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Abstract: Quick and automatic detection of the distribution and connectivity of urban rivers and
their changes from satellite imagery is of great importance for urban flood control, river management,
and ecological conservation. By improving the E-UNet model, this study proposed a cascaded
river segmentation and connectivity reconstruction deep learning network model (WaterSCNet) to
segment urban rivers from Sentinel-2 multi-spectral imagery and simultaneously reconstruct their
connectivity obscured by road and bridge crossings from the segmentation results. The experimental
results indicated that the WaterSCNet model could achieve better river segmentation and connectivity
reconstruction results compared to the E-UNet, U-Net, SegNet, and HRNet models. Compared with
the classic U-Net model, the MCC, F1, Kappa, and Recall evaluation metrics of the river segmentation
results of the WaterSCNet model were improved by 3.24%, 3.10%, 3.36%, and 3.93%, respectively,
and the evaluation metrics of the connectivity reconstruction results were improved by 4.25%, 4.11%,
4.37%, and 4.83%, respectively. The variance of the evaluation metrics of the five independent
experiments indicated that the WaterSCNet model also had the best robustness compared to the other
four models.

Keywords: WaterSCNet; river segmentation; river connectivity reconstruction; Sentinel-2; deep
learning; convolutional neural network

1. Introduction

With the process of global urbanization, especially in developing countries experienc-
ing rapid economic growth, continuous urban expansion and redevelopment have caused
constant changes in the distribution of small and medium-sized urban rivers. Urban rivers
serve as transportation routes for water and various nutrients, as water storage and flood
drainage facilities, and as important regulators of local micro-climates and supports of
local biodiversity. Therefore, the use of remote sensing technology to quickly and automati-
cally detect the distribution and connectivity of urban rivers and their changes is of great
importance for urban flood control, river management, ecological protection, and urban
functional planning.

In natural environments, rivers flow downstream under the force of gravity. Therefore,
some widely used pixel-based flow detection algorithms, such as D8 [1] and D-infinity [2],
use digital elevation data to extract the distribution and connectivity of rivers. Recently, a
number of methods [3,4] have also been developed to integrate Sentinel-2 multi-spectral
imagery [5] with digital elevation data to extract river distribution and connectivity. How-
ever, in complex urban environments, tall buildings and artificial lowlands can make it
very difficult to extract rivers based on digital elevation data [3], and high spatial resolution
urban digital elevation data are also very expensive [6].
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High spatial resolution satellite remote sensing imagery can also be used for river
detection. Traditional methods use morphology [7], threshold [8], the water body index [9–11],
and texture features [12] for river detection from satellite imagery. Most of these traditional
methods require manual specification of thresholds, adjustment of parameters, use of manually
determined features, or manual post-processing, which leads to high uncertainty in the river
detection results [12,13].

With the development of deep learning, various end-to-end structures based on a
convolutional neural network (CNN) [14] have emerged, such as U-Net [15], U-Net++ [16],
E-UNet [17], SegNet [18], and HRNet [19], which can automatically extract high-level
information from satellite imagery without a tedious manual feature extraction process [20].
U-Net [15] is a U-shaped encoder–decoder segmentation network with skip connections.
The encoder–decoder structure extracts general features, and the skip connections rein-
troduce detailed features back into the decoder. U-Net utilizes both general and detailed
features to achieve high segmentation accuracy [21,22]. U-Net++ [16] has a nested U-Net
architecture with dense convolution blocks on skip connections and a deep supervision
design nested at the top level of the network. The dense convolution blocks can bridge the
semantic gap between encoder and decoder feature maps, and the deep supervision design
can improve segmentation performance through model pruning [16,23]. E-UNet [17] en-
hances UNet’s encoder–decoder structure by adding a multi-spectral three-dimensional
convolution (MSD) path module [24] to capture nonlinear relationships between multi-
spectral bands of adjacent pixels [25–27], and a multi-scale pooling (MSP) block [28] to
perceive texture relationships and information at multiple spatial scales. Three-dimensional
convolution is mainly used in the segmentation of hyper-spectral data [26,27], and is also
widely used in multi-spectral and hyper-spectral image fusion [25] and multi-spectral time
series image processing [24]. These two enhancements allow E-UNet to segment objects
with large scale differences from multi-spectral remote sensing imagery [17]. SegNet [18] is
a CNN for semantic image segmentation. It consists of an encoder network and a corre-
sponding decoder network followed by a pixel-wise classification layer. HRNet [19] is a
general purpose CNN for tasks such as semantic segmentation, object detection, and image
classification. It starts with a high-resolution convolution stream, gradually adds high-to-
low resolution convolution streams one by one, and connects the multi-resolution streams
in parallel [19]. Therefore, HRNet is able to maintain high resolution representations
throughout the process.

Miao et al. [29] proposed a restricted receptive field deconvolution network, which
solved the problem of weak pixel neighborhood correlation, to segment water bodies from
Google Earth images. Chen et al. [30] proposed combining the CNN with a superpixel
method for water body segmentation in complex urban backgrounds from GaoFen-2
satellite imagery [31].

Although relatively good river detection results can be obtained using high spatial
resolution satellite imagery, which typically contains only the red, green, blue, and near-
infrared spectral bands, the segmentation accuracy is significantly reduced when the river
is shadowed by surrounding buildings or when the river color changes due to spatial and
temporal variations [32]. Therefore, multi-spectral satellite imagery, which can provide
more spectral information, is increasingly being used for river detection and other object
recognition tasks [33–35].

Additional spectral information in multi-spectral satellite imagery can also improve
the river detection performance of deep learning methods [36]. Isikdogan et al. [37]
proposed a full CNN called Deep-WaterMap that could effectively segment surface water
from Landsat-7 [38] while reducing the probability of false detection of snow, ice, and cloud
shadows as water surfaces. Jing et al. [39] used a multi-layer perceptron [40] to extract water
bodies from Landsat-8 imagery [41] and achieved superior performance compared to the
water body index and maximum likelihood estimation methods. Xia et al. [42] introduced
a separable attention residual network that utilized attention modules of different scales
to combine deep and shallow feature information for river segmentation. Furthermore,
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Fan et al. [13] proposed a river segmentation model based on a composite attention
network to accurately detect complex details such as river boundaries and portions of
rivers obscured by road and bridge crossings from Landsat-8 satellite imagery [41].

Due to road and bridge crossings, urban rivers supposed to be continuous are usually
detected from satellite imagery as discontinuous segments. To reconstruct the connec-
tivity of disconnected urban rivers extracted from satellite imagery, Zhang et al. [34]
proposed a method that gradually removed river discontinuities by iteratively splitting
water bodies and connecting broken river segments. However, Zhang’s method had a
tendency to erroneously connect two different rivers that are close to each other. Edge link
algorithms [43,44], which are commonly used to close fracture curves, can also be used to
connect adjacent river segments separated by small fractures, but they are unsuitable for
reconstructing connectivity of small and medium-sized rivers with large portions obscured
by bridge and road crossings.

The connectivity of urban rivers is of great importance in understanding the eco-
logical and environmental interactions and impacts between them. In order to reduce
tedious manual work and automate the processing of river segmentation and connec-
tivity reconstruction from satellite remote sensing imagery, in this study, a cascaded
river segmentation and connectivity reconstruction deep learning network model (Wa-
terSCNet) was proposed to segment urban rivers and reconstruct their connectivity from
Sentinel-2 multi-spectral imagery [5]. The WaterSCNet model was improved from the
E-UNet model [17] by adding a soft attention gate mechanism [45] to the encoder–decoder
structure. The soft attention gate mechanism, which includes channel attention [46], spatial
attention [47], or a combination of both [48], can be trained by gradient backpropagation [49]
and has been extensively studied and implemented in intelligent image recognition
tasks [50,51]. The attention gates in the WaterSCNet model merge spatial features from
the encoder with spectral features from the MSD path module, allowing the model to
adaptively focus on specific regions of input images as in Schlemper’s study [49]. Thus, the
attention gates can help the WaterSCNet model improve its performance.

There are two innovations in this study: first, integrating the MSD path module,
the MSP block, and the soft attention gate mechanism into the U-Net encoder–decoder
structure improves the segmentation performance for rivers, especially small rivers in
complex urban environments, from multi-spectral imagery; second, by cascading two deep
learning networks, the river segmentation and connectivity reconstruction processes are
automated, reducing the tedious manual work typically required for river connectivity
reconstruction tasks.

The rest of the paper is organized as follows: Section 2 details the proposed WaterSC-
Net model, Section 3 describes the experimental data, model training, experimental design,
and evaluation metrics, Section 4 presents the experimental results and discussion, and
finally, conclusions are given in Section 5.

2. Methods
2.1. The WaterSCNet Model

As shown in Figure 1, the proposed WaterSCNet model is an end-to-end deep learn-
ing network consisting of two cascaded subnetworks, named WaterSCNet-segmentation
(WaterSCNet-s) and WaterSCNet-connection (WaterSCNet-c), respectively, to achieve seg-
mentation and connectivity reconstruction of urban rivers.
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Figure 1. Top-level architecture of the WaterSCNet model.

2.2. River Segmentation Subnetwork: WaterSCNet-s

As shown in Figure 2, the WaterSCNet-s was improved from the Enhanced U-Net
(E-UNet) architecture [17], which is capable of semantic segmentation of multi-spectral
remote sensing imagery, for the task of urban river segmentation.

The WaterSCNet-s consists of three parts, a U-shaped symmetric encoder and decoder
structure, a multi-spectral three-dimensional convolution (MSD) path module and a multi-
scale pooling (MSP) block.

Figure 2. Architecture of the river segmentation subnetwork WaterSCNet-s.

2.2.1. The U-Shaped Encoder and Decoder Structure

A U-shaped encoder and decoder structure, similar to the classic U-Net model [15],
is the backbone of the WaterSCNet-s subnetwork. The U-shaped encoder and decoder
has four layers. Each layer in the encoder performs two convolution and down-sampling
operations to extract features from the input multi-spectral image, and each layer in the
decoder performs up-sampling and convolution operations to progressively restore the
image resolution. The dimensionality of the encoder input data is N × N × M, where
N is the number of pixels in two-dimensional space and M is the number of spectral
bands. The skip connection between the encoder and the decoder at each layer fuses low-
level morphological features with high-level semantic features to preserve critical spatial
information that might otherwise be lost during the multiple down-sampling operations.

As shown in Figure 2, in order to reduce false-positive segmentations for small rivers
with large shape variations, following the work of Schlemper [49] and Oktay [45], an
additive attention gate (AAG) was added in front of the decoder in each of the top three
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layers to automatically localize the object of interest and help the model improve its overall
segmentation performance.

The input to the AAG is a concatenation of the spatial feature map extracted by the
encoder and the corresponding spectral feature map extracted by the MSD path module.
The concatenated feature maps are semantically discriminative at each encoding layer. The
coarse spatial feature map captures contextual information and highlights the category and
location of foreground objects. The gating signal up-sampled from the coarse spatial feature
map can gate the AAG to disambiguate irrelevant and noisy responses in the input feature
map. Therefore, the AGGs in the model can progressively suppress feature responses in
irrelevant background regions and guide the model to focus on the object of interest in the
foreground content of the image.

Figure 3 shows how the AGG works. First, the input and the gating signal of the AGG
are linearly transformed into the same vector space by Wi and Wg, respectively. Then, the
two linearly transformed results are summed by the additive attention method [52,53].

Figure 3. Schematic of the additive attention gate.

The summation result is first processed by an element-wise rectified linear unit (ReLU)
function [54] and then transformed back to the input feature space by a linear transfor-
mation of Ws. After a sigmoid activation function [55] is applied to restrict the range of
attention weight Φ to [0,1], the attention weight Φ is multiplied by the input to obtain the
attention feature map, as in Jian’s study [56].

The three linear transformations in the AGG are computed using channel-wise 1 × 1
two-dimensional convolutions as in Schlemper’s study [49]. The Wi, Wg, and Ws of these
linear transformations can be trained using standard back-propagation approaches [49,57].
Thus, the WaterSCNet model can be trained from scratch in a standard way similar to the
training of fully convolutional network models.

2.2.2. The MSD Path Module

Following Dui’s work of E-UNet [17], an MSD path module was added between the
encoder and the decoder to capture the nonlinear relationships between multi-spectral
bands of adjacent pixels, which are neglected by the two-dimensional convolution filters in
the classic U-Net model [15]. With the addition of the MSD path module, the model is able
to extract spectral features between spectral bands of multi-spectral images. The detailed
information of the MSD path module is listed in Table 1.

Table 1. Parameters of the MSD path module.

Layer Name Layer Input (Filter Size) × Number Output Size

C1 Input (5 × 5 × 5) × 32 (256 × 256 × 12) × 32
R1 C1 - 256 × 256 × 384
C2 R1 (1 × 1) × 16 256 × 256 × 16
P1 C1 2 × 2 × 2 (128 × 128 × 6) × 32
C3 P1 (5 × 5 × 5) × 64 (128 × 128 × 6) × 64
R2 C3 - 128 × 128 × 384
C4 R2 (1 × 1) × 32 128 × 128 × 32
P2 C3 2 × 2 × 2 (64 × 64 × 3) × 64
C5 P2 (5 × 5 × 5) × 128 (64 × 64 × 3) × 128
R3 C5 - 64 × 64 × 384
C6 R3 (1 × 1) × 64 64 × 64 × 64
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2.2.3. The MSP Block

Also following Dui’s work of E-UNet [17], an MSP block was add to the bottom layer
of the U-shaped encoder and decoder structure to perceive contextual relationships and
contextual information at multiple spatial scales.

2.3. River Connectivity Reconstruction Subnetwork: WaterSCNet-c

The WaterSCNet-c reconstructs the connectivity of rivers obscured by road and bridge
crossings based on the river segmentation results of the WaterSCNet-s.

As shown in Figure 4, the WaterSCNet-c was improved from the classic U-Net model [15]
by adding an attention gate before the decoder in each of the top three layers and an MSP
block between the encoder and the decoder in the bottom layer of the U-shaped encoder
and decoder structure. The WaterSCNet-c subnetwork has essentially the same structure
as the WaterSCNet-s subnetwork, except that it does not have an MSD path module. The
WaterSCNet-c subnetwork does not need the MSD path module because its input is the river
segmentation probability maps output from the WaterSCNet-s subnetwork, which do not
contain multi-spectral information.

Figure 4. Architecture of the river network connectivity reconstruction subnetwork: WaterSCNet-c.

The WaterSCNet-c uses the N × N river probability map output by the WaterSCNet-s
as its input. Each value in the river probability map indicates the magnitude of the proba-
bility that the segmentation result of the corresponding location in the two-dimensional
space belongs to a river.

In the probability map, the probability values corresponding to locations where a river
is interrupted by road and bridge crossings differ significantly from those for locations
within a river. There are also significant differences in the spatial correlation between the
probability values at the true boundaries and breaks of a river and those at other locations
around a river.

These differences provide the WaterSCNet-c with essential information for recon-
structing river connectivity from the segmentation results of the WaterSCNet-s in an urban
environment.

Similar to the WaterSCNet-s, the attention gates in the WaterSCNet-c use gating signals
up-sampled from coarse features of the probability map and spatial features extracted from
the probability map by the encoder to help reconstruct river connectivity, and the MSP
block helps perceive contextual relationships and contextual information of river breaks at
multiple spatial scales.

3. Experiments
3.1. Experimental Data

Thirty-nine multi-spectral images of seven cities located in East Asia, Southeast Asia,
and Australia were collected from Sentinel-2 Level-2A data products [58] as the source of
the experimental data. These images are dated from November 2021 to December 2022.
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The Sentinel-2 mission [5] consists of two identical sun-synchronous satellites launched
in 2015 and 2017, respectively. Each satellite carries a 13-band Multi-Spectral Instrument
(MSI) with spatial resolutions of 10, 20, and 60 m. Sentienal-2 Level-2A (L2A) products
consist of 110 × 110 km2 tiles of radiometrically calibrated and atmospherically corrected
surface reflectance imagery [58].

Figure 5 shows the location of the seven cities, which are Tokyo, Shanghai, Dongguan,
Guangzhou, Hanoi, Manila, and Sydney. Each city has not only complex river systems,
but also well-developed road networks. Therefore, sufficient images of rivers and their
interruptions by road and bridge crossings can be collected in these cities to train and
evaluate the river segmentation and connectivity reconstruction models.

Figure 5. Sentinel-2 multi-spectral image of the seven cities, (a) Tokyo, (b) Shanghai, (c) Dongguan,
(d) Guangzhou, (e) Hanoi, (f) Manila, (g) Sydney, (h) location of the seven cities (https://services.
arcgisonline.com/arcgis/rest/services, accessed on 25 July 2023).

The multi-spectral images used in this study were selected from the Sentinel-2 L2A
data products [58] using the Google Earth Engine [59]. To ensure the quality of the selected
images, images with cloud cover greater than 10% were first filtered out using the quality
parameters provided in the Sentinel-2 L2A data products [58], and then images with cloud
shadows, snow scenes, and other contamination were excluded based on visual inspection.

The data from the 10th spectral band in the selected images were discarded because
they mainly contain information about high-altitude cirrus clouds [60]. To avoid over-
smoothing and aliasing, and to preserve spatial detail, the 20 m and 60 m resolution
spectral band data in the selected images were interpolated to 10 m resolution using a
bi-cubic interpolation technique with the 10 m resolution blue spectral band data as the
reference [61].

Figure 6 shows the flowchart of processing, labeling, and slicing of the selected
Sentinel-2 data.

https://services.arcgisonline.com/arcgis/rest/services
https://services.arcgisonline.com/arcgis/rest/services
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Figure 6. Sentinel-2 data processing, labeling, and slicing flowchart.

To train, validate, and evaluate the river segmentation and connectivity reconstruction
models, the experimental data labels were divided into two types, segmentation labels and
connectivity labels, as shown in Figure 7b,c, respectively.

Segmentation labeling was carried out in two steps. River segments were first roughly
identified from the collected Sentinel-2 images using the normalized water body index
(NDWI) [10] combined with OTSU’s threshold selection method from histograms [62], and
then the rough identification results were finely corrected by manual visual comparison
with Google Maps to achieve accurate labeling of the river segmentation labels.

Once the segmentation labeling was finished, discontinuities in the segmentation labels
caused by road and bridge crossings were visually inspected by comparison with Google
Maps, and those verified discontinuities were then manually marked as the connectivity
labels.

Figure 7. Examples of river segmentation labels and river connectivity reconstruction labels,
(a) sentinel-2 images, (b) river segmentation labels, (c) river connectivity reconstruction labels.

In the segmentation labels, the smallest river width is 1 pixel, i.e., 10 m. In the
connectivity reconstruction labels, the largest and smallest widths of the river discontinuity
are 5 pixels and 1 pixel, i.e., 50 m and 10 m, respectively.

The Sentinel-2 multi-spectral images and the corresponding two types of labels were
each sliced into 10,614 tiles of size 256 × 256 pixels with an overlap of 10% as the river seg-
mentation dataset and the river connectivity reconstruction dataset for training, validation,
and evaluation of the models.



Remote Sens. 2023, 15, 4875 9 of 19

3.2. Model Training

The training process of the WaterSCNet model was divided into two stages, namely the
river segmentation stage and river connectivity reconstruction stage, as shown in Figure 8.

Figure 8. Schematic of the training process of the WaterSCNet model, a river segmentation and
connectivity reconstruction network.

In the training stage of river segmentation, Sentinel-2 images and their corresponding
river segmentation labels were used as the inputs and training targets for the WaterSCNet-s
subnetwork. The trained subnetwork obtained segmentation results based on river segmen-
tation probability feature maps. In the training stage of river connectivity reconstruction,
the river segmentation probability feature maps output from the WaterSCNet-s subnet-
work and their corresponding connectivity labels were used to train the WaterSCNet-c
subnetwork.

The WaterSCNet-s and WaterSCNet-c subnetworks were trained using the Adam
stochastic optimization method [63] with an initial learning rate of 0.001, default hyperpa-
rameters β1 of 0.9 and β2 of 0.999, and a batch size of 4. The threshold of the binarization
process during model output was set to 0.5.

The experimental datasets were divided into training, validation, and evaluation
datasets according to the ratio of 6:2:2. The training, validation, and evaluation datasets
were used to train, validate, and evaluate the WaterSCNet model, respectively.

During the training process, the performance of each subnetwork was evaluated by its
validation dataset. If the performance did not improve for five consecutive training epochs,
the learning rate was reduced by a factor of 0.5. If the performance did not improve in
50 consecutive training epochs, the training was stopped to prevent the subnetwork from
overfitting, and the best performing subnetwork parameters on the evaluation dataset were
used as the parameters of the final trained subnetwork.
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3.3. Experimental Design

Two types of experiments, training strategy comparison experiments and performance
comparison experiments, were conducted in this study.

The WaterSCNet model consists of two subnetworks, the WaterSCNet-s and the
WaterSCNet-c. Therefore, two strategies could be used in the training process, namely the
synchronous training strategy (experiment Exp_Syn) and the asynchronous training strat-
egy (experiment Exp_Asyn). In the Exp_Asyn, the segmentation subnetwork WaterSCNet-s
was first trained, and then the trained WaterSCNet-s was used to generate a set of river
segmentation probability maps corresponding to the input multi-spectral images in the
training dataset. Each value in the river probability map indicates the magnitude of the
probability that the segmentation result of the corresponding pixel in a multi-spectral image
input to the segmentation subnetwork belongs to a river. Then, the connectivity reconstruc-
tion subnetwork WaterSCNet-c was trained using the river segmentation probability maps
as its inputs and the connectivity reconstruction labels as its targets. In the Exp_Syn, the
two subnetworks were trained simultaneously.

The network that performed best in the training strategy comparison experiments was
used as the final trained WaterSCNet model in the performance comparison experiments.

Just like the training strategy comparison experiments, the performance comparison
experiments also contained two parts, which were (1) comparing the river segmentation
performance of the WaterSCNet model with commonly used semantic segmentation models
such as U-Net [15], SegNet [18], HRNet [19], and E-UNet [17] (experiment Exp_Seg) and
(2) comparing the performance of the WaterSCNet model with these commonly used
models in river connectivity reconstruction (experiment Exp_Con).

Five groups of training, validation, and evaluation datasets were randomly generated
from the experimental datasets to evaluate the robustness of each model in the experiments.
Based on these five groups of datasets, both the training strategy comparison experiments
and the performance evaluation experiments were independently repeated five times each.
The mean and variance of the performance metrics for the five trials were used to represent
the final performance and uncertainty of each model, respectively.

3.4. Evaluation Metrics

The Matthews correlation coefficient (MCC), Kappa coefficient, F1 score, and Recall
were used as quantitative evaluation metrics to assess the performance of each model in the
experiments.

For each tile sample in the validation and evaluation datasets, a confusion matrix was
calculated to record the results of comparing the model output with the corresponding label
for each pixel in the sample. There were four types of comparison results: true positive
(TP), true negative (TN), false positive (FP), and false negative (FN).

Using this confusion matrix, these evaluation metrics could be derived according to
Equations (1)–(5). The N in Equation (4) represents the total number of pixels in a tile sample.

Precision =
TP

(TP + FP)
(1)

Recall =
TP

(TP + FN)
(2)

F1 score =
2 × (Precision × Recall)
(Precison + Recall)

(3)

Kappa coe f f icient =
N(TP + TN)− [(TP + FP)(TP + FN) + (FN + TN)(FP + TN)]

N2 − [(TP + FP)(TP + FN) + (FN + TN)(FP + TN)]
(4)

MCC =
(TP × TN − FP × FN)√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(5)
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4. Experimental Results and Discussion
4.1. Results of the Training Strategy Comparison Experiments

The performance and uncertainty of the WaterSCNet model in river segmentation and
connectivity reconstruction in the training strategy comparison experiments Exp_Syn and
Exp_Asyn are listed in Table 2.

Table 2. Experimental results of the training strategy comparison experiments.

Evaluation
Subject Experiment

Evaluation Results

MCC F1 Kappa Recall

River
Segmentation

Exp_Syn 0.925 ± 0.005 0.930 ± 0.005 0.924 ± 0.005 0.926 ± 0.005
Exp_Asyn 0.926 ± 0.004 0.931 ± 0.003 0.925 ± 0.004 0.928 ± 0.005

River connectivity
reconstruction

Exp_Syn 0.932 ± 0.003 0.937 ± 0.003 0.931 ± 0.003 0.933 ± 0.005
Exp_Asyn 0.928 ± 0.004 0.933 ± 0.003 0.927 ± 0.004 0.929 ± 0.002

The experimental results show that training the two subnetworks in the WaterSCNet
model simultaneously yielded slightly better performance in both river segmentation and
connectivity reconstruction than training them separately.

Unlike in the Exp_Asyn, where the two subnetworks of the model were optimized
separately, in the Exp_Syn the two subnetworks were able to adapt to each other by
exchanging feedback information during the optimization process to achieve an overall
better performance. Therefore, the models obtained in the simultaneous training strategy
experiments (Exp_Syn) were selected for the performance comparison experiments.

The experimental results also show that the variance of all evaluation metrics was
very small in the five independent experiments conducted under each training strategy,
indicating that the WaterSCNet model had good robustness.

4.2. Results of the Performance Comparison Experiments

Table 3 shows the evaluation results of the river segmentation and connectivity re-
construction performance of the WaterSCNet, E-UNet [17], U-Net [15], SegNet [18], and
HRNet [19] models in the performance comparison experiments.

The experimental results show that the WaterSCNet model had the best performance
in both river segmentation and connectivity reconstruction compared to the other four
models. The WaterSCNet also had the smallest variance in the performance evalua-
tion metrics obtained from the five independent experiments, indicating that it also had
the best robustness.

Table 3. Experimental results of the performance comparison experiments.

Experiment Model
Evaluation Results

MCC F1 Kappa Recall

Exp_Seg

WaterSCNet 0.925 ± 0.005 0.930 ± 0.005 0.924 ± 0.005 0.926 ± 0.005
E-UNet 0.915 ± 0.009 0.921 ± 0.009 0.914 ± 0.009 0.916 ± 0.013
U-Net 0.896 ± 0.014 0.902 ± 0.014 0.894 ± 0.015 0.891 ± 0.020
SegNet 0.879 ± 0.012 0.886 ± 0.012 0.876 ± 0.013 0.869 ± 0.018
HRNet 0.874 ± 0.004 0.882 ± 0.004 0.872 ± 0.005 0.869 ± 0.007

Exp_Con

WaterSCNet 0.932 ± 0.003 0.937 ± 0.003 0.931 ± 0.003 0.933 ± 0.005
E-UNet 0.906 ± 0.010 0.912 ± 0.010 0.904 ± 0.011 0.905 ± 0.011
U-Net 0.894 ± 0.010 0.900 ± 0.010 0.892 ± 0.011 0.890 ± 0.014
SegNet 0.883 ± 0.006 0.891 ± 0.005 0.881 ± 0.006 0.878 ± 0.003
HRNet 0.879 ± 0.006 0.887 ± 0.006 0.877 ± 0.006 0.876 ± 0.009

In the river segmentation experiments (Exp_Seg), the MCC, F1, Kappa, and Recall
metrics of the WaterSCNet model were 0.925, 0.930, 0.924, and 0.926, respectively, which
were better than the classic U-Net model [15] by 3.24%, 3.10%, 3.36%, and 3.93%, and better
than the last ranked HRNet model [19] by 5.84%, 5.44%, 5.96%, and 6.56%, respectively.
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In the river connectivity reconstruction experiments (Exp_Con), the MCC, F1, Kappa,
and Recall metrics of the WaterSCNet model were 0.932, 0.937, 0.931, and 0.933, respec-
tively, outperforming the classic U-Net model [15] by 4.25%, 4.11%, 4.37%, and 4.83%,
and outperforming the last ranked HRNet model [19] by 6.03%, 5.64%, 6.16%, and 6.51%,
respectively.

Figures 9 and 10 show examples of the experimental results for river segmentation
and connectivity reconstruction, respectively.

Figure 9. Examples of experimental results for river segmentation (Exp_Seg), (1) medium and small
urban rivers, (2) large and small urban rivers, (3) small urban rivers, (4) urban lakes, (5) large and
small suburban rivers.

The examples in Figures 9 and 10 include experimental results for large, medium,
and small rivers in urban areas, urban lakes, and large and small rivers in suburban area,
respectively.

Figure 9 shows that all models could achieve roughly equally good segmentation
results for large and medium rivers as well as lakes in urban areas. However, as shown
in Figure 9(1)–(3), for small rivers, the segmentation results of U-Net, SegNet, and HRNet
were obviously inferior to those of WaterSCNet and E-UNet. This is due to the fact that
both the river segmentation subnetwork in the WaterSCNet model and the E-UNet model
have an MSD path module and an MSP block, which enable them to capture the nonlinear
relationship between the multi-spectral bands of adjacent pixels and to perceive the texture
relationships and information at multiple spatial scales. Therefore, they were able to
achieve better results in segmenting small rivers.

A careful comparison of small river segmentation results of the WaterSCNet model
and the E-UNet model in Figure 9(3) shows that the segmentation results of the WaterSCNet
model were slightly better. This slight improvement in segmentation performance was due
to the addition of the attention gate mechanism in the WaterSCNet-s subnetwork, which
can progressively suppress feature responses in irrelevant background regions and help
the model focus on regions of interest to achieve better segmentation performance of small
rivers from complex urban environments. The smallest river width that can be accurately
segmented by the WaterSCNet model is 1 pixel.
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Since the number of small rivers in cities is usually much larger than the number of
medium and large rivers, the accuracy of small river segmentation is more important for
urban river management and biodiversity conservation.

Figure 10 shows that the WaterSCNet model could achieve the best performance in
reconstructing the connectivity of small rivers obscured by road and bridge crossings from
the segmentation results. This is because, firstly, the WaterSCNet-s subnetwork of the
model can achieve the best segmentation performance, providing better river segmentation
results for river connectivity reconstruction than the other models; secondly, similar to
the WaterSCNet-s subnetwork, the attention gate mechanism added in the WaterSCNet-c
subnetwork allows the model to focus on specific regions of river connectivity breaks,
resulting in better connectivity reconstruction performance. The WaterSCNet model can
accurately reconstruct connectivity breaks up to a maximum width of 5 pixels.

Figure 10. Examples of experimental results for river connectivity reconstruction (Exp_Con),
(1) medium and small urban rivers, (2) large and small urban rivers, (3) small urban rivers,
(4) urban lakes, (5) large and small suburban rivers.

As shown in Figure 11, in dense urban areas, tall buildings may cast shadows on
nearby rivers and affect the river segmentation results. The red boxed area in each sub-
figure in the first row of Figure 11 indicates the river segment located within the shaded
area of nearby tall buildings. The second row of Figure 11 shows the magnified view of
these red boxed areas. The shadow of tall buildings in the magnified view is marked by the
yellow box. The third and fourth rows of Figure 11 show the segmentation and connectivity
labels corresponding to these red boxed areas, respectively.

Figures 12 and 13 show the segmentation and connectivity reconstruction results
for the rivers located in the shadow of nearby tall buildings shown in Figure 11. The
location of the red box in the segmentation label and connectivity label sub-figures of
Figures 12 and 13 is the same as the location of the corresponding red boxed area in the
Sentinel-2 images of Figure 11.
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Figure 11. Examples of rivers located within the shaded area of nearby tall buildings, and their
segmentation and connectivity labels. (1–4) are four examples, the red boxes indicate the river
segment located within the shadow of nearby tall buildings, the yellow boxes indicate the shadow of
tall buildings.

Figure 12. Segmentation results for the rivers located in the shaded area of nearby tall buildings
in Figure 11. (1–4) correspond to the four examples in Figure 11, the red boxes indicate the same
location as the corresponding red boxed areas in the Sentinel-2 images of Figure 11.
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Figure 13. Connectivity reconstruction results for the rivers located in the shaded area of nearby tall
buildings in Figure 11. (1–4) correspond to the four examples in Figure 11, the red boxes indicate the
same location as the corresponding red boxed areas in the Sentinel-2 images of Figure 11.

Figure 12 shows that all models were able to more or less segment the rivers located
within the shadow area of the tall buildings. This is because the multi-spectral information
provided by the Sentinel-2 imagery can help the models to mitigate the influence of shadows
on the segmentation results. Of all the models, the WaterSCNet model gave the best
segmentation results and seemed to be almost unaffected by the shadows. Figure 13 shows
that the river connectivity reconstruction results from the WaterSCNet model also appeared
to be almost unaffected by the shadows, significantly outperforming the results from the
other models.

This study was of urban rivers, so the reconstruction of river connectivity focused on
discontinuities caused by road and bridge crossings. However, in addition to roads and
bridges, other obstacles such as dams and dry riverbeds can also cause discontinuities in
river connectivity. Dams are typically surmounted by roads, and the spectral signature
of dams in multi-spectral imagery may be similar to that of bridges or roads crossing
rivers. Therefore, the WaterSCNet model in this study should also be able to reconstruct the
connectivity of rivers obscured by dams. Dry riverbeds are usually composed of different
materials than roads and bridges, and the spectral signature of dry riverbeds may be quite
different from that of roads and bridges. Therefore, it may be necessary to retrain the
WaterSCNet model by adding dry riverbed data to the training data before the model can
be applied to reconstruct the connectivity of rivers obscured by dry riverbeds.

4.3. Comparison of Computational Costs for Model Training

All models in the experiments were trained on a server with two Intel Xeon Gold
5218R CPUs (40 cores in total), 128 GB of RAM, and an NVIDIA Tesla T4 graphics card.
The underlying software environment for model training was Python 3.8, Keras 2.2.0, and
TensorFlow GPU 1.7.0.

Table 4 lists the training time required for each model in the performance
comparison experiments.
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Table 4. Model training time for river segmentation (Exp_Seg) and connectivity reconstruction
(Exp_Con) experiments.

Experiment
Model Training Time (Hours of CPU Time)

WaterSCNet E-UNet U-Net SegNet HRNet

Exp_Seg
16.42 1 22.16 15.07 2.96 12.56

Exp_Con 21.32 12.72 2.41 9.37

Total 16.42 43.48 27.79 5.37 21.93
1 The two subnetworks of river segmentation and connectivity reconstruction in the WaterSCNet model were
trained simultaneously.

The SegNet model [18] required the least amount of training time, only 5.37 h, while
the E-UNet model [17] required the most, up to 43.48 h. The WaterSCNet model required
16.42 h, which was 11.37 h and 5.51 h less than that required by the classic U-Net [15] and
HNet [19] models, respectively.

5. Conclusions

In this study, a cascaded deep learning network model for river segmentation and
connectivity reconstruction, named WaterSCNet, was proposed to segment urban rivers
from Sentinel-2 multi-spectral imagery [5] and simultaneously reconstruct their connectivity
obscured by road and bridge crossings from the segmentation results.

The WaterSCNet-s subnetwork, which performed river segmentation in the WaterSC-
Net model, was improved from the E-UNet model ([17]). Compared with the classic U-Net
model ([15]), the addition of the MSD path module, the MSP block, and the attention gate
mechanism helped the WaterSCNet-s subnetwork to capture the nonlinear relationship
between multi-spectral bands of neighboring pixels, to perceive the texture relationship
and information at multiple spatial scales, and to obtain the global positional relationship
information between the rivers. Therefore, the WaterSCNet model was able to obtain better
river segmentation performance.

The WaterSCNet-c subnetwork, which performed river connectivity reconstruction
based on the segmentation results in the WaterSCNet model, had the same architecture as
the WaterSCNet-s subnetwork, except that it lacked the MSD path module. The MSP block,
and the attention gate mechanism in the WaterSCNet-c subnetwork help it to perceive the
texture relationship and information at multiple spatial scales, and to obtain the global po-
sitional relationship information between the rivers. Therefore, the WaterSCNet model was
also able to simultaneously achieve better river connectivity reconstruction performance.

The performance comparison experiments with the E-UNet [17], U-Net [15],
SegNet [18], and HRNet [19] models indicated that the WaterSCNet Model not only achieved
the best river segmentation and connectivity reconstruction results from Sentinel-2 imagery
but also had the best model robustness. The MCC, F1, Kappa, and Recall metrics for river seg-
mentation of the WaterSCNet model were better than the classic U-Net model [15] by 3.24%,
3.10%, 3.36%, and 3.93%, and better than the last ranked HRNet model [19] by 5.84%, 5.44%,
5.96%, and 6.56%, respectively. The MCC, F1, Kappa, and Recall metrics for river connectivity
reconstruction of the WaterSCNet model outperformed the classic U-Net model [15] by 4.25%,
4.11%, 4.37%, and 4.83%, and outperformed the last ranked HRNet model [19] by 6.03%,
5.64%, 6.16%, and 6.51%, respectively.

Multi-spectral remote sensing imagery can also be used to retrieval water quality
parameters such as concentration of chlorophyll-a [64–66], total suspended matter [64,67],
dissolved oxygen [68–70], and colored dissolved organic matter [68,69]. In the future, by
combining the WaterSCNet model with water quality parameter retrieval models, the
entire process of identifying urban rivers and retrieving their water quality parameters
from Sentinel-2 multi-spectral data can be automated, and furthermore, by using the
river connectivity information reconstructed by the WaterSCNet Model, the water quality
interactions between urban rivers can also be automatically evaluated.
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