
Citation: Du, X.; Sun, Y.; Song, Y.;

Dong, L.; Zhao, X. Revealing the

Potential of Deep Learning for

Detecting Submarine Pipelines in

Side-Scan Sonar Images: An

Investigation of Pre-Training

Datasets. Remote Sens. 2023, 15, 4873.

https://doi.org/10.3390/rs15194873

Academic Editors: Andrzej Stateczny

and Dusan Gleich

Received: 12 July 2023

Revised: 25 September 2023

Accepted: 3 October 2023

Published: 8 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Technical Note

Revealing the Potential of Deep Learning for Detecting Submarine
Pipelines in Side-Scan Sonar Images: An Investigation of
Pre-Training Datasets
Xing Du 1,2 , Yongfu Sun 3, Yupeng Song 1, Lifeng Dong 1 and Xiaolong Zhao 1,*

1 First Institute of Oceanography, Ministry of Natural Resources of the People’s Republic of China,
Qingdao 266061, China; duxing@fio.org.cn (X.D.); songyupeng@fio.org.cn (Y.S.); dong_lifeng@fio.org.cn (L.D.)

2 College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
3 National Deep Sea Center, Qingdao 266237, China; sunyongfu@fio.org.cn
* Correspondence: zhaoxiaolong@fio.org.cn

Abstract: This study introduces a novel approach to the critical task of submarine pipeline or cable
(POC) detection by employing GoogleNet for the automatic recognition of side-scan sonar (SSS)
images. The traditional interpretation methods, heavily reliant on human interpretation, are replaced
with a more reliable deep-learning-based methodology. We explored the enhancement of model
accuracy via transfer learning and scrutinized the influence of three distinct pre-training datasets
on the model’s performance. The results indicate that GoogleNet facilitated effective identification,
with accuracy and precision rates exceeding 90%. Furthermore, pre-training with the ImageNet
dataset increased prediction accuracy by about 10% compared to the model without pre-training. The
model’s prediction ability was best promoted by pre-training datasets in the following order: Marine-
PULSE ≥ ImageNet > SeabedObjects-KLSG. Our study shows that pre-training dataset categories,
dataset volume, and data consistency with predicted data are crucial factors affecting pre-training
outcomes. These findings set the stage for future research on automatic pipeline detection using
deep learning techniques and emphasize the significance of suitable pre-training dataset selection for
CNN models.

Keywords: side-scan sonar; convolutional neural networks; transfer learning; geological survey;
GoogleNet; Yellow River Estuary

1. Introduction

Submarine pipelines and cables provide the primary transportation and energy sup-
port for the development of offshore oil and gas resources. Given their critical role, their
health and integrity are paramount for both economic and ecological well-being. Their
leakage, often due to suspension or deformation, can lead to substantial economic and
ecological damage, highlighting the importance of detecting subsea pipelines. Extract-
ing valuable information from underwater environments is crucial for oceanographic
studies and maritime applications, with pipeline or cable (POC) detection emerging as
a critical task for safety and operational reasons [1,2]. Traditionally, this task has largely
relied on side-scan sonar (SSS) imaging, which provides high-resolution imagery of the
seafloor. However, this method necessitates intensive manual interpretation, which is time-
consuming and prone to human error [3,4], emphasizing the need for a more automated
and efficient process.

In recent years, artificial intelligence methods have made significant strides in geologi-
cal fields, including remote sensing [5–8], geological hazard prediction [9–16], geological
exploration [17–22], and energy development [23]. However, the applicability and effec-
tiveness of these methods in the specialized field of pipeline or cable (POC) detection
remain inadequately explored. This represents a significant gap given the critical nature of
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POC detection in safeguarding both environmental and industrial interests. Convolutional
neural networks (CNNs), in particular, have shown promise in the field of underwater data
processing. This provides an opportunity to employ CNNs in tackling the intricate task of
POC detection, which is crucial for both environmental protection and industrial opera-
tions. Initial applications of CNNs to underwater data were primarily in areas such as fish
species identification and sea-floor mapping [1,24]. While these areas are important, they
are notably less complex in terms of the variety and nuances of the data involved compared
to POC detection. With advancements in technology, researchers began applying CNNs to
more complex tasks, such as underwater wreck detection [25,26], the real-time processing of
side-scan sonar data [27], and developing novel models for SSS image recognition such as
U-Net [28] and VIT [29]. The focus of our work was to address the limited availability and
quality of training data, a problem that was not adequately addressed in previous studies.
Moreover, we aimed to investigate the role of different pre-training datasets in enhancing
the predictive accuracy of CNN models specifically for POC detection. This transition was
driven by a combination of the increasing complexity and volume of underwater data and
the enhancement in the computational power of machine learning systems. Consequently,
studies began investigating various deep learning networks’ predictive abilities, focusing
on their applicability and effectiveness for SSS image prediction [30]. Still, one glaring gap
remained: the scarcity and quality of data available for training these deep learning models.

While deep learning has achieved commendable results in predicting side-scan sonar
images, the challenge of acquiring this type of data and the limited availability of existing
datasets remain pressing issues. Common research methodologies typically involve analyz-
ing a range of algorithms against a single public dataset (such as SeabedObjects-KLSG [31]).
Although these advances hint at the potential use of CNNs in POC detection, they do not
fully address the key challenges of the dataset. Most studies are constrained by the limited
availability and quality of training datasets. On one hand, there is a challenge in obtaining
sufficient datasets due to the difficulty in acquiring marine data. On the other hand, the
datasets are not broad enough, making it difficult to apply them to other regions, even
if high accuracy is achieved on a single dataset. Thus, understanding how to efficiently
use transfer learning to obtain the best prediction based on limited data is important. This
provides room for potential improvements in model prediction accuracy and expands the
scope of future research in this area. Therefore, investigating the influence of different
pre-training datasets on modeling and proposing how to better utilize the existing datasets
to enhance the predictive accuracy of CNN models is of vital importance.

The primary objective of this study was to address these gaps and challenges. Specifi-
cally, we planned to use seafloor SSS images from the Yellow River Estuary in China. We
aimed to employ the GoogleNet model to investigate three areas: the model’s feasibility
for undersea pipeline recognition, the effect of transfer learning on pipeline recognition
accuracy, and the influence of different pre-training datasets on pipeline recognition ac-
curacy. By doing so, we made the following contributions: (1) we employed GoogleNet
to automate the POC detection process, aiming to surpass the limitations associated with
human interpretation; (2) we assessed and analyzed the benefits of transfer learning and its
impact on improving POC recognition accuracy; and (3) we comprehensively evaluated
the influence of different pre-training datasets on the predictive accuracy of CNN models
in the context of POC detection.

Our study aims to contribute to the growing field of automated POC detection using
deep learning techniques. In doing so, we not only advance the technological capabilities
of POC detection but also provide vital insights for dataset selection and transfer learning,
a crucial yet often overlooked aspect of the implementation of CNN models. These insights
will undoubtedly serve as a cornerstone for future research endeavors.
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2. Applied CNN Model
2.1. GoogleNet

GoogleNet, pioneered by Christian Szegedy [32] at Google, heralded a new era for deep
neural networks with the introduction of the innovative Inception architecture. Notably,
in the ILSVRC 2014 competition, GoogleNet was used to set a new record in large-scale
image recognition tasks, leveraging the ImageNet dataset. This dataset, which contains
over a million images spanning 1000 categories, has become a standard for evaluating the
capabilities of various deep learning models. GoogleNet’s performance in the ImageNet
challenge was particularly compelling, achieving a top-5 error rate of only 6.67%, thereby
outperforming many contemporary architectures. Unlike its preceding sequential CNN
networks, the Inception structure incorporated internal parallel connections, enabling data
to traverse four simultaneous paths, each using different convolutional kernels. As depicted
in Figure 1, this design extracts features at multiple scales, enhancing accuracy in the final
classification stage when the aggregated results merge into a new network layer.
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Figure 1. Structure of Inception [30].

The advent of GoogleNet’s Inception structure signified a considerable shift from
traditional CNN networks, offering two main advantages. First, the concurrent convo-
lution at multiple scales facilitates feature extraction at different abstraction levels, pro-
viding a more holistic and nuanced comprehension of the input data. This results in en-
hanced accuracy and more reliable classification decisions. Second, GoogleNet incorporates
1 × 1 convolutions for dimensionality reduction, considerably minimizing computational
complexity. By reducing the number of features prior to further convolutions, it alleviates
the computational load, yielding faster, more efficient processing.

The remarkable reduction in computational complexity achieved through GoogleNet’s
Inception architecture signifies a significant breakthrough in deep learning. By leveraging
dimensionality reduction techniques, such as 1 × 1 convolutions, the network success-
fully balances computational efficiency with accuracy. This allows the creation of deeper,
more potent neural networks capable of handling intricate tasks without overburdening
computational resources.

Focusing on the automatic recognition of side-scan sonar images of underwater objects,
Du et al. [30] utilized AlexNet, VGG16, GoogleNet, and ResNet to train on and predict
the same dataset. While assessing these models, they emphasized prediction precision
and computational economy. Their findings underscored GoogleNet’s exemplary prowess
in both domains. What resonated with our research goals was GoogleNet’s balance of
computational efficiency and model depth. Unlike AlexNet, which might be simpler but
is less accurate for intricate datasets, or VGG16, which can be computationally intensive,
GoogleNet provided the perfect middle ground. Consequently, we selected GoogleNet to
study submarine pipeline recognition using SSS images in this research.
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2.2. Transfer Learning

Transfer learning represents a system’s capability to apply knowledge and skills ac-
quired from earlier tasks to new, different tasks. This concept was first introduced by Google
Inc. [33] at the 2016 NIPS conference and revolutionized the field of machine learning. Es-
sentially, transfer learning repurposes a previously trained model for a similar problem,
achieving better performance than a model trained from scratch. This process mirrors
human learning, where proficiency in one skill enhances the learning of similar skills.

The procedure for training a convolutional neural network (CNN) can benefit signifi-
cantly from transfer learning. Instead of initiating training from scratch, one can employ
a pre-training classical model as a foundation and fine-tune its structure and data for
retraining. This strategy yields superior results due to the valuable general features and
representations the base model has already learned, which are often applicable across
diverse domains or tasks. By leveraging this existing knowledge and adjusting it to the
specific problem, transfer learning facilitates faster convergence, improved accuracy, and
enhanced generalization.

A significant advantage of transfer learning lies in its ability to address the challenge
of insufficient training data. In real-world scenarios, amassing a large and diverse dataset
for training a model from scratch can be a daunting, resource-intensive task. However,
using pre-training models, typically trained on extensive datasets, allows us to transfer
the learned patterns and rich feature representations from the source domain to the target
domain. This approach enables a model to leverage this knowledge, even when confronted
with limited data in the target domain, leading to effective and efficient learning.

Many studies, including studies of remote sensing image classification [34], SAR image
classification [35], high-resolution satellite image recognition [36], etc., have compared the
improvement in accuracy before and after using transfer learning. However, a more
detailed study of how different pre-training datasets affect the final performance of a model
has not been conducted. In this paper, we will discuss the impact of pre-training (based on
the ImageNet dataset) on model accuracy and the impact of pre-training on model accuracy
for different datasets (ImageNet, SeabedObjects-KLSG, and Marine-PULSE). One of the
significant novelties of this study is our systematic approach in examining the effectiveness
of three different pre-trained datasets in transfer learning. This methodology offers new
insights into selecting optimal pre-training datasets, thereby significantly enhancing the
predictive accuracy of CNN models in this specific field.

3. Materials and Methods
3.1. Dataset

We utilized various side-scan sonar instruments, including an EdgeTech4200FS
(West Wareham, MA, USA), a Benthos SIS-1624 (North Falmouth, MA, USA), an Ed-
getech4200MP, a Klein-2000 (Lincolnshire, IL, USA), and a Klein-3000, to compile a dataset
of SSS images depicting submarine engineering structures. The second novel contribution
was the introduction of the Marine-PULSE dataset [37], the first of its kind focusing on
marine engineering geology. It enriched the side-scan sonar image research domain by
including four distinct object categories. To diversify the dataset and establish controls, we
incorporated images of the seabed surface. The resulting dataset, named Marine-PULSE,
comprised 323 images of pipelines or cables (POCs), 134 images of underwater residual
mounds (URMs), 180 images of the seabed surface (SS), and 82 images of engineering
platforms (EPs). The term PULSE underscores the image types included in the dataset and
reflects the breadth of data detectable using side-scan sonar in marine environments. We
processed all images using KNUDSEN’s free data processing program, Post Survey, while
capturing raw target object images without any post-processing.

Figure 2 showcases a selection of images from the Marine-PULSE dataset, displaying
the diverse morphological characteristics seen in SSS images of underwater objects. The
diversity in SSS images arises from multiple factors such as the inherent nature of the
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detected objects, the angle and distance of the side-scan sonar, the instrument type, the
parameter settings, and the prevailing sea conditions.
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Figure 2. Samples from the Marine-PULSE dataset. Samples in rows (a–d) are pipelines or cables,
underwater residual mounds, seabed surface, and engineering platforms, respectively.

Submarine pipelines or cables (POCs) are usually characterized by striking linear
features in SSS images, though accurately discerning their diameters can pose a challenge.
Underwater residual mounds, a result of sediment strength surpassing that of the sur-
rounding area, lead to erosion and distinct morphological formations. The seabed surface
shows a mix of flat and rough submarine surfaces, contributing to the overall diversity
of SSS images. Meanwhile, engineering platforms, with multiple piles, obstruct acoustic
signals, resulting in a marked lack of linear signals in band form. This unique feature
further enriches the morphological variations in SSS images.

For this study, our primary focus was on the automatic recognition of submarine
pipelines or cables in side-scan sonar images. Consequently, we divided the dataset into
two main categories: ‘POC’ and ‘Non-POC’. The latter included the three other image types
within the dataset, excluding POCs. Furthermore, to evaluate the influence of different
datasets on model accuracy, we employed the ImageNet and SeabedObjects-KLSG [31]
datasets for pre-training.

3.2. Experimental Steps

As displayed in Figure 3, we partitioned the Marine-PULSE dataset into two sections,
train_all and test_all, following an 80%:20% split. Further, we divided the train_all portion



Remote Sens. 2023, 15, 4873 6 of 16

into two distinct subsets: train_A (50%) and train_B (30%). The depicted experimental
configuration involved utilizing identical training and testing datasets while varying the
pre-training datasets. The training dataset consisted of the labeled samples used to train
the model, while the testing dataset served to assess the model’s performance on unseen
data. Through the exploration of these four experimental configurations, our goal was
to investigate the effects of transfer learning and the choice of pre-training datasets on
the model’s performance and generalization capabilities, particularly in the context of the
Marine-PULSE dataset.
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Before initiating the model training process, it was crucial to carry out data preprocess-
ing and augmentation operations. These operations involved modifying and augmenting
the input data in several ways, aiming to enhance the model’s capacity to learn and gener-
alize from the available dataset. By performing these operations, we could significantly
improve both the training efficiency and the overall model accuracy.

3.2.1. Data Preprocessing

Prior to the computational modeling, the side-scan sonar (SSS) images were subjected
to a sequence of preprocessing operations to align with the input requirements of the
convolutional neural network (CNN) training data. The preprocessing procedures involved
center cropping, resizing, normalization, and labeling the images.

To emphasize the underwater objects and minimize the influence of the seabed, it
was recommended to apply a center crop to the images, utilizing an image’s center as the
point of focus. After cropping, the sonar images were resized uniformly to dimensions of
224 × 224 pixels. This resizing step aligned with the input size specifications of the classical
CNN models used in this study.

Normalization was conducted to standardize the data across the three channels of
the SSS images, bringing the data within the range of [−1, 1]. This normalization process
was undertaken to avoid suboptimal training outcomes that could have been caused by
significant variances in the data.

After these preprocessing steps, the SSS data were adequately prepared for training
the convolutional neural networks. This enabled the subsequent modeling and analysis of



Remote Sens. 2023, 15, 4873 7 of 16

the pipeline or cable (POC) images in the dataset. The labeled and processed images were
then ready to be fed into the CNN for model training, paving the way for a comprehensive
and accurate analysis of underwater structures.

3.2.2. Data Augmentation

In addition to the data preprocessing steps mentioned earlier, data augmentation
strategies were implemented during the training phase. These strategies aimed to prevent
the neural networks from fixating on irrelevant features, thereby substantially improving
the overall model performance. The data augmentation techniques employed in this study
included random horizontal flipping and random rotation within the range of −50◦ to 50◦.

During each training iteration, input images underwent random transformations in
accordance with the specified augmentation techniques. These transformations added
variability and diversity to the original data, effectively enriching the training dataset and
enhancing the accuracy of the trained model. By exposing the neural networks to different
perspectives and orientations through random alterations of the input images, the models
were encouraged to learn robust and invariant features, thereby improving generalization
and overall performance.

The data augmentation techniques not only effectively increased the size and diversity
of the training dataset but also better equipped the model to handle real-world variations
and complexities. These strategies deterred overfitting to the limited training data and
promoted the learning of relevant features, thus contributing significantly to the improved
accuracy and reliability of the trained model.

3.2.3. Establishing CNN Models

With the data appropriately prepared, we proceeded to construct the model, following
the GoogleNet architecture. A fully connected layer was appended to the model with an
output size of 2, corresponding to the classes of POC and Non-POC.

In conducting the experiments for this study, we determined the model hyperparam-
eters by referencing the outcomes of previous experiments conducted by the authors on
different datasets, along with those performed on the Marine-PULSE dataset. The model
exhibited commendable accuracy with a learning rate of 0.001, a batch size of 64, an epoch
count of 100, and utilizing the Adam optimizer for optimization.

Across all four experiments, the models were trained using the train_A dataset
and evaluated for accuracy using the test_all dataset. The principal distinction between
these experiments was in the application of transfer learning and the use of different
pre-training datasets.

In the first experiment, we opted against transfer learning, training the models from
scratch with randomly initialized weights. For the second experiment, we utilized the
ImageNet dataset to pre-train the models, initializing their weights with those obtained
from this pre-training phase before proceeding with further training. In the third and
fourth experiments, the SeabedObjects-KLSG and train_B datasets, respectively, were used
to pre-train the models. Similar to the second experiment, the weights derived from these
pre-training stages were used as the initial weights for the subsequent training.

The key distinguishing factor among these experimental setups was the choice of
pre-training datasets. Each test explored a different pre-training dataset to initialize the
model’s weights before additional training. By leveraging different pre-training datasets,
we sought to evaluate their respective impacts on the performance and generalization
capabilities of the model.

3.2.4. Model Evaluation

In order to assess the accuracy of GoogleNet in automatically recognizing underwater
pipeline objects in SSS images, we employed four evaluation metrics: accuracy, precision,
recall, and F1 score. Accuracy measured the overall correctness of the model’s predictions,
indicating the proportion of correctly classified instances. Precision quantified the model’s
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ability to accurately identify positive instances, measuring the proportion of true positive
predictions over the total predicted positive instances. Recall assessed the model’s capability
to capture all positive instances, indicating the ratio of true positive predictions to the total
number of actual positive instances. The F1 score combined precision and recall into a
single value, providing a balanced measure that accounted for both precision and recall.
These metrics collectively offered a comprehensive evaluation of the model’s accuracy,
precision, recall, and overall performance in the recognition of underwater pipeline objects
in SSS images. The formulas for the evaluation metrics are as follows:

Accuracy = (TP + TN)/(TP + TN + FP + FN) (1)

Precision = TP/(TP + FP) (2)

Recall = TP/(TP + FN) (3)

F1 score = 2 × (Precision × Recall)/(Precision + Recall) (4)

where the representations of TP, TN, FP, and FN can be seen in Table 1.

Table 1. Confusion matrix for binary classification of POC and Non-POC.

Predicted Label/True Label Positive Sample (POC) Negative Sample (Non-POC)

Positive Sample (POC) TP FN
Negative Sample (Non-POC) FP TN 1

1 In the binary classification of this study, POC is defined as a positive sample and Non-POC is defined as a
negative sample. TP (true positive) denotes the number of POCs correctly classified as POCs. TN (true negative)
represents the number of Non-POCs correctly classified as Non-POCs. FP (false positive) indicates the number of
Non-POCs incorrectly classified as POCs. FN (false negative) signifies the number of POCs incorrectly classified
as Non-POCs.

By considering these four elements, we could assess not only the overall accuracy of
the model but also its precision (its ability to avoid false positives) and its recall (its ability
to avoid false negatives). The F1 score provided a balanced view that considered both
precision and recall.

Analyzing these metrics can indeed provide valuable insights into the performance
of GoogleNet in recognizing underwater pipeline objects in SSS images. These metrics
can help determine the model’s strengths and identify areas where improvement may be
needed, thereby assisting in optimizing the model’s performance in future iterations or
similar tasks.

3.3. Experimental Environment

All the code for the calculation was implemented in the deep learning modeling
package Pytorch. The calculating device was a workstation with an Intel i9-12900K CPU,
128 G of RAM, and an NVIDIA RTX 4090 graphics card.

4. Results and Analysis
4.1. Accuracy of GoogleNet for SSS Image Recognition of POCs

Utilizing GoogleNet as our foundational model, we initialized our training process
with pre-training weights derived from the ImageNet dataset. As illustrated in Figure 4a, a
noticeable enhancement in the model’s accuracy was recorded over the course of 100 train-
ing epochs. The model’s accuracy on the test dataset started at 65% and notably increased
to over 90% within 20 epochs, emphasizing a substantial improvement in its predictive
capabilities. After the 20-epoch milestone, the accuracy fluctuated but still maintained a
commendable performance, with the peak accuracy exceeding 90%.
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Figure 4b,c depict the evolution of the precision and recall metrics, respectively,
throughout the training process. Both metrics exhibited a sharp incline as the number of
epochs progressed, indicating a growing improvement in the model’s ability to accurately
identify true positives (precision) and correctly recall actual positive instances (recall). The
F1 score, a metric that harmonizes precision and recall, echoed these observations, showing
a comparable upward trend.

This extensive analysis of accuracy, precision, recall, and the F1 score clearly substanti-
ated the efficacy of the GoogleNet model in accurately classifying SSS images of Potential
Objects of Concern (POCs). The model demonstrated a prediction accuracy exceeding
90%, a remarkable performance that underscores the strength of transfer learning in this
application. The usage of pre-trained weights from the ImageNet dataset allowed the
model to leverage previously learned patterns and features, thus contributing significantly
to its high performance.

In summary, the results reaffirm the potential of transfer learning in enhancing the
predictive performance of machine learning models, particularly in scenarios of marine
geological problems where the task involves recognizing complex underwater structures
in side-scan sonar images. These findings could have significant implications for the
wider field of marine engineering and could pave the way for more efficient and effective
inspections of underwater structures, thus contributing to improved safety and mainte-
nance practices.

4.2. Model Performance with and without Transfer Learning

To understand the influence of transfer learning (TL) on the accuracy of POC image
predictions, we conducted a comparative analysis between models using TL with pre-
training on the ImageNet dataset and models without TL.

From the results presented in Figure 5a, we observed that the accuracy of the model
without transfer learning plateaued at a maximum of 80% and exhibited no substantial
increase beyond 20 epochs. This level of accuracy was noticeably lower than the prediction
accuracy achieved by the model employing pre-training. Similarly, Figure 5b–d reveal that
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the model trained without transfer learning significantly underperformed in precision,
recall, and F1 score values when compared to the model that used pre-training.
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Therefore, it is apparent that the application of transfer learning played a vital role
in enhancing the model’s predictive capabilities. By leveraging the pre-trained weights
from ImageNet, the model benefited from the knowledge and patterns already captured,
which are typically applicable across various domains or tasks. This strategy contributed
to faster convergence, higher accuracy, and improved generalization in the context of the
Marine-PULSE dataset, as it aided the model in better understanding and interpreting SSS
images of POCs.

The results suggest that transfer learning, particularly pre-training on large and di-
verse datasets like ImageNet, is a highly beneficial strategy in submarine pipeline object
recognition tasks. This approach could be further explored and could be employed in other
related tasks in marine imaging and underwater object recognition. This could also prompt
further exploration into more robust and efficient transfer learning techniques and their
application in different areas within the field of marine science.

4.3. Performance Comparison Using Different Pre-Training Datasets

The role of pre-training datasets in transfer learning cannot be overstated. Selecting
an appropriate pre-training dataset can contribute rich feature representations and enhance
the generalization capabilities of a model, equipping it with valuable prior knowledge
applicable to the target task. By incorporating pre-training datasets, a model can learn
generic features, allowing it to converge faster and adapt more effectively to new data.
Factors such as the task’s characteristics, data similarity, data diversity, and available
computational resources should be considered when choosing pre-training datasets, as
they lay a solid foundation for successful transfer learning.
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In our study, we selected ImageNet, SeabedObjects-KLSG, and a subset of the Marine-
PULSE dataset (train_B) for pre-training. The weights from these pre-trained models were
utilized as the initial weights for subsequent training. The goal was to investigate the
impact of different pre-training datasets on the recognition of side-scan sonar (SSS) images
of Potential Objects of Concern (POCs).

As depicted in Figure 6, with the progression of the epochs, the evaluation metrics for
all three models increased rapidly, reaching a relatively stable state after around 20 epochs.
Among the three models, the one pre-trained with the SeabedObjects-KLSG dataset per-
formed the least effectively in prediction, as suggested by all four evaluation metrics.
Conversely, the models pre-trained with ImageNet and a subset, named train_B, of the
Marine-PULSE dataset showed similar performances, with no clearly discernable difference
in Figure 6.
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These findings highlight the importance of pre-training dataset selection in trans-
fer learning applications. While the SeabedObjects-KLSG dataset did not yield high-
performing models in this context, both the ImageNet and Marine-PULSE datasets pro-
vided effective pre-training, resulting in models with high accuracy, precision, recall, and
F1 scores. This implies that datasets with features more closely resembling those of the
target task could result in improved model performance, emphasizing the importance of
data similarity and diversity in pre-training dataset selection.

To conduct a more comprehensive comparison and analysis of the predictive results
of the three models, we conducted a statistical analysis of the prediction outcomes from the
50th epoch to the 100th epoch, after the models had reached a stable state. This analysis
aimed to compare the statistical distribution characteristics of the results.

As shown in Figure 7a, the models pre-trained on ImageNet (pI) exhibited the highest
median accuracy, with a closely grouped distribution indicating consistent performance. On
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the other hand, the Marine-PULSE (pY)-pre-trained model demonstrated a slightly lower
median accuracy with a wider distribution, indicating some variability in its predictions.
Lastly, the SeabedObjects-KLSG (pS)-pre-trained model showed the lowest accuracy, with
a more scattered distribution.
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Upon examining Figure 7b, we observed that the ImageNet (pI)-pre-trained models
once again outperformed, with the highest median precision and a tightly packed distri-
bution. The Marine-PULSE (pY)-pre-trained model showed a marginally lower median
precision with a broader distribution. Meanwhile, the models pre-trained on SeabedObjects-
KLSG (pS) displayed the lowest precision with a more expansive distribution.

As per Figure 7c, the Marine-PULSE (pY)-pre-trained model had the highest median
recall with a tighter distribution, suggesting consistent identification of relevant instances.
The ImageNet (pI)-pre-trained models had a slightly lower median recall but demonstrated
a wider distribution. The SeabedObjects-KLSG (pS)-pre-trained models exhibited the
lowest recall with a broad distribution.

Figure 7d reveals that the ImageNet (pI)-pre-trained models achieved the highest
median F1 score, indicating a balanced precision and recall, with a narrow distribution.
The Marine-PULSE (pY)-pre-trained model showed a slightly lower median F1 score with
a more dispersed distribution. Finally, the models pre-trained on SeabedObjects-KLSG (pS)
achieved the lowest F1 score with a wider distribution.

To summarize, the choice of pre-training dataset significantly influenced the predictive
performance of the model, as evident from the data presented in Figure 7. When evaluating
the predictive effectiveness of deep learning models, it is crucial to consider both the
stability of the results across multiple trials and the maximum accuracy. In terms of
maximum accuracy, Marine-PULSE (pY) provided the highest results for all four metrics,
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closely followed by ImageNet (pI). Among the three pre-training datasets, ImageNet (pI)
yielded stable and effective pre-training results across repeated trials and Marine-PULSE
(pY) produced similar results, whereas the SeabedObjects-KLSG (pS) results diverged more
from the other two datasets. These results underscore the critical role of pre-training dataset
selection in transfer learning for deep learning models.

The disparities among the datasets significantly influenced model performance. Im-
ageNet, with its diverse and extensive data, endowed the model with rich feature repre-
sentations, enhancing its generalization. However, its low consistency with SSS images
of the seafloor was a limitation. Marine-PULSE, while smaller, had high consistency with
the target task, proving that similarity between pre-training and target data is crucial for
model efficacy. Its performance was comparable to ImageNet, demonstrating that dataset
relevance can sometimes outweigh volume. Conversely, SeabedObjects-KLSG, despite
its relevance in content, lagged in performance, highlighting the importance of both data
diversity and relevance. These disparities underscore the necessity of careful dataset selec-
tion in transfer learning applications, balancing diversity, volume, and task relevance to
optimize model performance.

5. Discussion

Our analysis of the prediction accuracy, precision, recall, and F1 scores allowed us
to evaluate the performance of the various CNN models discussed in this paper. The
results indicated that GoogleNet can accurately predict SSS images of POCs. Moreover, we
observed that different pre-training datasets influenced the model’s predictive outcomes.
This variation is likely associated with the types of images in a dataset, the number of
images, and their consistency with the research problem.

The ImageNet dataset, with its wide range of image types and categories, enabled the
model to learn a richer feature representation, demonstrating good applicability and stabil-
ity. The Marine-PULSE dataset, likely due to its closer similarity to the data distribution of
the target task, achieved the highest accuracy rate, albeit with slightly fluctuating stability
in repeated trials. Conversely, the SeabedObjects-KLSG (pS) dataset, being quite dissimi-
lar from the POC prediction and lacking sufficiently diverse categories and the numbers
to provide generalization performance, demonstrated the least effectiveness among the
three datasets.

As seen in Table 2, ImageNet, with its 1000 types of images, could essentially cover all
data types under study. However, its consistency was low because its images were mainly
derived from various types of objects or organisms, which are vastly different from the
side-scan sonar images of the seafloor. Despite this, due to the extensive amount of data
in ImageNet (150 GB), the model was trained to produce good generalization. Therefore,
even with low consistency, the richness of model variety and the large amount of data
compensated for this deficiency, resulting in good predictive outcomes.

Table 2. Comparison of data, types of different pre-training datasets.

Dataset Types/Categories Volume/Size Consistency 1

ImageNet 1000 150 GB Low
SeabedObjects-KLSG 2 67.5 M Median

Marine-PULSE (train_B) 2 22.2 M Very High
1 Consistency represents the relevant similarity between the pre-training and predicted data.

Regarding the SeabedObjects-KLSG dataset, despite it having two types of side-scan
sonar images (plane and ship) and being somewhat consistent with the study as it involves
side-scan sonar images, the prediction results using this dataset for pre-training significantly
lagged behind the other two datasets. This can be attributed to the fact that its image types
were quite different from POCs and thus could not contribute valid information for the
learning process. Only the common information across side-scan sonar images could
be learned.
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The train_B dataset, comprising a random 20% of the data from the Marine-PULSE
dataset, had high consistency with the final images to be predicted. Even with only 22.2 MB
of data, it provided the model with sufficient information for pre-training. Consequently,
this dataset achieved a similar pre-training effect as ImageNet’s 150 GB data volume,
despite its considerably smaller size.

However, it is important to understand that this result is specific to the prediction of
POCs using SSS images. The Marine-PULSE dataset, while achieving a similar prediction
performance as ImageNet with about 1/6900 of the data volume, may not replicate such
favorable outcomes for other marine geological image prediction tasks. For different
seafloor side-scan sonar image predictions, it might yield results akin to those of the
SeabedObjects-KLSG dataset—surpassing models without pre-training but falling short of
models pre-trained with ImageNet.

Regarding the deep learning model we used in this study, there are two disadvantages
to note: generalization and model complexity. While GoogleNet performed admirably on
our Marine-PULSE dataset, its generalization capability for other types of marine geological
and geophysical data needs further investigation and validation. Despite its computational
efficiency, GoogleNet’s complex architecture might still be resource-intensive for real-time
applications on board marine exploration vessels, where computational resources could
be limited.

Consequently, for future image recognition problems, we recommend collecting im-
ages with high consistency with the predicted images for pre-training to improve the
prediction performance of the final model. When there are no consistent images for pre-
training, a more general dataset like ImageNet could be an effective choice.

6. Conclusions

In this study, we utilized GoogleNet to automatically recognize SSS images of POCs,
thereby exploring the feasibility of using CNN models for POC prediction. We also assessed
the impact of transfer learning on model accuracy and used three distinct datasets for pre-
training to examine the influence of different datasets on model accuracy. The principal
findings are as follows:

(1) Utilizing GoogleNet modeling permitted efficient identification of SSS images of
underwater pipelines, with accuracy and precision rates exceeding 90%.

(2) Transfer learning significantly enhanced the accuracy of the model. The model could
reach up to 80% accuracy without pre-training. Following pre-training with the
ImageNet dataset, the model’s prediction accuracy could be boosted by approximately
10% compared to when there was no pre-training.

(3) Different pre-training datasets yielded varying impacts on model prediction accuracy.
The datasets that enhanced the model prediction ability, ranked in descending order
of effectiveness, were Marine-PULSE, ImageNet, and SeabedObjects-KLSG.

(4) The type of pre-training dataset, the volume of data, and the consistency with the
predicted data are crucial factors influencing the pre-training effect. When the consis-
tency is very high, even a minimal amount of data can yield a satisfactory pre-training
effect. Conversely, when consistency is low, a dataset with a large volume of data and
good generalization should be selected.

There are also some inherent limitations in the current study. The findings pertaining
to the impact of transfer learning datasets are specific to SSS images of undersea pipelines.
Their general applicability to other domains or marine objects remains unvalidated and
warrants further investigation. In the future, we will aim to expand the horizons of this
study by testing our methodologies across a broader spectrum of marine data and scenarios.
By doing so, we intend to further ascertain the universal applicability and robustness of
the described methodologies.
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