to invigorate the discrimi-
nation ability of CNNs to capture spatial-spectral features. However, wider or deeper
network structures give rise to difficulty for optimization and more parameters along with
higher computation, which critically influence the classification performance. The second
challenge is how to learn spatial and spectral information more effectively. To resolve the
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problems mentioned above, this article proposes a decompressed spectral-spatial multiscale
semantic feature network (DSMSFNet) for HSI classification. The designed DSMSFNet
includes a decompressed spectral-spatial feature extraction module (DSFEM) and a mul-
tiscale semantic feature extraction module (MSFEM). The former is utilized to obtain
more representative and discriminative global decompressed spectral-spatial features in a
lightweight extraction manner, while the latter is constructed to capture clean multiscale
semantic features at a granular level and further boost the classification performance. In
conclusion, the contributions of this work are twofold as follows:

(1) To decrease the training parameters and computational complexity, we devise a
compressed-weight convolutional (CConv) layer, which takes the place of the tra-
ditional 2D convolutional layer, to extract spatial and spectral information through
cheap operations.

(2) Toconductan efficient and lightweight spectral-spatial feature extraction, we construct
a compressed residual block (CRB), embedding the CConv layer into a residual block,
to alleviate the overfitting and achieve spectral-spatial feature reuse effectively.

(3) To obtain more representative and discriminative global decompressed spectral-spatial
features, we build a decompressed spectral-spatial feature extraction module (DSFEM)
in a lightweight extraction manner. For one thing, DSFEM is composed of multiple
decompressed dense blocks (DDBs), which provide abundant local decompressed
spectral-spatial features. For another thing, the dense connection is introduced into
DSFEM to integrate features from shallow and deep layers, thereby acquiring robust
complementary information.

(4) To further enhance the classification performance, we raise a multiscale semantic
feature extraction module (MSFEM). The MSFEM can not only expand the range
of available receptive fields but also generate clean multiscale semantic features for
classification tasks at a granular level.

The remainder of this article is organized as follows: Section 2 provides an elaborate
description of the developed HSI classification network model. Section 3 reports the
experimental results and discussion. Section 4 summarizes the conclusion of this article
and provides an outlook for future research.

2. Method

This article utilizes the Indian Pines dataset as an example to graphically describe the
architecture of our constructed DSMSFNet, as exhibited in Figure 1. The developed method
includes two main submodules: DSFEM to obtain more representative and discriminative
global decompressed spectral-spatial features in a lightweight extraction manner and
MSFEM to expand the range of available receptive fields and capture clean multiscale
semantic features at a granular level for classification.
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Figure 1. The overall pipeline of the proposed decompressed spectral-spatial multiscale semantic
feature network (DSMSFNet).
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2.1. Decompressed Spectral-Spatial Feature Extraction Module

In this article, we devise a decompressed spectral-spatial feature extraction module
(DSFEM) to obtain more representative and discriminative global decompressed spectral-
spatial features. A DSFEM is composed of five decompressed dense blocks (DDBs) whose
nuclear component is a compressed residual block (CRB). For the CRB, the compressed-
weight convolutional (CConv) layer is the primary component, which can downgrade the
number of training parameters and computational burden. Figure 2 gives the diagram of
a DSFEM.

Figure 2. Architecture of a decompressed spectral-spatial feature extraction module (DSFEM).
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2.1.1. Compressed-Weight Convolution Layer

Recently, pointwise and depthwise convolution operations have attracted consid-
erable attention and have been introduced into many computer vision tasks, such as
MobileNet [45], Xception [46], and HSI classification [47]. Pointwise convolution is the stan-
dard convolution with a 1 x 1 filter. Only one convolution kernel of depthwise convolution
is responsible for one channel. Compared with standard convolution, depthwise convo-
lution can reduce the number of network training parameters and improve the training
speed. Figure 3a shows a standard convolution with 3 x 3 filters. Gao et al. [47] presented a
mixed depthwise convolution (MDSConv) to replace a 3 x 3 ordinary depthwise separable
convolution, as shown in Figure 3b. First, each feature map is divided equally into two
parts: one is convoluted by the 1 x 1 depthwise convolution, and the other is convoluted by
the 3 x 3 depthwise convolution. Then, the output feature maps of pointwise convolution
and depthwise convolution are fused by a concatenation operation. Finally, the connected
feature maps are sent into a pointwise convolution. Figure 3c is the architecture of our
constructed CConv layer. Different from MDSConv, a 1 x 1 point convolution is first
performed to reduce the number of input channels. Then, we employ the 3 x 3 depthwise
convolution to take the place of the 3 x 3 standard convolution. Finally, the feature maps
from depthwise convolution are concatenated with the previous pointwise convolution
feature maps.

Let S;, and S, represent the number of input feature maps and output feature maps,
respectively. The 3 x 3 standard convolution requires 3 x 3 x S, X Syt parameters. For
MDSConv, the number of parameters in this layer can be calculated as 3 x 3 x (S;,,/2) +
1x1x(S;,/2) +1x1xS;,; x Seut. For CConv, the parameter number of this layer is
1x 1% Sjy X (Sout/2) +3 %3 % (Sout/2). For example, we assume that both the number of
input feature maps S;,, and output feature maps Syt are 32, and then the parameter numbers
of standard convolution, MDSConv, and CConv are 9216, 1184, and 656, respectively. As
we can see, our designed CConv requires approximately 14 x fewer parameters than the
3 x 3 standard convolution, and 2x fewer parameters than MDSConv, demonstrating that
the proposed CConv exhibits ascendant capability for reducing the number of network
training parameters.
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Figure 3. Different convolutional operations.

2.1.2. Compressed Residual Block

To capture discriminative spectral-spatial information in a lightweight feature extrac-
tion manner, we devise a compressed residual block (CRB), which embeds the CConv layer
into a residual block. Figure 4 provides the structure of CRB. CRB is composed of two
3 x 3 CConv layers to extract spatial and spectral information through cheap operations,
two BN layers to accelerate the convergence of network, and two ReLU activation functions.
In addition, we introduce skip transmission [48] into CRB to increase the network depth
and achieve a good generalization performance. Each CRB can be expressed as follows:

Z(X) = o(F(X) + H(X)) 1)

where X and Z(X) are the input and output of CRB, respectively. ¢ denotes the ReLU
activation function. F(e) represents a series of operations, including the CConv layer, BN
layer, and ReLU. H(X) is the identity operator, which is achieved by utilizing the skip
transmission.

R

= Add CConv Batch ReLU
Normalization

Figure 4. The structure of a compressed residual block (CRB).
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2.1.3. Decompressed Dense Block

As shown in Figure 2, each DDB comprises a 1 x 1 convolution layer, a BN layer, a
ReLU activation function, and a CRB. The 1 x 1 convolution layer is used to reduce the
channel numbers and boost the calculation efficiency in this block. CRB is adopted to learn
more careful and representative spectral-spatial features. DDB can capture local spectral-
spatial information while making the network converge faster. In addition, to obtain
more comprehensive global decompressed spectral-spatial features and avoid gradient
disappearance, the dense connection [49] is employed between each DDB.

2.2. Multiscale Semantic Feature Extraction Module

During the training process, as the increase in network depth, spectral-spatial informa-
tion will gradually disappear. The local decompressed spectral-spatial features generated
by each DDB are conducive to HSI classification. Therefore, adequately utilizing these
features can provide significant classification accuracy. However, only exploiting an or-
dinary concatenation operation to aggregate these locally decompressed spectral-spatial
features may generate noise and redundant information, thereby downgrading the clas-
sification accuracies. In this section, we build a multiscale semantic feature extraction
module (MSFEM), which can not only expand the range of available receptive fields but
also extract clean multiscale high-level semantic features at a granular level to further boost
the classification performance. The whole structure of the MSFEM is exhibited in Figure 5.
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Figure 5. Architecture of a multiscale semantic feature extraction module (MSFEM).

According to Figure 5, after aggerating all local decompressed spectral-spatial features
generated by each DDB, the obtained global decompressed spectral-spatial features first are
equally divided into four subsets, represented by x1, x2, x3, and x4. Except for x, the other
subsets have a corresponding 3 x 3 CConv layer following a BN layer and a ReLU function.
Second, to enhance feature reuse of the previous layer, the output features of previous
layers and current subset input features are added by elementwise summation. Then, these
features are fed into the corresponding 3 x 3 CConv layer to generate new subset features.
Furthermore, we utilize the concatenation operation among four new subset features to
obtain multiscale high-level semantic features for HSI classification. Finally, to achieve
more comprehensive features and avoid information loss, we introduce a “squeeze-and-
excitation” block [50] and skip transmission [48] into our devised MSFEM. Mathematically,
MSFEM can be described as follows:

Z1 = X1 (2)

zp = P(z1 + x2) ©)
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z3 = P(z1 + 22 + x3) (4)
24 = P(z1 + 20 + 23+ x4) (5)
z = Att([z1,22,23,24]) + X (6)

where X and z are the input and output of MSFEM, respectively. P denotes the 3 x 3 CConv
operation. z1, z, z3, and z4 represent the output of each subset, respectively. Att refers to
the “squeeze-and-excitation” block. [] stands for the concatenation operation.

2.3. The Overall Framework of the Proposed DSMSFNet

The main procedure of our presented DSMSFNet is exhibited in Figure 1. HSI contains
hundreds of highly correlated spectral bands, which causes the Hughes effect and thereby
impairs the classification performance. Therefore, the first PCA was performed on the
original HSI to effectively reduce the spectral dimension and restrain the noisy bands.
Second, we selected w x w sized neighborhoods around the target pixels to construct 3-D
image cubes, which can fully exploit the property of HSI containing spatial and spectral
information. Then, the 3-D image cubes of the size 19 x 19 x 25 were sent to the DSFEM. The
DSFEM is composed of five DDBs and each DDB can extract local decompressed spectral-
spatial features of the size 19 x 19 x 48 in a lightweight extraction manner. Additionally,
we applied the dense connection to the designed DSFEM, which facilitated the local
decompressed spectral-spatial features flow and achieved more discriminative global
decompressed spectral-spatial features of the size 19 x 19 x 265. Next, the obtained global
decompressed spectral-spatial features were fed to a reduced dimension block, which
consists of three 5 x 5 2-D convolutional layers, three BN layers, and three PReLU activation
functions, acquiring reduced dimension features of the size 7 x 7 x 24. Furthermore,
we transmitted the reduced dimension features to MSFEM to generate clean multiscale
semantic features of the size 7 x 7 x 24 at a granular level, and, thereby, boosted the HSI
classification performance. Finally, we utilized a 2D global average pooling layer, two
fully connected layers and a softmax function to obtain the output classification maps. In
addition, L2 regularization was also introduced into the developed DSMSFNet to improve
the classification ability.

3. Experimental Results and Discussion
3.1. Datasets Description

We evaluate the classification performance of our presented approach on three com-
monly used hyperspectral datasets, including the Botswana (BOW) dataset, the Indian
Pines (IP) dataset, and the Houston 2013 dataset.

The BOW dataset [51] was provided by the NASA EO-1 Hyperion sensor over the
Okavango Delta. This scene contains 14 diverse land-cover categories and 1476 x 256
hyperspectral pixels. After eliminating uncalibrated and noisy bands, 145 bands with a
spatial resolution of 30 m per pixel ranging from 0.4 to 2.5 um remain.

The IP dataset [52] was gathered by the airborne visible/infrared imaging spectrometer
(AVIRIS) in northwestern Indiana. This scene is made up of 145 x 145 hyperspectral pixels
and 16 different land-cover categories. After removing noisy bands, 200 spectral bands
remained with a spatial resolution of 20 m per pixel ranging from 0.4 to 2.5 um.

The Houston 2013 dataset [53] was collected by the 2013 IEEE GRSS Data Fusion
Competition. This scene involves 349 x 1905 hyperspectral pixels and 15 different land-
cover categories. It has 144 spectral bands with a spatial resolution of 2.5 m per pixel and
the wavelength range is from 0.38 to 1.05 um.

Tables 1-3 list landcover classes, colors, the numbers of randomly selected training
samples, and testing samples.
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Table 1. The information on the land-cover category of the BOW dataset.

No. Color Class Train Test
1 — Water 10 85
2 Hippo grass 27 241
3 Floodplain grasses 1 19 162
4 - Floodplain grasses 2 31 274
5 — Reeds 25 223
6 Riparian 32 282
7 — Fires car 21 182
8 — Island interior 26 233
9 Acacia woodlands 27 242
10 Acacia shrub lands 27 242

11 Acacia grasslands 22 193
12 short mopane 26 225
13 Mixed mopane 11 90
14 — Exposed soils 27 243
Total 331 2917
Table 2. The information on the land-cover category of the IP dataset.

No. Color Class Train Test
1 — Alfalfa 10 36
2 Corn-notill 286 1142
3 Corn-mintill 166 664
4 — Corn 48 189
5 [— Grass-pasture 97 386
6 Grass-trees 146 584
7 m— Grass-pasture-mowed 6 22
8 — Hay-windrowed 96 382
9 Oats 4 16

10 Soybean-notill 195 777
11 Soybean-mintill 491 1964
12 Soybean-clean 119 474
13 Wheat 41 164
14 — Woods 253 1012
15 Buildings-Grass-Tree 78 308
16 Stone-Steel-Towers 19 74

Total 2055 8194

Table 3. The information on the land-cover category of the Houston 2013 dataset.

No. Color Class Train Test
1 Healthy grass 239 1125
2 m— Stressed grass 126 1128
3 Synthetic grass 70 627
4 Trees 125 1119
5 — Soil 125 1117
6 Water 33 292
7 — Residential 127 1141
8 L Commercial 125 1119
9 — Road 126 1126

10 — Highway 123 1104
11 | Railway 124 1111
12 [ Parking Lot 1 124 1109
13 | Parking Lot 2 47 422
14 Tennis Court 43 385
15 Running Track 66 594
Total 1510 13519
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3.2. Experimental Setup

TensorFlow 2.3.0 was utilized as the DL framework and all experiments were con-
ducted on a PC with an Intel(R) Core(TM) i7-9700F CPU and NVIDIA GeForce RTX 2060
SUPER GPU.

Different hyperspectral datasets contain different annotated sample numbers and exist
in the imbalanced data dilemma, so different training sample portions were used for three
benchmark datasets. For the BOW, IP, and Houston 2013 datasets, we randomly chose
10%, 20%, and 10% annotated samples for training and the remaining 90%, 80%, and 90%
annotated samples for testing, respectively. Adam was used to optimize the parameters
and the learning rate was set to 0.001. Additionally, the epoch and batch size are 400 and
16, respectively.

We adopted the overall accuracy (OA), average accuracy (AA), and Kappa coeffi-
cient (Kappa) as criteria metrics to measure the classification performance of the pro-
posed DSMSFNet.

3.3. Comparison Methods

The developed DSMSFNet was comprehensively compared with eleven advanced
classification algorithms. These comparison approaches can be classified into two cate-
gories: one includes SVM, RF, KNN, and GuassianNB, which are based on traditional
ML; the other includes HybridSN [54], MSRN_A [55], 3D_2D_CNN [56], RSSAN [31],
MSRN_B [47], DMCN [57], and MSDAN [58], which are based on DL. Concretely, Hy-
bridSN and 3D_2D_CNN utilize 2D and 3D convolutional layers to extract spectral-spatial
features. MSRN_A integrates a 2-D CNN stage involving a spatial attention module and a
multiscale spatial feature extraction block with a 3-D CNN stage composed of a spatial-
spectral attention module and a multiscale spectral feature extraction block to obtain salient
spatial and spectral features. RSSAN utilizes a spectral-spatial attention learning module to
find vital spatial and spectral parts and a spectral-spatial feature learning module to acquire
important spectral-spatial information. MSRN_B proposes a multiscale residual network
with mixed depthwise convolutions to generate discriminative spectral-spatial information.
DMCN is composed of a grouped residual 2-D CNN, a dense 3-D CNN, and coordinate
attention for acquiring spectral-spatial fusion features. MSDAN uses three multiscale dense
connectivity blocks with three different scales to capture multiscale spectral-spatial features
and embeds spectral-spatial-channel attention to boost feature representations. To ensure
the reliability and authenticity of experimental results, for the BOW, IP, and Houston 2013
datasets, all experiments randomly chose 10%, 20%, and 10% annotated samples as the
training set and the remaining 90%, 80%, and 90% annotated samples as the testing set,
respectively. Tables 4—6 report land-cover class accuracy and three criteria metrics of all
experiments on three public datasets. Additionally, to better display the superiority of our
presented model for minority category classification, we define a noun named the minority
category comparison (MCC), which is the training sample numbers of a category that is
smaller than the average training sample numbers.

Table 4 reports each land-cover category and OA, AA, and Kappa accuracies of all
comparison approaches for the BOW dataset. It is clear that our developed DSMSFNet
obtains superb OA, AA, and Kappa, which demonstrates the stability and superiority of our
constructed DSMSFENet. The GuassianNB has the lowest OA, AA, and Kappa, which are
20.96%, 18.66%, and 22.68% lower than those of the DSMSFNet, respectively. This is because
the GuassianNB only extracts spectral features and ignores the abundant information in
the spatial domain, which results in unsatisfactory classification accuracies. The MSRN_A
achieves competitive OA, AA, and Kappa, which are 0.78%, 0.7%, and 0.86% lower than
those of the DSMSFNet, respectively. This is because the MSRN_A devises multiscale
spectral and spatial feature extraction blocks to acquire spectral-spatial information from
diverse scales while utilizing spatial and spatial-spectral attention modules to emphasize
the important information and suppress useless ones. In addition, the BOW dataset has five
MCCs, including the 1st, 3rd, 7th, 11th, and 13th. Our proposed DSMSFNet acquires decent
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accuracy on the 3rd, 7th, 11th, and 13th CCMs, which indicates that the designed DSFEM
and MSFEM can effectively capture global decompressed and clean semantic spectral-
spatial features of the minority class. Similarly, the MSRN_B obtains optimal accuracy on
the 3rd, 7th, 11th, and 13th CCMs. But the OA, AA, and Kappa of MSRN_B are 8.29%,
7.61%, and 8.97% lower than those of the DSMSENet, respectively. This is because although
both the MSRN_B and our developed DSMSFNet utilize mixed depthwise convolutions,
the DSMSFNet needs fewer training parameters and provides more discriminative features
for classification.

Table 4. Results of classification for the BOW dataset.

No. SVM RF KNN GaussianNB  HybridSN MSRN_A 3D_2D_CNN RSSAN MSRN_B DMCN MSDAN DSMSFNet
1 100.00  97.89 99.59 98.37 87.82 96.05 92.75 100.00 98.78 91.01 95.29 97.59
2 98.11 98.81 92.13 67.74 100.00 100.00 96.77 100.00 100.00 88.24 100.00 100.00
3 78.65 90.25 93.62 80.58 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
4 100.00 83.64 87.25 65.02 98.47 100.00 99.47 100.00 100.00 96.48 96.41 100.00
5 80.59 72.66 82.33 71.90 88.24 97.05 95.90 87.08 92.37 100.00 96.54 100.00
6 50.00 76.34 60.00 57.23 97.78 100.00 97.51 93.53 100.00 100.00 97.10 100.00
7 100.00 98.67 99.55 97.00 100.00 100.00 100.00 100.00 100.00 99.57 100.00 100.00
8 84.90 88.02 77.53 82.84 99.44 100.00 100.00 100.00 91.92 94.49 100.00 100.00
9 68.48 80.14 78.23 71.43 98.26 100.00 100.00 97.45 100.00 100.00 100.00 100.00
10 75.62 76.83 88.02 67.83 98.67 100.00 98.67 98.22 96.96 97.80 100.00 100.00
11 86.24 89.53 91.49 88.85 97.51 96.48 99.64 99.27 100.00 99.63 100.00 100.00
12 89.60 91.57 93.49 91.61 97.59 100.00 100.00 97.44 46.55 96.41 100.00 100.00
13 90.77 79.76 93.06 70.97 100.00 100.00 100.00 94.88 100.00 98.77 97.97 100.00
14 100.00  98.80 97.59 93.62 100.00 97.70 100.00 95.31 83.33 97.18 100.00 100.00
OA (%) 82.05 85.98 87.04 78.83 96.95 99.01 98.53 97.15 91.50 97.57 98.66 99.79
AA (%) 81.82 86.95 87.87 81.06 95.87 99.12 98.13 96.16 92.21 97.02 98.71 99.82
Kappa x 100 80.53 84.81 85.96 77.10 96.69 98.92 98.40 96.92 90.81 97.36 98.55 99.78
Complexity (G) — — — — 0.0102 0.0011 0.0005 0.0002 0.0003 0.0045 0.0025 0.0003
Parameter (M) — — — — 9.2252 0.1965 0.2579 0.1159 01637 22292 12638 0.1628
The black bold highlights which mechanic works best.
Table 5. Results of classification for the IP dataset.
No SVM RF KNN GaussianNB HybridSN MSRN_A 3D_2D_CNN RSSAN MSRN_B DMCN MSDAN DSMSFNet
1 0.00 86.67 36.36 31.07 97.06 100.00 100.00 97.30 90.32 100.00 100.00 94.59
2 61.51 82.02 50.38 45.54 98.86 99.73 95.79 98.00 97.45 97.46 98.95 98.70
3 84.04 78.66 61.95 35.92 97.04 100.00 95.99 99.54 98.74 93.50 99.54 100.00
4 46.43 72.87 53.26 15.31 98.86 98.38 92.94 99.46 99.39 96.81 98.85 97.42
5 88.82 90.16 84.71 3.57 98.47 97.72 99.47 98.22 92.54 98.69 98.70 99.48
6 76.72 82.61 78.08 67.87 100.00 100.00 100.00 99.83 99.65 100.00 99.49 100.00
7 0.00 83.33 68.42 100.00 100.00 100.00 100.00 100.00 100.00 100.00 86.96 100.00
8 83.49 87.16 88.55 83.78 96.46 100.00 100.00 99.48 80.08 98.70 99.74 100.00
9 0.00 100.00  40.00 11.02 76.19 100.00 100.00 100.00 0.00 100.00 100.00 100.00
10 70.89 83.61 69.40 27.07 99.74 97.72 97.48 99.48 88.93 99.87 98.46 100.00
11 58.51 75.16 69.49 60.60 98.77 98.94 97.48 99.19 97.57 99.69 99.74 100.00
12 59.38 66.74 62.13 23.95 98.34 92.40 91.19 98.13 91.52 92.74 91.30 98.95
13 82.23 92.53 86.70 84.38 100.00 89.62 99.38 99.39 94.58 96.91 97.02 100.00
14 87.39 89.78 91.76 75.08 99.90 99.51 97.47 99.80 100.00 99.40 99.90 100.00
15 86.30 72.00 64.127 53.17 94.12 98.09 90.88 98.72 100.00 92.92 95.00 99.68
16 98.36 100.00  100.00 98.44 98.67 100.00 100.00 97.33 94.37 91.14 98.53 98.67
OA (%) 70.21 89.91 70.95 50.88 98.58 98.50 96.85 99.07 95.56 97.86 98.61 99.62
AA (%) 53.06 66.77 62.39 52.65 96.87 96.56 94.34 96.53 86.25 93.47 94.85 99.26
Kappa x 100 65.07 78.01 66.63 44.07 98.39 98.29 96.41 98.94 94.94 97.57 98.41 99.57
Complexity (G) — — — — 0.0102 0.0011 0.0005 0.0002 0.0003 0.0045 0.0025 0.0003
Parameter (M) — — — — 9.2258 0.1981 0.2582 0.1164 0.1642 2.2295 1.2640 0.1327

The black bold highlights which mechanic works best.

Table 5 presents each land-cover category and OA, AA, and Kappa accuracies of
all comparison approaches for the IP dataset. We can obviously see that in terms of
OA, AA, and Kappa, our proposed DSMSFNet outperforms eleven other comparison
approaches. Concretely, the DSMDFNet classifies the most MCCs with high precision
and obtains optimal accuracy on the 5th, 7th, 8th, 9th, 12th, and 13th ones, which verifies
the effectiveness of the DSMSFNet in identifying the minority categories. Some similar
observations can be found on the IP dataset. Among comparison methods, the GuassianNB
achieves the most terrible OA, AA, and Kappa, which are 48.79%, 46.61%, and 55.50%
lower than those of the DSMSFNet. This is because ML-based classification approaches
need to count on prior knowledge, resulting in poor generalization ability. The RSSAN
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obtains suboptimal OA and AA accuracies, which are 0.55% and 1.47% lower than those
of the DSMSFNet. But it does not show good classification performance on the CCMs.
In addition, MSRN_A and 3D_2D_CNN have fine classification accuracy on the 1st, 7th,
8th, 9th, and 16th CCMs, which illustrates that they can effectively identify the minority
categories. However, the three evaluation indices of MSRN_A and 3D_2D_CNN are not
splendid. DSMSFNet achieves 99.62% OA, 99.26% AA, and 99.57% Kappa, which are
1.12%, 2.70%, and 3.16% higher than those of MSRN_A and 2.77%, 4.92%, and 3.16% higher
than those of 3D_2D_CNN. These phenomena can adequately show the superiority and
robustness of our proposed DSMSFNet.

Table 6. Results of classification for the Houston 2013 dataset.

No. SVM RF KNN  GaussianNB HybridSN MSRN_A 3D_2D_CNN RSSAN MSRN_B DMCN MSDAN DSMSFNet
1 82.38 95.64 98.29 90.78 97.64 98.85 98.16 98.75 99.11 99.01 99.20 100.00
2 98.46 95.44 95.70 98.80 99.73 99.65 99.19 97.98 99.73 98.17 99.56 99.82
3 97.72 100.00  97.29 93.09 99.68 100.00 99.84 99.52 100.00 98.12 100.00 100.00
4 98.76 99.55 98.11 99.01 93.25 99.91 99.82 99.29 99.46 98.89 99.28 100.00
5 86.86 93.36 93.00 73.96 99.91 100.00 100.00 99.73 100.00 99.64 99.37 99.73
6 100.00  100.00  100.00 31.00 100.00 100.00 100.00 98.29 100.00 100.00 100.00 100.00
7 64.91 79.15 87.83 63.06 97.77 100.00 96.32 96.96 98.79 99.43 95.66 99.91
8 86.03 87.95 82.05 70.03 98.32 100.00 96.61 93.64 100.00 97.52 90.71 100.00
9 61.38 75.59 76.07 42.67 93.82 99.11 95.96 89.75 95.58 92.70 91.22 99.82
10 51.36 84.43 79.24 0.00 98.57 96.76 97.68 94.35 98.22 95.76 100.00 99.91
11 45.16 76.50 79.76 34.42 97.99 99.73 98.92 96.75 100.00 93.28 96.39 99.46
12 60.82 72.16 70.67 21.08 98.92 99.91 98.84 90.84 99.73 91.79 98.83 100.00
13 100.00  79.72 88.89 15.61 100.00 97.32 99.20 95.55 99.01 96.50 98.41 100.00
14 79.39 96.68 95.17 67.40 98.97 100.00 99.74 100.00 100.00 99.74 99.23 100.00
15 99.66 99.64 99.13 99.08 99.83 99.00 100.00 100.00 99.83 100.00 99.83 99.83
OA (%) 75.17 87.47 87.51 60.82 97.91 99.36 99.41 96.31 99.17 96.82 97.33 99.88
AA (%) 74.91 86.09 85.77 63.10 97.33 99.07 98.03 96.37 98.83 95.88 97.21 99.83
Kappa x 100 73.11 86.43 86.47 57.73 97.74 99.31 98.28 96.01 99.10 96.56 97.11 99.87
Complexity (G) — — — — 0.0102 0.0011 0.0005 0.0002 0.0003 0.0045 0.0025 0.0003
Parameter (M) — — — — 5.1220 0.1973 0.2580 0.1162 0.1639 2.2293 1.2639 0.1557

The black bold highlights which mechanic works best.

Table 6 displays each land-cover category and OA, AA, and Kappa accuracies of all
comparison approaches for the Houston 2013 dataset. Compared with eight DL-based
classification approaches, SVM, RF, KNN, and GaussianNB obtain low criteria metrics.
Specifically, our developed DSMSFNet again achieves splendid OA, AA, and Kappa and
obtains excellent accuracy on the 3rd, 6th, 13th, and 14th CCMs. Uniformly, the GuassianNB
produces unsatisfactory classification performance, and the three criteria metrics of it
are 39.06%, 36.73%, and 42.14% lower than those of the DSMSFNet. This is because
the eight DL-based approaches can utilize hierarchical feature extraction structures to
capture automatically high-level features, thereby acquiring good classification results.
Additionally, although the MSRN_A obtains encouraging classification accuracies, the
three criteria metrics are 0.52%, 0.76%, and 0.56% lower than those of the DSMSFNet,
and it only achieves worthy classification results on the 3rd, 6th, and 14th CCMs. The
stabilized classification performance on the three benchmark datasets manifests that our
presented DSMSFNet can fully excavate global decompressed spectral-spatial features and
clean multiscale semantic features, which are conducive to enhancing the classification
performance.

Moreover, the visual classification maps of all comparison approaches for the three
benchmark datasets are depicted in Figures 6-8, which are highly consistent with Tables 4—6.
In Figures 6-8, we can observe that the visual maps of four ML-based classification ap-
proaches are poor and contain a lot of noise; especially for the GuassianNB, the visual
classification map has the most misclassified pixels and is the coarsest. By comparison, the
visual classification results of the HybridSN, MSRN_A, 3D_2D_CNN, RSSAN, MSRN_B,
DMCN, MSDAN, and DSMSENet are relatively smooth and exhibit less noise. Among
them, the visual classification map of the presented DSMSFNet is the smoothest and gener-
ates the least noise. To furthermore demonstrate the robust generalization performance of
the DSMSFNet, the training sample proportions of eight DL-based classification algorithms
are also changed, namely, 1%, 3%, 5%, 7%, and 10%. Figure 9 exhibits the matching classifi-
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cation results. As the number of training samples increases, the classification performance
gap between diverse approaches gradually narrows. Our designed approach still acquires
terrific classification results and demonstrates robust generalization performance.

(a) Ground truth (b) SVM

(d) KNN (e) GaussianNB (f) HybridSN

(2) MSRN_A (h) 3D_2D_CNN (i) RSSAN

(j) MSRN_B (k) DMCN (1) MSDAN (m) DSMSFNet

Figure 6. The visual maps of comparison methods for the BOW dataset.

(g) MSRN_A (h) 3D_2D_CNN (i) RSSAN (j) MSRN_B (k) DMCN () MSDAN (m)DSMSFNet

Figure 7. The visual maps of comparison methods for the IP dataset.

~ ~ )
s ) KY

(a) Ground truth (b) SM (c) F
(d) NN (e) GausianNB (f) HybridSN
(g) MSRN_A (h) 3D_2D_CNN (i) RSSAN
RN RN
(j) MSRN_B (k) DMCN (1) MSDAN (m) DSMSFNet

Figure 8. The visual maps of comparison methods for the Houston2013 dataset.

1% 3% 5% 7% 10% 1% 3% 5%
Percentage of training samples

o

10% 1% 3% 5% 7% 10%
Percentage of training samples Percentage of training samples
+HybridSN +MSRN-A -+ 3D-2D-CNN ~RSSAN

+~HybridSN~MSRN-A~+3D-2D-CNN+RSSAN
MSRN-B +DMCN ~~MSDAN  ~DSMSFNet

MSRN-B +DMCN ~MSDAN  ~DSMSFANet
(a) on the BOW dataset (b) on the IP dataset

+HybridSN~+MSRN-A~3D-2D-CNN ~RSSAN
MSRN-B +DMCN _~~MSDAN  ~DSMSFNet

(c) on the Houston 2013 dataset

Figure 9. The generalization performance.
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3.4. Discussion
3.4.1. Influence of Different Spatial Sizes

The feature distributions and intrinsic structures of the three benchmark datasets are
different, and the most suitable spatial sizes for them are different. Therefore, to investigate
the impacts of different spatial sizes, we varied them in the grid of {15 x 15,17 x 17,19 x 19,
21 x 21, 23 x 23, 25 x 25, 27 x 27, 29 x 29}; the results of the classification are given in
Figure 10. In Figure 10, for the BOW and IP datasets, it is clear that the optimal spatial size
is 19 x 19. For the Houston 2013 dataset, when the spatial size is 23 x 23, the accuracies
of three criteria metrics are unexceptionable. This is because a small spatial size results
in too little spatial context, while a large spatial size leads to too many pixels of different
classes and noises, which indicate that the middle spatial sizes are appropriate for three
benchmark datasets. Hence, for the BOW and IP datasets, the proper spatial size was set to
19 x 19. For the Houston 2013 dataset, the proper spatial size was set to 23 x 23.
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Different Spatial Sizes Different Spatial Sizes Different Spatial Sizes
mOAmAA®Kappa mOAmAAWKappa mOAmAAmKappa
(a) on the BOW dataset (b) on the IP dataset (c) on the Houston 2013 dataset

Figure 10. The influence of different spatial sizes.

3.4.2. Influence of Diverse Training Percentage

To analyze the classification performance of our constructed DSMSFNet under dif-
ferent training sample proportions on the three benchmark datasets, the labelled samples
were chosen randomly in the grid of {1%, 3%, 5%, 7%10%,20%,30%} as the training set
and the corresponding remaining labelled samples as the testing set; the results of the
classification are provided in Figure 11. In Figure 11, we can obviously see that for the
three benchmark datasets, the accuracies of three criteria metrics gradually increase as the
number of training samples increases. For the BOW and Houston 2013 datasets, when
the training sample number exceeds 10%, the accuracies of OA, AA, and Kappa increase
slowly and become gradually stable. For the IP dataset, when the training sample number
exceeds 20%, the accuracies of OA, AA, and Kappa increase slowly and become gradually
stable. This is because the IP dataset involves many continuous areas of the species; it
needs more training samples to obtain excellent classification accuracies. While the other
two datasets have many smaller areas of the species, they need fewer training samples
to acquire decent classification results. Therefore, for the three public datasets, we set,
respectively, the optimal training sample proportion to 10%, 20%, and 10%.
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(a) on the BOW dataset (b) on the IP dataset (c) on the Houston 2013 dataset

Figure 11. The influence of diverse training percentages.

3.4.3. Influence of Different Numbers of Principal Components

The hyperspectral datasets consist of hundreds of continuous spectral bands with high
correlation, which is adverse to the HSI classification. Therefore, before the DSMSFNet
extracts decompressed global spectral-spatial features, we conducted PCA on the original
hyperspectral datasets to reduce the training parameters of the model and abundant
redundant information by lessening the dimension of the original hyperspectral datasets.
To explore the relationship between the classification results and the number of principal
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components, we also conducted some experiments and varied the number of principal
components in the grid of {5, 10, 15, 20, 25, 30, 35, 40}. The classification results are provided
in Figure 12. In Figure 12, it can be easily found that for the three benchmark datasets, the
three criteria metrics gradually increase as the number of principal components increases.
For the BOW dataset, when the principal component number is 35, the three criteria metrics
are optimal. When the principal component number is over 35, the three criteria metrics
begin to decrease. For the IP and Houston 2013 datasets, when the principal component
number is 25, the three criteria metrics are optimal. When the principal component number
is over 25, the criteria metrics begin to descend. These phenomena partly explain that
the principal component number is greater; the developed DSMSFNet can generate more
discriminative spectral-spatial information from these principal components. But if the
principal component number is too large, the three criteria metrics are not good, which is
due to the interference of noise bands and excessive redundant information. Therefore, for
the BOW, IP, and Houston 2013 datasets, we set the optimal principal component number
to 35, 25, and 25, respectively.
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Figure 12. The influence of different principal component numbers.

3.4.4. Influence of Diverse Compressed Ratio in the MSFEM

We applied the “squeeze-and excitation” block to our constructed MSFEM to enhance
the useful information and suppress other ones. The number of neurons in the first fully
connected layer is determined by the compressed ratio r. We discuss the classification
accuracies of our developed method under diverse compressed ratios r, which were set to
{1, 2,3, 4, 5, 6}. The classification results are provided in Figure 13. In Figure 13, we can
clearly observe that for the three benchmark datasets, the optimal compressed ratio r is 3, 4,
and 6, respectively.
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mOAmAAWKappa mOAmAAmKappa mOAmAA®mKappa
(a) on the BOW dataset (b) on the IP dataset

(c) on the Houston 2013 dataset
Figure 13. The influence of diverse compressed ratios in the MSFEM.

3.4.5. Influence of Different L2 Regularization Parameters

To avoid the overfitting problem, L2 regularization was also introduced into the
proposed model. We analyzed the classification results under different L2 regularization
parameters, including 0.0005, 0.002, 0.01, 0.02, 0.03, 0.1, and 1. The classification results are
provided in Figure 14. In Figure 14, for the three benchmark datasets, as the L2 parameter
increases, the three criteria metrics also gradually increase. For the BOW and Houston 2013
datasets, when the L2 parameter is 0.002, the three criteria metrics are superior. When the
L2 parameter is over 0.002, the accuracies of OA, AA, and Kappa begin to decline. For
the IP dataset, when the L2 parameter is 0.02, the three criteria metrics are optimal. When
the L2 parameter is over 0.02, the accuracies of OA, AA, and Kappa begin to decrease.
Therefore, for the three common datasets, we set the optimal L2 parameter to 0.002, 0.02,
and 0.002, respectively.
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Figure 14. The influence of different L2 regularization parameters.

3.4.6. Influence of Diverse Convolutional Kernel Numbers of DDBs

The DDB is composed of a 1 x 1 convolutional layer, a BN layer, a ReLU activation
function, and a CRB. Among them, the 1 x 1 convolutional layer is utilized to reduce the
dimension of local decompressed spectral-spatial features. The dimension of output local
decompressed spectral-spatial features of each DDB directly influences the classification
performance and computational complexity of the presented method. Therefore, we discuss
the classification accuracies of our developed method under diverse convolutional kernel
numbers of DDBs, which were set to {12, 24, 32, 48, 64}. Figure 15 provides the classification
results. In Figure 15, for the BOW dataset, we can observe that when the convolutional
kernel number is 64, the accuracies of three criteria metrics are first-rank. For the IP and
Houston 2013 datasets, when the convolutional kernel number is 48, the accuracies of
three criteria metrics are at their best and the classification performance of our developed
DSMSENet is excellent. Therefore, for the three benchmark datasets, we set the optimal
convolutional kernel number to 64, 48, and 48, respectively.
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(b) on the IP dataset (c) on the Houston 2013 dataset

Figure 15. The influence of diverse convolutional kernel numbers of DDBs.

3.4.7. Influence of Various Numbers of DDBs in the DSFEM

The DSFEM includes multiple DDBs and the number of DDBs directly affects the
classification performance of our presented approach. If the number of DDBs is too low,
the decompressed spectral-spatial features are inadequately extracted. If the number of
DDBs is too high, the complexity and training parameters of the model increase. These are
adverse to the HSI classification. Therefore, we conducted some experiments to investigate
the impacts of various numbers of DDBs in the DSFEM in the grid of {2, 3,4, 5,6}. Figure 16
provides the results of the classification of the three public datasets. According to Figure 16,
it is easy to see that for the IP datasets, when the number of DDBs is five, the accuracies
of the three criteria metrics are obviously better than the other conditions. For the other
two datasets, we can visibly see that the three evaluation indices gradually rise with the
increase of DDB numbers. As the number of the DDB:s is five, the three criteria metrics
are excellent. As the number of the DDBs exceeds five, the accuracies of the three criteria
metrics begin to decrease. Therefore, for the three benchmark datasets, we set the optimal
number of DDB:s to five, five, and five, respectively.
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Figure 16. The influence of various numbers of DDBs in the DSFEM.
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3.5. Ablation Study
3.5.1. The Effect of Constructed CConv Layer

To verify the validity of our constructed CConv layer, the ablation experiments were
performed on the three benchmark datasets under six different conditions, named casel,
case2, case3, case4, case5, and case6, where “x” represents each corresponding DDB that
uses a conventional 3 x 3 convolutional layer instead of CConv layers, and “+/” refers to
each corresponding DDB that uses CConv layers. Table 7 shows the corresponding results
on the three public datasets, including the training parameter number and testing time.

Table 7. The effect of the constructed CConv layer.

Location of DDB Metrics
Datasets Case
DDB1 DDB2 DDB3 DDB4 DDB5 Parameters (M) Time (s) OA (%)
casel X X X X X 0.522850 0.84 99.59
case2 Vv X X X X 0.451093 0.82 98.97
case3 Vv Vv X X X 0.389381 0.77 99.42
BOW cased Ni Ni Ni X X 0.307669 0.77 99.42
caseb Vv Vv v v X 0.235957 0.76 99.49
case6 v v v Vi v 0.162785 0.72 99.79
casel X X X X X 0.319609 1.22 99.54
case2 v X X X X 0.279361 1.19 98.89
case3 Vv Vv X X X 0.240493 1.15 99.67
P cased V J J X X 0.200149 112 98.77
caseb Vv v Vv v X 0.159805 1.04 95.86
case6 v v v v v 0.118369 1.02 99.62
casel X X X X X 0.356989 2.26 99.68
case2 v X X X X 0.316650 2.20 99.64
Houston case3 Vv Vv X X X 0.276402 2.10 99.55
2013 case4 Vv vV Vv X X 0.236154 1.99 99.56
caseb Vv v Vv v X 0.195906 1.88 99.62
case6 v v v v v 0.155658 1.78 99.88

The black bold highlights which mechanic works best.

As shown in Table 7, it can be obviously seen that case 1 requires more parameters
for training and a longer time for testing on the three benchmark datasets. This is because
all cases utilize the CConv layer, except case 1. This means case 1 cannot reduce network
parameters and computational complexity. Compared with the other cases, case 6 requires
fewer parameters for training and a shorter time for testing on the three benchmark datasets.
This is because the CConv layer is the primary component in the CRB. Each DDB can obtain
representative local spectral-spatial information, where the main part of our designed DDB
is CRB. DSFEM can capture more discriminative global spectral-spatial features and it
comprises five DDBs through dense connection. This confirms that the CConv layer is
effective and can effectively decrease the computational cost of our proposed model while
enhancing the classification performance.

3.5.2. The Effect of the Designed DSMSFNet Model

To further discuss and demonstrate the importance of the DSFEM and MSFEM of our
presented DSMSENet on the three benchmark datasets, we conducted comparative experi-
ments under three conditions, namely, network 1 (only using the DSFEM), network 2 (only
using the MSFEM), and network 3 (using the DSFEM and MSFE, i.e., our proposed method).
Figure 17 exhibits the corresponding classification results of the three benchmark datasets.
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Figure 17. The ablation result of the designed DSMSFNet model.

In Figure 17, for the three benchmark datasets, it is obvious that the three criteria
metrics of network 2 are the lowest. For example, for the Houston 2013 dataset, the three
criteria metrics are 6.66%, 7.26%, and 7.2% lower than those of network 3, respectively. For
the IP dataset, the three criteria metrics are 32.06%, 59.25%, and 36.63% lower than those of
network 3, respectively. For the BOW dataset, the three criteria metrics are 1.26%, 1.8%,
and 1.37% lower than those of network 3, respectively. These experimental results certify
that our designed DSFEM is conducive to the constructed DSMSENet to not only capture
adequately local decompressed spectral-spatial features of each DDB but also generate
global decompressed spectral-spatial features by introducing dense connections, which
further increase the diversity of spectral-spatial information. Compared with network 2,
the three criteria metrics of network 1 are perceptibly raised. For example, for the Houston
2013 dataset, the three criteria metrics are 0.06%, 0.02%, and 0.06% lower than those of
network 3, respectively. For the IP dataset, the three criteria metrics are 0.74%, 7.73%, and
0.85% lower than those of network 3, respectively. For the BOW dataset, the three criteria
metrics are 0.2%, 0.28%, and 0.22% lower than those of network 3, respectively. These
results indicate that the MSFEM can expand the range of available receptive fields while
capturing multiscale high-level semantic features at a granular level to further boost the
classification performance. Therefore, up to a point, the DSFEM and the MSFEM in our
proposed model considerably boost the classification performance.

4. Conclusions

This article presents a decompressed spectral-spatial multiscale semantic feature
network (DSMSFNet) for HSI classification. First, we design a CConv layer instead of
conventional 3 x 3 convolutional layer to decrease the training parameter number and
computational complexity of our developed model. Second, taking the CConv layer as
the dominating component, a CRB is constructed to capture spectral-spatial features in
a lightweight feature extraction manner. Third, we devise a DDB, which is composed of
a1l x 1 convolution layer, a BN layer, a ReLU activation function and a CRB, to generate
local decompressed spectral-spatial features. In addition, to avoid gradient disappearance
and obtain more comprehensive global decompressed spectral-spatial features, we also
introduce the dense connection into our presented DSMSFNet. Furthermore, considering
dispelling the redundant information and noise, we raise an MSFEM, which can not only
expand the range of available receptive fields but also extract high-level clean multiscale
semantic features at a granular level to further boost the classification performance. Finally,
a 2D global average pooling layer, two fully connected layers, and a softmax function are
utilized to acquire the output results. Additionally, L2 regularization is also introduced
into the developed DSMSFNet to improve the classification ability. The experimental
results on the three public datasets prove the superiority and effectiveness of our con-
structed model, while exhibiting competitive performance compared with the advanced
classification algorithm.

Nevertheless, there is still room for improvement in our proposed framework. In
future work, it is suggested to adaptively design the architecture of a DL model and not rely
on specialized knowledge. Another important future avenue of exploration is integrating
the semi-supervised or unsupervised training strategies into the presented model while
maintaining high-quality classification results.
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