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Abstract: The coastal zone represents a unique interface between land and sea, and addressing
the ecological crisis it faces is of global significance. One of the most fundamental and effective
measures is to extract the coastline’s location on a large scale, dynamically, and accurately. Remote
sensing technology has been widely employed in coastline extraction due to its temporal, spatial,
and sensor diversity advantages. Substantial progress has been made in coastline extraction with
diversifying data types and information extraction methods. This paper focuses on discussing the
research progress related to data sources and extraction methods for remote sensing-based coastline
extraction. We summarize the suitability of data and some extraction algorithms for several specific
coastline types, including rocky coastlines, sandy coastlines, muddy coastlines, biological coastlines,
and artificial coastlines. We also discuss the significant challenges and prospects of coastline dataset
construction, remotely sensed data selection, and the applicability of the extraction method. In
particular, we propose the idea of extracting coastlines based on the coastline scene knowledge map
(CSKG) semantic segmentation method. This review serves as a comprehensive reference for future
development and research pertaining to coastal exploitation and management.

Keywords: coastline extraction; remote sensing; deep learning; remote sensing knowledge map

1. Introduction

Coastal areas worldwide are experiencing rapid development, indicating significant
growth potential. For centuries, these areas have served as the main drivers of economic
development in many countries [1]. For example, the highest GDP density in China is
found in Shanghai, Guangdong, and other provinces along the coast of southeast China [2].
However, the impact of climate change and human activity has led to coastline erosion and
poses a significant threat to the economic and personal safety of coastal areas [3,4]. How to
deal with these threats has become a difficult problem in coastal area management [5]. It is
also the basis for coastal and Marine resource management, coastal zone regional environ-
mental monitoring, and sustainable development planning [6]. Coastlines are constantly
changing as part of the natural process or due to human influence, and coastline dynamic
monitoring has become the basis to solve the problem of coastal area management [7].

Accurate coastline extraction is the basis for coastline change monitoring and coastal
area ecological environment change monitoring [8,9]. Traditional extraction provides two
main methods to extract coastlines: field studies, including site beach profiling and high-
resolution aerial datasets for analysis and artificial recognition and manual vectorization
from aerial imagery using professional software such as ArcGIS 10.3 developed by ESRI [10].
Both traditional methods have common weaknesses in that the labor cost is high and the
statistical value needs to be more accurate. Moreover, fieldwork has certain personnel
safety issues [11,12].

Over time, remote sensing technology has evolved, remote sensing platforms have
updated, and sensors have emerged one after another. Remote sensing data acquired
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by different sensors enables researchers to overcome the limitations and shortcomings
caused by geological landscapes and long-temporal [13]. Abundant airborne platforms are
the first to be used for earth observation. Plenty of aerial imagery acquired by different
techniques are used for coastline extraction [14]. Airborne remote sensing data have certain
limitations in both time and space coverage, and the emergence of Earth observation (EO)
systems has revolutionized how we observe the landscape [15]. Satellite-based imagery,
including hyperspectral imaging (HSI), multispectral imaging (MSI) [16,17], SAR [18], and
LiDAR [19,20], has been used for the visual analysis of water/land information [15]. With
freely available data, the extraction of coastlines from satellite data has been updated
with the newest technological developments in remote sensing satellites, such as NASA’s
Landsat (which revisits every 16 days) and Sentinel-2 (5-10 days of revisit time) launched by
ESA. In addition to optical imagery, space-born SAR instruments including ALOS PALSAR-
2 and RADARSAT-1 are used to detect coastlines [21]. For the moment, coastline detection,
coastline extraction, water body classification, and continuous coastline monitoring have
been realized by processing spectral images captured by abundant instruments.

Due to breakthroughs in aerospace, sensor, and communication technologies, humans
are now in a time where remote sensing (RS) big data are prevalent. This has shifted
researchers’ focus towards exploring new image processing and analysis techniques. Image
processing methods strive to improve the separation of spectra between water and land,
image segmentation or classification, feature detection and extraction, and pixel unmixing
of RS images [22]. These methods are conducted by classic statistical algorithms and
band math [23]. Meanwhile, rapid advances in accessing high-resolution remote sensing
data have led to an explosion of big data, providing new opportunities for data-driven
discovery [24].

Along with the rapid development of artificial intelligence (AI), the great success
of machine learning (ML) has attracted widespread attention [25]. ML is a data-driven
AI that can self-learn from sample data [26]. It enables classification and prediction by
analyzing the relationship between the input spectrum and the desired output and can
be used for complex tasks such as land cover classification [27], crop classification [28],
and target recognition [29]. In the literature, by leveraging powerful computational capa-
bilities and multi-dimensional auxiliary information, ML enables the extraction of more
accurate coastlines from large-scale or long-time series of remotely sensed big data [30].
Applying ML to big data analysis and mining as a key technology helps researchers deal
with coastline extraction problems and digital coastline management in complex situa-
tions. However, due to the highly dynamic nature of the coastline, the influence of tides
and seawater erosion, it is still a challenge to accurately locate the changes in surface
reflection characteristics [31].Given the increasing frequency and effectiveness of ML and
DL methods in remote sensing, it is necessary to summarize the relevant applications of
coastline extraction.

Compared with previous literature reviews, this paper focuses on various types of
remote sensing images and methods for coastline extraction. This paper offers a compre-
hensive review of the application of a remote sensing index, thresholding methods, and
machine learning methods in coastline extraction, while we demonstrate the characteristic
of different types of coastlines and corresponding extraction methods. Firstly, we review
the key attributes of popular RS data used for coastline extraction and obtained by drones
and satellites in recent studies. Secondly, we discuss the features of different coastline
types, including bedrock coastline, beaches, artificial coastline, silt coastline, and biological
coastline. Thirdly, we investigate the evolution of the most popular and recently used
methods for the automatic extraction of coastlines. We classify methods into four groups:
water indices, edge detection, thresholding methods, and machine learning. Moreover,
we summarize the extraction methods of different types of coastlines. Finally, we discuss
present gaps and challenges in the science of coastline detection and extraction. This paper
discusses on the data perspective and coastline perspective, providing a discussion of the
applicability of different methods to different data and different categories of coastline
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identification, providing new ideas of concern for method selection and the creation of
feature datasets.

2. Materials and Methods

We begin by categorizing and grouping different coastline types and extraction meth-
ods, and then introduce the literature of ML methods related to coastline extraction. This
paper reviews the extraction of coastlines using RS data processing and machine learning
means. The main keywords used in searching the literature on the Web of Science (WOS)
include “machine learning”, “remote sensing”, and “coastline extraction”, which were
identified through consultation with experts and based on previous research.

We graphed the number of publications in the last decades using various keywords
from WOS. Figure 1a shows the number of papers using the keywords “remote sensing”
and “coastline” from WOS. Figure 1b shows the search result based on keywords including
“remote sensing” and “coastline extraction” or “coastline definition”. Figure 1c shows the
search result based on keywords including “machine learning”, “remote sensing”, and
“coastline extraction” or “coastline definition”.
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Based on the data trend, researchers are increasingly focusing on coastlines. Although
the number of publications in Figure 1b,c is slightly lower compared to Figure 1a, they
also exhibit a rising trajectory, indicating the growing interest among researchers towards
utilizing machine learning for coastline extraction. Comparing Figure 1b,c, it is not difficult
to find that machine learning methods take up a large proportion of the research on coastline
extraction in the past ten years.

3. Available Data Sources for Remote Sensing Coastline Extraction

Remote sensing observation can be reduced by using sensors to obtain the electromag-
netic wave information of the landscape object and the characteristics, changes, or trends
of the observed object can be derived from electromagnetic wave information to achieve
the purpose of earth observation. This paper summarizes commonly used remote sensing
data characteristics for coastline extraction based on different platforms and sensors.

3.1. Satellite Remote Sensing Data

Generally, remote sensing can be divided into active and passive remote sensing,
which are defined based on the source of energy used to collect data [24]. Passive systems
rely on natural radiation sources (such as the sun) emitted or reflected by the object. The
active system receives and records the reflection of the wave it emits towards the target.
Optical and radar data, categorized as passive and active remote sensing data, respectively,
constitute the most important part of data applied in coastline extraction. We review
popular optical and radar sensors in Section 3.1.1 and Section 3.1.2, respectively.

3.1.1. Optical Data

The U.S. LANDSAT family of satellites is jointly managed by NASA and the U.S.
Geological Survey (USGS) [32]. Since 1972, the LANDSAT series of satellites have been
launched successively. The series of Landsat satellites have provided temporal data for
coastline extraction and change monitoring over the last decades.

Among these satellites, Landsat-5, Landsat-7, and Landsat-8 have gained more atten-
tion from researchers in coastline extraction [1,16,32–35]. The near-infrared and visible
wavelength bands of Landsat satellites were applied to determine the land and water
surfaces along the coastline [16]. Landsat-5 is the fifth satellite in the U.S. LANDSAT
family, launched in March 1984 as an optical Earth observation satellite with a payload
of a Thematic Cartographer (TM) and Multispectral Imager (MSS). The images obtained
by Landsat-5 are commonly used for land–sea separation and coastline extraction due to
their advantages of multi-spectral and spatial resolution [16]. Landsat-7 has a payload
of an Enhanced Thematic Mapper Plus (ETM+), which provides high-resolution data re-
sulting from an additional band with a resolution of 15 m, and was launched in April
1997. Landsat-8, launched in February 2013, is the successor to the U.S. Landsat fleet.
The Landsat-8 is distinguished by an Operational Land Imager (OLI) that encompasses
a spectrum of wavelengths ranging from infrared to visible light, alongside a Thermal
Infrared Sensor (TIRS) [36]. Compared with the ETM+ sensor of Landsat-7, OLI has a blue
band (0.433–0.453 µm) and a near-infrared band (Band 9; 1.360–1.390 µm), and the blue
band is mainly used for coastal zone observation [36]. Among different Landsat satellites,
the combination of Landast-5 and Landsat-7 is prevalent [5].

Worldview-2 (wv-2) is affiliated with the Worldview satellite family launched by
DigitalGlobe Inc. (Westminster, CO, USA) in October 2009. WV-2 is capable of captur-
ing multispectral imagery across eight distinct bands [3]. DigitalGlobe Inc. also owns
IKONOS, which was launched in 1999. Although IKONOS has decommissioned, the capa-
bility for stereo mapping, as well as its contribution to coastline extraction, is still worthy
of recognition.

Sentinel-2 is equipped with a multi-spectral instrument (MSI) that can cover 13 spectral
bands from 442 nm up to 2202 nm with different resolutions: 10 m (Central Wavelength
(CWL) at 490, 560, 665, and 842 nm with bandwidths of 65, 35, 30, and 115 nm, respectively),
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20 m (CWL at 705, 740, 783, 865, 1610, and 2190 nm with bandwidths of 15, 15, 20, 20, 90,
and 180 nm, respectively), and 60 m (CWL at 443, 940, and 1375 nm with bandwidths of 20,
20, and 30 nm, respectively) [37]. Similar to WV-2, Sentinel-2 also has a coastal band that
monitors near-shore bodies of water. In previous studies, the combination of Sentinel-2 and
Landsat has been widely used for coastline extraction [10]. In light of the present situation,
researchers are granted complimentary access to a diverse range of data from various data
platforms, including Landsat and Sentinel-2. Google Earth Engine (GEE) offers a robust
platform for researchers to acquire and process large-scale data efficiently [38].

In addition to the satellite data mentioned, ribosome data are used less frequently.
SPOT (Satellite Pour l’Observation de la Terre) is an earth observation satellite system devel-
oped by the French Space Research Centre (CNES) [39]. The SPOT satellite system consists
of a family of satellites and ground-based systems for satellite control, data processing, and
distribution [7,40]. The IRS series supports the development of agriculture, water resources,
forests and ecology, geology, water conservancy facilities, and coastline management in
India, launched by the Indian Space Research Centre (ISRO). The composite map derived
from the data of two MSI satellites, IRS-P6 and IRS-2, was successfully utilized for coastline
extraction in this satellite series [41].

In an optical remote sensing image, an object’s feature is reflected in the radiation
difference of its electromagnetic wave. This reflection characteristic is utilized for discrimi-
nating between ocean and land, extracting coastlines. To extract coastlines using optical
images, it is important to consider the features of different bands that better adapt to the
coastline image features in different geographical environments.

3.1.2. Radar Data

The utilization of optical data in feature detection and extraction based on visible
channels has gained extensive recognition [21]. Where features are partially impeded
by environments (vegetation, clouds, etc.), the application of Radar data can overcome
these interferences [34]. The RADARSAT program encompasses RADARSAT-1 (1995) and
RADARSAT-2 (2007), which were launched by the Canadian Space Agency (CSA) [42].
These satellites are equipped with a synthetic aperture radar (SAR) instrument that is
extensively utilized for oceanic, sea ice, and coastline monitoring purposes [43]. The ALOS
satellite is equipped with three payloads, namely the Pan-Color Remote Sensing Stereogram
(PRISM) for precise digital elevation mapping, the Advanced Visible and Near Infrared
Radiometer 2 (AVNIR-2) for accurate land observation, and the Phased Array L-Synthetic
Aperture Radar (PALSAR) for continuous all-day land observation regardless of weather
conditions [44,45]. COSMO-SkyMed carries high-resolution radar satellites equipped with
X-band SARs that can be used for coastline extraction [46]. In addition to those mentioned
above, Sentinel-1 is also commonly used for coastline extraction of SAR data to extract
reliable data for multiple coastlines.

Radar data exhibit drawbacks such as limited spatial resolution and reduced inter-
pretability due to speckle noise; however, their unparalleled quasi-all-weather capability
for continuous observation makes them an indispensable component of Earth observa-
tion sensors [21]. Moreover, land areas are generally light and sea areas dark, facilitating
coastline extraction in SAR images. Especially when extracting sandy coastline and silty
coastline, SAR images make it easier to extract accurate coastlines due to their sensitivity to
water content.

3.2. Non-Satellite Remote Sensing Data

Unmanned Aerial Vehicle (UAVs) remote sensing is another choice for coastal research
in recent years [47]. Several past studies demonstrated that UAVs equipped with sensors
are more effective in small-scale coastline management since UAV surveys are capable of
collecting timely and higher spatial resolution data [48,49]. At present, the most commonly
used UAV remote sensing technology is airborne LiDAR to quantify coastline features [50].
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In addition to LiDAR instruments, optical payloads such as traditional RGB cameras and
hyperspectral sensors are also indispensable [20,49].

Among these sensors, LiDAR overperforms others resulting from it and can directly
derive point clouds. Namely, it can accurately delineate coastlines from image-based
systems utilizing Structure from Motion (SfM) analysis, without identifying corresponding
features in overlapping scans [20,51,52]. Utilizing LiDAR multi-return point data, the
incorporation of LiDAR intensity values enables the identification of rocks, particularly
susceptible sections of revetment rocks that may be impacted by rising sea levels [53].

The use of LiDAR-equipped UAVs for coastline surveying to obtain timely, high-
resolution, and site-specific coastline data is suitable for extracting precise rocky coastlines on
a small scale, as well as quantifying highly dynamic coastlines over short timescales [49,53].
Especially in bedrock coastline extraction, LiDAR intensity values overperformed in dis-
cerning rock identification and coastline extraction.

4. Coastline Types and Indicators
4.1. Coastline Types

Coastlines are affected by the local coastal zone’s topography, landform, and develop-
ment degree. Thus, coastlines show different types and various geometrical morphologies
in complex offshore environments [50]. Classifying them according to their coastal substrate
characteristics and spatial morphology, these coastlines are subdivided into 16 categories
including exposed rocky shores, exposed rocky platforms, fine-grained sand beaches,
coarse-grained sand beaches, mixed sand and gravel beaches, gravel beaches, riprap struc-
tures, exposed tidal flats, sheltered rocky structures, sheltered man-made rocky structures,
sheltered tidal flats, salt to brackish marshes, freshwater marshes, swamps, and man-
groves [52]. In the introduction of methods for extracting different types of coastlines, the
above types are reclassified into five classes, described in Table 1.

Table 1. Description of coastline types.

Types Interpretation Signs Location

Rocky coastlines Large curvature, serrated shape Use the land–water boundary as the coastline

Sandy coastlines Relatively straight and the beach is striped, often
with a beach ridge stacked up Use the beach ridge as the coastline

Silty coastlines
Relatively straight, gentle slope, with large

differences in vegetation density between the
two sides of the intertidal zone

Use the obvious boundary between the tidal beach
and the salt-tolerant vegetation as the coastline

Biological coastlines The tidal ditch is obvious, with mangroves and
other plants growing Use the vegetation density difference as the coastline

Artificial coastlines Straight direction, regular shape, and steep slope Use the edge of artificial structures as the coastline

Rocky coastlines are the most prevalent of these coastlines, with nearly 75% of the
world’s ocean coastlines having sea cliffs or cliffs [54,55]. Figure 2 shows a photo of the
rocky shoreline located in Jekyll Island State Park, USA. In previous coastline extraction
studies, the objects extracted were also mostly rocky coastlines. These coastlines are usually
characterized by alternating rocky headlands and recessed bays with a large degree of
curvature, with the headlands protruding into the sea and the bays penetrating deep into
the land [54].

The intertidal substrate of the sandy coastline is generally dominated by sand and
gravel, which refers to the relatively flat coastline formed by sand, gravel, and other
sedimentary materials under the long-term action of waves. In areas inaccessible to waves,
there is no accumulation of sand. Therefore, the demarcation between the sandy beach
and areas without sand coverage can be regarded as the precise location of the sandy
coastline [56]. The sandy beach is brighter than the non-sandy cover as seen in the images,
and the sandy coastline is quite obvious [57]. Figure 3 shows an optical image of the sandy
shoreline obtained by Sentinel-2 Satellite.
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Figure 3. Satellite image of the Shamada research site obtained by the Sentinel-2 satellite. The black
line shows the sandy coastline [57].

The intertidal substrate of silty coastlines is powdered sandy silt, an open coastline
formed by sediment with a grain size of 0.01~0.05 mm under the dynamic action of tide
and runoff over a long period of time. A silty coastline is flat and open, and the beach is
several kilometers or even more than 10 km wide, which is the main distribution area of
coastal mudflat wetlands. There is much salt-tolerant vegetation that typically thrives on
the landward side of the intertidal zone (the area where the ocean meets the land between
high and low tides) [56]; thus, the coastline of the silty coast can be defined as the obvious
boundary between the tidal beach and the salt-tolerant vegetation. Figure 4 shows this
boundary clearly.



Remote Sens. 2023, 15, 4865 8 of 29

Remote Sens. 2023, 15, x FOR PEER REVIEW 9 of 32 
 

 

coastal mudflat wetlands. There is much salt-tolerant vegetation that typically thrives on 
the landward side of the intertidal zone (the area where the ocean meets the land between 
high and low tides) [56]; thus, the coastline of the silty coast can be defined as the obvious 
boundary between the tidal beach and the salt-tolerant vegetation. Figure 4 shows this 
boundary clearly. 

 
Figure 4. Photo of silty coast [56]. 

Biological coastlines are mostly located in tropical areas at low latitudes, mainly man-
grove coastlines, coral reef coastlines, shell dike coastlines, and so on. Mangrove coastlines 
are areas where salt-tolerant and dense mangrove forests grow and are currently the most 
studied biological coastlines due to their sensitivity to saltwater intrusion [58]. Mangrove 
distribution can represent a change in the coastline. A previous study demonstrated that 
mangrove patches could be identified from remote sensing data based on color (medium-
dark green), texture (cauliflower pattern), shape (dendritic perimeter), and location (close 
to the coastline) features [59]. Figure 5 shows the photo of biological coast. 

 
Figure 5. Photo of biological coast [56]. 

Artificial coastlines have artificial construction characteristics formed by constructing 
common artificial structures (rock armor and seawalls) and other means [9]. artificial 
coastlines are characterized by a straight direction, regular shape, and steep slope in spa-
tial form. Compared with natural coastlines, artificial coastlines are stable and unaffected 
by tides and other factors and can be extracted from high-resolution satellite images in 
time series. Therefore, artificial coastlines are easier to extract than natural coastlines. Fig-
ure 6 shows a satellite image of artificial coast obtained by Sentinel-2 satellite. 

Figure 4. Photo of silty coast [56].

Biological coastlines are mostly located in tropical areas at low latitudes, mainly man-
grove coastlines, coral reef coastlines, shell dike coastlines, and so on. Mangrove coastlines
are areas where salt-tolerant and dense mangrove forests grow and are currently the most
studied biological coastlines due to their sensitivity to saltwater intrusion [58]. Mangrove
distribution can represent a change in the coastline. A previous study demonstrated that
mangrove patches could be identified from remote sensing data based on color (medium-
dark green), texture (cauliflower pattern), shape (dendritic perimeter), and location (close
to the coastline) features [59]. Figure 5 shows the photo of biological coast.
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Figure 5. Photo of biological coast [56].

Artificial coastlines have artificial construction characteristics formed by constructing
common artificial structures (rock armor and seawalls) and other means [9]. artificial
coastlines are characterized by a straight direction, regular shape, and steep slope in spatial
form. Compared with natural coastlines, artificial coastlines are stable and unaffected by
tides and other factors and can be extracted from high-resolution satellite images in time
series. Therefore, artificial coastlines are easier to extract than natural coastlines. Figure 6
shows a satellite image of artificial coast obtained by Sentinel-2 satellite.

According to the characteristics of different coastlines summarized above, it is nec-
essary to select appropriate remote sensing images for coastline extraction. Optical data
contain rich spectral information, which can distinguish water, land, and vegetation by dif-
ferent spectral responses. However, due to different shooting angles, shadow and stacking
phenomena will occur in complex terrain areas, which will affect the determination of the
coastline position. In SAR data, the water is dark and the land is bright, which helps to
extract coastlines, and SAR data are unaffected by clouds and fog. However, the spatial
resolution of SAR data is low, it is susceptible to the influence of speckle noise, and there
are also shadows and overlapping phenomena. LiDAR point cloud data have strong pene-
tration and are unaffected by shadows, but they cannot be operated on a large scale. For
the extraction of rocky shorelines, LiDAR data will be more suitable than optical, especially
without the impact of cliff shadows. In the extraction of sandy shorelines, coastlines can be
extracted from optical data by exploiting the difference characteristics of spectral responses,
and water content can also be distinguished by different backscattering coefficients in SAR
data. The determination of the location of the silt coastline depends on the distinction
between the intertidal zone and the halophyte zone. The obvious difference in spectral
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response between vegetation and sand beach is the basis for the distinction, so optical data
are the most appropriate data. Similarly, optical data are the most suitable for vegetation
coastal zone extraction. When identifying artificial coastal zones, all three can be selected,
and high spatial resolution data are the first choice.
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4.2. Coastline Indicators

Coastline indicators are visual features that represent the coastline position; different
coastlines have different interpretation indicators [56]. These indicators can be divided into
three groups: visually distinguishable coastal features, coastlines copied as benchmarks,
and indicators based on image processing. Each user has a different definition of coastline
indicators or has their own interpretation of the coastline indicators of a specific method,
which will lead to different selections of coastline extraction methods and deviation of
extraction results [60]. Consequently, determining appropriate coastline indicators, data,
and extraction methods according to the coastline type is relatively accurate.

In satellite images, instantaneous water lines, wet/dry lines, vegetation limits, arti-
ficial limits, and morphological lines can be extracted as coastline indicators to discern
coastal features. Most previous studies extracted instantaneous waterlines as a common
coastline indicator. The most common coastline extraction technique for extracting instanta-
neous waterlines is remote sensing indices such as the Normalized Difference Water Index
(NDWI) [58], modified NDWI (MNDWI) [10,17,61], and Automatic Water Extraction Index
(AWEI) [35], which will be detailed in Section 5.1.

The wet/dry line represents a distinct boundary, demarcating the interface between
saturated and unsaturated. Several publications have appeared in recent years docu-
menting wet/dry boundaries which were be extracted from optical and SAR images by
distinguishing and clustering pixels with different characteristics, such as soil moisture [62].

Remote sensing indices and machine learning are effective for vegetation lines and
artificial boundaries. The vegetation line serves as a coastal indicator that demarcates
the boundary between vegetation and water, which is determined through pixel value
differentiation. Artificial limits such as man-made embankments are similar to vegetation
limits that can be extracted by indeces and ML from multispectral images (MSI).

Morphological limits usually refer to the clear morphological lines of the shoreline,
such as the tops and bottoms of cliffs [63]. In contrast to the aforementioned visually
identifiable characteristics, morphological limits are difficult to extract from MSI precisely.
In the case of a cliff, for example, the difference between the top and bottom of a vertical
cliff is susceptible to shadows in MSI. LiDAR overperformed MSI in extracting these lines,
resulting from it recognizing the dramatic change in elevation from top to bottom of a cliff.

The methods for the indicator extraction techniques in the above content will be
described in more detail in Section 5.
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5. Coastline Extraction Techniques

The present section provides a comprehensive overview of diverse techniques em-
ployed for coastline extraction from satellite imagery. In addition to elucidating the un-
derlying theories and procedural steps associated with different methodologies, it also
demonstrates the interrelationships between coastal indicators, extraction approaches, and
utilized data. Figure 7 shows coastline extraction techniques has been used in the past.
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Table 2. Sample studies focused on extracting different types of coastlines in remote sensing data analysis.

Coastline Types Indicators Extraction Technique

Rocky coastlines Morphological limits Using differences between LiDAR intensity values of multiple return
points on revetment rocks and water to locate coastline position [53].

A dual-polarization model takes full benefit of the PingPong model
peculiarities were exploited to distinguish sea surface from land, then used

image processing technique to extract coastlines [64].

An integrated model of Convolutional Neural Network (CNN) and
Object-Based Image Analysis (OBIA) was used to extract coastlines from

remotely sensed images [65].

Extracting coastline by an automatic approach for coastline detection from
images which is based on parametric active contours(snakes) [66]. Select
the applicable model through the supervised classification of ice, water,

and rock.

Sandy coastlines Morphological limits
Using the Sentinel-2 Water Edges Dataset (SWED), develop a convolutional

neural network design based on U-Net for detecting coastline
morphology [67].

The coastline was extracted in two steps. The first step is using the Level
Set Algorithm (LSA) to obtain the coarse boundary, then the contour is
processed finely by LSA in a high-resolution image based on the coarse

boundary [68].

Improving the sea-land segmentation performance by modifying Standard
U-Net, and developing an automatic coastline extraction framework to

extract coastline from sea-land segmentation results [69].
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Table 2. Cont.

Coastline Types Indicators Extraction Technique

Identify the coastline using Pix4Dcapture, Pix4Dmapper, and ArcGIS 10.3
software to use the images captured by unmanned aerial vehicles [70].

The fuzzy approach generated a classification SAR image to distinguish the
coastal pixels from the land surface pixels. The classified map is converted

to vector form, and the Douglas-Peucker regularisation algorithm is
applied to remove the zigzag effects and reconstruct the boundary [18].

Instantaneous waterline
The waterline was extracted using the Normalized Difference Water Index
(NDWI) with the Canny edge detection and thresholding used to create a

binary image of land water [71].

A robust extraction method using an artificial neural network (ANN).
ANN uses the feedforward NN to classify the pixels of SAR imagery into
two categories, land, and sea. The coastline location is then determined as

a boundary of these two groups of classified pixels [72].

An ensemble automatic shoreline segmentation system (WaterNet) based
on deep learning architectures to obtain coastlines automatically [73].

The classification of water on land employs two ensemble classifiers,
namely a majority voting ensemble classifier utilizing random forest and
support vector machine with RBF kernel, and another ensemble classifier

combining multi-layer perceptron and k-nearest neighbor [74].

The satellite images of the coastline were analyzed using edge detection
filters, mainly Sobel and Canny [21].

Wet/dry line The classified image was regrouped into two classes (land and sea) by
ISODATA classification technique [74].

Supervised edge detection is used on optical remote sensing data to map
wet/dry indicators in the sandy part of beaches [62].

Silty coastlines Wet/dry line An object-oriented multi-scale segmentation method is used for automated
extraction and classification of coastlines from remote sensing imagery [75].

The NDWI and Otsu thresholding converts the image into a binary image.
The coastline is delineated using binarized images which are produced

from a thresholding-based segmentation algorithm [5].

Biological coastlines Vegetation limits The vegetation and non-vegetation parts of the mangrove were
distinguished by binary classification method based on the NDVI map [76].

Artificial coastlines Artificial limits

Extract coastline of man-made construction areas from airborne lidar data.
Determination of pre-extracted coastline elevation by distinguishing the
echo intensity of water and land, then translate coastline point cloud and

generate coastline [9].

Nowadays, many diverse techniques are used for coastline recognition and extrac-
tion from RS imagery, which can be grouped into three categories including indexing
methods, edge detection, and classification. Indexing methods focus on two aspects: re-
mote sensing indices and thresholding. As for edge detection approaches, the extraction
of coastlines is approached as an edge detection problem for water bodies or oceans in
the proposed method. From the perspective of image classification, these classification
methods are mainly based on object-oriented and pixel-oriented classification [75]. RS
image classification is mainly based on the spectral characteristics of features, which are
multi-band measurements of the electromagnetic radiation of features, and these measure-
ments can be used as the original feature variables for remote sensing image classification.
Additionally, texture, shape, and other topographical features are integrated with spectral
characteristics applied to the analysis. Coastline extraction is a complex problem that often
requires a combination of methods, rather than a task that can be accomplished based on
one method alone.
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5.1. Remote Sensing Indices

Coastline extraction methods using multi-spectral image data captured by optical
remote sensing satellites can be divided into single and multi-band methods. The basis of
the single-band coastline extraction method is that the body of water has a higher light
absorption in the infrared band, while vegetation and soil have a higher reflectance in the
infrared band [57]. This method requires that the image must contain an infrared band.
The multi-band method is mainly based on the absorption and reflectance of water and
land in different bands to segment land and water [36]. This method reaps the maximum
benefits from diverse sources of information, making the target’s characteristics stronger
and the segmentation more precise. However, due to a large amount of multi-spectral data,
complex mathematical operations will increase the processing burden.

The remote sensing indices are formed through band combination and calculation to
magnify the difference in reflection information between ocean and land. For instance, the
NDWI is a band ratio technique that uses the Green and NIR bands to produce greyscale
images to offer a positive outcome for the water features and a negative value for the
non-water features [31,57,58]. Since water pixels identified using NDWI include false
positive values, an MNDWI was developed to improve the accuracy of water pixel ex-
traction [39,50,77]. In practical studies, the study area often covers a variety of landforms,
including beaches, tidal flats, and bedrock. The AWEI was previously constructed to distin-
guish between land and water, and the index has been applied and validated in different
coastal environments [37,50]. For biography coastline extraction, a vegetation line is an
example of a coastline indicator representing vegetation limits, which can be identified by
the Normalized Difference Vegetation Index (NDVI) [76,78]. Moreover, the Normalized
Difference Building Index (NDBI) is appropriate for artificial structure coastline extraction
owing to the ability of this index to identify artificial buildings. In addition to these indices
commonly used in coastline extraction, others perform well in water pixel identification
but have not yet been applied in coastline extraction, such as the Water Ration Index (WRI)
and Normalized Difference Moisture Index (NDMI). We presented the formula for the
calculation of these indices in Table 3.

Table 3. Remote sensing indices for coastline extraction.

Index Equation Remark Reference

Normalized Difference
Water Index NDWI = (Green − NIR)/(Green + NIR) The water pixel has a positive value [79]

Modified Normalized
Difference Water Index MNDWI = (Green − MIR)/(Green + MIR) The water pixel has a positive value [80]

Automated Water
Extraction Index AWEI = 4(Green-MIR) − (0.25 NIR + 2.75 SWIR) The water pixel has a positive value [81]

Normalized Difference
Vegetation Index NDVI = (NIR − Red)/(NIR + Red) The vegetation pixel has a

positive value [82]

Normalized Difference
Building Index NDBI = (MIR − NIR)/(MIR + NIR) Artificial structure pixels have a

positive value [83]

Water Ration Index WRI = (Green + Red)/(NIR + MIR) The water pixel has a positive value [84]
Normalized Difference

Moisture Index NDMI = (NIR − MIR)/(NIR + MIR) The water pixel has a positive value [85]

When faced with different types of coastline objects, the choice of indices for iden-
tifying coastline features is still a debatable issue. Compared with single-band methods,
remote sensing indices can better reduce the sensitivity of some bands to fog, inhibit sea
area features, and enhance the contrast between foreground and background. However,
remote sensing indices can only complete the sea–land segmentation, and it is necessary to
combine other methods to achieve coastline extraction.
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5.2. Thresholding

Sea-Land Segmentation (SLS) is employed to delineate the oceanic and terrestrial
regions in remote sensing imagery, with the boundary pixels between these segmented
areas serving as a reliable representation of the coastline. Thresholding is widely considered
to be the usual and the most efficient method of SLS. The method is readily comprehensible,
straightforward to implement, and highly efficacious. The thresholding process involves
selecting appropriate spectral bands based on the spectral characteristics of water and land,
to establish a model that can effectively divide an image into two main uniform regions:
water and land [86,87]. In practice, the values of the remote sensing indices mentioned in
Section 5.1 or single-band reflectance are treated as objects to be clustered. The demarcation
of the coastline can be established by delineating the interface between land and water.
Thresholding contains two broad categories applied in SLS: global threshold segmenta-
tion (histogram statistics, entropy method, and Otsu) and local threshold segmentation
(adaptive thresholding).

The global thresholding method is to set a threshold, where pixel values greater
than this value are 1, and those less than this value are 0. Among these algorithms, the
Otsu algorithm is representative of the global threshold. Otsu is an efficient algorithm
for the binarization of images proposed by Japanese scholar OTSU in 1979, which is an
adaptive method of threshold determination and optimal segmentation in the sense of least
squares [88]. The essence of Otsu lies in clustering, where the attainment of desired results
is contingent upon achieving a balanced distribution of pixels across each class [16].

The local thresholding method is to find the threshold for each pixel, where greater
than this value is 1 and less than this value is 0. Utilizing a single global threshold
for the entire image to delineate the water/land boundary may lead to undetectable
local coastline edges due to the heterogeneous contrast in image intensity, resulting in
fragmented coastline edges within low-contrast regions of the image [89]. However, the
local threshold method dynamically sets the threshold based on the local features of
adjacent pixels [90]. At this point, the local thresholding method overperforms global
thresholding. The Sauvola algorithm is the benchmark for local thresholding methods. The
Sauvola algorithm takes a gray image as input, with the current pixel at its center. The
threshold of each pixel is dynamically determined based on the local mean and standard
deviation of grayscale values surrounding the current pixel. The approach of fitting a
bimodal Gaussian curve for analyzing and determining local thresholds has also been
employed in a previous study [70].

Thresholding methods can mine more spectral information, making them suitable
for biological coastline and silty coastline extraction. Selecting appropriate thresholds
helps to differentiate between vegetation and ocean or tidal beach areas based on remote
sensing indices map. This method is easy to understand, simple to implement, and
effective. However, excessive reliance on spectral information while disregarding the
spatial characteristics of the image can lead to significant errors in boundary classification,
thereby resulting in diminished accuracy in detecting transition zones [86]. In addition, the
selection of the threshold value will also directly affect the accuracy, and it is necessary to
determine the appropriate threshold value through accurate measurement experimental
results before large-scale coastline extraction.

5.3. Edge Detection

Edge detection is widely used in coastline extraction from satellite images, which is
treated as an edge detection problem. Edge refers to the spatial domain where significant
changes in gray, color, or texture features occur rapidly within a remote sensing image [91].
They usually occur at the boundary of two different regions: water and land. Many edge
detection methods have been successfully applied to coastal detection, including the Canny
algorithm [92,93], Sobel [21,66], Robert, and Prewitt. Here, we take contour detection
including Snakes and level set algorithms as a part of edge detection. Most of the time, we
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can detect the edge first, and then further process the detected edge to get the contour of
the target.

Canny algorithm is a technique for extracting edges between different visual ob-
jects [93]. The extracting result has good continuity and no breakpoints in principle. Com-
pared with Sobel, Robert, and Prewitt operators, it can provide more precise results [92].
Thus, it is considered to be the most successful and widely used gray edge detection method.
In addition, a previous study has shown that the combination of the Canny algorithm and
Otsu received less influence from the background value [93]. Figure 8 indicates the superior
performance of Canny combined with Otsu.
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Figure 8. Comparison of different extraction methods: (a) MNDWI, (b) OTSU after MNDWI, (c) mor-
phological processes after OTSU, (d) Canny edge detection combined with OTSU and morphological
processes, and (e) Canny edge detection without OTSU [93].

Edge detection methods have the advantages of a simple model and convenient
calculation. Among them, the Canny operator has the best performance, with a high signal-
to-noise ratio, high positioning accuracy, and strong single-edge response ability, and the
detected edge is also clear, delicate, and continuous. However, when the coastline image
background is relatively complex, they are usually sensitive to noise and the extraction
results are discontinuous, which is not suitable for large-scale coastline extraction. The edge
detection method requires manual intervention, and mathematical morphology is used to
optimize the results. Accuracy can also be improved by combining with other methods.

5.4. Active Contour Model

The active contour model transforms the problem of image segmentation into a prob-
lem of solving the minimum of the energy functional to detect the edge of the target [63].

Snakes has gained widespread application in recent years for coastline extraction due
to its incorporation of edge smoothness and elastic constraints [94]. The researcher used
three models related to the Snakes algorithm based on an up-to-date Landsat mosaic to
align with the majority of the Antarctic coastline [95]. Generally speaking, this algorithm is
highly effective in extracting coastlines; however, the adjustment of relevant parameters
poses a significant challenge and can directly impact the extraction results.

The level set algorithm is a numerical technique that enables the tracking of inter-
face evolution. Since its inception, this method has emerged as an effective approach
widely employed in edge detection and contour extraction within the image processing
domain [89]. A researcher has proposed two enhanced level set-based algorithms for
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extracting coastlines from SAR images [96]. The level set is a collection of points that share
the same function value, serving as a representation of a planar curve [97]. Compared
to Snakes, the control over the initial contour is automatically adjusted to align with the
coastline of the image, without imposing strict constraints [96,98]. The algorithm, however,
does possess certain limitations. Specifically, the conventional level set algorithm exhibits
sluggishness, particularly when dealing with high-resolution images. Additionally, the
evolution process of the level set function often manifests irregularities that can potentially
give rise to numerical errors [99]. The researchers proposed a novel distance regularized
level set evolutionary algorithm (DRLSE) to address the issue of low accuracy results
caused by inadequate initialization of the level set function in coastline extraction [97,99].
Figure 9 shows the results of contour extraction using DRLSE.

Remote Sens. 2023, 15, x FOR PEER REVIEW 17 of 32 
 

 

evolutionary algorithm (DRLSE) to address the issue of low accuracy results caused by 
inadequate initialization of the level set function in coastline extraction [97,99]. Figure 9 
shows the results of contour extraction using DRLSE. 

 
Figure 9. The process of approaching the contour line to the edge line in the coastline extraction task 
[99]. (a) shows initial contour with initial values; (b) shows contour with final values. 

The essence of the active contour model is a variational solution idea. In the process 
of coastline extraction, we can obtain accurate coastline locations, but the model is com-
plex, and the calculation time is long. This method is suitable for a scene with a simple 
background and a single object, and the effect is better for high spatial resolution images. 
For complex background and multi-object scenarios, the model needs to be improved, 
especially the calculation speed. 

5.5. Polarization Method 
The polarization method is specific to the work of extracting coastlines based on SAR 

data. In the polarization system of SAR data, the ground information is contained in the 
electromagnetic wave back from the target object, and this information can be modulated 
in the components of the spectrum, intensity, or polarization direction of the electromag-
netic wave. There are two types of polarization: horizontal polarization (H) and vertical 
polarization (V). H means that when a satellite sends a signal to the ground, its radio 
waves vibrate horizontally. V is the opposite. The polarization scattering matrix is a sim-
ple method to represent the scattering characteristics of a single pixel, which contains all 
the polarization information of the target. The scattering matrix of the target is measured 
by four types of electromagnetic wave polarization such as HH, HV, VH, and VV to de-
termine the nature of the target [100]. 

Researcher Nunziata from the University of Napoli Parthenope has conducted a se-
ries of studies on extracting coastlines from SAR images using polarization methods 
[64,101–103]. The research team used CSK SAR data obtained by the incoherent double-
polarization PingPong mode to achieve coastline extraction [103]. Mimicking the correla-
tion between HH and VV polarization channels was related to the coherence time of the 
observation scene, leading to the derivation of a binary output that served as the founda-
tion for coastline extraction [101]. Moreover, he proposed a novel metric for dual-polari-
zation coherent and incoherent synthetic aperture radar (SAR) data processing based on 
the correlation between co-polarization and cross-polarization channels, aiming at coast-
line extraction as well as unsupervised separation of land and ocean [102]. Except for the 
study of co-polarization, Paes extracted continuous coastlines using Hybrid Polarity SAR 
data [104]. In the follow-up study, in addition to the dual polarization, the research team 
also used the fully polarized SAR measurement to extract the coastline [105]. 

In the field of coastline extraction, polarization methods can be classified into two 
types: single-polarization and multi-polarization. Both methods are effective, but the sin-
gle-polarization method requires manual refinement when dealing with low land–sea ra-
tios or complex extraction areas. In contrast, the multi-polarization method does not re-
quire manual participation and has a faster processing time than the single-polarization 

Figure 9. The process of approaching the contour line to the edge line in the coastline extraction
task [99]. (a) shows initial contour with initial values; (b) shows contour with final values.

The essence of the active contour model is a variational solution idea. In the process
of coastline extraction, we can obtain accurate coastline locations, but the model is com-
plex, and the calculation time is long. This method is suitable for a scene with a simple
background and a single object, and the effect is better for high spatial resolution images.
For complex background and multi-object scenarios, the model needs to be improved,
especially the calculation speed.

5.5. Polarization Method

The polarization method is specific to the work of extracting coastlines based on
SAR data. In the polarization system of SAR data, the ground information is contained
in the electromagnetic wave back from the target object, and this information can be
modulated in the components of the spectrum, intensity, or polarization direction of the
electromagnetic wave. There are two types of polarization: horizontal polarization (H) and
vertical polarization (V). H means that when a satellite sends a signal to the ground, its
radio waves vibrate horizontally. V is the opposite. The polarization scattering matrix is a
simple method to represent the scattering characteristics of a single pixel, which contains all
the polarization information of the target. The scattering matrix of the target is measured by
four types of electromagnetic wave polarization such as HH, HV, VH, and VV to determine
the nature of the target [100].

Researcher Nunziata from the University of Napoli Parthenope has conducted a series
of studies on extracting coastlines from SAR images using polarization methods [64,101–103].
The research team used CSK SAR data obtained by the incoherent double-polarization Ping-
Pong mode to achieve coastline extraction [103]. Mimicking the correlation between HH
and VV polarization channels was related to the coherence time of the observation scene,
leading to the derivation of a binary output that served as the foundation for coastline
extraction [101]. Moreover, he proposed a novel metric for dual-polarization coherent and
incoherent synthetic aperture radar (SAR) data processing based on the correlation between
co-polarization and cross-polarization channels, aiming at coastline extraction as well as
unsupervised separation of land and ocean [102]. Except for the study of co-polarization,
Paes extracted continuous coastlines using Hybrid Polarity SAR data [104]. In the follow-up



Remote Sens. 2023, 15, 4865 16 of 29

study, in addition to the dual polarization, the research team also used the fully polarized
SAR measurement to extract the coastline [105].

In the field of coastline extraction, polarization methods can be classified into two types:
single-polarization and multi-polarization. Both methods are effective, but the single-
polarization method requires manual refinement when dealing with low land–sea ratios
or complex extraction areas. In contrast, the multi-polarization method does not require
manual participation and has a faster processing time than the single-polarization method.
However, the performance of both methods will decline when the sea level rises to the
intertidal zone.

5.6. Machine Learning

Machine learning-based approaches for coastline extraction have demonstrated supe-
rior performance compared to others. Machine learning methods are highly effective in
analyzing big data from remote sensing tasks, as they possess the capability to automati-
cally learn the intricate relationships between input features and output results through
extensive calculations [25]. These methods can be well applied to the distinction between
sea and beach, bedrock and mangrove, etc., especially in the context of large time scale
and large spatial scale, when many remote sensing images need to be calculated. The
workflow of using the combination of remote sensing data and machine learning methods
for coastline map is presented in Figure 10.
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Generally, machine learning methods can be broadly classified into two primary
categories: unsupervised and supervised learning [24]. Supervised learning is a process
of using a set of samples from a known class to adjust the parameters of a classifier to
achieve the desired performance [55]. In other words, supervised learning trains the
existing training samples to obtain the optimal model [106], which can be classified as
unknown data.

In contrast to supervised learning, unsupervised learning methods can classify data
without the need for target labels. Unsupervised learning includes clustering and dimen-
sionality reduction. Cluster analysis is the process of classifying a sample set based on the
similarity between samples, calculated by continuously reducing the intra-class gap and
increasing the inter-class gap [107]. Clustering methods are commonly applied for image
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processing, landscape object identification, and classification. The primary application of
dimensionality reduction algorithms lies in data compression, aiming to mitigate problem
complexity, enhance data quality, and ultimately expedite model training.

Deep learning is the most important branch of machine learning and a mainstream
method to classify remote sensing objects [108]. By learning the internal rules and represen-
tation levels of the sample data, and using the information obtained in the learning process
to interpret the data, the ultimate goal of remote sensing image analysis is to enable the
machine to analyze, learn, and interpret the image independently [90].

5.6.1. Classification

This section presents machine learning methodologies discussed in the existing liter-
ature for coastline extraction, wherein the primary approach involves landscape surface
type classification to determine precise coastal locations.

The support vector machine (SVM) is a supervised machine learning method com-
monly employed for classification and regression tasks [109]. The SVM learning strategy
involves interval maximization, which can be mathematically formulated as solving a
convex quadratic programming problem equivalent to minimizing the regularized hinge
loss function. SVM simplifies the classification process by projecting the dataset onto a
lower-dimensional feature space. This approach has been extensively utilized in land cover
classification, particularly in binary categorization of land and water. Results showed that
the SVM classifier is capable of detecting coastline features with sub-pixel accuracy [109].
In addition, a series of algorithms derived from SVM-based algorithms such as SVM-linear
(SVM-L), SVM-RBF (SVM-R), and SVM-polynomial (SVM-P) with different kernel function
compositions have been compared [110]. Among them, SVM-R is the most effective method,
attaining high overall accuracy.

The K-nearest Neighbor (KNN) algorithm is a method used to determine the similarity
between a given sample and K samples in the dataset. If the majority of these K samples
belong to a specific category, then it can be inferred that the given sample also belongs
to that category [111,112]. In this method, unknown pixels can be labeled by examining
training pixels. Researchers pointed out that this method can effectively identify the
boundary between classes [40]. However, it also can be confused by a zone of transition.

The Parallelepiped algorithm is based on the probability distribution value, utilizing
multiple standard deviations as the confidence classification boundary, while the magnitude
of the t-value determines the proportional size of each class range. The advantage lies in
the simplicity of the classification criteria and computation speed. However, it is found
that the results of the parallelepiped algorithm are not accurate, and the extracted results
are farther from the reference waterline than other test methods [113].

The Maximum Likelihood is a nonlinear classification method based on the Bayesian
criterion with a minimum probability of classification error, which is a widely used and ma-
ture supervised classification method [114]. In coastline extraction, Maximum Likelihood
performs similarly to the Parallelepiped algorithm. However, the results are still influenced
by the wet–dry mixing zone.

The Minimum Distance classification is performed by assuming that the spectral
information of each class of features in the image has a multivariate orthogonal distribution,
and each class forms an ellipsoidal group of points in the K-dimensional spectral space, and
its attribution is determined by the distance of the pixel from the center of each class [115].

The Mahalanobis distance classifier is a weighted Euclidean distance that takes vari-
able correlations into account through the covariance matrix. This technique is similar to
the minimum distance. Compared with other methods, this method is unaffected by the
magnitude and can exclude the interference of correlation between variables. However, the
exaggeration of the effect of variables that exhibit minimal changes leads to a compromise
in classification accuracy.

Ensemble learning (EL) classifiers are machine learning methods that employ a series
of learners to acquire and utilize rules for integrating the individual learners’ learning
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outcomes, thereby achieving superior performance compared to a single learner [116]. It
is not a single machine learning algorithm per se, but rather a way to build and combine
multiple machine learners to accomplish the learning task and to realize the strengths of all.
Comparative analysis experiments show that the EL classifier is suitable for beach-type
coast extraction, and the extraction accuracy is better than SVM, MLP classifiers, and other
algorithms [110]. When there is no strong dependency between individual learners, a series
of individual learners can be generated in parallel, and the representative algorithms are the
Bagging and Random Forest (RF) algorithms [117]. To extract the coastline, the RF method
has been applied to the NIR bands of LANDSAT-8 and GOKTURK-2 images [118]. It can
provide pixel-based results. Extra Trees (ET), Adaptive Boosting (AdaB), and Gradient
Boosting (GB) were also selected to be applied in coastline extraction [119].

5.6.2. Clustering

Clustering is different from classification in that it means dividing similar data to-
gether, the specific division does not care about the label of the class, the goal is to aggregate
similar data together, and clustering is an unsupervised learning method. The clustering
method is divided into three categories, including the partitioning method and the hierar-
chical method [115]. The partitioning method requires specifying the number of cluster
classes or cluster centers in advance and iterating until the final goal of “points within
classes are close enough and points between classes are far enough” is achieved. The
classical K-Means algorithm is often used for water and land separation. Applying Hierar-
chical Clustering and Fuzzy C-Means (FCM) extends to water and non-water classification
problems, encompassing patch analysis in remote sensing imagery [108].

The K-means algorithm is provided by the function k-means. This function enables
the provision of either the cluster center’s location or the number of clusters through the
center parameter, facilitating multiple randomly initiated partition choices, and ultimately
returning the partition with the optimal objective function (minimum sum of squared
distances) [120]. However, it should be noted that this does not guarantee an optimal final
partition. In the past few years, the K-Means algorithm has found extensive applications in
various classification tasks due to its ability to extract features at a deep level effectively.
However, there are two major drawbacks in the K-Means algorithm: (1) the K values
are pre-selected and fixed and (2) random seed selection may have an impact on the
results. K-means++ has been proposed to compensate for these deficiencies when applied
to coastline extraction.

The ISODATA (Iterative Self-Organizing Data Analysis) model differs from the K-
means mean algorithm in two ways: k-means is a sample-by-sample correction, while
the ISODATA statistically examines clusters after each iteration [113]. Additionally, the
ISODATA algorithm can not only complete the clustering analysis by adjusting the classes
to which the samples belong but also automatically “merge” and “split” the classes to obtain
a more reasonable number of classes for each cluster. Several studies about Coast Science
used ISODATA to identify characteristics [121]. These studies showed that ISODATA has
achieved some success as a built-in algorithm embedded in automated coastline extraction
software, where features are classified and merged into two clusters of land and water, and
the boundary between the two is used as the coastline [122,123].

The Fuzzy C-Means (FCM) algorithm divides objects based on their similarity, which
uses Euclidean space to determine the geometric closeness of the data points as a reference.
Researchers compared the application of FCM to K-Means and hierarchical clustering in
water extraction, and the results showed that the clustering effect of FCM and K-Means is
superior to hierarchical clustering [108].

5.6.3. Deep Learning

There needs to be more research applying deep learning techniques to processing
remote sensing data for coastline extraction. Previous research has not only compared
deep learning methods with traditional approaches but also examined the performance
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of different deep learning models. These experiments have demonstrated that machine
learning-based coastline detection algorithms have recently begun to outperform traditional
statistical methods [124]. In contrast to traditional ML methods, or neural networks, deep
learning feature extraction does not rely on manual, but automatic machine extraction.
Meanwhile, it provides a comprehensive solution rather than decomposing the problem
into distinct components and subsequently integrating them together as in the field of
machine learning [72].

The Artificial Neural Network (ANN) is a parallel interconnected system consisting
of simple units, which exchange signals through neuron networks and undergo training
by initially assigning random values [125,126]. The researchers employed artificial neural
network (ANN) models with diverse activation functions to extract distinct categories
of coastlines from remote sensing images, and subsequently conducted a comparative
analysis with decision trees (DT), k-nearest neighbors (KNN), and support vector machines
(SVM) [110]. They mentioned that ANN is an efficient classifier over DT, KNN, and SVM.

The Convolutional Neural Network (CNN) is a feedforward neural network compris-
ing artificial neurons, consisting of a convolutional layer, pooling layer, and fully connected
layer [127,128]. The coastline extraction process based on CNN model is shown in Figure 11,
which is divided into two parts: training and testing. We need to pre-train the convolutional
neural network model and then input the remote sensing image into the trained model for
coastline extraction [124]. Various CNN models are put forward with their advantages for
different datasets and tasks. Basic CNN models have flourished in water–land segmenta-
tion [89]. However, some issues cannot be overlooked, including (1) blurring boundary
pixels between water and land and that (2) a large number of trainable parameters and
training samples are required [129]. To overcome drawbacks, researchers proposed more
robustness and generality-modified models based on CNN architecture [130]. LaeNet is a
novel end-to-end lightweight multi-task CNN for automatically extracting lake areas and
coastlines from Landsat-8 images, consistent with mainstream semantic segmentation mod-
els (UNet, DeepLabV3+, etc.) and even better [131]. To address the challenge of training
sample size for network training, researchers propose a deep multi-feature learning archi-
tecture called W-net for water body segmentation in satellite images [129]. The problem of
blurring boundary pixels in CNN is addressed by proposing a novel loss function, namely
edge-weighted loss, for training the segmentation network [130]. Additionally, research on
modified CNN networks for separating terrestrial water bodies in complex environments
is also under development [106–108]. Despite CNN’s commendable achievements in land
and water segmentation in recent years, there is still room for further improvement.
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The Multi-Layer Perceptron (MLP) consists of an input, output, and multiple hidden
layers. The MLP classifier will have a good recognition rate and is faster in classification.
In exchange, its training speed is slow and the number of training parameters increases
dramatically, especially as the image size increases. The MLPs are combined with water
body indices to train the MLPs to distinguish water and land features based on the pixel
values of the input satellite image [125]. Additionally, MLP-ANNs can enhance the accuracy
of water and land classification. Compared to other classifiers, MLPs not only enable beach
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and artificial coastline recognition but also facilitate multiple applications in Markov
models for simulating various types of land use change simultaneously, which have been
extensively employed in bio-coastline monitoring.

The U-Net is a deep learning network based on the Full Convolutional Network
(FCN), widely employed in image segmentation. The model is designed with an encoder-
decoder structure, as well as skip connections [132]; the structure is showed in Figure 12.
Many neural network models for coastline extraction adopt the fundamental concept of
U-Net while introducing novel modules. For instance, researchers modified the Standard
U-Net (SUN) model to improve the SLS performance and develop an automatic coastline
extraction framework, which overperformed AWEI in results [68]. Researchers proposed
models trained using a new Sobel-edge loss function to improve sensitivity to fine-scale,
narrow coastline features [66]. Other experiments used multiple U-Net-based models to
compare with the integrated automatic coastline segmentation system (WaterNet) [72]. In
addition, to build a new network based on conventional U-Net, researchers combined U-
Net with the Edge Detection Framework (HED) to solve the duality of coastline extraction
tasks (segmentation and representation) [133].
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Owing to the DL model training needing substantial data, we have extensively
searched publicly available coastal condition datasets. There are five datasets we found,
briefly described as follows:

(1) Sentinel-2 Water Edges Dataset (SWED). This dataset contains 26,468 Sentinel-2 Level-
1C images of size 256 × 256 and the corresponding sea–land segmented labels. Images
annotations were created using a semi-supervised clustering procedure, followed by
a manual verification and correction of mislabeled pixels [70].

(2) Sea–land segmentation benchmark dataset. It contains 3361 Landsat-8 OLI images
of size 512 × 512. The satellite images were manually labelled by dividing all their
pixels into two classes: sea and land [134].

(3) YTU-WaterNet. This dataset was also built based on Landsat-8 OLI data, using
OpenStreetMap (OSM) water polygon data to generate binary segmentation labels [72].
The final dataset contains 1008 images with a size of 512 × 512.

In general, the machine learning method can realize the automatic coastline extraction,
but it needs to combine the remote sensing indices and thresholding to improve the accuracy.
Deep learning also shows superior performance in coastline extraction but compared with
the application of deep learning in image segmentation, object detection, and other image
interpretation tasks, the research is still relatively shallow, mainly because there are few
public datasets for coastline extraction. However, deep learning for shoreline extraction
will still be the trend.
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5.7. Knowledge Graph

Despite the revolutionary impact of deep learning on remote sensing image classifica-
tion, current deep learning-based methods exhibit a strong reliance on extensive training
data and demonstrate limited performance when confronted with novel categories beyond
predefined ones [27]. To solve this problem, DL and Knowledge Graph (KG) fusion is
introduced into remote sensing image classification [135]. Among them, KG has the prior
knowledge to obtain remote sensing samples for DL. Based on previous studies [25], this pa-
per presents a simple concept for constructing a coastline scene knowledge graph (CSKG).

Accurately describing objects’ attributes and spatial relationships can significantly
enhance deep learning methods’ capacity to comprehend the semantics of remote sensing
scenes [25]. Attribute relations can be employed to depict the reflective properties of objects
or the inclusive relationships among them. On the other hand, spatial relations primarily
delineate diverse positional connections between distinct objects in space [27]. This can
be used as a basis for the knowledge-based classification of remote sensing scenes. The
construction of a remote sensing knowledge graph (RSKG) shown in Figure 13.
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By consulting several experts in related fields, we make the framework of the knowl-
edge graph. More specifically, we analyze the attribute and spatial relationships of objects
in remote sensing (RS) images belonging to specific categories of coastlines in order to
construct knowledge graphs (KGs) for distinct types of coastlines shown in Figure 14.

A knowledge graph has the advantages of a low sample data requirement and high
computational efficiency. By introducing remote sensing scene classification and combining
it with zero-sample learning, knowledge graphs can deal with the problem that deep
learning requires a large amount of training data to solve. However, the construction
of knowledge graphs requires a lot of expert knowledge, as well as the ability to extract
the relationship from the knowledge, which puts forward new ability requirements for
coastline management personnel. At present, there is no thematic knowledge map fully
used for coastline extraction, which will be another direction for future work.
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6. Discussions: Challenges and Future Prospective in Coastline Extraction

Coastline extraction is an essential aspect of coastline management, encompassing a
series of systematic workflows aimed at determining the precise location of the coastline
with optimal efficiency and expediency, facilitating dynamic monitoring. The extraction
of coastlines necessitates a sound understanding of fundamental coastal typologies to
ascertain more suitable methods for identification and extraction. Depending on the
study area’s location, artificial infrastructure, vegetation, and other characteristics, the
indicators, data types, and coastline extraction methods will differ. Conventional methods
for mapping coastlines are constrained by field conditions and limited data resolution,
leading to inefficiency and reduced accuracy. As the demand for monitoring coastal
environments has grown, researchers have increasingly turned to various data sources and
methods to pinpoint coastlines.

With the advancement of remote sensing sensors, the enhancement of computer perfor-
mance, and the integration of machine learning techniques, real-time waterline recognition,
automatic coastline extraction, and real-time monitoring have witnessed significant ad-
vancements. Simultaneously, the precise requirements for coastline management, spectral,
and multi-temporal remote sensing big data analysis, as well as complex machine learning
methodologies, pose additional challenges:

(1) Construction of datasets. By leveraging machine learning methods, more valuable
information can be extracted from big data. The introduction of deep learning im-
proves the accuracy of the coastline binary classification problem, and the use of
intelligent methods can achieve the fully automated extraction of coastlines. However,
the absence of datasets can directly affect the effectiveness of these methods. Creating
datasets can supply ample training and testing data for deep learning methods. At
present, multiple datasets are available for remote sensing image classification and
target recognition, but none of them can be directly applied to coastline extraction.
Therefore, there is a need to establish standard coastline image datasets and promote
the development of remote sensing image-based coastline extraction technology. The
construction of coastline datasets requires two kinds of basic data: coastline data and
remote sensing image. Coastline data can be obtained from scientific programs created
by government agencies such as the National Oceanic and Atmospheric Adminis-
tration. Remote sensing imageries are determined based on the date and location of
selected stretches of coastline, with Sentinel 2 and Landsat8 currently in common use.
The coastline data are combined with the water detection results on the remote sensing
image to obtain the sea–land segmentation label, and finally the coastline is extracted
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with smaller label images. Coastline data can also be selected using Google Earth
images or OpenStreeMap to match remote sensing images. Labeling methods include
manual labeling and automatic labeling. Researchers can select the labeling method
based on their requirements. When constructing the dataset, it can be considered to
construct the dataset that can represent the characteristics of the coastline based on
the processed data products such as the index image.

(2) Select data with appropriate spatial resolution. Choosing a suitable spatial resolution
is very important, considering the visibility and easy identification of the coastline
indicator. When the eroded coastline size is smaller than the spatial resolution of the
image, it is disregarded, leading to an inaccurate coastline extraction. Increasing the
spatial resolution enhances indicator visibility but does not necessarily improve clas-
sification accuracy. For instance, in the case of coastline indicators such as vegetation
lines, spectral characteristics effectively discriminate between vegetation and other
features, while higher spatial resolution facilitates the precise extraction of coastlines.
However, when the waterline is employed as an indicator, the combination of spectral
similarity and extremely high spatial resolution can compromise extraction accuracy.
Hence, selecting an appropriate spatial resolution based on specific scenarios during
coastline extraction tasks is crucial.

(3) Using hyperspectral data. The spectral characteristics of offshore areas exhibit a high
degree of complexity, posing challenges in distinguishing the diverse features of
coastal zones using single spectral information in conventional methods. However,
with advancements in remote sensing sensors and the increasing availability of hy-
perspectral data, a novel approach emerges for extracting multi-band and abundant
spectral information from coastlines. This enables the fusion of multiple bands’ spec-
tral information to accurately delineate the distinctive characteristics of coastal zones.

(4) Coping with the effects of the seasons and weather. In order to extract reliable
indicators of coastline dynamics, it is essential to consider seasonal variations. The
composition of many beaches undergoes changes throughout the seasons, such as
shifts from sand to gravel and fluctuations in vegetation growth or withering. These
alterations not only impact the visibility and accuracy of coastline indicators but also
influence the slope of the coastal zone. Consequently, a uniform method for coastline
extraction may not be suitable across different seasons. Therefore, we argue that
conducting seasonal phase-based studies on coastline extraction and erosion would
yield more valuable insights. Additionally, during periods of strong winds leading to
large waves at sea, interference with transient waterline detection becomes particularly
prominent in SAR data-based coastline extraction, thus, weather conditions and
climate factors should be considered as they can significantly affect the outcome of
coastline extraction efforts.

(5) Improve the availability of SAR data. The separation of land and sea and the extraction
of coastline using SAR data are highly feasible; however, due to the noisy nature
of the data and difficulties in preprocessing, decoding accuracy is often low. The
strong backscattering caused by wind and wave modulation on the sea surface greatly
reduces contrast between land and sea, resulting in weak boundaries that are difficult
to extract.

(6) Combine various methods. From the analysis of this whole paper, it can be seen
that various methods for the automatic extraction of coastlines from remote sensing
images compiled in this paper have certain limitations, and each method is only for a
specific coastline type, lacking universality. Therefore, in subsequent work, we can
consider combining various methods and integrating the advantages of each method
to improve the coastline extraction effect.

(7) Realize coastline extraction with sub-pixel accuracy. The current coastline extraction
experiments show that pixel-level extraction accuracy can be achieved, i.e., classifica-
tion of each pixel. In fact, due to the transitional and variable nature of the coastline,
the same pixel can be partially classified as a seawater region and partially classi-
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fied as a land region. In data applications with low spatial resolution, especially for
multispectral as well as hyperspectral data, there is a very typical phenomenon of
mixed pixels, and it is necessary to perform pixels such that coastline extraction can
be achieved at sub-pixel level accuracy and more accurate monitoring of coastlines.
At the same time, the complex microtopography of the coastline can be realized.

(8) Construction of remote sensing knowledge graphs. We will try to extend CSKG to the
remote sensing scene knowledge graph (RSKG). Incorporating a larger repository of
relevant structured knowledge graphs (RSKG) can enhance the availability of compre-
hensive prior knowledge, thereby facilitating the generation of more refined semantic
representations for both RS scenarios and target classes. Monitoring of coastline
changes can be achieved from a single-state remote sensing ontology structure to a
sequential state ontology structure.

7. Conclusions

With the rapid development of coastal economic belts, the significance of real-time
monitoring of coastline changes is increasingly prominent, and it is crucial to accurately and
efficiently measure and process coastline data [83]. This paper provides a concise overview
of the research progress in remote sensing-based coastline extraction, encompassing data
sources, types of coastlines, indicators, and algorithm models. Additionally, we highlight
existing challenges while proposing potential solutions.

Introducing remote sensing big data can realize the extraction and temporal detection
of large-scale coastlines. Firstly, we provide a comprehensive overview of the utilization of
remote sensing data in coastal research, encompassing both satellite data and non-satellite
data. Specifically, we carefully summarize the sensor parameters used for shoreline extrac-
tion. We also compare the advantages and disadvantages of different data for different
shoreline types and recommend the most suitable data for different types of shoreline
extraction work, which helps provide researchers with valuable insights intuitively. Subse-
quently, we present an exhaustive compilation of mainstream coastline extraction methods
including RS index, thresholding, edge detection, polarization method, and machine learn-
ing, the data of which are from the coastline survey using the RS system. We summarized
the usage, advantages, limitations, and possible directions of these approaches.

Machine learning has been widely applied as a data-driven tool in remote sensing
data processing [133]. We used some length to summarize the machine learning methods
for coastline extraction, which can be categorized into three main groups: classification,
clustering, and deep learning. Advanced deep learning approaches enable the processing
of vast amounts of high-dimensional remote sensing data with enhanced spectral and tem-
poral features, thereby enhancing the accuracy of extraction and monitoring. In addition,
based on RSKG, we tentatively put forward the framework of CSKG, which opens up a
new idea for subsequent coastline management.

Coastline monitoring is an important link in coastal zone resource management,
sustainable development, and ecological protection. It is very important to use advanced
and accurate methods to extract coastline for the sustainable monitoring and development
of coastlines. The technologies summarized in this paper and the development trends
proposed in this paper provide a direction for the procedural and practical application
of coastline extraction, help to promote the engineering of coastline extraction, and help
the government and Marine ecologists to limit the negative impact of overexploitation of
coastlines on the ecology, environment, and climate.
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