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Abstract: The Arctic stratospheric ozone depletion event in spring 2020 was the most severe compared
with previous years. We retrieved the critical indicator ozone vertical column density (VCD) using
zenith scattered light differential optical absorption spectroscopy (ZSL-DOAS) from March 2017
to September 2021 in Ny-Ålesund, Svalbard, Norway. The average ozone VCD over Ny-Ålesund
between 18 March and 18 April 2020 was approximately 274.8 Dobson units (DU), which was only
64.7 ± 0.1% of that recorded in other years (2017, 2018, 2019, and 2021). The daily peak difference
was 195.7 DU during this period. The retrieved daily averages of ozone VCDs were compared
with satellite observations from the Global Ozone Monitoring Experiment-2 (GOME-2), a Brewer
spectrophotometer, and a Système d’Analyze par Observation Zénithale (SAOZ) spectrometer at
Ny-Ålesund. As determined using the empirical cumulative density function, ozone VCDs from
the ZSL-DOAS dataset were strongly correlated with data from the GOME-2 and SAOZ at lower
and higher values, and ozone VCDs from the Brewer instrument were overestimated. The resulting
Pearson correlation coefficients were relatively high at 0.97, 0.87, and 0.91, respectively. In addition,
the relative deviations were 2.3%, 3.1%, and 3.5%, respectively. Sounding and ERA5 data indicated
that severe ozone depletion occurred between mid-March and mid-April 2020 in the 16–20 km altitude
range over Ny-Ålesund, which was strongly associated with the overall persistently low temperatures
in the winter of 2019/2020. Using ZSL-DOAS observations, we obtained ozone VCDs and provided
evidence for the unprecedented ozone depletion during the Arctic spring of 2020. This is essential for
the study of polar ozone changes and their effect on climate change and ecological conditions.

Keywords: Arctic ozone depletion; differential optical absorption spectroscopy; vertical column
density; low temperature

1. Introduction

Stratospheric ozone is essential for human health, surface ecosystems, and the climate
in general because it absorbs ultraviolet (UV) solar radiation and converts it into thermal
energy [1,2]. The characteristic absorption bands of stratospheric ozone are mainly located
in the Hartley and Huggins zones of the UV region and the Chappuis zone of the visible
spectrum; thereby absorbing almost all UV-C (i.e., wavelengths < 280 nm) and some UV-B
(i.e., wavelengths ranging between 280 and 315 nm) radiation [3–5]. Since the late 1970s,
the Antarctic stratospheric ozone during the austral spring has decreased sharply, mainly
because of elevated concentrations of active chlorine [6]. Chlorofluorocarbons derived
from anthropogenic emissions are converted into passive chlorine compounds (HCl and
ClONO2) that are then converted to active chlorine species by heterogeneous chemistry,
which causes ozone depletion [7–9]. As the anthropogenic emissions of ozone-depleting
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substances have been restricted since the Montreal Protocol, ozone concentrations in the
Antarctic stratosphere are predicted to recover to pre-1980 values in 2060 [10–14].

Severe ozone depletion over the Arctic is relatively uncommon compared with that
in the Antarctic. During normal Arctic winters, the polar vortex usually fractures and
disperses early due to huge planetary wave activities and Brewer–Dobson circulation
dynamics [15–17]. Thus, in the Arctic, the vortex duration is short, and the relative ozone
loss is low [18]. However, irregular changes in Arctic ozone in recent years have attracted
worldwide attention. The most severe Arctic ozone depletion lasted for nearly a month,
from March to April 2020 [19]. Between mid-February and late March 2020, the persistence
of unusually faint wave activities in the Arctic led to an abnormally persistent and cold
vortex [20–22]. A prolonged cold vortex in the spring of 2020 accelerated the chemical
depletion of ozone while hindering ozone transport from outside the vortex [23–25]. Bognar
et al. found unprecedentedly low values of ozone VCD in the spring of 2020 using the
ZSL-DOAS instrument over Eureka, Canada (80◦N, 86◦W) [26]. Bernhard et al. found a
25% increase in the average UV index at 10 Arctic and sub-Arctic regions during April
2020, compared with the historical average [5]. Furthermore, ozone chemical depletion in
spring 2020 was well simulated by the Chemical Lagrangian Model of the Stratosphere and
TOMCAT models [27–29]. This was the most severe low ozone event reported in the Arctic,
worse than those in the springs of 1997 and 2011, and the powerful and persistent vortex is
considered the main cause of significant ozone depletion in the region [30,31]. Arctic ozone
loss events were reasonably predicted in the spring of 1997, 2011, and 2020, all of which
were accompanied by extremely cold and strong polar vortices [32,33]. Moreover, the
empirical relationship between the polar vortex strength and Arctic ozone can accurately
predict Arctic ozone extremes.

Extremely low air temperatures are essential to produce polar stratospheric clouds
(PSCs). PSCs provide a surface for the heterogeneous interactions that lead to the activation
of halogens from halogen reservoirs, potentially causing serious reductions in ozone [34].
PSCs are classified into three types: nitric acid trihydrate (NAT), ice, and a supercooled
ternary solution (STS), with threshold temperatures for existence at 195 K (Tnat), 188 K (Tice),
and 192 K (Tsts), respectively [9,35]. Although PSCs have multiple components [36,37], the
temperature threshold for NAT provides a good estimate of the occurrence of heterogeneous
chemistry [38,39]. PSCs might also grow large enough to precipitate and remove HNO3
from the stratosphere, which is the reservoir of NO2. The resulting denitrification from
the polar vortex hinders chlorine deactivation by NO2 [40,41]. For this to occur, the vortex
must retain its low temperature and continue to act as a barrier to transport.

Analyses of the Arctic ozone depletion are invaluable for validating stratospheric
ozone simulations and for understanding the underlying processes [27,42]. Currently, the
ozone vertical column density (VCD), as detected by utilizing the characteristic ozone
absorption in the UV and visible spectra, provides accurate, quantitative measurements of
ozone. Ground-based observations of ozone VCD started in the first few decades of the
twentieth century [43–45]. In the 1960s, ozonesondes were used to acquire atmospheric
ozone data [46–48], and since 1978, satellite observations have provided essential data
for atmospheric ozone-related studies [49]. Among these three methods, ground-based
observations are crucial for calibrating remote sensing observations and optimizing re-
trieval results [50]. In the 1970s, differential optical absorption spectrometry (DOAS) was
developed by Platt and Stutz [51] and has been widely used to measure several trace
gases, including ozone, nitrogen dioxide, bromine monoxide, and sulfur dioxide [52]. In
this study, we applied a ground-based DOAS system for ozone VCD observations in the
Arctic [51]. The zenith scattered light observation mode was applied to measure ozone
VCD using the Langley plot method [53]. This is meaningful to make accurate, long-term,
ground-based observations in the polar regions.

We observed and validated the ozone depletion event (ODE) in the spring of 2020
above Ny-Ålesund, Norway. The methods and data are given in Section 2, which covers
the presentation of the experimental location and DOAS instrument, the calculation of
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ozone VCD, Global Ozone Monitoring Experiment 2 (GOME-2) observations, Brewer
measurements, Système d’Analyze par Observation Zénithale (SAOZ) measurements,
European Centre for Medium-Range Weather Forecast (ECMWF) data, and ozonesonde
data. Section 3 presents the results; Section 3.1 describes ozone VCDs from February 2017
to October 2021 and the ozone difference in spring 2020. In Section 3.2, the daily variation
in ozone VCDs obtained using zenith scattered light DOAS (ZSL-DOAS) was compared
with the GOME-2 observations, Brewer, and SAOZ measurements. In Section 4.1, the ODE
is illustrated using the sounding observations. The relationship between the Arctic ozone
depletion and meteorological conditions in terms of temperature is described in Section 4.2,
and a comprehensive summary is provided in Section 5.

2. Methods
2.1. Ozone VCD Observation
2.1.1. ZSL-DOAS Instrument and Experimental Location

We introduced a ZSL-DOAS instrument which included a prism, telescope, computer,
filter, motor, and charge-coupled device (CCD) spectrometer. The motor controlled the
telescope and could change the angle of elevation between the horizon and the zenith. The
quartz fiber could transform the incident light; its numerical aperture was 0.22. The light is
received by the spectrometer (Ocean Optics MAYA Pro) and measured using a 2048-pixel
CCD. This spectrometer was designed for wavelengths between 290 and 429 nm and had a
spectral resolution of 0.5 nm. The integration time varied between 100 and 2000 ms due to
the light intensity. The detector operated normally at approximately 20 ◦C with a thermal
controller. The mercury lamp spectra, offsets, and dark currents were calibrated ahead of
the experiments. The instrument utilized the DOAS technique [51] to detect O3, NO2, OClO,
BrO, and O4. The DOAS principle is described in Appendix A.2. The ozone slant column
density (SCD) was retrieved and raw data were obtained in the zenith direction (90◦). The
instrument was placed at the Yellow River Station (78.92◦N, 11.93◦E) in the Arctic. The
DOAS instrument is highly accurate, can be left unattended, and can monitor multiple trace
gases simultaneously. Compared with the Brewer and SAOZ especially, the instrument
allows for better continuous monitoring. In the period from March to September 2020,
in terms of the number of days that ozone was obtained over Ny-Ålesund, for example,
there were 190 days of data from ZSL-DOAS, 123 days of data from Brewer, and 68 days of
data from SAOZ. Figure 1 shows the ZSL-DOAS instrument and experimental location in
Ny-Ålesund, Svalbard, Norway.
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2.1.2. Calculation of Ozone VCD

We calculated the SCD for ozone using QDOAS [51]. QDOAS is a free software
developed by the Royal Belgian Institute for Space Aeronomy (BIRA-IASB) (http://uv-
vis.aeronomie.be/software/QDOAS/) that can retrieve trace gas concentrations. In the
experiment, ozone was retrieved in the 320–340 nm band, and the gases involved in the
retrieval included O3 (223 K, 243 K), NO2 (298 K), O4 (293 K), and ring structures. Table 1
lists the parameters for the gases involved in the retrieval. Figure 2 shows a spectrum
obtained during monitoring on 31 March 2020. The measured spectrum was fitted to give
an ozone SCD of 1.06 × 1018 molec cm−2, and the root mean square of spectral fitting
residuals was 5.44 × 10−4.

Table 1. Fitting parameters of spectral retrieval.

Parameters References

O3 223 K, 243 K [54]
O4 293 K [55]

NO2 298 K [56]
Ring Calculated using QDOAS

Fitting Interval 320–340 nm
Polynomial 5
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Figure 2. Spectrum fits of ozone on 31 March 2020.

The SCD is the column density on the diagonal path and the VCD is the column density
on the vertical path. They are both in units of molecular cm−2. As the SCD is dependent
on the instrument’s observation mode and the prevailing meteorological conditions, it is
necessary to shift to the VCD, which is independent of the mode of observation:

AMF =
SCD
VCD

(1)

Here, the air mass factor (AMF) can be obtained from the SCIATRAN model which
is influenced by the a priori ozone profile, SZA (solar zenith angle), wavelength, and
surface albedo. SCIATRAN is an atmospheric radiation transfer model containing retrieval

http://uv-vis.aeronomie.be/software/QDOAS/
http://uv-vis.aeronomie.be/software/QDOAS/
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algorithms (http://www.iup.physik.uni-bremen.de/sciatran). The SCIATRAN model was
developed by the Institute of Remote Sensing, University of Bremen, Germany. Based on
the average monthly climate, the a priori ozone profile can be obtained. The SZA calculated
in this study ranged between 35◦ and 80◦, with surface albedos between 0.08 and 0.6.
Table 2 lists these parameters. Since the “Ring effect” in the measurement caused by the
Fraunhofer reference spectra can lead to lower trace gas levels in the retrieval than in the
actual atmospheric levels, it is corrected with the following calculation:

dSCD(α, β) = SCD(α, β)− SCDFRS = AMF(α, β)VCD− SCDFRS (2)

Table 2. Fitting parameter nodes for spectral retrieval.

Parameters Nodes

SZA (◦) 35, 40, 45, 50, 55, 60, 65, 70, 75, and 80
Surface albedo 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6

Wavelength (nm) 320 to 340 in intervals of 0.5

Here, SCDFRS denotes the Fraunhofer absorption. In Formula (2), a linear fit is
performed with AMF as the horizontal coordinate and dSCD as the vertical coordinate,
where the absolute value of the intercept is the Fraunhofer absorption, and the slope
is the VCD. Figure 3 presents the results of a linear fit of the dSCD and AMF on 31
March 2020. The correlation coefficient (R2) was 0.99. The ozone VCD for this date was
6.53 × 1018 molec cm−2 and produced a fitting error of 2.76 × 1016 molec cm−2.
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2.1.3. Error Estimation

Uncertainties in ozone VCD retrieval originate from uncertainties in the retrieval
of the SCD and AMF. The error in retrieving the ozone SCD was 3.01%, within a 95%
confidence interval. Table 2 provides the parameters used to calculate the AMF effect on
wavelength. The uncertainties of the AMF due to wavelength selection were calculated as
(AMFλ − AMF328)/AMFλ, where λ denotes the wavelength. Using the parameter nodes
in Table 2, the uncertainties of the AMF in the wavelength were calculated to range from
−4.257% to 4.630%, and the average uncertainty was 2.030%. Based on an evaluation of

http://www.iup.physik.uni-bremen.de/sciatran
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the OMI ozone products, the AMF had an uncertainty of about 2% for the a priori ozone
profile [57]. The average AMF uncertainty was calculated as 2.85% using the following

equation:
√

AMF2
wave + AMF2

pro f ile, where AMFwave denotes the error of AMF influenced
by wavelength, and AMFpro f ile denotes the AMF error affected through the a priori ozone
profile. The total error in the retrieved ozone VCD was 4.15%, calculated using the following

error equation: EVCD =
√

E2
SCD + E2

AMF, where ESCD and EAMF denote the errors of the
SCD and AMF, respectively.

2.2. Auxiliary Data

GOME-2 has a band between 240 and 790 nm, a spectral resolution ranging from 0.2 to
0.5 nm, and a nominal swath width spatial resolution of 80 × 40 km2 [58]. The GOME-2
dataset included the daily mean VCD data (source: https://avdc.gsfc.nasa.gov/, accessed
on 18 June 2022). Brewer spectrophotometers used holographic diffraction gratings to
obtain the directly transmitted intensity of sunlight [59]. Ozone columns were calculated
by averaging five consecutive measurements. The daily mean ozone data were obtained
from the Brewer dataset (source: https://woudc.org/, accessed on 18 June 2022). The
SAOZ instrument was a UV-Vis spectrometer belonging to a global network of analogous
instruments [60]. The SAOZ instrument provided a viewing angle of approximately 20◦

and measured trace gas concentrations in the stratosphere based on DOAS technology [51].
Hendrick et al. calculated an error of 5.9% for the measurement of ozone by SAOZ [61].
The SAOZ dataset was used to obtain the daily mean ozone VCD data (source: http:
//saoz.obs.uvsq.fr/, accessed on 18 June 2022).

The ERA5 hourly pressure-level data from 1959 to 2022 used for daily temperatures in
this study was obtained from the ECMWF website (source: https://www.ecmwf.int/en/
newsletter/147/news/era5-reanalysis-production, accessed on 18 June 2022). Since 1992,
the Alfred Wegener Institute has recorded the total ozone column and vertical profile using a
balloon-borne ozonesonde in Ny-Ålesund. In 2020, the temporal resolution of the sounding
data from 25 March to 13 April was once per day, compared with once per 3 d during the
spring and once per week during the other seasons (source: https://ndacc.larc.nasa.gov/,
accessed on 17 April 2023).

3. Results
3.1. Ozone VCDs

The ozone VCDs obtained from the GOME-2 satellite, Brewer, SAOZ, and ground-
based instrument from February 2017 to October 2021 over Ny-Ålesund are shown in
Figure 4. In 2017, 2018, 2019, and 2021, the ozone VCD showed a fluctuating downward
trend between March and September, with small increases around March and August. In
2020, however, severe ozone depletion occurred between 18 March and 18 April, after
which the ozone VCD increased gradually. The ozone VCD decreased further in mid-May
and around September, the ozone VCD increased again, probably due to the clear warming
of the polar stratosphere.

The ozone data for 2020 and average ozone data for the other years from the ZSL-
DOAS instrument, as well as satellite observations from GOME-2 and measurements from
the Brewer and SAOZ instruments over Ny-Ålesund, are shown in Figure 5. The average
ozone VCD from ZSL-DOAS between 18 March and 18 April 2020 was abnormally low at
~274.8 DU, only 64.7 ± 0.1% of what was observed in the other four years. In addition, the
daily peak difference was 195.7 DU during this period. The minimum ozone VCD from
ZSL-DOAS was 241.2 DU on 5 April. We also analyzed the diurnal means of the relative
ozone difference between the 2020 data and the mean of the other four years. Compared to
the other four years, the 2020 daily average relative differences from 18 March to 18 April
from the GOME-2, ZSL-DOAS, Brewer, and SAOZ datasets were −36.5%, −35.3 ± 0.4%,
−33.1 ± 0.7%, and −32.0 ± 0.1%, respectively. All instruments detected relatively low
levels of ozone from 18 March to 18 April 2020.

https://avdc.gsfc.nasa.gov/
https://woudc.org/
http://saoz.obs.uvsq.fr/
http://saoz.obs.uvsq.fr/
https://www.ecmwf.int/en/newsletter/147/news/era5-reanalysis-production
https://www.ecmwf.int/en/newsletter/147/news/era5-reanalysis-production
https://ndacc.larc.nasa.gov/
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3.2. Descriptive Statistical Analysis

Ozone VCDs from the ZSL-DOAS, GOME-2, Brewer, and SAOZ datasets were an-
alyzed based on the empirical cumulative density function (ECDF), boxplots, Pearson’s
correlation coefficients, and relative deviations. The ECDF was used to characterize the
distribution of the data, wherein the horizontal coordinates of the ECDF plot were the
ozone VCDs and the vertical coordinates were the cumulative probabilities. When the
ZSL-DOAS dataset was compared to the other datasets, we performed analyses only for
the number of days for which both datasets had values, thereby enabling us to compare
and analyze their ozone VCDs.

As can be seen in Figure 6a–c, the values of ozone VCDs from the ZSL-DOAS dataset
were strongly correlated with the data from GOME-2 and SAOZ at lower and higher values.
Of the ozone VCDs from the ZSL-DOAS data, 1–60% were distributed in the 230–350 DU
range. Between 350 and 400 DU, the ozone VCDs of GOME-2 were clearly higher than those
of ZSL-DOAS. A comparison between the ZSL-DOAS and Brewer data revealed that there
is good consistency between the two instruments. Results of the ozone VCDs from Brewer
were slightly overestimated, which can be attributed to the fact that the final calibration
of the Brewer instrument at Ny-Ålesund was in 2018, a conclusion that was also arrived
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at in a previous study [62]. However, in the range from 280 to 350 DU, the ozone VCDs
from SAOZ were lower than those from ZSL-DOAS, whereas between 370 and 410 DU,
the SAOZ ozone VCDs were overestimated. As visualized using boxplots, compared
with ozone VCDs from GOME-2, the ozone VCDs from ZSL-DOAS were characterized by
high outliers and lower mean values, with more concentrated values and less volatility.
These latter ozone VCDs also included higher outliers compared with those for VCDs
based on a Brewer analysis and had smaller overall values and less data volatility. Unlike
the values obtained based on the GOME-2 and Brewer data, the mean ozone VCDs from
SAOZ were lower than those of ZSL-DOAS, and the distribution interval of these values
was smaller than that of the ZSL-DOAS. Differences between these ozone data may be
related to retrieval settings (choices of fitting the interval and absorption cross-sections)
and the temperature dependence of the different instruments [61,63]. Furthermore, there
might be a mismatch of measurement positions between the ZSL-DOAS and the GOME-2
instruments [64,65].
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Boxplots of ozone VCDs from ZSL-DOAS with (d) GOME-2, (e) Brewer, and (f) SAOZ. In the boxplots,
the black central bar indicates the median and the white triangle indicates the mean value.

Figure 7 presents the linear fit between the observed ozone VCDs and GOME-2
observations, Brewer, and SAOZ measurements. The Pearson correlation coefficients were
relatively high at 0.97, 0.87, and 0.91, respectively. In addition, the relative deviations were
2.3%, 3.1%, and 3.5%, respectively. The ground-based DOAS measurements were highly
correlated with the ozone VCDs observed using GOME-2 onboard the MetOp satellite and
with those obtained using the Brewer and SAOZ instruments. The ZSL-DOAS ozone VCDs
were consistent with the GOME-2, Brewer, and SAOZ observations over Ny-Ålesund. Thus,
the observation of the VCDs of the Arctic ozone using a ground-based DOAS instrument
was reliable and valid.
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4. Discussion
4.1. Arctic Ozone Depletion Based on Ozonesonde Data

Figure 8a–j presents the ozone and temperature profiles from the ozonesonde data
above Ny-Ålesund between 2017 and 2021 from January to July of each year. In 2017, no
sounding data were obtained prior to March 22. The ozone profile (Figure A1b) above
Ny-Ålesund from 9 January to 1 July of 2020 from the ERA5 data and the relative differences
(Figure A1c) between ozonesonde and ERA5 are shown in Appendix A.1. We analyzed
the relative differences between the ozonesonde and ERA5 data and the average absolute
relative difference between ozonesonde and ERA5 was 0.31 ppmv. The ERA5 data were
consistent with the ozonesonde data. Over Ny-Ålesund, ozone is mainly present above an
altitude of 16 km, and the mixing ratio of ozone occurring below 16 km is less than 2.5 ppmv.
Comparatively, during the period spanning January–February in 2018, the mixing ratios of
ozone present in the lower stratospheric region above 16 km were mostly less than 3.5 ppmv,
which is significantly lower than the values obtained in 2019 and 2021. From January to
February 2018, the lower stratospheric region over Ny-Ålesund was characterized by colder
temperature conditions than those recorded in 2019 and 2021. Indeed, the temperature in
the 16–25 km altitude range was lower than Tnat, thereby providing conditions favorable for
PSC formation. PSCs provide a surface for heterogeneous interactions, leading to halogen
activation and severe ozone depletion. However, in 2020, the temperature conditions were
cold, and the cold temperatures lasted longer than the corresponding duration in 2018; it
was not until mid-April that temperatures began to climb significantly. In January and
March 2020, the temperatures in the 15–25 km altitude range were lower than Tnat, also
providing conditions conducive to PSC formation. In January and early February of 2020,
the mixing ratios of ozone present in the 16–20 km altitude range were below 3.0 ppmv,
as were the mixing ratios during early February and early March of that year, whereas, in
mid-March and mid-April of 2020, the ozone mixing ratios in the 16–20 km altitude range
were below 1.0 ppmv and even partly below 0.5 ppmv. Even in 2011, when severe ozone
depletion occurred, the ozone mixing ratio was above 0.5 ppmv over the Arctic [66].
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The sounding observations similarly provided evidence to indicate the occurrence
of Arctic stratospheric ozone depletion during the spring of 2020. Furthermore, severe
ozone depletion occurred between mid-March and mid-April 2020 in the 16–20 km altitude
range over Ny-Ålesund, which was strongly associated with persistently low-temperature
conditions during the spring of that year.

4.2. Associations between Arctic Ozone Depletion and Meteorological Conditions

To further study the associations between Arctic ozone depletion and temperature
conditions, we used the ERA5 data. The daily average temperatures in Ny-Ålesund
between November 2016 and September 2021 were obtained at 70 hPa (–17.5 km) in the
low stratosphere, where significant ozone depletion tends to occur (Figure 9). Furthermore,
temperatures dropped below the threshold (195 K) at which PSCs exist. A relatively
colder stratosphere over Ny-Ålesund persisted for a longer duration during the winter of
2019/2020 than in previous years, with air temperatures as low as 190 K. The number of
days with daily temperatures below 195 K during the winters of 2017/2018, 2019/2020, and
2020/2021 are shown in Table 3. In addition, the overall winter temperatures in 2019/2020
were lower than those of the same period in the other years and included a prolonged
period of cold temperatures, leading to prolonged PSCs. As a result of the atypically faint
wave activities that occurred between mid-February and late March 2020 over the Northern
Hemisphere [19], the abrupt warming in spring 2020 was weaker than warming in the
other four years. The 2019/2020 winter was the coldest recorded in the Arctic in the past
40 years [21,24].
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blue line denotes the threshold temperature for the formation of PSCs.

Table 3. Days below Tnat and daily average temperatures (December–February).

Date Days below Tnat Temperature (K) (Average/Range)

2016.12–2017.2 0 203.5/195.2–214.8
2017.12–2018.2 26 203.6/190.6–236.2
2018.12–2019.2 0 211.8/198.1–226.5
2019.12–2020.2 32 196.9/190.2–206.1
2020.12–2021.2 6 205.3/192.5–225.1

A cold and stable polar vortex is a prerequisite for ensuring that Arctic stratospheric
temperatures are sufficiently low. The 2019/2020 winter was unique, and the polar vortex
was unusually stable, prolonged, and cold [24,32]. A large and strong Arctic vortex lasted
from early December into the final week of April, which is almost unheard of [21,67]. The
faint planetary wave activity in the Northern Hemisphere also contributed to the formation
of a cold and strong vortex [28]. Unusually low temperatures and a strong and prolonged
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vortex in the 2019/2020 winter provided favorable meteorological conditions for ozone
depletion in the Arctic.

5. Conclusions

In this research, we measured the ozone VCD using the ZSL-DOAS instrument for
5 years and compared the results with those obtained with the GOME-2 satellite and the
Brewer and SAOZ instruments. Compared to the other four years, the 2020 daily average
relative differences from March 18 to April 18 from the GOME-2, ZSL-DOAS, Brewer, and
SAOZ datasets were −36.5%, −35.3 ± 0.4%, −33.1 ± 0.7%, and −32.0 ± 0.1%, respectively.
All instruments recorded severe ozone depletion from March 18 to April 18, 2020.

In addition, the ozone VCDs from the ZSL-DOAS, GOME-2, Brewer, and SAOZ
datasets were analyzed in a statistical framework based on the ECDF, boxplots, Pearson’s
correlation coefficients, and relative deviations. The ECDF results indicated that the ozone
VCDs from the ZSL-DOAS dataset are strongly correlated with the data from GOME-2 and
SAOZ at lower and higher values and the ozone VCDs from Brewer are overestimated.
Compared with the GOME-2 and Brewer data, the ozone VCDs from ZSL-DOAS were
smaller and there was less data volatility. However, the mean values of the ozone VCDs
from ZSL-DOAS were higher than those of SAOZ, and the distribution interval of these
values was larger than that of the SAOZ. We further evaluated a correlation analysis with
the GOME-2 satellite and the Brewer and SAOZ instruments, revealing Pearson correlation
coefficients of 0.97, 0.87, and 0.91, respectively. In addition, the relative deviations were
2.3%, 3.1%, and 3.5%, respectively. The ZSL-DOAS ozone VCDs were consistent with the
GOME-2, Brewer, and SAOZ observations over Ny-Ålesund. Therefore, we can conclude
that the method of observing the VCDs of the Arctic ozone using a ground-based DOAS
instrument was reliable and valid.

The sounding and ERA5 data indicated severe ozone depletion between mid-March
and mid-April 2020 in the 16–20 km altitude range over Ny-Ålesund, which was strongly
associated with the persistently low temperatures in the spring of 2020. The overall winter
temperatures in 2019/2020 were lower than those of the same period in the other years
and included a prolonged period with cold temperatures. Furthermore, the unusually
low temperatures and a strong and prolonged vortex in the 2019/2020 winter provided
favorable meteorological conditions for ozone depletion in the Arctic.

In summary, using ZSL-DOAS observations, we provided evidence for the unprece-
dented ozone depletion during the Arctic spring of 2020. The ZSL-DOAS ozone VCD
observations are consistent with the GOME-2 observations, Brewer, and SAOZ measure-
ments, and provide support for continuous ozone columns above the polar area. This
is essential for the study of polar ozone changes and its effect on climate change and
ecological conditions.
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Appendix A.2. Principle of DOAS

Based on the different absorption bands and characteristic peaks of various gases and
their measured intensity, we can retrieve the content of each trace gas according to the
Lambert–Beer law as follows:

I(λ) = I0(λ) ∗ exp

{
−
∫ L

0

[
n

∑
j=1

σj(λ) ∗ cj(s) + εM(λ) + εR(λ)

]
ds

}
∗ A(λ) (A1)

Here, I0(λ) represents the original light intensity of the luminophore at the wave-
length λ, I(λ) denotes the light intensity received by the detector at the wavelength λ, L
represents the distance traveled by the incident light in the absorbing gas, σj(λ) represents
the absorption cross-section for the jth gas, cj(s) denotes the concentration of the jth gas at
the s position, n is the number of types of gas measured, εM(λ) and εR(λ) are the extinction
coefficients for Mie scattering and Rayleigh scattering, respectively, and A(λ) represents
instrumental effects and turbulence [51].

The spectral absorption structures σj(λ) include the broadband σj0(λ) and narrowband
σ′j (λ) absorption structures. Thus, Formula (A1) can be written as:

I(λ) = I0(λ) ∗ exp
{
−
∫ L

0

[
∑n

j=1 σ′j (λ) ∗ cj(s)
]
ds
}

∗exp
{
−
∫ L

0

[
∑n

j=1 σj0(λ) ∗ cj(s) + εM(λ) + εR(λ)
]
ds
}
∗ A(λ)

(A2)

I′0(λ) denotes the intensity in the absence of differential absorption:

I′0(λ) = I0(λ) ∗ exp
{
−
∫ L

0

[
∑n

j=1 σj0(λ) ∗ cj(s) + εM(λ) + εR(λ)
]
ds
}
∗ A(λ) (A3)

SCDj =
∫ L

0 cj(s)ds represents the SCD of the jth gas. Then, we obtain the differential
optical density D′:

D′ = ln
I′0(λ)
I(λ)

=
∫ L

0

[
∑n

j=1 σ′j (λ) ∗ cj(s)
]
ds = ∑n

j=1 σ′j (λ) ∗ SCDj (A4)
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