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Abstract: To address the problem of the expensive and time-consuming annotation of high-resolution
remote sensing images (HRRSIs), scholars have proposed cross-domain scene classification models,
which can utilize learned knowledge to classify unlabeled data samples. Due to the significant
distribution difference between a source domain (training sample set) and a target domain (test
sample set), scholars have proposed domain adaptation models based on deep learning to reduce the
above differences. However, the existing models have the following shortcomings: (1) insufficient
learning of feature information, resulting in feature loss and restricting the spatial extent of domain-
invariant features; (2) models easily focus on background feature information, resulting in negative
transfer; (3) the relationship between the marginal distribution and the conditional distribution is not
fully considered, and the weight parameters between them are manually set, which is time-consuming
and may fall into local optimum. To address the above problems, this study proposes a novel remote
sensing cross-domain scene classification model based on Lie group spatial attention and adaptive
multi-feature distribution. Concretely, the model first introduces Lie group feature learning and maps
the samples to the Lie group manifold space. By learning features of different levels and different
scales and feature fusion, richer features are obtained, and the spatial scope of domain-invariant
features is expanded. In addition, we also design an attention mechanism based on dynamic feature
fusion alignment, which effectively enhances the weight of key regions and dynamically balances the
importance between marginal and conditional distributions. Extensive experiments are conducted on
three publicly available and challenging datasets, and the experimental results show the advantages
of our proposed method over other state-of-the-art deep domain adaptation methods.

Keywords: cross-domain scene classification; domain adaptation; Lie group spatial attention mechanism;
remote sensing

1. Introduction

In recent years, with the rapid development of remote sensing image sensor tech-
nology, the data volume and spatial resolution of high-resolution remote sensing images
(HRRSIs) have been greatly improved [1–4]. However, the types of remote sensing image
sensors, imaging and illumination conditions, shooting heights, and angles have led to
huge differences in the distribution of HRRSI [5–7]. Due to the different distributions
of HRRSI, the generalization ability of a trained model to be applied to other new data
samples is limited. How to improve the generalization ability of models under different
distributed datasets has become a significant issue in current research [8–10].

To effectively alleviate the problem of the weak generalization ability of a model,
scholars have proposed a cross-domain scene classification model. This model mainly
classifies label-sparse data (target domain) based on the knowledge learned from label-rich
data (source domain), where the data in the source and target domains come from different
distributions [11,12]. The domain adaptation method is one of the most widely used
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methods in cross-domain scene classification models [13,14]. This method maps different
scenes to a common feature space [15] and assumes that the source domain and the target
domain share the same category space but have different data probability distributions
(domain offset) [13,16]. However, in practical application scenarios, it is difficult to find a
source domain that can cover all categories of the target domain [17].

The most straightforward way to effectively alleviate domain offset is to transform the
source domain and the target domain so that the different data distributions are closer together.
According to the characteristics of data distribution, the method mainly includes (1) condi-
tional distribution adaptation [18]; (2) marginal distribution adaptation [19,20]; and (3) joint
distribution adaptation [21]. Othman et al. [13] proposed small-batch gradient-based dy-
namic sample optimization to reduce the difference between marginal and conditional
distributions. Adversarial learning is also a common method of domain adaptation, which
mainly reduces domain offset through a minimax game between the generator and the
discriminator [22]. Shen et al. [23] proposed adversarial learning based on Wasserstein distance
to learn domain-invariant features. Yu et al. [24] proposed an adaptation model based on
dynamic adversarial learning, which utilizes A-distance to set the weights of marginal and
conditional distributions.

The successful model mentioned above provides us with a sufficient theoretical basis for
our research and has achieved impressive performance. However, for the study of remote
sensing cross-domain scene classification, the above models still face the following challenges:

1. As shown in Figure 1, due to the diversity of HRRSI generated by factors such as
different heights, scales, seasons, and multiple sensors, it is difficult for the charac-
terization of features of a certain layer (such as high-level semantic features) to cover
all features in HRRSI. In other words, most existing models are mainly based on the
feature information of a certain layer (such as high-level semantic features). It is diffi-
cult to capture all the feature information in HRRSI, so only some domain-invariant
features may be learned.

(a) (b) (c)
Figure 1. HRRSIs generated by some factors such as different scales, heights, seasons, and sensors
are enumerated in (a–c). The samples from the AID datasets.

2. As shown in Figure 2, in some scenes, such as residential and river scenes, most of the
existing models experience difficulty in enhancing the weight of key regions, easily
focus on backgrounds, and cause negative transfer.
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(a) (b) (c) (d)

Figure 2. Different scenes have different foreground proportions, such as (a) farmland, (b) forest,
(c) medium residential area, and (d) rivers. Samples are from the AID datasets and NWPU-RESISC45
datasets.

3. Most existing models treat marginal distribution and conditional distribution as
equally important and do not distinguish between them. In fact, the above view
has been shown to be one-sided and insufficient [24]. Although some scholars have
realized this problem, most of their proposed methods are based on manual methods
to set the parameters of the above distribution, which may fall into local optimum.
In addition, some models also align both local and global features to obtain better
results, but the need to manually adjust the weights of the above two parts increases
the computational difficulty and time consumption.

To address these challenges, we proposed a novel remote sensing cross-domain scene
classification model based on Lie group spatial attention and adaptive multi-feature distri-
bution. This model fully considers the representation of multi-feature spaces and expands
the space of domain-invariant features. The attention mechanism in the model effectively
enhances the weight of key regions; suppresses the weight of irrelevant features, such
as backgrounds; and dynamically adjusts the parameters of marginal distribution and
conditional distribution.

The main contributions of this study are as follows:

1. To address the problem that limited feature representation cannot effectively learn
sufficient features in HRRSI, we propose a multi-feature space representation module
based on Lie group space, which projects HRRSIs into Lie group space and extracts fea-
tures of different levels (low-level, middle-level, and high-level features) and different
scales, effectively enhancing the spatial ability of domain-invariant features.

2. To address the problem of negative transfer, we design an attention mechanism based
on dynamic feature fusion alignment, which effectively enhances the weight of key
regions, makes domain-invariant features more adaptable and transferable, and further
enhances the robustness of the model.

3. To address the imbalance between the relative importance of marginal distribution and
conditional distribution and the problem that manual parameter setting may lead to local
optimization, the proposed method takes into account the importance of the above two
distributions and dynamically adjusts the parameters, effectively solving the problem of
manual parameter setting and further improving the reliability of the model.

2. Method

As shown in Figure 3, this section will introduce our proposed model in detail from
several aspects, such as problem description, domain feature extraction, attention mecha-
nism, and dynamic setting parameters.
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Figure 3. Architecture of our proposed model. The model includes feature extraction modules
(low-level, middle-level, and high-level features), attention mechanisms, and corresponding loss
functions (LGMMD, LGCMMD).

2.1. Problem Description

SD = {(xsd
i , ysd

i )}nsd
i=1 represents the source domain containing nsd-labeled samples,

where xsd
i represents the ith sample and ysd

i represents its corresponding category in-
formation. TD = {(xtd

j , ytd
j )}

ntd
j=1 represents the target domain containing ntd-unlabeled

samples, where ysd
j represents the ith sample and ytd

j represents its corresponding un-
known category information. The category space and feature space of the source and
target domains are the same, i.e., xsd = xtd and ysd = ytd, but their marginal probability
distribution and conditional probability distribution are different, i.e., P(xsd) 6= P(xtd) and
Q(ysd|xsd) 6= Q(ytd|xtd). The goal of our model is to reduce the differences between the
source and target domains by learning domain-invariant features in the source domain
data samples.

2.2. Domain Feature Extractor

This subsection mainly includes two modules: Lie group feature learning and multi-
feature representation.

2.2.1. Lie Group Feature Learning

In our previous research, we proposed Lie group feature learning [1–4]. In addition,
we also draw on some approaches in the literature [25,26]. As shown in Figure 3, the
previously proposed method was used in this study to extract and learn the low-level and
middle-level features of the data sample samples.

Firstly, the sample is mapped to the manifold space of the Lie group to obtain the data
sample of Lie group space:

Gij = log(Dij) (1)

where Dij represents the jth data sample of the ith class in the dataset, and Gij represents
the jth data sample of ith class on the Lie group space.

Then, we perform feature extraction on the data samples on the Lie group space,
as follows:

F(x, y) =
[

x, y, NR, NG, NB, Y, Cb, Cr, Wave(x, y), LBP(x, y), Gabor(x, y)
]T

(2)
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Among them, the first eight features mainly extract some basic features, such as
coordinates and colors. Through previous research, we found that although there are
differences in the shapes and sizes of the target objects, their positions are similar. In
addition to target coordinate features, color features are also an important feature, such as
forest scenes. At the same time, we consider the influence of different illuminations and add
Y, Cb, and Cr features to further enhance the representation ability of the low-level features.
The latter three features mainly extract middle-level features. For example, Wave(x, y)
mainly focuses on the texture and detail feature information in the scene, LBP(x, y) mainly
has the advantage of being invariant to monotony illumination, Gabor(x, y) can simulate
the single-cell receptive field of the cerebral cortex and extract the spatial orientation and
other information in the scene. The content related to Lie group machine learning can be
referred to in our previous research [1–4,27–29].

In terms of high-level feature learning, the approach shown in Figure 4 is utilized. The
approach consists of four parallel dilated convolution modules, each of which is followed by
switchable whitening (SW) and scaled exponential linear unit (SeLU) activation functions.
The reason why traditional convolution is not used in this subsection is that, in previous
research [1], we found that parallel dilated convolution can effectively expand the receptive
field and learn more semantic information compared with traditional convolution, and the
number of parameters is small. For details, please refer to our previous research [1]. The
SW [30] method includes a variety of normalization and whitening methods, among which
the whitening method can effectively reduce the pixel-to-pixel correlation of HRRSI, which
is conducive to feature alignment. The SW used in this study includes batch normalization
(BN), batch whitening (BW), instance whitening (IW), and layer normalization (LN), which
can extract more discriminative features. In addition, in a previous study [1], we also
found that the traditional rectified linear unit (ReLU) activation function directly reduces to
zero in a negative semi-axis region, which may lead to the disappearance of the potential
gradient in the model training phase. Therefore, we adopted the SeLU activation function
based on a previous study.

SW SeLU

Parallel Dilated 

Convoution

SW SeLU

Parallel Dilated 

Convoution

SW SeLU

Parallel Dilated 

Convoution

Parallel Dilated 

Convoution

SW SeLU

SW

Batch Whitening

Instance Whitening

Layer Normalization

Batch Normalizaton

64      1     1 128      1     1 256      1     1 512      1     1

Figure 4. High-level feature learning. The module contains parallel dilated convolution, SW opera-
tions, and SeLU activation functions.

2.2.2. Multi-Feature Representation

In traditional models, fixed-size convolutions are usually concatenated so that the re-
ceptive field of the obtained feature map is small, and the key feature information in HRRSI
may be lost. To address this problem, in previous research [4], we proposed the multidilation
pooling module, which contains four branches: the first branch directly uses global average
pooling, and the other three branches adopt the multiple dilation rate of 2, 5, and 6 and, finally,
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join the obtained features. To improve the feature representation ability more effectively, based
on previous research [4], we optimize and improve the previous research to further explore
the spatial scope of domain-invariant features.

The structure of multi-feature space representation is shown in Figure 5, and the
specific operations are as follows: (1) To effectively reduce the dimensions of features
and improve the computational performance of the model, 1× 1 parallel dilated convo-
lution is adopted. (2) To extract the range of domain-invariant features more effectively,
three different multiple dilation rates (Rate = 2, Rate = 5, and Rate = 6) and SW are
used. Different multiple dilation rates can effectively extract the diversity of feature space.
(3) The SeLU activation function is used to ensure the nonlinear mapping of the model.
(4 The above-obtained features are fused through a connection operation, the dimension
of the feature map is restored to the original dimension by using the 1× 1 parallel dilated
convolution, and the residual connection method is used to obtain the final representation.

Feature Maps

1  × 1 Parallel Dilated 

Convoution

Rate=2 Rate=5 Rate=6

SW

SeLU

SW

SeLU

SW

SeLU

Output

1  × 1 Parallel Dilated 

Convoution

Figure 5. Multi-feature representation. This module first performs 1× 1 parallel dilated convolution,
then utilizes different multiple dilation rates (Rate = 2, Rate = 5, Rate = 6) and passes correspond-
ing SW operations, SeLU activation functions, and 1 × 1 parallel dilated convolution. Residual
connections are used to obtain the final feature map.

2.3. Alignment Attention Mechanism Based on Dynamic Feature Fusion
2.3.1. Dynamic Feature Fusion Alignment

To effectively alleviate the difference between the source domain and the target domain
and find the optimal balance point in the two domains, a dynamic feature-fusion-based
alignment attention mechanism is proposed in this subsection, as shown in Figure 6. The
specific expression is as follows:

wsd(x) = sw(s) + dw(s) (3)

where wsd(x) represents the overall weight, dw(s) represents the dynamic alignment weight,
and sw(s) represents the static weight. The details are as follows:
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Figure 6. Alignment attention mechanism based on dynamic feature fusion. The attention mechanism
mainly consists of two parts: dynamic feature fusion alignment and 3D spatial attention mechanism.
In the first section, there are operations, including Avgpool, Linear, BN, SeLU, Linear and Softmax. In
the second section, operations are performed in three dimensions. The above operation can effectively
reduce the difference between the source domain and the target domain.

1. Dynamic alignment weight acquisition: Firstly, through average pooling, two linear
layers, SeLU, and softmax operation, this operation is mainly to extract more effective
features, suppress useless features, and, finally, obtain the dynamic scaling coefficient,
α. Then, four parallel dilated convolutions with 1× 1 branches are used to obtain
four weights, and the final dynamic weights are obtained by the weights of the four
branches and the dynamic scaling coefficients, which are specified as follows:

α = so f tmax(L2S(L1 AvgPool(x))) (4)

where so f tmax represents the softmax operation; L2 and L1 represent the second and
first linear layer, respectively; S represents the SeLU activation function; and AvgPool
represents the average pooling operation. Then, we apply four 1× 1 parallel dilated
convolutions to obtain the weights, ∑4

i=1 wi(x), of the four branches.
2. The static weights are obtained through a 3× 3 parallel dilated convolution.
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Thus, the above can be expressed as follows:

wsd(x) = sw(x) +
4

∑
i=1

wi(x) · αi (5)

2.3.2. Three-Dimensional Spatial Attention Mechanism

The three-dimensional spatial attention mechanism mainly includes three dimensions—
height, width, and channel—and realizes the interaction of the above three dimensions.
The above result is utilized to obtain f3d through a 1× 1 parallel dilated convolution, and
three replicas of it are made. On the first dimension of height, we rotate it 90 degrees along
the H-axis to obtain feature f3dh. To obtain the attention weights on this dimension, we first
retain rich features by pooling as follows:

f3d − Pool( f ) = [AvgPool( f ), MaxPool( f )] (6)

where, f represents the input feature, f ∈ RH×W×C; AvgPool represents average pooling;
and MaxPool represents max pooling.

Then, it goes through 7× 7 parallel dilated convolution layers, SW, and SeLU activation
function operations in turn. Finally, it is rotated 90 degrees along the H-axis to restore
the same shape as the original feature map. In the same way, the operation on the second
dimension, width, is similar to the first one, except that it is rotated 90 degrees along
the W-axis. In the third dimension, channel, it undergoes pooling, 7× 7 parallel dilated
convolution layers, and SeLU activation functions. After obtaining the weights of the above
three dimensions, the aggregation is performed in the following way:

β =
1
3
( ̂f3dhS(SW(PD( f3d − Pool( f3dh)))) + ̂f3dwS(SW(PD( f3d − Pool( f3dw))))+ (7)

S(PD( f3d − Pool( f3dc))))

where SW denotes switchable whitening, S denotes the SeLU activation function, PD denotes
7× 7 parallel dilated convolution, and (̂·) denotes a rotation of 90 degrees.

2.4. Discrepancy Similarity Calculation

To address the marginal and conditional distributions efficiently, in this subsection,
we propose Lie group maximum mean discrepancy (LGMMD) and Lie group conditional
maximum discrepancy (LGCMMD).

2.4.1. LGMMD

Maximum mean discrepancy (MMD) is one of the typical methods to calculate the
discrepancy, mainly by calculating the discrepancy of reproducing kernel Hilbert space
(RKHS). The traditional MMD calculation is as follows:

dMMD = || 1
nsd

Σi=1···nsd
xsd

i ∈SD
φ(xsd

i )− 1
ntd

Σj=1···ntd
xtd

j ∈TD
φ(xtd

j )||2Hk
(8)

where HK represents the RKHS established by feature mapping, and φ(·) represents the feature
mapping function, that is, by calculating the average of two samples over different distributions.

To calculate the marginal distribution between the source domain and the target
domain, we optimize and improve it as follows:

dLGMMD = ||µ(SD)− µ(TD)||2Hk
(9)

where µ(SD) and µ(TD) denote the Lie group intrinsic means of the source and target
domains, respectively. In a previous study [27,28], we found that the Lie group intrinsic
mean can identify the potential characteristics of data samples, and the specific calculation
method can be referred to in [27,28].
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2.4.2. LGCMMD

Although LGMMD effectively reduces the distribution divergence, the conditional
distribution divergence cannot be ignored. Therefore, in addition to the above, we also
need to consider the conditional distribution divergence. Since the target domain does not
contain labeled data samples, it is difficult to directly estimate the conditional distribution
of the target domain. The usual solution is to adopt the predicted value of the target domain
data as the pseudo label.

The posterior probabilities (i.e., Q(ysd|xsd) and Q(ytd|xtd)) of the source and target
domains are rather difficult to represent and are generally approximated by sufficient
statistics of the class conditions, namely, Q(xsd|ysd = C) and Q(xtd|ytd = C). Therefore,
LGCMMD can be expressed as follows:

dLGCMMD =
1
C

ΣC
c=1||µ(SD)− µ(TD)||2Hk

(10)

where C represents the number of kinds of data samples.

2.4.3. Dynamic Tradeoff Parameter

The probability of the two distributions can be obtained through the above calculation,
and how to set the weights of the two distributions is a key problem to be solved in this
research. In previous research, we found that average search and random guessing are
commonly used methods [24]. Although the above two methods have been widely used in
many models, they are relatively inefficient.

To address the above problems, we propose the dynamic tradeoff parameter in this
subsection, which is as follows:

γ = exp(
dLGMMD(SD, TD)

dLGMMD(SD, TD) + dLGCMMD(SD, TD)
) (11)

This parameter is updated in each iteration, and when the training converges, a
relatively stable parameter value can be obtained.

2.5. Loss Function

The marginal distribution adaptation and conditional distribution adaptation loss
functions are as follows:

LMDA = dLGMMD(Gd(xsd), Gd(xtd)) (12)

LCDA = dLGCMMD(Gd(xsd), Gd(xtd)) (13)

respectively, where Gd represents the domain feature extractor.
The class classifier is used to determine the category of the input data, and the corre-

sponding loss function is expressed as follows:

LCC =
1

nsd
Σxsd

i ,ysd
i ∈SDLCE(Gcc(Gd(xsd

i )), ysd
i ) (14)

where LCE represents the cross-entropy loss, and Gcc represents the category classifier.
In summary, the overall objective function is expressed as follows:

L = LCC + η(γLMDA + (1− γ)LCDA) (15)

where η denotes the non-negative tradeoff parameter.

3. Experimental Results and Analysis
3.1. Experimental Datasets

In this part of the study, we chose three publicly available and challenging datasets and
chose other state-of-the-art and competitive models to evaluate our proposed method, three
of which are UC Merced [31] (UCM), AID [32], and NWPU-RESISC45 [33] (NWPU). The
UCM dataset [31] contains 21 categories of scenes, and each category contains 100 images.
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The AID dataset [32] contains 30 categories of scenes, each of which has about 200 to 400 im-
ages. The NWPU dataset [33] contains 45 categories of scenes, and each category contains
700 images. These two types of datasets contain a large number of scene categories and are
representative, including (1) high similarity between classes and diversity within classes;
(2) the scene being rich. The above datasets come from different sensors, that is, HRRSI is
obtained based on uncertain sensors. The main characteristics of the above two datasets
can be referred to in the literature [1–4].

3.2. Experiment Setup

In the experimental setup, we performed six cross-domain scene classifications as fol-
lows: UCM → AID, UCM → NWPU, AID → UCM, AID → NWPU, NWPU → UCM,
NWPU → AID, where → represents the knowledge transfer from the source domain to
the target domain. The other parameter settings are based on previous research [1–4,26], as
detailed in Table 1, and the updating of parameters is mainly based on repeated experi-
ments and iterations. To eliminate the contingency of the experiment, we conducted ten
repeated experiments using randomly selected training and test data samples to obtain
reliable experimental results.

Table 1. Setting of experimental environment and other parameters.

Item Content

CPU Inter Core i7-4700 CPU with 2.70 GHz ×12
Memory 32 GB

Operating system CentOS 7.8 64 bit
Hard disk 1 TB

GPU Nvidia Titan-X ×2
Python 3.7.2
PyTorch 1.4.0
CUDA 10.0

Learning rate 10−3

Momentum 0.73
Weight decay 5× 10−4

Batch 16
Saturation 1.7

Subdivisions 64

3.3. Results and Comparison

The experimental results of our method and other methods are shown in Table 2. From
Table 2, it can be observed that our proposed method has advantages over other methods
and effectively improves the accuracy of cross-domain scene classification.

Table 2. Experimental results of different methods (%).

Models UCM→
AID

UCM→
NWPU

AID→
UCM

AID→
NWPU

NWPU→
UCM

NWPU→
AID AVG

ADA-DDA [34] 77.78 74.76 87.50 90.70 89.63 97.98 85.39
AMRAN [35] 74.08 68.09 75.50 86.80 78.50 89.43 78.73

BNM [35] 71.13 69.13 79.50 88.63 71.75 89.43 78.26
CDAN [35] 67.80 66.59 77.63 90.32 76.75 93.16 78.71

CDAN+E [35] 72.05 68.13 73.88 90.32 79.00 92.23 79.27
DAAN [36] 49.71 48.50 66.50 77.73 59.88 79.26 63.60

DATSNET [37] 76.26 73.89 82.57 87.76 88.13 94.23 83.81
DeepCORAL [36] 74.61 66.50 76.50 84.50 79.38 86.91 78.07
DeepMEDA [35] 75.18 75.84 73.75 89.70 76.63 89.08 80.03

DSAN [35] 74.65 74.86 73.88 87.05 78.25 88.83 79.58
MRDAN [38] 90.83 86.35 89.14 91.06 89.72 98.03 90.86

Proposed 90.95 87.43 90.73 92.13 90.76 98.21 91.70
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From Table 2, it can be observed that our proposed approach has higher classification
accuracy compared to other methods. When knowledge transfers from the source domain
with a small data sample size to the target domain with a large data sample size, for
example, in the experiment of UCM→ AID, MRDAN improves 13.05% compared with
ADA-DDA, and our method improves 0.12% and 13.17% compared with MRDAN and
ADA-DDA, respectively. In the experiments of UCM→ NWPU, the accuracy of ARMAN
reaches 68.09%, the accuracy of MRDAN reaches 86.35%, and our method reaches 87.43%,
which is 19.34% and 1.08% higher than them, respectively. When knowledge transfers from
the source domain with a large amount of sample data to the target domain with a small
amount of sample data, for example, in the NWPU→ UCM experiment, the accuracy of
ADA-DDA reaches 90.70%, the accuracy of DATSNET reaches 87.76%, and our method
reaches 92.13%. Compared with the other methods, our proposed approach increased
by 4.37% and 1.43% respectively. Furthermore, the average classification accuracy of our
proposed method is improved compared with other methods.

There are several reasons for further analysis of the above experimental results:

1. Our proposed approach extracts more and more useful features, which effectively
expands the range of domain-invariant features. Drawing on the previous successful
research basis [1–4], in addition to extracting the low-level, mid-level, and high-level
features of the scene, this study also optimizes and improves the previous approach,
increases the receptive field, reduces the dimension of the features, and extracts more
effective features from different scales.

2. From the experimental results, we found that when the number of data samples is
small, the classification accuracy of the target domain will also decrease. For scene
classification, data samples containing a large number of category information are
crucial to the performance of the model, but obtaining a large number of data samples
containing category information is tedious, expensive, and time-consuming work.
Our proposed method reduces negative transfer to some extent.

3. Our proposed alignment attention mechanism based on dynamic feature fusion effec-
tively enhances the key features in the key region, suppresses the invalid features, and
realizes the interaction of attention in the three-dimensional space. Based on previous
research [1–4], this method was further optimized and improved to maximize the
mining of key features in the scene.

4. Ablation Experiments
4.1. Influence of Different Modules on Cross-domain Scene Classification

To demonstrate the effectiveness of different modules in our proposed approach,
we constructed the following different ablation experiments: (1) a comparison of models
without extracting low-level, middle-level, and high-level features against models with
extracted low-level, middle-level, and high-level features; (2) a comparison of models that
do not utilize multiple-feature spaces and models that utilize multiple-feature spaces; and
(3) a comparison of models that do not utilize attention mechanisms with models that
utilize attention mechanisms.

Since the number of categories and data samples in the UCM dataset is small, and the
distribution difference between the UCM dataset and the AID dataset is also large, we still
take UCM→AID as an example for ablation experimental analysis. From Table 3, we found
that the accuracy of the model without extracting low-level, middle-level, and high-level
features is relatively low, at only 85.73%, while the accuracy of the model without extracting
low-level and middle-level features (that is, without using the Lie group machine learning
method to extract low-level and middle-level features) is 86.97%, which is mainly because
the model does not fully learn the domain-invariant features in the data samples. From
Table 4, we found that the approach is optimized and improved based on previous research,
and features at different scales are further extracted so that the model can effectively learn
features at different scales and further expand the range of domain-invariant features. In
addition, the model adopts parallel dilated convolution, which effectively reduces the
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feature dimension of the model and improves the adaptability of the model. From Table 5,
we found that the model using the attention mechanism has more advantages in accuracy.
Our proposed attention mechanism fully considers the weights on the three dimensions
and adopts a dynamic way to adjust the parameters, avoiding the problem of local optima
that may be caused by traditional methods.

Table 3. Influence of low-level, middle-level, and high-level features.

Modulars OA (%)

Without low-level, middle-level, and high-level
features 85.73

Without low-level and middle-level features 86.97
Proposed 90.95

Table 4. Influence of multiple-feature spaces.

Modulars OA (%)

Without multiple-feature spaces 86.35
Proposed 90.95

Table 5. Influence of attention mechanisms.

Modulars OA (%)

Without attention mechanisms 84.73
Proposed 90.95

4.2. KAPPA, Model Parameters, and Running Time Analysis

Table 6 shows the KAPPA coefficients, parameter sizes, and runtime of our proposed
approach compared to other models. All models were tested under the same experimental
conditions (hardware and software environment). From Table 6, we found that our pro-
posed approach achieved better results in the three aspects mentioned above. Taking the
UCM→ AID experiment as an example, in terms of parameters, our approach effectively
reduced the model’s parameters through the use of parallel dilated convolution and other
operations, achieving reductions of 19.25 m and 9.98 m compared with the MRDAN [38]
and AMRAN [35] models. In terms of the KAPPA coefficient, our method showed improve-
ments of 0.2029 and 0.283 compared with the DATSNET [37] and CDAN+E [35] models. In
terms of running time, reductions of 0.87 s and 0.893 s were achieved when compared with
the BNM [35] and DAAN [36] models. Due to the fact that the model only requires classi-
fication without calculating backward gradients and, in addition, the model extensively
utilizes operations such as Lie group intrinsic mean and parallel dilated convolution, the
parameters are effectively reduced while also improving the model’s running time.
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Table 6. Comparison of KAPPA, model parameters, and running time.

Models KAPPA Parameter Size (m) Running Time (s)

ADA-DDA [34] 0.7236 37.32 2.376
AMRAN [35] 0.6751 32.35 2.137

BNM [35] 0.6276 35.22 2.233
CDAN [35] 0.5738 39.52 2.532

CDAN+E [35] 0.6306 42.33 2.771
DAAN [36] 0.3251 35.67 2.256

DATSNET [37] 0.7107 33.79 2.329
DeepCORAL [36] 0.7125 45.65 2.927
DeepMEDA [35] 0.7237 43.67 2.821

DSAN [35] 0.6837 40.33 2.511
MRDAN [38] 0.8958 41.62 2.626

Proposed 0.9136 22.37 1.363

5. Conclusions

In this study, we proposed a novel remote sensing cross-domain scene classification
model based on Lie group spatial attention and adaptive multi-feature distribution. We
tackled the problem of insufficient feature learning in traditional models by extracting
features from low-level, middle-level, and high-level features. We further optimized the
multi-scale feature space representation based on our previous research, effectively ex-
panding the space of domain-invariant features. We also designed attention mechanisms
for different dimensions of space, focusing on key regions through model training to sup-
press irrelevant features. The experimental results indicated that our proposed method has
advantages in terms of model accuracy and the number of model parameters. Our proposed
method is also able to automatically adjust the parameters of the marginal and conditional
distributions, which greatly improves the effectiveness and robustness of the model.

In our study, we mainly considered the characteristics of the source domain and the
target domain. Therefore, in future research, we will explore the use of other data (such
as Gaode map data information) to further explore cross-domain scene classification. In
the future, we will continue to explore the integration of Lie group machine learning and
deep learning models to improve the robustness, interpretability, and comprehensibility of
cross-domain scene classification models.
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Abbreviations

AID Aerial Image Dataset
BN Batch Normalization
BW Batch Whitening
CGAN Conditional Generative Adversarial Network
CNN Convolutional Neural Network
DCA Discriminant Correlation Analysis
GAN Generative Adversarial Network
GCH Global Color Histogram
HRRSI High-Resolution Remote Sensing Image
IW Instance Whitening
LGCMMD Lie Group Conditional Maximum Discrepancy
LGMMD Lie Group Maximum Discrepancy
LN Layer Normalization
MMD Maximum Discrepancy
NWPU-RESISC NorthWestern Polytechnical University Remote Sensing Image Scene

Classification
OA Overall Accuracy
ReLU Rectified Linear Unit
RKHS Reproducing Kernel Hilbert Space
SeLU Scaled Exponential Linear Unit
SW Switchable Whitening
UCM University of California, Merced
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