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Abstract: The timely and accurate quantification of grassland biomass is a prerequisite for sustainable
grazing management. With advances in artificial intelligence, the launch of new satellites, and
perceived efficiency gains in the time and cost of the quantification of remote methods, there has been
growing interest in using satellite imagery and machine learning to quantify pastures at the field scale.
Here, we systematically reviewed 214 journal articles published between 1991 to 2021 to determine
how vegetation indices derived from satellite imagery impacted the type and quantification of pasture
indicators. We reveal that previous studies have been limited by highly spatiotemporal satellite
imagery and prognostic analytics. While the number of studies on pasture classification, degradation,
productivity, and management has increased exponentially over the last five years, the majority
of vegetation parameters have been derived from satellite imagery using simple linear regression
approaches, which, as a corollary, often result in site-specific parameterization that become spurious
when extrapolated to new sites or production systems. Few studies have successfully invoked
machine learning as retrievals to understand the relationship between image patterns and accurately
quantify the biophysical variables, although many studies have purported to do so. Satellite imagery
has contributed to the ability to quantify pasture indicators but has faced the barrier of monitoring
at the paddock/field scale (20 hectares or less) due to (1) low sensor (coarse pixel) resolution,
(2) infrequent satellite passes, with visibility in many locations often constrained by cloud cover, and
(3) the prohibitive cost of accessing fine-resolution imagery. These issues are perhaps a reflection of
historical efforts, which have been directed at the continental or global scales, rather than at the field
level. Indeed, we found less than 20 studies that quantified pasture biomass at pixel resolutions of
less than 50 hectares. As such, the use of remote sensing technologies by agricultural practitioners
has been relatively low compared with the adoption of physical agronomic interventions (such as
‘no-till’ practices). We contend that (1) considerable opportunity for advancement may lie in fusing
optical and radar imagery or hybrid imagery through the combination of optical sensors, (2) there is
a greater accessibility of satellite imagery for research, teaching, and education, and (3) developers
who understand the value proposition of satellite imagery to end users will collectively fast track the
advancement and uptake of remote sensing applications in agriculture.

Keywords: AI; end user; grassland management; land-use; machine learning; pasture biomass;
satellite; species composition; sustainability; unmanned aerial vehicle

1. Introduction

Pasture ecosystems transverse more than 40% of earth land surfaces [1], supporting
a broad range of biodiversity, conservation, and environmental sustainability [2,3] while
making substantial contributions to global carbon removal [4,5]. Globally, the livestock
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industry directly supports the livelihoods of over 1 billion households, particularly in
developing countries, where the pastoral system underpins food security [6,7], often
because grasslands are the least expensive form of feed and one of the few ways that
extensive land areas can be used for agri-food production [5].

Herein, we define “pastures” as uncultivated grasslands or rangelands (shrublands,
prairies, woodlands, meadows, steppe, and savannas (Figure 1)) subjected to seasonal
native and domesticated livestock grazing. Rangelands are not subject to intensive manage-
ment except for seasonal grazing [8,9], often due to their low productivity as determined
by seasonal weather [10]. Other pasture types (e.g., sown or exotic species) may originate
through the human cultivation of cleared land or conversion from natural grassland. Natu-
ral grassland converted to pasture may exclude farm inputs [9], while intensively managed
pastures often are subject to management interventions (mowing, synthetic fertiliser, irriga-
tion, pasture species renovation, fencing, etc) to enhance productivity to provide financial
income [11–13]. Grasslands may also serve to produce livestock supplementary feeds,
such as hay, silage, and grain [9,14]. Often, pastures are defined based on their global and
regional relevance (Figure 1).
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Figure 1. Global distribution of pastures and assessment using remote sensing tools. “Global
assessment of land degradation and improvement 1. Identification by remote sensing” (Bai et al.,
2008 [15]). Global grassland classification was embellished to the original map by the authors.

Many direct and indirect factors can result in the degradation of pasture ecosystems.
These may include overgrazing, the inherent soil structure, adverse climate conditions,
competing land-use activities or incursions by noxious weeds and/or feral flora and
fauna [16–24]. Decisions to optimise management practices [25] require the support of the
efficient and accurate monitoring of production (i.e., quantity), quality, species composition,
and availability [4]. Global climate change, including the elevation of temperature and
CO2, will affect pastures, altering the species competition dynamics due to changes in the
optimal growth rate [5,26]. The mechanism by which plant functional types (e.g., C3, C4)
adapt to environmental stresses or ecological disturbances has been classified into two main
features they possess, i.e., structural and functional characteristics [9]. Pasture composition,
functioning, and structure can be vulnerable to the harmful effects of climate change and
anthropogenic activities (i.e., overgrazing), and when a critical threshold [27–29] is reached,
may hit degradation tipping points.
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Avenues for monitoring pasture sustainability indicators fall into three broad cate-
gories: field techniques, laboratory/greenhouse/allometric analyses, and proximal sensors.

Field techniques to quantify pasture biomass may include (1) visual methods (i.e.,
field walking and boot height) to estimate grass height, (2) using scientific equipment such
as a Rising Plate Meter (RPM) or C-Dax system (a tow-behind device, see www.c-dax.
com, accessed on 6 April 2023) to measure the height and density of pastures [3,30], and
(3) destructive harvests through quadrat sampling [26]. While such methods provide data
on the ground, previous studies have suggested that such methods cannot adequately
account for intra-paddock or intra-seasonal variation [31–33].

Laboratory, greenhouse and/or allometric analyses facilitate the direct assessment
of morphological parameters such as the leaf area index (LAI) and aboveground biomass
(AGB) [34–37]. Forage productivity and quality through the essential structural contents
of feed values (e.g., crude protein, green and dry matter, ash, neutral detergent fibre, etc.)
can be easily estimated by statistically upscaling [14,38–43]. Although such approaches are
accurate and suitable for measuring pasture quality, they are destructive [43,44] and cannot
be scaled to larger areas.

Proximal sensing is carried out by equipment such as field spectroradiometers (Field-
Spec), ultrasonic sensors, and sonars, with the intent of estimating morphological param-
eters, e.g., AGB, LAI, sward height, soil moisture, etc., [32,41,45–47] from multispectral
wavelengths (i.e., red, blue, green, and near-infrared) [39,48] or hyperspectral reflectance
bands (i.e., 10–20 nm). However, the influence of soil and ground reflectance (albedo) can in-
terfere with spectral distinction [41] and introduce errors due to instrumental instability [47].
In addition, intra-paddock pasture composition variability due to grazing management
(i.e., stocking rates) may not be adequately quantified with this approach [32,49]. In sum-
mary, pasture monitoring using direct or proximal approaches can effectively calibrate
ground-based pastures, e.g., biomass estimation and retrievals of biophysical parame-
ters for validation purposes. However, such methods can be time-consuming and/or
labour-intensive and are often unsuitable for application over a large area [50].

Like other techniques, remote sensing is susceptible to problems associated with
technology limitations (i.e., errors from cloud cover, noise, atmospheric and geometric
correction, and radiometric resolution) [51]. Global studies have highlighted the possi-
bilities of using remote sensing to monitor pasture cover and biomass while reducing
error rates [52–54]. Most previous work has, however, focused on global, regional, or
sub-regional monitoring [55–57]; much less attention has been paid to pasture remote
sensing at the farm or paddock level, likely because most remote sensing applications have
been at larger scales [33,58]. The emergence of newer satellite constellations (e.g., Sentinel
and PlanetScope [59]) could be expected to premise innovation in pasture monitoring at a
level that can be carried out at more frequent intervals (1–5 days).

The primary objectives of this paper are to (i) review existing satellite and UAS
applications in pasture monitoring; (ii) investigate existing approaches for the manage-
ment of pasture traits, productivity, botanical composition, and pasture degradation; and
(iii) explore barriers to the adoption of satellite driven technology by end users.

2. Methods

We included peer-reviewed papers published from January 1991 to February 2021
and excluded conference proceedings and documents written in languages other than
English. We first searched the Scopus database interrogated with the term “remote sensing,”
which returned 254,392 documents (see Appendix A for the flowchart). We then searched
terminology used to describe vegetation under management, i.e., “(pasture* OR grassland*
OR rangeland*) management”, which returned 31,938 documents. We then combined
queries (#1 AND #2), resulting in 1582 documents. We introduced grazing (i.e., graz*) to
streamline this third list to select only articles that describe vegetation under a grazing
regime, obtaining 633 papers. After eliminating conference papers and proceedings, we
obtained 262 articles. We previewed the articles using the search strings described in Table 1,

www.c-dax.com
www.c-dax.com
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and by reading the abstracts to eliminate unrelated papers, reduced the number of papers
to 214. Articles that made the final round (i.e., 214) were grouped into original research
and review papers. From these documents, the following information was extracted:

• The geographical location/site of a study.
• The type of sensor used (i.e., optical, multispectral, hyperspectral, SAR).
• Whether a single sensor was used or a combination of sensors together (i.e., fusion).
• The scale with which pasture was monitored (i.e., ≤5 ha, ≥10 ha, ≤50 ha and ≥100 ha);
• The approach for retrieving vegetation parameters for estimating pasture indica-

tors and how this was validated. Information on the adoption of remote sensing
approaches by end users.

• Whether environmental (climate and anthropogenic) variables and machine learning
were considered.

We exported results using the Research Information System (RIS) tag format by cre-
ating a custom CSV file to format and analyse data. We defined “UAS” as unmanned
aerial systems remotely controlled or programmed to fly autonomously with onboard
high-resolution sensor(s). In contrast, satellites orbit the earth with onboard sensor(s) often
lower than UAS in spatial resolution.

Table 1. Search phrases used to refine papers reviewed.

Search Categories Search Strings/Synonyms/Terms

Pasture Management traits quality, fertilizer, manure, irrigation, nutrient,
management, “soil condition”, “water”, “mowing”

Pasture Production quantity, height*, sward, biomass, production,
productivity, yield*, growth, “growth rate”

Pasture Composition species, botanical*, classification,

Pasture Degradation
decline, “grazing intensity”, “grazing pressure”,
“overgrazing”, “carrying capacity”, “stocking rate”,
“stocking density”, “land use”, “fractional cover”

Vegetation Grassland*, rangeland*, pasture *, graz*

Remote Sensing “Earth observation”, UAS or UAV, drone, satellite*,

Remote Sensing Adoption “end-user* ”, adoption*, technology

3. Results

The major global grasslands where authors use remote sensing technology to study
pasture conditions are shown in Figure 1. For example, the Banni grassland in India [60], the
temperate [61,62] and Mongolian steppe [28,63,64] in eastern Asia, the prairies of the central
United States [45,49,65–68], the meadow of North Tibet [69–71] and alpine in China [72,73],
the tropical grassland of Brazil [74,75], the savanna of Africa [7,76,77], the Greek island of
Samothraki in Europe [20,78] and the southern tablelands of Australia [79–81] are places of
interest where human-induced activities have impacted pasture ecosystems.

3.1. Spatial and Temporal Dimensions of Reviewed Papers

The review process revealed 199 articles from 46 countries (Figure 2), with the United
States having the most studies (n = 38; being primarily related to management, production,
species composition, and degradation) followed closely by China (n = 36). Asia had a higher
proportion of relevant papers (i.e., 24.6%) than other continents due to the publications
from China; Australia (n = 16), South Africa (n = 12), Argentina (n = 8), Canada (n = 7),
New Zealand (n = 5), Germany (n = 5), Sweden (n = 4), Uruguay (n = 4), Brazil (n = 4), and
France (n = 4) had relevant publications.
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Figure 2. Number of studies from each country and across continents reviewed. Note: the blue and
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studies (orange).

The number of remote sensing studies was low in 1991, and has increased exponen-
tially. Studies in earlier years focused on management and production, while the proportion
of studies on pasture degradation, productivity, and management increased significantly
in later years. A lack of publicly available satellites and UAS may have caused fewer
studies in the early 1990s. Figure 3 shows the temporal pattern of studies when grouped by
management traits, pasture production, species classification and degradation.
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3.2. Remotely Sensed Environmental Parameters Applied to Pasture Monitoring

Two primary drivers, namely, anthropogenic and climate/weather, influence pasture
mapping (production, composition, and degradation) globally (Figure 4a). Anthropogenic
factors (referenced by 75 studies) are further categorised to include stocking rate, stock-
ing density, grazing intensity, grazing system, livestock weights, mowing, soil and fire
management, land use, pasture treatment (i.e., fertilizer, herbicide, nitrogen, etc.) and
irrigation [2,7,49,65,66,80–90]. These variables are quantified through field measurements
(and/or ancillary data) and correlated against remote sensing data [50,70].

Remote Sens. 2023, 15, x FOR PEER REVIEW 6 of 36 
 

 

 
Figure 3. Temporal (annual) pa ern of studies reviewed by their topics of coverage. Bars indicate 
the number of studies published each year. 

3.2. Remotely Sensed Environmental Parameters Applied to Pasture Monitoring 
Two primary drivers, namely, anthropogenic and climate/weather, influence pasture 

mapping (production, composition, and degradation) globally (Figure 4a). Anthropogenic 
factors (referenced by 75 studies) are further categorised to include stocking rate, stocking 
density, grazing intensity, grazing system, livestock weights, mowing, soil and fire man-
agement, land use, pasture treatment (i.e., fertilizer, herbicide, nitrogen, etc.) and irriga-
tion [2,7,49,65,66,80–90]. These variables are quantified through field measurements 
(and/or ancillary data) and correlated against remote sensing data [50,70]. 

 

Remote Sens. 2023, 15, x FOR PEER REVIEW 7 of 36 
 

 

 

Figure 4. (a) The two main drivers of pasture variability, climate, and anthropogenic (b) studies 
using remote sensing to understand how adaptive pasture management could be used to mitigate 
climate change. Rainfall and temperature variables are regarded as weather and climate data. 

Assessing climate or weather’s influence on pastures (i.e., mapping pasture phenol-
ogy) involves (see Figure 4a) correlating climate and weather data with vegetation param-
eters (i.e., aboveground biomass, ground cover, and canopy cover) [6,35,49,64,66,80,91–
95]. Historical time series satellites (Landsat, AVHRR, MODIS) (medium to low sensors) 
[2,17,19,70,73,84,91,92,94,96–103] are used mainly. Other methods include simulation and 
modelling approaches to distinguish between human activities and climate [19,84,104–
107]. Examples of such modelling approaches include annual unharnessed net primary 
productivity (NPP) from livestock grazing intensity using a defoliation formulation 
model (DFM) [107], terrestrial ecosystem model (TEM) (potential) and Carnegie Ames 
Stanford Approach (CASA) [19]. 

A total of 54 studies (Figure 4a) used climate and weather data to predict climate’s 
effects on pastures; authors have used climatic data (over at least ten years) and historical 
time series satellites. Studies focusing on less than ten years were those using a monthly 
seasonal approach (154 studies) to monitor pastures; we categorised these studies here as 
“medium to low resolution” (Figure 4b) [49,64,66,80,108–112]. 

In general, the studies reviewed were conducted using low-spatial-resolution satel-
lite instruments. A few studies used high-spatial-resolution datasets (i.e., Sentinel-2 (four 
studies), PlanetScope (1 study), QuickBird (1 study)) to understand climate and weather 
effects on pasture composition [108,113], pasture biomass [3,74,114] and pasture quality 
[50]. One study invoked a very high temporal time-lapse camera to study the phenology 
of pasture species at the paddock scale compared with that from the landscape scale using 
MODIS and Landsat instruments [80]. Only 18 studies considered the adaptive manage-
ment of pastures with remote sensing strategies [17,21,28,34,67,73,80,94,114–123] (Figure 
4b). 

Regarding climate data, authors have primarily focused on temperature and rainfall; 
few have used only temperature [8,90] or rainfall data [91,96,100,106,124–127] to correlate 
with remote sensing data. Many studies have a empted to establish a correlation between 
rainfall and the growing season (mostly early and mid-growing season) 
[35,64,66,70,98,103,128]. Some studies have showed that temperature correlated positively 
to pasture growth according to the climatic zone (e.g., temperature contributed to growth 

Figure 4. (a) The two main drivers of pasture variability, climate, and anthropogenic (b) studies using
remote sensing to understand how adaptive pasture management could be used to mitigate climate
change. Rainfall and temperature variables are regarded as weather and climate data.

Assessing climate or weather’s influence on pastures (i.e., mapping pasture phenology)
involves (see Figure 4a) correlating climate and weather data with vegetation parameters (i.e.,
aboveground biomass, ground cover, and canopy cover) [6,35,49,64,66,80,91–95]. Historical
time series satellites (Landsat, AVHRR, MODIS) (medium to low sensors) [2,17,19,70,73,84,91,
92,94,96–103] are used mainly. Other methods include simulation and modelling approaches
to distinguish between human activities and climate [19,84,104–107]. Examples of such
modelling approaches include annual unharnessed net primary productivity (NPP) from
livestock grazing intensity using a defoliation formulation model (DFM) [107], terrestrial
ecosystem model (TEM) (potential) and Carnegie Ames Stanford Approach (CASA) [19].

A total of 54 studies (Figure 4a) used climate and weather data to predict climate’s
effects on pastures; authors have used climatic data (over at least ten years) and historical
time series satellites. Studies focusing on less than ten years were those using a monthly
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seasonal approach (154 studies) to monitor pastures; we categorised these studies here as
“medium to low resolution” (Figure 4b) [49,64,66,80,108–112].

In general, the studies reviewed were conducted using low-spatial-resolution satellite
instruments. A few studies used high-spatial-resolution datasets (i.e., Sentinel-2 (four stud-
ies), PlanetScope (1 study), QuickBird (1 study)) to understand climate and weather effects
on pasture composition [108,113], pasture biomass [3,74,114] and pasture quality [50]. One
study invoked a very high temporal time-lapse camera to study the phenology of pasture
species at the paddock scale compared with that from the landscape scale using MODIS
and Landsat instruments [80]. Only 18 studies considered the adaptive management of
pastures with remote sensing strategies [17,21,28,34,67,73,80,94,114–123] (Figure 4b).

Regarding climate data, authors have primarily focused on temperature and rainfall; few
have used only temperature [8,90] or rainfall data [91,96,100,106,124–127] to correlate with
remote sensing data. Many studies have attempted to establish a correlation between rainfall
and the growing season (mostly early and mid-growing season) [35,64,66,70,98,103,128]. Some
studies have showed that temperature correlated positively to pasture growth according to
the climatic zone (e.g., temperature contributed to growth rates in the desert steppe of Inner
Mongolia [64], suggesting the steppe possesses more resilience in this region). Other studies
have aimed to elucidate the effects of the climate on soil carbon stocks [113,129,130] and/or
the soil water content [63,81]. A significant portion of studies used weather and climate
data from meteorological stations (Figure 4b); very few were derived (e.g., groundwater
content) from sensors as a proxy and compared with ground measurements (i.e., wet and
dry pasture biomass) [76].

3.3. Remote Sensing Technologies Used for Pasture Monitoring
3.3.1. Description of Remote Sensing Technologies Used

A total of 18 sensors from satellites and UAS were reviewed (Figure 5a). Our results
show that contemporary scientific capabilities in monitoring pasture dynamics in the past
decade are gaining momentum, from satellite and UAS sensors to aerial stereoscopic im-
agery. Figure 5b categorised sensors using combinations of two optical instruments (OO) or
optical and radar instruments (OR) [45,58,87,131]. A greater number of studies used satel-
lites than UAS sensors (Figure 6), and fewer studies used SAR (Synthetic Aperture Radar).
The main objective for combining sensors [45,118,132] is to address cloud contamination,
especially in places where cloud poses significant challenges (i.e., tropical rainforest, moun-
tain regions, polar and monsoon areas) [32,74,99,133–135], with multi-temporal sensors
approach [99,136,137] or by using SAR imagery [7,132,138,139]. Other objectives include
comparing model performances between sensors [7,34,45,132,140,141] and when greater
detail is needed for field measurements and species discrimination [114,142,143]. Fused
data of 30 cm resolution from UAS and PlanetScope imagery achieved a higher correlation
of 87% compared with ground measurement for estimating pastures at the field level (10 ha)
than those obtained from Planet (65%) data [114].

Moderate Resolution Imaging Spectroradiometer (MODIS) (Terra and Aqua) and
Landsat instruments were the most used for studies (Figure 6; Tables 2 and 3). The use of
MODIS is enabled by daily revisit, 16-day composite, three spatial and global resolutions
(250 m, 500 m, and 1 km), and 36 multispectral bands for wider applications. Long-term
data continuity, moderate-resolution imaging, multispectral capabilities, and open data
policy (Table 2) are among the factors that have aided Landsat’s utility. In general, the
use of sensors by practitioners tends to follow their release, accessibility, and applications
(Tables 2 and 3).
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Figure 7 shows the areas of coverage and scale of focus for the current monitoring of
pasture with satellite sensors. MODIS and Landsat sensors are used primarily to support
the regional and global monitoring of pastures at scales ≥100 ha [45,67,103,115,126,144,145].
Figure 8 is an example of hyper-spatial paddock monitoring. Time-series analysis showed
that eight studies utilised daily remote sensing data (Figure 9) [58,114,146,147], five focused
on weekly [3,126,148–150], while others considered monthly [8,151] and yearly data [92].
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3.3.2. Definition of Pasture Feature Terminologies as Used in the Review

Pasture management traits are the desired indicators for conserving, restoring, and
maintaining grassland conditions [12] (Table 1). Pasture production refers to the quantita-
tive parameters that express pasture’s dry matter content (kg DM/ha), height, and growth
stages (see Table 1). Pasture degradation refers to decreased sward productivity (carrying
capacity) due to anthropogenic and environmental activities on pasture ecosystems. Botan-
ical/species composition refers to ground cover types expressed as canopy architecture.

3.4. Approaches for Pasture Quantification
3.4.1. Pasture Production

Studies have used pasture heights [7,116,132,146,150,162,184–186] LAI [32,45,49,66,135,
150,164,187], fractional cover (fCOVER) [188], above-ground net primary production (ANPP)
(unit mass per unit area per unit time) [8,34,96,111,189,190], fraction of photosynthetic active
radiation (fPAR) [191] as quantitative parameters to express pasture production. ANPP
and fPAR are mainly derived from Landsat and MODIS time-series products to quantify
the managed ecosystem productivity, making them less applicable compared to LAI and
pasture heights. Studies have compared pasture biomass with LAI [32,45,49,119,188,191]
and height [132,150,162]; hence, the goal is to use LAI and pasture heights as proxies in
estimating pasture biomass.

Vegetation indices (VI) are the most adopted retrieval scheme with empirical ap-
proaches (Table 4) to estimate the pasture height or biophysical parameters (LAI, fCOVER,
ANPP, and fPAR) (Table 4) and relate them with pasture biomass, where the normalized
difference vegetation index (NDVI) [45,69,133,166,192] accounts for 83% of this method.
Gillan et al. [193] correlated the canopy height (R2 = 78%) with the ground biomass to
infer pasture biomass utilisation at the field scale. Next to NDVI are the enhanced veg-
etation index (EVI) and soil-adjusted vegetation index (EVI), used with other indices to
provide complementary information about their sensitivity to sparse and dense vegeta-
tion [74,144,150,181,183]. Index-based retrievals significantly rely on the visible and NIR
bands and SWIR for those that require soil water content and dry biomass estimation [149].
A mathematical transformation function (e.g., power and logarithm) is used to normalise
data (i.e., expand or compress the index value) to minimise the saturation effects of vegeta-
tion indices [64,194].
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Table 2. The descriptive characteristics of the satellite instruments used in the review. (*) European Remote Sensing Satellite-1 (ERS-1).

Satellite
Instrument Version Altitude (km) Launch Year Revisit (Day) Spatial

Resolution (m) Spectral Bands Red Edge
Inclusion Main Focus References

MODIS 705 1999/2002 1 250/5000/1000 36(2, 5, 29) Nil Regional and global daily application.
(MOD 17 model)

[6,71,90,123,
124,126,155,
156]

Landsat 5 to 8 705 1972 16 15/30/100 11 Nil Regional and global seasonal coverage. [78,144,152,
154,157–163]

Sentinel-2 786 2015 5–10 10/20/60 13–22 Yes Flexible resolution (revisit spatial) and
red-edge inclusion.

[3,32,50,76,
148,164]

SPOT 2 to 7 694 1990–2014 1 to 3 2/8 5 Nil Vegetation instrument and stereo capability. [31,149,150,
152,165]

AVHRR 1 833 1998–2018 1 1100 5 Nil Daily global application archive. [91,166,167]

Sentinel-1 693 2014 6 to 12 Depend on
acquisition mode. 3 (0.12–0.50 nm) Provide global free C-band SAR data.

Unique acquisition mode. [132,168,169]

RapidEye 1 and 2 630 1998–2008 1 6.5 5 Yes Very high daily global imagery. [140]

QuickBird 482 2001 1–3.5 0.61/2.4 4 Nil Very high daily global imagery. [78]

Worldview 1 to 4 617 2007–2016 <1 0.31/30 29 Yes More bands for global distinctive imaging. [170,171]

IKONOS 681 1999 1–3, 14 1/4 4 Very high imaging and stereo capability. [157,172]

Hyperion 705 2000 16 30 hyperspectral Narrow bands [173,174]

ERS-1 * 782 1991 10/30 C-band SAR data and polarization. [153,175]

Formosat2 888 2004 1 2/8 5 Nil [176]

PlaneScope 461 1 3 5 Yes Daily fine global imaging. [173,177,178]

HySpiri 2018 5 60 hyperspectral Narrow bands for characterization. [177,179]

ALOS 1 and 2 628 2006–2014 14, 46 2.5/10
L-band SAR data
and 4 optical
bands.

Nil Optical and SAR imaging possibilities. [7,180]

Venus 720 2017/2005 2 3/5.3 12 Yes High spatial and spectral application. [177]
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Table 3. Characteristics of major UAS used in the review. The generic name is the instrument’s name,
while the traditional name is the company’s brand name.

Generic Name Traditional Name Sensor Spatial
Resolution Focus Reference

UAS Phantom Multispectral <1 m Pasture biomass [58]

UAS UAS LiDAR LiDAR sensor 40 m
Biomass estimation
and species
classification

[181]

UAS Phantom and
Sequoia Multispectral 1.5 cm and 3.7 cm Classifying

fractional cover [116]

UAS Hexa Copter
System Multispectral 10 cm Pasture biomass

productivity [182]

UAS + PlanetScope
(fused) MicaSense Multispectral 30 cm Aboveground net

production [114]

UAS Micro MCA Multispectral 30 m Pasture quality [183]

UAS AisaFENIX Hyperspectral
(VIs-SWIR 1 m Pasture nutrient [142]

UAS HySpex Hyperspectral Depend on altitude Pasture species
(classification) [131]

Airborne laser scanning Riegl LMS-Q680
sensor

LiDAR; reflectance,
echo width NDSM Depend on altitude Pasture mapping [184]

UAS Hymap Hyperspectral 5 m Pasture species
(classification) [52]

Aircraft mounted +
calibrate Landsat 5 (TMS)

Very-large-scale
aerial (VLSA)

Multispectral of
Landsat

1 mm (VLSA),
Landsat 30 m

Pasture cover from
Landsat calibration [143]

A physical-based approach using the radiative transfer model (RTM) PROSAIL has
been used to retrieve LAI as a vegetation canopy when combined with multispectral satel-
lites [32,135,164,187] and often parametrized and optimised with ML algorithms [45,135,164].
Some studies [32,135] have used proximal hyperspectral data resampled to a satellite multi-
spectral dataset (i.e., Sentinel-2) to constrain the assumption of the homogeneous canopy of
the RTM and enhance the accuracy of the model. For example, [32] established a correlation
coefficient of 50% between modelled (PROSAIL + resampled data) and in situ biomass.
In most cases, LAI correlated better with referenced biomass data than NDVI or other
indices [32,188,191]. Furthermore, both the perpendicular vegetation index (PVI) and SAVI
derived from Landsat have been found to correlate with the referenced LAI (R = 50%) more
than NDVI and other indices [66], confirming the site specificity of LAI-based modelling.
Measured LAI is converted to biomass through a linear relationship and compared with
the satellite spectral index [32,135].

Other physical-based approaches like the light use efficiency (LUE) (the amount of
absorbed photosynthetically active radiation (APAR) that is converted into biomass and
expressed as the net primary production (NPP)) model has been used to estimate available
pasture biomass (Equation (1) shows the linear association between NPP and LUE).

NPP = APAR × LUE (1)

where NPP is the available biomass, expressed as the net primary production (NPP),
and APAR is the absorbed photosynthetically active radiation that plants can utilise to
produce biomass. MODIS-ANPP products are converted to biomass using biomass-to-
carbon conversion [8,90,167]. Liu et al. [35] fused UAS and PlanetScope, while [190] used
MODIS to model ANPP as a function of APAR derived from NDVI and light use efficiency
(LUE). Similarly, the LUE model has been used to estimate other variables like the green
canopy cover, vegetation density, fractional vegetation cover, and fAPAR [8].

Table 5 shows how ML models were integrated with remote sensing for retrievals.
Random forest (RF) is the most widely applied ML algorithm due to its capability for
regression and classification problems. Generally, ML is used to parametrize index-based
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retrievals [45,58,74,132,192] more than to retrieve spectral features [3,7]. The ML-based
modelling of biomass is more accurate than NDVI [3,74]. Chen et al. [3] established a non-
linear relationship between NDVI and in situ biomass. Raab et al. [132] used RF/Support
vector machine (SVM)/Multi linear regression (MLR) to parametrize 77 vegetation indices
derived from Senitnel-2 to estimate total standing dry matter (TSDM) at an accuracy of
R2 = 45%.

In cloudy situations, authors have used three-dimensional photogrammetric point
cloud modelling to assess grassland heights (i.e., between 1–20 cm) with the visible camera
from UAS [116,184,185,193]. Gillan et al. [193] found a correlation of R2 = 78% between
aerial imagery and in situ estimates and an average utilisation of 20% from imagery against
the 18% of ground-based imagery at a scale of 150 ha. Furthermore, LIDAR has also been
used to quantify biomass from different plant species using a 3-D approach at a field level
(6.7 ha) with 77% accuracy [181].

Studies have used SAR imagery to complement optical applications using the backscat-
ter signal of microwaves to estimate pasture biomass [7,45,132,153,195] and height [7]. The
accuracy of models increases when SAR data are combined with optical imagery compared
to a single application. For example, the combination of Sentinel-2, Sentinel-1, and Landsat
improved the estimation of biomass by 30% compared to each of the sensors alone [45], and
RMSE was significantly lowered when [195] fused Worldview-3 and Sentinel-1. Similarly,
the L-band of ALOS (PAR-SAR-2), which is capable of penetrating the canopy structure,
was combined with the C-band of Sentinel-1 and 13 spectral bands of Sentinel-2 to map
and discriminate pasture heights (short, medium, and tall) from soil inundated with the
vegetation canopy using RF [7]. The model’s overall accuracy improved (R2 = 86%) by
integrating the three sensors rather than individual contributions.

Furthermore, the wavelet principal component analysis (WPCA) used for SAR and
optical image data extraction (based on relevant features) was used to improve the fusion
between ERS and Worldview, leading to the higher accuracy of the model [195]. They [195]
reported a strong correlation (R2 = 79%) between the backscatter coefficient of Sentinel-1
and ground biomass from rangeland rehabilitated from mining activities. Similarly, [175]
established a strong correlation (59–84%) between ERS backscatter coefficients and targeted
wet grassland biomass by applying a linear inversion algorithm to the image data. In
contrast, [132] found no significant contribution of Sentinel-1 data when combined with
Sentinel-2 in estimating biomass and pasture height in Germany.

3.4.2. Botanical Composition

Some studies have pursued the key objective of finding a suitable instrument to discrim-
inate vegetation canopy. Multi and hyper-spectral sensors ≤ 30 m (Tables 5 and 6) are the
most deployed to discriminate vegetation canopies with either image-based [33,52,199,200] or
object-based image analysis (OBIA) [62,163,169,172,184]. Classifiers derived from hyperspec-
tral sensors are more accurate than multispectral instruments [177,200], while multisource
instruments are more accurate than single sensors [113,169,177]. Sibanda et al. [177] estab-
lished a higher spectral accuracy of 92% from HySpiri than from Landsat 8 (75%), Sentinel
2 (82%), and Venus (83%). Likewise, the study from [113] concludes that IKONOS, Quick-
Bird, and Worldview sensors with finer spatiotemporal resolutions are more sensitive to
discriminating grassland from shrubs and trees than Landsat imagery. Studies that used
ML algorithms as classifiers (mainly MLC, RF, SVM, and k-Nearest Neighbour (KNN)
algorithms) [62,172,199,200] improved their classification accuracy more than traditional
methods. For example, the accuracy reached 98% and the Kappa coefficient ≥ 90% when
ancillary data were added using SVM and RF as classifiers [62]. OBIA enables the mapping
of vegetation/species classes and integrations of geometric, textural, and spatial data (i.e.,
ancillary data) in addition to the primary spectral information to improve accuracy [62,200].
Hence, ML with OBIA can capture the environmental and management variables more
accurately than pixel-based algorithms.
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Table 4. Summary of the main vegetation indices and associated regression algorithms commonly
used in the studies.

Vegetation Indices Model Studies Focus Sensor Reference

Ratio vegetation index (RVI),
enhanced vegetation index

(EVI), NDVI
Logarithmic regression Aboveground biomass MODIS [64,189,194,196]

EVI, LAI, Linear regression model Aboveground biomass Worldview, Sentinel-1,
Sentinel-2, Landsat [45,196]

Vegetation indices Sparse partial least-square
regression Aboveground biomass Sentinel-2, HySpiri, [179,197]

Pasture quality UAS, [120,142]
AVHRR [91]

NDVI Power regression Pasture biomass, forage dry
biomass MODIS, [91]

LAI derived from satellite Radiative transfer model Pasture biomass prediction at
the paddock level Sentinel-2 [32]

NDVI derived from fused
satellite sensors Linear regression model

Aboveground net primary
production (i.e., carbon stock)

(ANPP) estimated from
Absorbed photosynthetically

active radiation (APAR) at
paddock level

Fusion of
Landsat/MODIS [34]

NDVI derived from fused
satellite sensors + UAS

Linear regression + Light use
efficiency model

Aboveground net primary
production (ANPP) estimated

from Absorbed
photosynthetically active

radiation (APAR)

Fusion of
UAS/PlanetScope [114]

To compare NDVI and FVC
derived from UVA

(multispectral image)

Exponential function, linear
function, logarithmic function,

polynomial function and
power function

Estimate carbon yield canopy
cover for individual plant and

across

Multispectral camera
(i.e., SpecTerra) [130]

NDVI + cellulose absorption
index derived from satellites

Linear unmixing approach
and multiple linear regression

FVC, non-photosynthetic
vegetation cover and bare soil Hyperion and MODIS [91,141]

More studies have used supervised than non-supervised classification to use novel
sampling techniques to build spectral signatures from field areas of interest. Studies have
used botanal sampling protocols [139], dominant pasture species [138,161], the percentage
of pasture species [33], and the height of pasture species [7,133] to build spectral features.
The authors used phenological stages and early growing seasons to improve accuracy using
single imagery [49,86,131,201,202]. Wakulinśka and Marcinkowska [133] reported a better
classification accuracy from a multi-temporal study than a single-date one. Mapping species
in the early season reduces canopy complexity and provides insight into their phenology.

The available studies on the combination of optical and radar sensors to discrimi-
nate pastures show that the spectral features derived from Sentinel-2 outperformed the
backscatter and dual-polarised features of Sentinel-1 [139] when subjected to similar ML
models (SVM and RF). However, merging Sentinel-2 and Sentinel-1 produced a higher
accuracy (i.e., RF = 93% and SVM = 89%). Like optical sensors, Sentinel-1 data have been
used to discriminate between C3, C4, and mixed C3/C4 pastures, using RF to achieve 68%
accuracy [138]. The accuracy level increased to 73% on those including textural features
(i.e., leaf area, plant height, size, and orientation) derived from Grey Level Co-occurrence
Metrics analysis (GLCM). A study used UAS-LiDAR with a 3 cm accuracy level and a
maximum 100 m measurement to detect shrub encroachment and classify 2000 habitat
types with 75% accuracy, using RF as a classifier [181].
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Table 5. The summary of the major machine learning and other retrieval methods used to estimate
pasture biomass in the studies.

Methods/Biophysical/
Spectral Parameters

Machine
Learning/Model Approach Sensor Ground

Approach Achievement Reference

LAI derived from satellite
Radiative transfer model +
artificial neural network
as retrieval

Pasture biomass Sentinel-2 [135]

NDVI derived from UAS Statistical (GAM) +
Machine Learning (RF)

Pasture biomass
prediction at the
paddock level

Multispectral
camera

Ground
calibration
with RPM

27% (GAM)
and 22% (RF) [58]

NDVI and spectral
variables derived from
satellite imagery

Artificial neural network
Pasture biomass
prediction at the
paddock level

Sentinel-2
Calibration
with C-Dax
and RPM

51% (ANN) and
39% (NDVI) [3]

LAI + soil leaf canopy
(SLC) derived from
satellite

RF + Radiative transfer
model (RTM)

LAI and
aboveground
biomass (AGB)

Sentinel-2 Field
sampling RMSE of 0.4. [164]

VIs (NDVI, EVI and Land
surface water index)
derived from satellite

SVM, RF and Multiple
linear regression (MLR)

Estimate LAI and
aboveground
biomass (AGB)

Sentinel-2,
Sentinel-1
Landsat

Field
sampling
(destructive)

30%
improvement
by combining
sensors

[45]

Surface reflectance data
(Landsat 8 + MODIS)
compared to NDVI, EVI
+SAVI

Gaussian Process
Regression (GPR)

Estimation of
aboveground
biomass

Landsat 8
and MODIS

Field
sampling
(destructive)

GPR
outperformed
the three VIs R2

= 0.64 and
RMSE = 48.13
g/m2

[198]

Spectral reflectance ANN Quantifying
aboveground Landsat 8

Field
sampling
(destructive)

[174]

Fractional of Absorbed
Photosynthesis Active
Radiation (FAPAR)
derived from RS

Decision Tree (Machine
Learning)

Estimation of
herbaceous yield
in a (savanna
ecosystem)

Traditional
FAPAR + me-
teorological
data

ML + FAPAR +
climate data
performed
better than
FAPAR model
only and/or
climate
variables.

[99]

LAI + NDVI + Fractional
vegetation cover (FVC)
derived from satellite

K-NN Mapping grazing
and mowing SPOT

Field
measurement
(spectrome-
ter)

82% [188]

3.4.3. Pasture Management Traits

The main goal is to assess pasture quality using remote sensing as proxies to quantify its man-
agement traits [38,46,120,132,140,142,158,170,183,205–207]. Nitrogen availability [140,170,202], soil
water condition [67,182,207], irrigation [168], mowing [188,208], livestock distribution [188],
soil nutrients [77,142], and fertilizer treatment [207] are the major management traits that
have been examined by authors and expressed as pasture quality indicators. Pasture quality
has been linked with the aggregation of livestock (animal units) to areas with a rich concen-
tration of nitrogen as a proxy for the abundance of vegetation greenness in mapping the
spatial distribution of grazing animals [140,208]. Some studies have used vegetation indices
by selecting bands (red, red-edge, NIR, SWIR) of interest with linear regression models to
relate them with management indicators [140,170,176,202,208]. Agricultural inputs, such
as the irrigation date and LAI, were retrieved from FORMOSAT-2 using spectral indices
and integrated into crop models to support water management for grazed pastures in
France [176].
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Table 6. Summary of the main classification algorithms for pasture composition used in the studies.

Classifier Methods Sensor Accuracy Reference

SVM + PCA Pixel-based Sentinel-2 80% (overall) [133]

RF Pixel-based Sentinel-2, Sentinel-1,
ALOS 86% (overall) [7]

SVM + RF Object-image based Landsat

Kernel + SVM
Non-linear performed better

(0.55 ≤ R2CV ≤ 0.78;
6.68% ≤ nRMSECV ≤ 26.47%)

[142]

Decision tree Object-based
classification IKONOS 83% [172]

SVM
Decision tree SPOT

SVM linear regres-
sion/classification Landsat [136]

K-NN SPOT Kappa index= 0.82
Maximum Likelihood

Classifier (MLC) Object-image based Landsat, SPOT Landsat = 60.1%, SPOT = 65.5%, [31]

Multivariate Hierarchical clustering Landsat [203]

RF Pixel-based
classification Sentinel-1A, Sentinel-2 76%, 62%, 75% [138]

RF, SVM, KNN Pixel-based
classification Sentinel-1, Sentinel-2 KNN 0.89, RF 0.96, SVM 0.96 [139]

Multivariate Where several
treatments are needed [204]

Fuzzy/KNN Pixel-based HyMap 98% and 64% [52]

Other biophysical variables like LAI and fCOVER derived from SPOT imagery have
been used with the KNN algorithm to map grazing landscapes to support mowing man-
agement [188]. LAI shows a higher correlation of 82% with the sampled data compared
to fCOVER. Higher-resolution sensors and/or a combination of multiple sensors have
improved model accuracy, especially in a complex field for discriminating grasslands
treated with fertilizer (i.e., nutrients) than using one sensor. Sibanda et al. [207] reported
an accuracy of 81% for Sentinel-2 and 76% for Landsat (OLI), which were resampled from
hyperspectral data in discriminating grasslands treated with fertilizer using sparse partial-
least-square regression (SPLSR). The hyperspectral data on its own yielded 92% accuracy.
Similarly, HyspIRI data are more accurate (R2 = 69%) than Sentinel-2 (R2 = 58%) using wave
bands and VIs with SPLSR in predicting burning, mowing, and fertilizer application [179].
However, [140] reported that the accuracy of Sentinel-2 (R2 = 92%) is higher than RapidEye
(R2 = 53%) in predicting nitrogen concentration levels from simple ratio (SR) and NDVI
with RF, due to the three red-edge bands present in Sentinel-2 compared to one red-edge
band in RapdEye.

ML models improve the discrimination of grasslands based on management indicators
rather than linear regression. For example, [142] reported that RF achieved the best accuracy
(R2 = 78%) in predicting 77% of the macro and micronutrients derived from hyperspectral
UAS (spatial resolution ~3.5–11 nm); SVM achieved 86% accuracy for predicting 22% of the
nutrients compared to the squares (PLSR) and kernel (PLSR) algorithms. Ancillary data
like GPS provide information about livestock distribution and have been found to improve
mode accuracy [140,170,208].

3.4.4. Pasture Degradation

The focus is to correlate key anthropogenic activities (i.e., grazing management) that
predispose grasslands to decline with remote sensing products as proxies by relating them to
biophysical variables (i.e., fPAR, AGB, fCOVER, ANPP). A significant number of studies have
used Landsat and MODIS land surface reflectance products rather than finer satellite imagery
to express the productivity of grasslands (fPAR) [191,209] (fCOVER) [20,96,137,167,189,190],
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(AGB, ANPP) [105,109,129,130,141,144,174,186,210,211], and ecosystems beyond the scope
of biomass production. NDVI is the most used proxy for estimating biophysical variables.
For example, stocking rate data were compared with yearly AVHRR-NDVI and rainfall
data to account for overgrazing on rangelands [212]. Soil-based indices are used after NDVI
to understand non-vegetation in mapping landscapes [83,144,213]. Haggen et al. [144] used
the soil-adjusted total vegetation index (SATVI) from red and SWIR bands to map fCOVER,
while [213] estimated the pasture productivity decline from grazing intensity and fire
regime in a semi-arid environment using the derived soil tillage index (STI) from MODIS.
The study of [213] showed that SWIR calculated from STI (B6 and B7) was more accurate
(R2 = 67%) in mapping drier vegetation compared to NDVI and other indices. LAI was
found to be more accurate in estimating fPAR than NDVI [191]. Pasture degradation indi-
cators (grazing intensity/pressure) are often correlated with environmental variables (soil
and survey data, meteorological, GPS) to understand the drivers, and are also used with
(VIs) as predictor variables [2,20,71,96,105,129,130,141]. Studies have adopted mapping the
land cover and land use (LULC) [83,121,199] to show the spatial and temporal variability
of an area of interest.

4. Adoption of the Remote Sensing Information by End Users

Table 7 illustrates an overview of the current remote sensing application for pasture
monitoring and end users’ level of adoption from this review. Studies have shown that farm-
ers, governments, scientists, and spatial consultants are the main stakeholders in the work-
flow of remote sensing technology (Table 7). For example, the Queensland Government
Australia developed an online “FORAGE” (http://www.longpaddock.qld.gov.au/forage/;
accessed on 7 February 2021) system to support grazing management and provide site-
specific information [214,215]. The customised FORAGE system has provided pasture and
climate parameters on land condition and stocking management to 1700 users.

Table 7. Summary of current remote sensing information and forms of adoption by end users.

Remote Sensing
Data Main Focus End user/s Country of

Adoption
Economic
Cost Year Inference Reference

Perspective article:
(satellite) Pasture degradation Government,

pastoralist
Australia and
China Nil 2020

Researchers
should partner
with end users.

[27]

Perspective article
(satellite)

Pasture biomass
determination. Farmers New Zealand Nil 2020

Value
proposition
defines how
farmers would
adopt satellite
data.

[216]

UAS (Phantom)
Pasture
biomass/herbage
utilisation.

Researchers,
rangers,
farmers

USA $1500 2019

Cloud-based
remote sensing
utilisation
where spatial
resolution
counts.

[193]

Perspective article
(satellite)

Pasture management
focusing on precision
agriculture.

Farmers United Kingdom
and Ireland Nil 2019

Improvement
in pasture
quality
through
management
(nutrients).

[215]

NDVI derived
from MODIS Pasture quality. Farmers

Altai Mountain
(Russia, Mongolia,
China and
Kazakhstan).

Free 2019

Integrate
farmers’
ground-based
pasture
management
with satellite
data.

[217]

http://www.longpaddock.qld.gov.au/forage/
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Table 7. Cont.

Remote Sensing
Data Main Focus End user/s Country of

Adoption
Economic
Cost Year Inference Reference

MODIS derived
Enhanced
vegetation index
(EVI).

Grassland
classification.

Policymakers
and farmers China Free 2018

To manage the
carrying
capacity of
sheep.

[194]

Satellite imagery
(Landsat)

FORAGE system
estimator.

The general
public
(emphasis on
range
managers)

Australia Free 2018

A web-based
system
prepared by
the
Queensland
state
government,
Australia.

[214]

Above Net Primary
Production from
NDVI derived
from MODIS.
(Satellite data and
GIS).

Forage productivity
to manage stocking
rate and the carrying
capacity.

Policy makers
and farmers Argentina Free 2007

Monthly
monitoring
tool within the
selected farms.

[8]

NDVI derived
from Landsat
imagery

Increased pasture
productivity by
eliminating noxious
weeds. Pasture
conservation.

Farmers and
range
managers

USA Free 2006

An online
password-
protected
decision
support tool

[218]

Landsat imagery
and GIS system.

Land cover
classification and
pasture management.

Government,
range manager. China Nil 2004

Expert system
toward
database
inventory.

[219]

ERS satellite data Estimating pasture
biomass

Policymakers
and national
agency

Bolivia Nil 2003

Research was
initiated to
validate and
support a
national
framework.

[175]

Landsat and SPOT
imagery and GIS
system.

Data to support
pasture management
framework.

Farmers Mongolia
Satellite
imagery came
with a cost.

1999 [220]

Landsat and SPOT
imagery and GIS
system.

Pasture growth and
productivity through
fertilizer application.

Researchers,
research
institution
(CSIRO) and
Agric
company.

Australia

Satellite
imagery was
provided
through a
license.

1996

Research was
conducted
through a
vendor.

[87]

Eastwood et al. [216] acknowledged the low adoption of the remote sensing of pasture
monitoring despite increased research and development (R&D) in the past decade. They
suggested that there is a need for vendors/researchers to properly understand the “value
proposition” of the end users and integrate this into the workflow of the remote sensing
technology. An earlier representative study reported by [216] provides an empirical analysis
of the current approach to pasture monitoring from interview and survey perspectives. The
survey involved 500 New Zealand dairy farmers on the methods used to derive pasture
measurement. Fifty-two percent used the visual approach, 45% used a technology-based
scheme (RPM, C-Dax), and 3% used neither. Further technology analysis suggested that
32% depend on RPM, 11% use C-Dax, 1% use satellite, and 1% use the contractor. Therefore,
although decision support tools are essential, the value of the premium that end users (e.g.,
farmers) place on pasture monitoring is not entirely sure; hence, the value proposition
seems ambiguous to persuade non-users to consider the technology [216].
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5. Discussion

This review provides a systematic analysis of published studies on the methods
of remote sensing and their usefulness to pasture monitoring in major global grassland
ecosystems (Figure 1). All regions and continents of the world are covered (Figure 2). Still,
however, less attention has been received from Southeast Asia, the northern part of Latin
America (except Mexico), the Middle East (except Iran and Syria), and Africa, with most of
the studies coming from South Africa and Ethiopia.

5.1. Trend in the Remote Sensing of Pasture Management Traits, Species Composition, Pasture
Production, and Pasture Degradation

Figure 4 shows a deficient proportion of studies from earlier years. Studies have
centred on management, and fewer on production, while coverage on botanical compo-
sition and degradation was not in the spotlight. There was an increase with time in all
topics, especially with botanical composition [221] and pasture degradation [127]. Studies
on species/botanical composition may have gained more prominence recently because
higher-resolution satellites and UASs for discriminating vegetation canopy are increasingly
available for precision agriculture. Furthermore, issues bordering pasture production and
degradation due to anthropogenic and climate activities have become prominent in the
scientific literature.

5.2. Assessing the Current Remote Sensing of Pasture Monitoring

Despite the widescale coverage of studies and the current utility of satellite sensors
(Figure 5a), a high proportion of this effort focuses on regional, continental, and global
scales (Figure 8), with less emphasis on field-based monitoring. The number of studies
that have focused on fields within 50 ha is less than 20. Higher-resolution multispectral
satellites are not free but are also only constrained to a few bands (mainly visible and NIR),
except Worldview and Venus, with 29 and 12 bands, respectively (Table 2). Therefore, the
publicly available optical satellites MODIS, Landsat, and the recently launched Sentinel-2
have played a central role following their specifications in monitoring vegetation dynamics.
Sentinel-2 arrivals in 2015 were thought to address cloud constraints for optical applica-
tions, especially with a 5-day revisit and 10 m resolution fleet. This review shows that
apart from the over-emphasis on medium to coarse resolutions (Landsat and MODIS),
which limited field-based monitoring, the arrival of Sentinel-2 has not resolved missing
data due to cloud contamination, especially in places known for persistent cloud cover
(i.e., tropical rainforest, mountain regions, and polar and monsoon areas). Researchers
have used different approaches to resolve cloud contamination, such as cloud removing
algorithms (e.g., CFmask) to mask cloudy pixels [21,45,67,134,136,222], multi-temporal
satellite data [7,34,45,132,140,141], and conducting field campaigns in cloud-free days [164],
and the stacking of satellite scenes [21,133]. More specifically, researchers and practitioners
have used photogrammetry UAS cameral (visible) equipped with a 3-dimensional point
cloud [116,184,193] and LIDAR sensors [181] on demand to capture near-real-time imagery
as an alternative to satellite applications.

Additionally, the number of studies that have utilised daily and weekly satellite
imagery for analysis is less than 20 (Section 3.4.3), meaning that the current revisit would
not support/sustain operational pasture management. Intensively grown pastures are
dynamic and require more frequent imagery between 5–7 days to capture sward regrowth
depending on environmental conditions. The current satellite fleets with daily revisit
are not available for public utility, thus limiting this application for R&D. Leveraging
radar capability, the all-weather satellite data (i.e., dual-polarisation, backscatter, with C,
L, and X bands), especially the free and open-source Sentinel-1 data (R&D) usage in this
review, were relatively low (Figures 6 and 7). In most studies involving pasture production
(estimation of biomass and height) and species classification [7,45,139,175,195] except a
few [132], the integration of SAR imagery has improved model accuracy more than the
performance of either the optical or radar data alone. For example, the fusion of ERS and
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Worldview imagery using the WPCA method to extract relevant image features in a suitable
rangeland environment (i.e., rangeland rehabilitated from mining activities) significantly
improved the model performance (R2 = 79%) [195]. However, with cloud containment,
spectral information due to surface reflectance (especially the red-edge and NIR bands)
from optical data is more accurate for assessing pasture biomass and discriminating species
than dual-polarised features and the backscatter coefficient of Sentinel-1 [132,139]. Hence,
optical hyper or multispectral sensors in fair weather conditions offer more accuracy in
distinguishing vegetation species than SAR data because of their spectral responses along
multiple bands. At the same time, the microwave is not sensitive to chlorophyll content but
to the structure and volume of vegetation. Therefore, we conclude that the accuracy of SAR
modelling depends on the knowledge domain applied to suit the biophysical variables and
target environment.

Generally, the combination of instruments significantly provides a platform to con-
strain remote sensing trade-offs in an integrated way to fix specific errors or limitations
associated with sensors and the target environment. The saturation of biomass (in sparse
vegetation and/or peak growing season) associated with vegetation indices [45,223], soil
background and topography influence on SAR sensitivity [45], homogeneous canopy asso-
ciated with LAI [32,135] or with 3-D point cloud photogrammetric mapping [116,193], and
spatial, temporal, and radiometric resolution drawback can be addressed using appropri-
ate modelling involving hyper-temporal, multispectral, visible and SAR to improve the
accuracy of the model. The SAR backscatter is not sensitive to soil background when the
vegetation canopy is low. At the same time, the visible and NIR bands of optical instru-
ments enable the absorption of more radiation than soil, resulting in a higher reflectance
for denser canopy areas and lower reflectance values for bare soil. Proximal hyperspectral
data were resampled to Sentinel-2 surface reflectance and combined with RTM PROSAIL to
estimate LAI, thereby confounding the homogeneous assumption related to RTM [32]. Fur-
thermore, using 3-D point cloud photogrammetric to estimate pasture height and biomass
from vegetation volume can be confounded with trees, shrubs, and other land use types,
making this approach prone to error. Hence, multispectral bands (i.e., NIR) are included to
map land cover or mask the non-pasture community [43,82,83,181].

5.3. Assessing the Approaches Used in the Remote Sensing of Pasture Monitoring

The retrieval of biophysical variables has been significantly restricted to empirical
methods using vegetation indices, with NDVI being the most used index to understand
pasture production, species classification, management indicators, and the degradation
of pastures. Likewise, the physically based retrieval schemes to assess the following
biophysical variables—LAI, fPAR, and fCOVER, ANPP—using LUE and RTM are driven
by sites and parameters that restrict their generalisation and repeatability. Consequently,
their comparison and relationship with the field (destructive and non-destructive field
samplings) data has reached a milestone in addressing the problems associated with VIs
and physically based modelling approaches, while at the same time revealing the potential
areas where more research efforts are needed.

Using ML approaches with careful integration of appropriate satellite sensors in
addition to environmental data, the modelling of pasture biomass from the selection of
VIs has achieved better accuracy and a higher level of prediction (i.e., an increase from
1500 kg DM/ha to above 3000 kg DM/ha) before reaching saturation [45,223], with red-
edge, NIR, and SWIR bands as the main contributors. In contrast, red and NIR bands’
usages (NDVI) have continued to trigger a debate on the effect of the saturation, soil
background influence, sensitivity to vegetation types, and heterogeneity of canopy-to-
model calibration, which have caused researchers to develop more indices and parametrize
with ML [45,58,74,132,192] algorithms. However, NDVI has performed poorly compared
to spectrally driven ML retrieval (R2 = 60% and R2 = 78%), especially when dealing with
total standing dry matter [3,74,132]. Therefore, owing to the emphasis on ML-driven index-
based retrieval, which is restricted to a few bands and constrained to sites, more research is
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needed to retrieve a detailed characterization of vegetation properties based on reflectance
values, using spectral features to understand the relationship between pixels. The size
of field data used for validations in this review is relatively small (test data reveal ≤ 120)
compared to what is needed (see ~1000 [3]) for training to capture image patterns and
improve model calibration.

Apart from the problem of generalisation associated with LAI, fPAR, fCOVER, and
ANPP, the biophysical variables are mostly computed from medium to coarse sensors (Land-
sat and MODIS), which makes them widely applicable (i.e., daily, weekly, and monthly
composite global data) but more challenging to use for field monitoring and management.
Retrieving these variables from higher-spatial-resolution (1–5 m) sensors will significantly
facilitate the monitoring of ≤50 ha fields. Indeed, the current hyperspectral UASs (i.e.,
HyMap, HySpiri, and AisaFENIX with 3.5–11 nm resolution and ~450 bands) have shown
great potential in discriminating species and characterizing macro and micronutrients in
mixed heterogeneous pastures, which indicates that the availability of these tools (i.e., up-
scaling to satellites) will significantly enable pasture management at the field scale. Issues
relating to costs and logistics would possibly be resolved through disruptive technology
and public partnership. The near-future hyperspectral satellites launched by the German
(EnMap) and European Space Agency-(ESA) (FLEX) would help determine the cost and
logistics, since pilot studies have shown promising results [133,224–226].

5.4. Adaptive Pasture Management and Factors That Influence the Monitoring of Pastures with
Remote Sensing

Anthropogenic variables and prevailing environmental factors significantly condition
pastures. Therefore, adaptive management that focuses on goal-oriented outcomes using
suitable remote sensing tools is highly recommended to improve the sustainability and
resilience of pastures and grazing systems over time. Remote sensing products must be
appropriately quantified regarding what they represent on the ground. Adaptive pasture
management integrates anthropogenic, environmental, and climate variables and remote
sensing to provide insight into intensively grazed pasture dynamics, thus making pastures
and land management sustainable. This review shows that a combination of different
remote sensing strategies, e.g., aircraft imagery and Landsat [121], Phenocam camera [80],
and UAS and satellite [114], can be used to understand the temporal and spatial variability
of pastures to seasonal and climate change in establishing a framework for adaptive
management. For example, a very high temporal time-lapse camera has been used to
study the phenology of pasture species at the paddock scale compared with that from
the landscape scale using MODIS and Landsat instruments [80]. Consequently, remote
sensing products have been used with anthropogenic variables (i.e., stocking rate, grazing
survey data, fire, GPS (livestock distribution)) and environmental/climate data (rainfall,
temperature, soil) as predictors to improve model accuracy significantly [3,176,212]. However,
only 18 studies considered the adaptive management of pastures with remote sensing in
this review (Figure 4b). Therefore, more research is encouraged to demonstrate how
adaptive management principles with remote sensing tools can support the sustainability
of pasture management.

5.5. Analysing End Users’ Perception and Adoption of the Remote Sensing Products and Technology

Studies that have considered remote sensing technology’s adoption by end users have
been few in number. The published dates (Table 7) of the available studies show more
efforts in the earlier years than in the last few years. The small proportion of studies
on the adoption of the remote sensing of pasture monitoring show that remote sensing
products are not at the level of adoption by end users. This review identifies two setbacks
to the adoption of the technology. In theory, satellite launchers expect direct benefits of
the products for all stakeholders; in practice, the spatial resolutions of the current satellites
benefit regional, national, and global applications, as revealed by this review. Currently, the
publicly available Sentinel-2 and Sentinel-1 are being under-utilised (Figure 5a). End users
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may be unlikely to be persuaded to adopt remote sensing technology not at the farm level,
which would support management decisions. We recommend future studies to consider
monitoring pasture at the paddock level.

The second barrier is the value proposition that needs to be understood by the re-
searchers. Existing knowledge suggests that end users (i.e., farmers) think more of value
proposition over the conventional methods (i.e., RPM, C-Dax, visual monitoring) before
adopting the technology [87]. From the perspective of service providers, vendors (re-
searchers, consultants, etc.) view remote sensing as input data with other accompanying
spatial skills (geographical information system (GIS), information and communication tech-
nology (ICT), etc.) in providing end users (i.e., government, range managers, commercial
farm enterprise, herders) with customer service that meets specified objectives. Such objec-
tives include (a) providing information that supports the stocking rate and carrying capacity
and (b) providing a monitoring system that can reduce degradation and conserve extensive
grasslands [27]. End users (e.g., government) view this approach as a knowledge-based
conservation strategy. For instance, [70] pointed out that the principal motivation for enact-
ing conservation policies and creating political awareness in some countries is to reduce
pasture degradation [75]. For example, China is re-enacting a legislative framework that
will prohibit the institutional over-use of grassland that has degraded the country’s green
land cover due to rapid industrialisation [22]. Summarily, commercial enterprises, satellite
launchers, government agencies (Table 8), and service providers (i.e., Earth observation
system (EOS), Cibo Labs, AgroInsider, SPACETM, DataFarming, GeoGraze, pasture.io, etc.)
entering satellite markets in established countries (e.g., Australia, New Zealand, USA, Eu-
ropean countries, etc.) could be the drivers of digital remote sensing of pasture monitoring,
and its adoption by end users. High-tech companies such as Microsoft (Microsoft Planetary
Computer), Google (Google Earth Engine), Amazon (Amazon Web Services), and Oracle
(Oracle Cloud Infrastructure) with cloud computing services are providing applications to
support digital agriculture. Social awareness, knowledge, skill, and well-defined research
objectives are essential milestones to bring end users into the workflow.

Table 8. Global agencies providing satellite imagery to enable grasslands monitoring on demand.

Name of Agency Data Source Data Archive

United States Geological Survey (USGS) Landsat, MODIS, Sentinel-2, and others https://earthexplorer.usgs.gov

Sen2Agri R&D on Sentinel-2 data http://due.esrin.esa.int/page_users.php

National Aeronautics and Space
Administrative (NASA)

MODIS, VIIRS, SMAP (data on vegetation
dynamics) https://www.earthdata.nasa.gov

European Space Agency (ESA) Sentinel satellites (Sentinel-2 and Sentinel-1 for
vegetation monitoring) https://scihub.copernicus.eu/dhus

National Oceanic and Atmospheric
Administration (NOAA) AVHRR https://www.avl.class.noaa.gov

Food and Agriculture Organization (FAO) Geospatial datasets in agriculture and
vegetation

https://data.apps.fao.org/map/catalog/srv/
eng/catalog.search#/home

Digital Earth Africa (DEA) Sentinel-2, Landsat, Sentinel-1 and others https://www.digitalearthafrica.org/

Digital Earth Australia (DEA) Sentinel-2, Landsat, Sentinel-1 and others https://www.dea.ga.gov.au/about/open-
data-cube

Sentinel Hub Cloud API for satellite imagery https://www.sentinel-hub.com/

Google Earth Engine (GEE) Cloud API for most satellite imagery archive https://developers.google.com/earth-
engine/datasets

Launch RAP (rangeland analysis platform) Landsat (rangeland monitor for the USA) https://rangelands.app/

FORAGE Landsat (rangeland monitor for Queensland) https:
//www.longpaddock.qld.gov.au/forage/

Linear Imaging Self-scanning sensor-3 (LISS-3) Indian satellites (IRS-1C, IRS-1D and
Resourcesat-2) for vegetation monitoring https://www.isro.gov.in/

https://earthexplorer.usgs.gov
http://due.esrin.esa.int/page_users.php
https://www.earthdata.nasa.gov
https://scihub.copernicus.eu/dhus
https://www.avl.class.noaa.gov
https://data.apps.fao.org/map/catalog/srv/eng/catalog.search#/home
https://data.apps.fao.org/map/catalog/srv/eng/catalog.search#/home
https://www.digitalearthafrica.org/
https://www.dea.ga.gov.au/about/open-data-cube
https://www.dea.ga.gov.au/about/open-data-cube
https://www.sentinel-hub.com/
https://developers.google.com/earth-engine/datasets
https://developers.google.com/earth-engine/datasets
https://rangelands.app/
https://www.longpaddock.qld.gov.au/forage/
https://www.longpaddock.qld.gov.au/forage/
https://www.isro.gov.in/
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Currently, ESA (i.e., Sen2Agri) and other global agencies provide a wide range of
services to researchers and practitioners aiming to foster (R&D) to make Copernicus
programs accessible to the worldwide community.

6. Conclusions

In summary, this review revealed the following trends and research opportunities.
This review simplified the remote sensing of managed global grasslands into four

broad areas: management indicators, pasture production, species/botanical classification,
and the degradation of pastures from anthropogenic and environmental variables.

In this review, less attention is received in Southeast Asia, the northern part of Latin
America (except Mexico), the Middle East (except Iran and Syria), and Africa (except South
Africa and Ethiopia).

Low-resolution multispectral sensors (e.g., MODIS and Landsat) are the most used
due to availability and low cost. The higher resolution multispectral satellites are not free
but are also constrained to a few bands (mainly visible and NIR), except Worldview and
Venus, which have 29 and 12 bands.

SAR imagery, especially Sentinel 1 (publicly available), tended to be under-utilised.
In particular, SAR data were not applied for mapping management traits and pasture
degradation. The utility and accuracy of SAR modelling depend on the knowledge domain
used to suit the biophysical variables and target environment.

The hyperspectral sensors used in this review were mainly applied for pasture compo-
sition due to the level of detail required.

Integrating multiple remote sensing tends to fix specific errors or limitations associated
with sensors and the target environment. However, only some studies have combined
sensors (SAR, multi and hyper-spectral images).

Less than 20 studies considered study areas that were less than 50 ha. The number of
studies that used daily (i.e., 8) and weekly (i.e., 5) time-series remote sensing products is
few, thus, making operational and automation a drawback.

Many studies that used machine learning approaches parameterized the empirical
methods by selecting bands, thereby constraining this process to specific sites and pa-
rameters. Only a few studies used the characterization of vegetation properties based on
reflectance values using spectral features to understand the relationship between pixels.

The size of field data used in most of the studies for validations is relatively small
(test data reveal ≤ 120), thereby constraining remote sensing products regarding the
robustness to capture image patterns and improve model calibration (for machine learning
applications).

A few studies (18 studies) considered the adaptive management of pastures, which
involved integrating remote sensing products with management and environmental data.
It is recommended that future research efforts consider the integration of management and
environmental data with remote sensing products for validation purposes and to make
pasture management more sustainable.

This review identified that social awareness, knowledge, skill, and well-defined re-
search objectives are essential milestones to bring end users into the workflow. We provided
a list of agencies providing remote sensing services that can make the future of global
monitoring of pastures more sustainable.

The remote sensing of pasture monitoring with satellites and UAS to derive biomass,
LAI, fPAR, fCOVER, ANPP, and quantify physical quantity like pasture heights, discrimi-
nate vegetation canopy, manage pasture quality indicators (i.e., soil nitrogen, irrigation, soil
water content, fertilizer application, mowing, etc.) and maintain pasture ecosystem from
degradation has evolved. In this review, we provided a synthesis of how remote sensing
can combine with modelling tools to facilitate the goal of digital agricultural sustainability.
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