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Abstract: The synthetic aperture radar interferometry (InSAR) technique is an effective means to
monitor ground deformation with high spatial resolution over large areas. However, it is still difficult
to obtain the spatially continuous deformation map due to SAR decorrelation or SAR distortion, which
greatly limits the usage of the InSAR deformation map, especially for spatiotemporal characterizing
and mechanism inversion. Some conventional methods (e.g., spatial interpolation) rely only on the
deformation measurements without considering the influence factors, leading to the inaccuracy of
the deformation prediction. So, we propose a multifactor-based machine learning model, namely
the K-RFR model, that combines K-means clustering and random forest regression algorithm to
reconstruct a continuous deformation map, where the influence factors on ground deformation are
considered, such as land use, geological engineering, and under groundwater extraction. We take the
city of Xi’an, China, as the study area where SBAS-InSAR was used to obtain the ground deformation
maps from 2012 to 2015. Fourteen influence factors are employed, including confined water level,
change of confined water, phreatic water level, change of phreatic water, rainfall, ground fissures,
stratigraphic lithology, landform, hydrogeology, engineering geology, type of land use, soil type,
GDP, and DEM, where the K-means clustering method is used to reduce the influence of spatial
heterogeneity. The study area is divided into three homogeneous regions and modeled independently,
where the mean squared errors of region I–III are 2.9 mm, 2.3 mm, and 3.9 mm, respectively, and the
mean absolute errors are 2.5 mm, 1.0 mm, and 2.8 mm, respectively. Finally, the continuous ground
deformation maps of Xi’an from 2012 to 2015 are reconstructed. We compared the new method with
two interpolation methods. Results show that the correlation coefficient between prediction and
InSAR measurements of the new model is 0.94, whereas the ordinary Kriging method is 0.69, and the
IDW method is only 0.63. This study provides an effective means to predict the continuous surface
deformation over a large area.

Keywords: ground deformation; random forest regression; K-means; spatial interpolation

1. Introduction

Ground deformation is a common geological phenomenon resulting from the combi-
nation of anthropogenic activities and natural functions and is characterized by long time
duration and wide spatial distribution. Therefore, it is necessary to obtain the ground de-
formation with long time series, wide coverage, and high accuracy [1]. Traditional ground
deformation monitoring methods, such as global navigation satellite systems (GNSS) and
level measurements, are limited by their low spatial coverage and resolution, making
them unsuitable for large-scale deformation monitoring. Interferometric synthetic aperture
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radar (InSAR) offers a range of substantial advantages for high spatial resolution and large-
scale deformation monitoring. At present, the application of InSAR in ground subsidence
monitoring is well established [2–4].

However, InSAR also has certain limitations when performing large-scale surface
deformation monitoring. Longer spatial and temporal baselines, vegetation, and larger
gradient deformations make it difficult to obtain useful information due to spatial and
temporal decorrelation [5], which greatly limits the usage of the InSAR deformation map, es-
pecially for the spatiotemporal characterizing and mechanism inversion. Therefore, spatial
interpolation is generally conducted to reconstruct ground deformation maps. For example,
the ordinary Kriging method and the inverse distance weighted (IDW) method are used
to interpolate the PS points to reconstruct the subsidence along Beijing Metro Line 6 [3,6].
However, as these methods rely on known and unknown data that have similar statistical
or geometric structures, the prediction results are only mathematically significant [7]. In
addition, the prediction results are easily affected by the spatial distribution of known mea-
surements. The interpolation results are less reliable if the observations are sparse and not
well distributed [8]. However, in most cases of InSAR measurements, the coherent points
are not well distributed, and the influence factors and mechanisms are different over a large
area, which have not been counted in the existing methods. Most of the existing ground
deformation prediction models ignore the spatial heterogeneity of ground subsidence [9]
caused by groundwater level changes and ground fissures distribution, which results in
the low accuracy of ground deformation prediction [10].

Machine learning algorithms have been widely applied for predicting ground sub-
sidence in the time domain [11–13]. Among these algorithms, the random forest model
has demonstrated high accuracy in both modeling and prediction [14–16]. However, few
studies have been reported on the reconstruction of ground subsidence [17]. Therefore,
this paper proposes a machine learning approach to reconstruct (i.e., predict in the spatial
domain) a large-scale continuous ground deformation map by considering the multiple
influencing factors that affect ground subsidence.

2. Study Area and Datasets
2.1. Study Area

The study area, Xi’an, is located in the northern part of the Qinling Mountains, above
the second and third terraces of the Weihe Alluvial Plain. The altitude of the study area is
281~796 m. The overall topography is at a low elevation from northwest to southeast, with
a semi-humid continental monsoon climate, four distinct seasons, and annual precipitation
ranging from 522.4 mm to 719.5 mm [18]. Xi’an has a complex geomorphology, with up to
10 loess depressions formed under tectonic action and several active fractures, of which
the Weihe Fracture and the Lintong–Chang’an Fracture are the most typical [19]. Since the
Eocene, thick Cenozoic strata, dominated by quaternary materials, have been deposited in
the area, mainly consisting of loess, water-deposited gravels, sands, and clays, with the
thickness of the loess exceeding 100 m [20]. Phreatic water is widely distributed in Xi’an,
and in general, the height of the terrain influences the submerged water level, which is
usually used only for farmland irrigation. Xi’an confined water aquifer is mainly divided
into two layers: shallow confined water and deep confined water [21].

Due to the rapid population growth and significant increase in industrial water,
surface water is difficult to meet the demand, and groundwater has become an important
source of water supply. Long-term over-exploitation of groundwater is one of the causes
of ground subsidence [22]. With the rapid development of Xi’an’s economy and the
expansion of urban construction, the frequent construction of underground projects and
high-rise buildings has become another cause of ground subsidence [23]. The combination
of natural factors, such as geologic cracks and fracture zones, and anthropogenic factors,
such as groundwater exploitation, has led to regional ground subsidence in some areas
of Xi’an. Many researchers have conducted ground subsidence monitoring in Xi’an and
obtained valuable measurements [19,22,24]. However, due to the InSAR decorrelation,
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there is no useful information on suburban areas and even the high-constructed areas.
Therefore, we take the city of Xi’an as the study region to construct the continuous ground
deformation map.

2.2. Datasets
2.2.1. SAR and DEM

We used 40 descending TerraSAR-X (TSX) images acquired from January 2012 to May
2015 to estimate the annual subsidence rate and time series in the study area using the
SBAS-InSAR technique. Figure 1a shows the coverage of the SAR data. Moreover, one
arc-second Shuttle Radar Topography Mission (SRTM) DEM acquired from NASA (online
at https://www.nasa.gov/ (accessed on 2 March 2023)) was used to simulate and remove
the topographic phases.
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Figure 1. Overview of the study area. (a) Location of the study area and SRTM DEM with TerraSAR
data superimposed. (b) Location of the study area in China. (c) Location of Shaanxi Province
within China.

2.2.2. Ground Subsidence Influence Factors

Five dynamic influence and nine static influence factors were collected. The former
includes confined water level, change of confined water, phreatic water level, change of
phreatic water, and rainfall. And the latter includes ground fissure, stratigraphic lithology,
landform, hydrogeology, engineering geology, type of land use, soil type, GDP, and DEM.
The rainfall data (online at https://disc.gsfc.nasa.gov/ (accessed on 2 March 2023)) were
obtained from the National Aeronautics and Space Administration (NASA). Land use
type, soil type, and GDP data (online at https://www.resdc.cn/Default.aspx (accessed on
2 March 2023)) were obtained from the Institute of Geographic Sciences and Resources,
Chinese Academy of Sciences. The specifications of all factors are given in Table 1 and
displayed in Appendices A and B.

https://www.nasa.gov/
https://disc.gsfc.nasa.gov/
https://www.resdc.cn/Default.aspx
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Table 1. The resources and specifications of influence factors.

Influence Factors Format Resolution Data Sources Duration

Ground subsidence Raster 3 m × 3 m InSAR results 2012–2015
Ground fissure Vector — Map data 2012

Stratigraphic lithology Raster 100 m × 100 m Map data 2012
Engineering geology Raster 100 m × 100 m Map data 2012

Landform Raster 100 m × 100 m Map data 2012
DEM Raster 30 × 30 m NASA 2015

Hydrogeology
Deep confined water

Raster
100 m × 100 m

Map data 2012Shallow confined
water 100 m × 100 m

Phreatic water 100 m × 100 m

Groundwater
Confined water level

Vector
— Geological Environment

Monitoring Station 2012–2015Phreatic water level —

Rainfall Raster 1 km × 1 km
Goddard Earth Sciences
Data and Information

Services Center
2012–2015

Land use Raster 1 km × 1 km

Institute of Geographic
Sciences and Natural
Resources Research,
Chinese Academy of

Sciences

2015

Soil Raster 1 km × 1 km

Institute of Geographic
Sciences and Natural
Resources Research,
Chinese Academy of

Sciences

1995

GDP Raster 1 km × 1 km

Institute of Geographic
Sciences and Natural
Resources Research,
Chinese Academy of

Sciences

2015

3. Methodology

The ground deformation prediction model, namely K-RFR model, is established by cou-
pling the K-means clustering and the random forest regression algorithm. The flowchart is
shown in Figure 2, which consists of four main steps explained in the following sub-sections:

3.1. SBAS-InSAR Data Processing

The ground subsidence rate and cumulative deformation time series are obtained by
SBAS-InSAR method [25]. Then, the deformation map is gridded into small elements with
resolution of 100 m × 100 m, which mainly depends on the resolution of the influence
factor datasets. The average of all measurements within a grid cell is assigned as the
grid measurement. And if there are no measurements within a grid cell, it should be
reconstructed. The deformation map discretization process is shown in Figure 3.

3.2. Pre-Processing of Influencing Factors

As the data used in the study have different coordinate reference frames and different
resolutions, before making the sample dataset, all influence data are projected uniformly
into the WG84 coordinate system, and all raster datasets are resampled to the resolution of
100 × 100 m. As for the linear factors, such as ground fissures, the buffer analysis results
are discretized into 100 × 100 m grid cells with buffer widths of 500 m, 1000 m, and 2000 m,
respectively. The radial basis function method is used to interpolate the groundwater data
to obtain the groundwater level distribution data, and the raster calculator is used to obtain
the groundwater level change data.
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Among the factor data, elevation, groundwater, and rainfall data belong to quantita-
tive data, while stratigraphic lithology, geomorphologic type, hydrogeology, etc., belong to
categorical data. As the coupling model of FR and the prediction model has high prediction
accuracy [26], we quantify the categorical factors by frequency ratio (FR) and normalize
them simultaneously with the quantitative factors [27]. FR model can accurately handle
the nonlinear response relationship between deformation areas and their underlying en-
vironmental factors, which can reflect quantitative statistics on the linkage of settlement
susceptibility between each attribute interval of the influencing factor. We ignore areas with
subsidence rate values less than 5 mm/year, plot the overlap of predictors and subsidence
locations, count the number of subsidence locations and the pixels associated with each
category, and then calculate the FR values in an Excel sheet as follows.

FR =
A
A’
B
B’

(1)

where A is the number of ground subsidence grids in the interval for each type of envi-
ronmental factor; A′ is the total number of ground subsidence grids in the interval; B is
the number of grids in the interval where this environmental factor is located; B′ is the
total number of grids in the study area; and FR indicates the frequency ratio of this type of
environmental factor.

To justify the suitability of the selected influence factors to build the ground deforma-
tion prediction model, the grey correlation analysis method is used to calculate the grey
absolute correlation between the ground subsidence rate and the influencing factors [7,28].
The basic idea of grey correlation analysis is to determine whether the target column and
the influence factor data column are closely related by determining the geometric similarity
of their geometric shapes, which reflects the degree of correlation between curves. The
magnitude of the correlation directly reflects the degree to which factors in the system affect
the target value. In addition, the Spearman correlation coefficient is used to describe the
correlation between two variables to avoid a highly linear relationship between the selected
influence factors, which will affect the accuracy of prediction model construction [29,30].

3.3. Ground Deformation Prediction Model

K-mean clustering and random forest regression (K-RFR) models are coupled to build
the ground deformation prediction model. First, the influence factors are clustered using
the K-mean clustering algorithm to divide the study area into several homogeneous regions.
Then, the samples are generated in each homogeneous region, with the influence factors as
the input and ground deformation as the output, where the ratio between training set and
test set is 7 to 3. Next, the random forest regression method is used to build the ground
deformation prediction model. Finally, the accuracy of the model is evaluated in terms of
R2, the mean absolute error (MAE), and the root mean squared error (RMSE).

3.3.1. K-Means Clustering

Ground subsidence is affected by a variety of factors, which have different spatial
distributions and different degrees of influence on ground subsidence. The accuracy of
the prediction model is affected by the spatial heterogeneity of the factors. The K-means
clustering algorithm can reduce the influence of spatial heterogeneity when the ground
deformation is predicted in a large area, which is a practical method to deal with the
heterogeneity problem [31].

K-means clustering analysis is a center-based clustering algorithm in which samples
are grouped into K classes in an iterative manner, and the cluster centroids are updated one
by one to minimize the sum of the distances between each sample and the center or mean
of the class it belongs to until the optimal clustering effect is obtained [32]. By minimizing
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the objective function specified in Equation (2), this algorithm assigns cluster k to data
point xxj [33].

d = ∑k
j=1 ∑n

i=1 ‖ xij − cj ‖2 (2)

The clustering will randomly generate k initial cluster centers and assign each point to
the nearest cluster center by calculating its distance from all cluster centers. After assigning
all the sample points, the clustering process is completed by checking if any points need
to be reassigned. If no reassignments are necessary, the clustering is finished. However, if
there are points that need to be reassigned, new cluster centers are recalculated, and the
point assignment process is repeated until no more points require reassignment. At that
point, the cluster is considered stable, and the clustering process is completed.

3.3.2. Random Forest Regression

Random forest regression algorithm has excellent performance in ground deformation
prediction [14,15]. Random forest regression (RFR) algorithm is a machine learning method
for classification and regression proposed by Leo Breiman and Cutler Adele in 2001 [34].
Random forest consists of a combination of categorical regression tree (CART) algorithms,
which can be divided into categorical decision trees and regression decision trees depending
on the type of output variables, and the regression tree is used in this paper. Multiple
regression decision trees constitute the random forest regression algorithm. The procedure
of random forest regression is shown in Figure 4. The parameters that affect the accuracy
of the random forest regression model mainly include the number of trees and the depth of
trees. In the experiment, different input parameters are used to train and finally determine
the optimal parameters of the model. Based on the concept of integrated learning, the mean
value of all regression decision trees is taken as the final prediction result, which is

h(x) =
1
T ∑T

t=1 {h(x, θt)} (3)

where h(x) is the model prediction result. h(x, θt) is the output based on x and θt; x is the
independent variable; θt is a random vector with independent identical distribution; and T
is the number of regression decision trees.
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3.4. Ground Deformation Prediction Model with K-RFR

The distribution of homogeneous regions and non-value sections within each homoge-
neous region is partitioned before constructing the prediction model. Then, the constructed
K-RFR model is used to predict the ground deformation in the non-value sections. Finally,
the continuous deformation region is reconstructed by combining the prediction results
from different homogeneous regions. That is, the InSAR results and the predicted results
are combined to generate a continuous deformation map over large area with high accuracy.
In addition, the features of the random forest feature ordering are used to identify the main
influencing factors of ground deformation in different clustered areas.

4. Results and Analyses
4.1. Ground Deformation Results

The annual average deformation rate maps of the city of Xi’an in 2012–2015 were
calculated by the SBAS-InSAR technique, as shown in Figure 5. The results show that there
are three subsidence areas in the city of Xi’an, which mainly occur in Yuhuazhai (YHZ),
Beishanmen (BSM), and Fengqiyuan-Dengjiapo (FQY-DJP). As can be seen from Figure 5,
the subsidence rate accelerated from 2012 to 2014, especially in the area of Yuhuazhai
(YHZ), which reached the maximum value of 191 mm/a in 2014, and the subsidence rate
slowed down from 2015, especially in the area of BSM and FQY-DJP, where the subsidence
area was gradually decreasing.
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Figure 5. Annual average deformation rate obtained by InSAR technology from 2012 to 2015.
(a–d) show the average annual deformation rate maps for 2012, 2013, 2014, and 2015, respectively.

However, many measurement gaps still exist, which makes it difficult to analyze the
spatiotemporal features. The ground deformation prediction model is built with K-RFR.
We discretize the measurements into 100 m × 100 m grid cells; the measurement region and
non-value region are gridded into 47,810 and 42,496 cells, respectively. That is, about 47% of
the area needs to be reconstructed to obtain a continuous deformation map, especially in the
southeastern area, where cropland, grassland, and forest in Figure 6a,d make low coherence



Remote Sens. 2023, 15, 4795 9 of 22

in the SAR interferogram, and in some fast-constructed urban regions in Figure 6c,e, where
surface changes degrade the coherence significantly.
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4.2. Pre-Processing of Influence Factors

Grey correlation analysis is carried out on 14 factors, and the results are shown
in Table 2, where we can see that 14 influencing factors are highly correlated with the
subsidence rate, with grey correlation values greater than 0.8. The Spearman correlation
coefficient between each set of two factors is less than 0.8, where the highest one between
rainfall and altitude reaches 0.73, as shown in Figure 7. Therefore, 14 types of influence
factors are all selected for the construction of the ground deformation prediction model.

Table 2. Grey correlation analysis results.

Evaluation Item Correlation Degree Evaluation Item Correlation Degree

Change of phreatic water 0.822 Type of land use 0.845
Phreatic water level 0.829 Rainfall 0.845

Ground fissure 0.839 Elevation 0.846
Engineering geology 0.839 Landform 0.846

Hydrogeology 0.841 Soil type 0.856
GDP 0.842 Stratigraphic lithology 0.858

Confined water level 0.842 Change of confined water 0.862
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4.3. Ground Deformation Prediction Model

We use the “elbow method” to find the optimal number of clusters, which is 3. The
loss function of the factor-averaged clustering is shown in Figure 8a. The distribution of
factor clusters is shown in Figure 8b, of which Cluster 1 accounts for 74.8% of the study area,
which includes most of the low subsidence rate areas, and 92% of them have an annual
subsidence rate of −10 mm~10 mm. Cluster 2 only accounts for 4.5% of the study area,
which includes a large number of slow upward areas, and 52% of them have a deformation
rate larger than 10 mm/a. Cluster 3 is characterized by the large number of subsidence
zone areas that cover about 80% of the subsidence area in the study area; in addition, the
areas with the most severe subsidence, such as YHZ and BSM, are also located here. The
specific distribution data of the clusters within the study area is shown in Table 3.

Table 3. Cluster statistics.

Clustering Categories Frequency Percentage/%

Cluster 1 67,565 74.8
Cluster 2 3984 4.5
Cluster 3 18,755 20.7

Total 90,304 100.0
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According to the K-means clustering results, the model training and parameter opti-
mization of three clusters are carried out, and the parameters and evaluation indicators of
the model prediction results are finally determined. The quantitative evaluation indicators
of the prediction model are given in terms of R2 and OOB_SCORE (for the regression
problem, that is, R2 for the out-of-bag data). In order to verify the accuracy of the model
and the superiority of the coupled clustering method, 70% of the original data are ran-
domly selected, and the ground deformation prediction model is constructed using the
random forest regression model without and after sample clustering, respectively, and the
remaining 30% of the data are used for comparison and verification. Table 4 shows the
prediction accuracy of the different models.

Table 4. Parameter settings and evaluation metrics for prediction model with different clusters.

Total
Sample Size

Number of
Trees

Depth of
Tree

RMSE
/mm

MAE
/mm R2 OOB_SCORE

Unclustered 47,810 100 50 4.6 3.4 0.86 0.84
Cluster 1 30,610 100 50 2.9 2.5 0.89 0.87
Cluster 2 3476 50 20 2.3 1.0 0.95 0.91
Cluster 3 13,724 100 30 3.9 2.8 0.93 0.92
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The prediction accuracy of Cluster 1 (R2 = 0.89), Cluster 2 (R2 = 0.95), and Cluster 3
(R2 = 0.93) are greatly improved compared with that of pre-clustering (R2 = 0.86). The MAE
is reduced from 3.4 mm to 2.5 mm, 1.0 mm, and 2.8 mm, respectively. The RMSE decreases
from 4.6 mm to 2.9 mm, 2.3 mm, and 3.9 mm, respectively. The prediction accuracy of
Cluster 1 improves by only 0.03 of the coefficients of determination compared with that of
the pre-clustering period, which is due to the small change in ground subsidence within
this cluster and the varying dominant factors for small-magnitude deformation. Due to the
smaller amount of subsidence, the prediction error is also smaller.

To further justify that cluster analysis improves the accuracy of the ground defor-
mation prediction model, the absolute errors and the absolute error distribution between
the prediction results of the models constructed by the two approaches and the InSAR
measurements were calculated separately, as shown in Figure 9. Both clustering methods
can reconstruct the ground deformation well. The absolute error value of most prediction
results is less than 6 mm. Most of the larger errors are distributed in the main subsidence
areas, with the error less than 10% of the subsidence rate, which can meet the requirement of
prediction. Compared with the prediction results of the RFR model, the standard deviation
of the K-RFR model is reduced from 2.352 mm to 1.782 mm, which verifies that the K-RFR
model has higher prediction accuracy.
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4.4. Application of Ground Deformation Prediction Model

Ground deformation is predicted using the trained model and annual deformation
rates from 2012 to 2015. The prediction results of the non-value areas are combined with
the InSAR results on highly coherent target points to reconstruct the ground deformation of
the whole study area. The reconstruction area can reach a spatial resolution of 100 m, and
the combined results have good spatial continuity, as shown in Figure 10. In order to show
the details of the reconstructed deformation results, three typical areas are enlarged, as
shown in Figure 11. Figure 11a shows the deformation rate obtained by InSAR technology;
Figure 11b shows the predicted deformation rate over the non-value region from 2012 to
2015 using the K-RFR model; Figure 11c shows the combined deformation rate results; and
Figure 11d–m shows the enlarged deformation maps of three selected regions.
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Figure 11. InSAR deformation maps, prediction maps, and reconstruction maps. (a) InSAR defor-
mation map of the high coherence target points; (b) predicted deformation map; (c) reconstructed
deformation map by combining (a,b); (d,g,j) enlarged InSAR deformation maps over regions I–III, re-
spectively; (e,h,k) enlarged predicted deformation maps of regions I–III, respectively; (f,i,l) enlarged
reconstructed deformation maps of regions I–III, respectively.

5. Discussion
5.1. Comparison of K-RFR Model with Conventional Methods

As for the K-RFR model, neither spatial high-density measurement points nor the uni-
form distribution of measurement points is needed. Prediction models can be constructed
and predicted as long as the known measurement points are within a homogeneous region.
Unlike conventional spatial interpolation methods, the K-RFR model can make full use of
the existing observations and consider many influence factors, so the predicted results have
better accuracy and stronger interpretability. In order to demonstrate the superiority of
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the proposed method in regions with sparse measurements, such as forests and cultivated
land, three regions are selected for comparison. As shown in Figure 12, regions I–III,
which contain a large number of measurement void regions in Figure 11c, are tested. Some
known measurement points in the regions are not used for model train but as the true
value for model validation. Here, we compare the K-RFR model with the commonly used
Kriging and IDW interpolation methods. The results indicate that the K-RFR model can
reconstruct more detailed spatial variations of ground deformation than IDW and ordinary
Kriging method s. Because the variations of the influence factors are taken into account,
the prediction results of the K-RFR model can reconstruct the spatial deformation pattern
very well. On the contrary, the IDW and ordinary Kriging methods show discontinuous
deformation results due to fewer known points near the interpolation region. Figure 13
shows the statistics of the prediction results among Kriging, IDW, and K-RFR models in
regions I–III. From Figure 13a–c, we can see that the prediction from the K-RFR model
has a small divergence from true values compared with the ones from IDW and ordinary
Kriging models. In addition, Figure 13d–f show that the correlation between predictions
from the K-RFR model and true values reaches 0.94, whereas the ones between true values
and predictions from IDW and ordinary Kriging methods are 0.63 and 0.69, respectively.
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(c,f,i) the prediction results of K-RFR model.



Remote Sens. 2023, 15, 4795 16 of 22
Remote Sens. 2023, 15, x FOR PEER REVIEW 14 of 19 
 

 

 
Figure 13. Statistics of the prediction results of Kriging, IDW, and K-RFR models in regions I–III. (a–c) 
the true values and the predicted values with three methods in regions I–III. (d–f) the correlation be-
tween true values and prediction values from IDW, ordinary Kriging, and K-RFR models, respectively. 

5.2. Analysis of the Importance of Influence Factors 
The RFR algorithm is used to explore the important influence factors of ground de-

formation change from 2012 to 2015, and the results are shown in Figure 14. It can be seen 
that the change of groundwater level and confined water level are the two most important 
influence factors in the study area; phreatic water level, rainfall, GDP, ground fissures, 
land use type, and hydrogeology are more important influence factors, and soil type, en-
gineering geology, stratigraphic lithology, geomorphology type, and elevation are less 
important influence factors accounting for less than 5%. For Cluster 1, the most important 
influence factors are water level change, phreatic water level, rainfall, GDP, and ground 
fissures, and the influence of groundwater level change is relatively small. Due to the 
small amount of ground deformation in Cluster 1, the deformation is relatively decentral-
ized, and the weights of influence factors are approximately the same. For Cluster 2, the 
main influence factors are the change of confined water level and the confined water level; 
in addition, the influence of factors such as phreatic water level, rainfall, and GDP is more 
important. Cluster 2 is composed of a large number of slowly uplifted areas, which have 
been governed by the Xi’an Groundwater Extraction Limit policy since 2000, especially 
the large amount of water injection project near the Dayan Pagoda. Cluster 3 includes the 

Figure 13. Statistics of the prediction results of Kriging, IDW, and K-RFR models in regions I–III.
(a–c) the true values and the predicted values with three methods in regions I–III. (d–f) the correlation
between true values and prediction values from IDW, ordinary Kriging, and K-RFR models, respec-
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Remote Sens. 2023, 15, 4795 17 of 22

5.2. Analysis of the Importance of Influence Factors

The RFR algorithm is used to explore the important influence factors of ground
deformation change from 2012 to 2015, and the results are shown in Figure 14. It can
be seen that the change of groundwater level and confined water level are the two most
important influence factors in the study area; phreatic water level, rainfall, GDP, ground
fissures, land use type, and hydrogeology are more important influence factors, and soil
type, engineering geology, stratigraphic lithology, geomorphology type, and elevation
are less important influence factors accounting for less than 5%. For Cluster 1, the most
important influence factors are water level change, phreatic water level, rainfall, GDP, and
ground fissures, and the influence of groundwater level change is relatively small. Due
to the small amount of ground deformation in Cluster 1, the deformation is relatively
decentralized, and the weights of influence factors are approximately the same. For Cluster
2, the main influence factors are the change of confined water level and the confined water
level; in addition, the influence of factors such as phreatic water level, rainfall, and GDP is
more important. Cluster 2 is composed of a large number of slowly uplifted areas, which
have been governed by the Xi’an Groundwater Extraction Limit policy since 2000, especially
the large amount of water injection project near the Dayan Pagoda. Cluster 3 includes the
main deformation zones in Xi’an, including YHZ, BSM, and FQY-DJP. Subsidence in this
area is mainly affected by the change in groundwater level, and the confined water level
is an important influence factor, accounting for 43.9%. The rainfall and GDP value are
also more important influence factors than any of the other factors. It can be seen that the
ground deformation in Xi’an from 2012 to 2015 is mainly related to groundwater extraction,
which is consistent with other research results. In order to further analyze the correlation
between different factors and ground deformation, the top 70% influence factors are given
and explained in detail, including groundwater levels and water level changes, rainfall,
GDP, and ground fissures.
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6. Conclusions

In this study, the K-RFR model is proposed to predict the continuous ground de-
formation map by considering multiple influence factors, where the K-means clustering
method and random forest regression algorithm are coupled to improve the accuracy of
the prediction model. The ground deformation results of the city of Xi’an from 2012 to
2015 are tested, where 14 influencing factors are considered. Results show that the K-RFR
model can reconstruct the continuous ground deformation map with centimeter precision
compared with IWD and ordinary Kriging methods.

The prediction accuracy after clustering is improved compared with that without
clustering; the MAE is reduced from 3.4 mm to 2.5 mm, 1.0 mm, and 2.8 mm, respectively;
and the RMSE decreases from 4.6 mm to 2.9 mm, 2.3 mm, and 3.9 mm, respectively. In
addition, compared with the traditional methods, the correlation between the prediction
with a new method and the true value increases from around 0.65 to 0.94.

This method is suitable for large-scale spatial deformation prediction, where multi-
ple influencing factors make the model physically meaningful. The continuous ground
deformation results attained with this method are beneficial to the spatiotemporal ground
deformation characterization, mechanism explanation, and prevention decision making.
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Figure A1. Dynamic influence factors. (a–d) are the confined water burial depth, (e–h) are the
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(m–p) are the changes in Phreatic water level, and (q–t) are the distributions of average annual rainfall.
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