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Abstract: Mixed (random and stripe) noise will cause serious degradation of optical remotely sensed
image quality, making it hard to analyze their contents. In order to remove such noise, various inverse
problems are usually constructed with different priors, which can be solved by either model-based
optimization methods or discriminative learning methods. However, they have their own drawbacks,
such as the former methods are flexible but are time-consuming for the pursuit of good performance;
while the later methods are fast but are limited for extensive applications due to their specialized
tasks. To fast obtain pleasing results with combination of their merits, in this paper, we propose a
novel denoising strategy, namely, Dual Denoiser Driven Convolutional Neural Networks (D3CNNs),
to remove both random and stripe noise. The D3CNNs includes the following two key parts: one is
that two auxiliary variables respective for the denoised image and the stripe noise are introduced
to reformulate the inverse problem as a constrained optimization problem, which can be iteratively
solved by employing the alternating direction method of multipliers (ADMM). The other is that the
U-shape network is used for the denoised auxiliary variable while the residual CNN (RCNN) for the
stripe auxiliary variable. The subjectively and objectively comparable results of experiments on both
synthetic and real-world remotely sensed images verify that the proposed method is effective and is
even better than the state-of-the-arts.

Keywords: remotely sensed images; mixed noise removal; alternating direction method of multipliers;
U-shape network; residual CNN

1. Introduction

Remotely sensed images (RSIs) are “photographs” of the Earth’s surface, which can
truly and vividly reflect the current situation of the distribution, the relationship, and the
changes in the interaction of surface features, from which rich information including
vegetation, soil moisture, water quality parameters, and surface and sea temperature can
be obtained [1]. This Earth resource information can play an important role in the fields of
agriculture, forestry [2], water conservancy, oceans, and ecological environment [3], which
is beneficial for us to remotely investigate resources [4], monitor the environment [5], and
analyze and predict disasters [6]. However, due to the impact of detector and photon effects,
the obtained remotely sensed images may be degraded by both stripe noise (caused by the
different responses of each detector) and random noise (which is mainly additive Gaussian
white noise (AGWN) produced by photon effects) [7], which can be formulated as

y = x + s + n, (1)
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where y is the observed image, x is the latent clean image, s is the stripe noise, and n is
the AGWN. It is an impossible task to simultaneously obtain s and x using Equation (1).
To solve the problem, the common idea is the usage of a two-step method, such as first
denoising [8–38] then destriping [39–55]. Such strategy may smooth many useful structures
of image x. An example is shown in Figure 1, from which we can observe that many
rich structures are smoothed. It is absolutely independent to reduce the two typical noise
using the two-step method that may impair the structures of stripe or images and further
smooth rich details. Therefore, one typical noise should be considered when the other is
processed. To address this issue and preserve as many fine structures as possible, different
regularizations on x and s are both considered to build a unified restoration model [56],
which can be solved by the optimization methods (such as alternating direction method of
multipliers (ADMM) and split Bregman). The procedures of these methods can be briefly
presented as follows:

Figure 1. A visual comparison example between a combination method and our unified scheme.

1. According to the Bayes’ theorem, the estimation of x and s with the posterior distribu-
tion P(x, s|y) can be converted into the following equation

P(x, s|y) ∝ P(y|x, s)P(x)P(s), (2)

where P(y|x, s) is a likelihood prior which can be presented as

P(y|x, s) ∝ exp
{
−1

2
‖y− x− s‖2

2

}
, (3)

where ‖·‖2
2 is the l2-norm function. P(x) and P(s) are respectively the prior proba-

bilities of x and s, which are used to obtain optimization solutions being closed to
the actual values. With proper parameters λ1 and λ2, the prior probability P(x) is
written as

P(x) ∝ exp{−λ1Φ(x)}, (4)

while P(s) is defined as
P(s) ∝ exp{−λ2Ψ(s)}, (5)

where Φ(·) and Ψ(·) are different regularizations on x and s, respectively. By in-
serting Equations (3) to (5) into Equation (2), the posterior distribution P(x, s|y) is
equivalent to

P(x, s|y) ∝ P(y|x, s)P(x)P(s) ∝ exp
{
−
(

1
2
‖y− x− s‖2

2 + λ1Φ(x) + λ2Ψ(s)
)}

. (6)

2. With the usage of the logarithmic transformation, the optimization solution of Equa-
tion (6) is transferred from maximizing the posterior distribution to minimizing the
energy function L(x, s) = −log{P(x, s|y)} which is

L(x, s) =
1
2
‖y− x− s‖2

2 + λ1Φ(x) + λ2Ψ(s). (7)
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3. The optimization solution of model (7) is solved with the employment of ADMM or
split Bregman by introducing auxiliary variables.

2. Related Works

The stripe noise coexisting with the random noise makes it difficult to formulate the
mixed noise with an explicit expression due to the nonindependent as well as nonidentical
property. Usually, a unified energy model L is constructed by different penalty priors Φ
and Ψ respectively on image x and stripe s to separate them from image decomposition
perspective [43], in which the stripe is equal to the image. According to the categories of
priors, they are divided into the following three categories:

• Sparsity-based priors: These methods viewed that the image especially the stripe is
sparse, so different priors, such as gradient-based variation, dictionary-based learning,
and low-rank recovery, are combined to constrain the models for pursuing the optimal
approximate solution. For instance, Huang et al. [56] proposed a uniform mixed
noise removal model by the employment of joint analysis and weighted synthesis
sparsity priors (JAWS). Chang et al. [57] employed unidirectional total variation
and sparse representation (UTVSR) to simultaneously destripe and denoise remote
sensing images. Xiong et al. [58] proposed a spectral-spatial L0 gradient regularized
low-rank tensor factorization method for hyperspectral denoising. Zheng et al. [59]
removed mixed noise in hyperspectral images via low-fibered-rank regularization.
Liu et al. [60] used the global and local sparsity constraints for a unified model con-
struction to simultaneously estimation intensity bias and remove stripe noise in noisy
infrared images. Zeng et al. [61] proposed a hyperspectral image restoration model
with global L1–2 spatial-spectral total variation regularized local low-rank tensor recov-
ery. Xie et al. [62] denoised hyperspectral images via non-convex regularized low-rank
and sparse matrix decomposition. Hu et al. [63] proposed a restoration method that
can simultaneously remove Gaussian noise and stripes using adaptive anisotropy
total variation and nuclear norms. Wang et al. [64] presented a l0 − l1 Hybrid total
variation model for hyperspectral image mixed noise removal and compressed sens-
ing. Wang et al. [65] exploited nonconvex logarithmic penalty for hyperspectral image
denoising. These methods pursued their exciting denoising performance at the cost of
expensively computational complexity.

• Sparsity-based priors with joint of deep CNN denoiser prior: Recently, deep convolutional
neural network (CNN) as a prior for a specialized task has been popular applied in
various fileds, especially in image restoration, due to its fast speed and large modeling
capacity. Such property had been induced as an image prior to solve the inverse
problem of image restoration [66–68], and had a considerable advantage. Inspired by
its encouraging performance, Huang et al. [69] exploited deep CNN prior with the
combination of unidirectional variation prior (UV-DCNN) to simultaneously destrip-
ing and denoising optical remotely sensed images. Zeng et al. [70] used CNN denoiser
prior regularized low-rank tensor recovery for hyperspectral image restoration. These
unfolding image denoising methods interpreted a truncated unfolding optimization
as an end-to-end trainable deep network and thus usually produced pleasing results
with fewer iterations using additional training for each task [68].

• Discriminative learning prior: As the Gaussian white noise and the stripe noise are
both additive, so there are also various CNN-based denoising methods proposed to
obtain both the image and the stripe. For example, He et al. [71] proposed a deep-
learning approach to correct single-image-based nonuniformity in uncooled long-wave
infrared detectors. Chang et al. [72] introduced a deep convolutional neural network
(DCNN), named as HSI-DeNet, for HSIs’ noise removal. Zhang et al. [73] employed
a spatial-spectral gradient network to remove hybrid noise in hyperspectral image.
Luo et al. [74] suggested a spatial–spectral constrained deep image prior (S2DIP),
which simultaneously capitalize the high model representation ability brought by the
CNN in an unsupervised manner and does not need any extra training data. Despite
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the effectiveness of these methods, the CNN models are pretrained and cannot be
jointly optimized with other parameters.

Inspired by the ideas in Refs. [66–69], in this paper, we proposed a unified mixed noise
removal framework, named as Dual Denoiser Driven Convolutional Neural Networks
(D3CNNs), to take advantages of both the optimization- and discriminative-learning-based
methods. The flowchart of the proposed D3CNNs approach is shown in Figure 2. The main
contributions of this paper are as follows:

1. A unified mixed noise removal (MNR) framework, named as Dual Denoiser Driven
Convolutional Neural Networks (D3CNNs), is proposed by using the CNN based
denoiser and striper priors.

2. Two deep denoiser/striper priors, respectively trained by a highly flexible U-shape
denoiser and an effective residual learning strategy, are plugged as two modular parts
into a half quadratic splitting based iterative algorithm to solve the inverse problem.

3. Quantitative and qualitative results of experiments on both synthetic and real-world
images validate the effectiveness of the proposed mixed noise removal scheme and
even outperforms other advanced denoising approaches.

Figure 2. Flowchart of the proposed D3CNNs method.

3. Dual Denoiser Driven Convolutional Neural Networks

Although various variable splitting algorithms can be employed to solve model (7),
in this paper, we adopt half quadratic splitting (HQS) method due to its simplicity and fast
convergence [68].

3.1. Half Quadratic Splitting (HQS) Algorithm

In order to plug the denoiser prior as well as the striper prior into the optimization
procedure of Equation (7), two auxiliary variables z1 and z2 are introduced in HQS to
decouple the data term and prior terms of Equation (7) and to reformulate it as a constrained
optimization problem given by

L(x, s) =
1
2
‖y− x− s‖2 + λ1Φ(z1) + λ2Ψ(z2), s.t. z1 = x, z2 = s. (8)

Then, Equation (8) is solved by minimizing the following cost function

Lµ1,µ2(x, s) =
1
2
‖y− x− s‖2 + λ1Φ(z1) +

µ1

2
‖x− z1‖2 + λ2Ψ(z2) +

µ2

2
‖s− z2‖2, (9)

where µ1 and µ2 are penalty parameters that vary iteratively in a non-descending order.
The problem (9) can be addressed by the usage of the alternating direction method of
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multipliers (ADMM), which iteratively solves the following subproblems for each variable
while keeping the rest variables fixed:

min
x,s

1
2
‖y− x− s‖2 +

µ1

2
‖z1 − x‖2 +

µ2

2
‖z2 − s‖2, (10)

min
z1

λ1Φ(z1) +
µ1

2
‖z1 − x‖2, (11)

min
z2

λ2Ψ(z2) +
µ2

2
‖z2 − s‖2. (12)

The subproblem (10) can be further separated into two subproblems, and then Equation (9)
can be iteratively solved by the following subproblems:

xk+1 = arg min
x

1
2

∥∥∥y− x− sk
∥∥∥2

+
µ1

2

∥∥∥zk
1 − x

∥∥∥2
, (13)

sk+1 = arg min
s

1
2

∥∥∥y− xk+1 − s
∥∥∥2

+
µ2

2

∥∥∥zk
2 − s

∥∥∥2

2
, (14)

zk+1
1 = arg min

z1

1

2
(√

λ1
/
µ1

)2

∥∥∥z1 − xk+1
∥∥∥2

+ Φ(z1), (15)

zk+1
2 = arg min

z1

1

2
(√

λ2
/
µ2

)2

∥∥∥z2 − sk+1
∥∥∥2

+ Ψ(z2). (16)

As we can see, the data term and regularization term are separated into four individual
subproblems. To be specific, Equations (13) and (14) are both quadratic regularized least-
squares problems which have fast closed-form solutions:

xk+1 =
y + µ1zk

1 − sk

1 + µ1
, (17)

sk+1 =
y + µ2zk

2 − xk+1

1 + µ2
. (18)

According to Bayesian perspective [75], the subproblem (15) corresponds to Gaussian
denoising on the image xk+1 by a Gaussian denoiser with noise level

√
λ1/µ1 and the

subproblem (16) corresponds to denoising the stripe image sk+1 by a stripe restorer with
noise level

√
λ2/µ2. Consequently, the denoiser and the stripe restorer acted as two

modular parts are plugged into the alternating iterations to solve Equation (8). To address
this, Equations (15) and (16) can be rewritten as follows:

zk+1
1 = Denoiser(xk+1,

√
λ1/µ1), (19)

zk+1
2 = striper(sk+1,

√
λ2/µ2). (20)

From Equations (19) and (20), two benefits can be observed. First, the priors Φ(·) and
Ψ(·) can be implicitly replaced by a denoiser and a stripe restorer, respectively. Such a
promising property can be jointly employed to solve many inverse problems, for instance,
denoising and stripe restoration subproblems. Second, it is interesting to learn a DCNN
denoiser and a DCNN stripe restorer to replace Equations (19) and (20), respectively, so
as to utilize the advantages (such as high flexibility and efficiency as well as powerful
modeling capacity) of DCNN.

3.2. U-Shape Denoiser Network

U-Net, known as an effective and efficient tool for image-to-image translation, fused
multiscale features by concatenating the feature maps of the downsampling layers and the
corresponding upsampling layers [68,76,77]. However, it may have two drawbacks. One
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is that the information may be lost when using stride convolution operation. The other is
that its modeling capacity is limited. To capture as much information for constructing the
corrupted pixel as possible, the receptive field usually needs to be successively enlarged by
the employment of convolution in CNN, which can be solved by increasing the filter size
or the depth. At present, the existing popular way is to use 3× 3 filter with a large depth.
However, this method may cause a highly computational burden. Therefore, we replace
traditional convolution (Conv) with dilate convolution (DConv) such that DConv can
enlarge the receptive field while inheriting the superiorities of 3× 3 Conv. For addressing
the second issue, the residual network is employed due to its superior modeling capacity
by stacking multiple residual blocks [68]. By introducing DConv and integrating residual
learning modular (RLM) into U-Net, the proposed denoiser prior network, named as
U-shape denoiser network (USD-Net), is modeled, the flowchart of which is shown in
Figure 3.

Figure 3. Flowchart of the proposed U-shape denoiser network. “SDConv” represents strided DConv
while “TDConv” is transposed DConv, “ +©” is an adding operation.

Note that: (1) In RLM, the batch normalization (BN) and rectified linear unit (ReLU) are
respectively replaced by the momentum batch normalization (MBN) [78] and parametric
rectified linear unit (PReLU), as MBN can solve the underfitting problem caused by a small
batch size of BN while PReLU is utilized for the nonlinearity to generate high quality
estimation with less filters. The dilation factors from the first layer to the last layer are
respectively set to 1, 2, 3, 4, 3, 2, and 1, which aggregates multiscale contextual information
without losing resolution or increasing the depth of the network. The equivalent receptive
field of each layer is 3, 5, 7, 9, 7, 5, and 3. In RLM of each scale layer, five successive “MBN
+ PReLU” blocks are adopted. (2) The USD-Net has four-scale layers, 2× 2 strided dilated
convolution (SDConv) is employed between each downscaling layer while 2× 2 transposed
dilated convolution (TDConv) is exploited between each upscaling layer. (3) The same
scale between SDConv and TDConv has an identity skip connection. (4) The channels in
each scale layer are gradually increased from 64 to 128 to 256 to 512.

3.3. Stripe Estimation Network

For stripe estimation, a deep residual convolutional network (SE-Net), which had
been proved efficiently and effectively in various fileds [33,34,79], is employed. Similar to
USD-Net, the components BN and ReLU of the traditional blocks are respectively replaced
by the MBN and PReLU. The architecture of SE-Net is shown in Figure 4, and its depth is
16; such deeper layers can enlarge receptive field to obtain more contextual information for
constructing the stripe image precisely. According to the differences of the components and
the channels in the blocks, the whole layer of the SE-Net is decomposed into six sublayers,
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for instance: (1) the first sublayer is the “Conv + PReLU” block including 64 filters with the
size of 3× 3× 64, each sublayer from the second to the six sublayers contains three blocks;
(2) The sublayers from the second to the six layers, respectively named as CMP 1, CMP
2, CMP3, CMP 2, and CMP 1, are symmetrical according to the channels, each of which
contains three components: Conv, MBN, and PReLU; (3) The channels from the first to the
six sublayers are respectively 64, 64, 128, 256, 128, and 64 with dilation 1.

Figure 4. Flowwork of the proposed stripe estimation network.

3.4. Loss Function

As there are two networks respectively for different tasks, so they are pretrained
with the usage of loss functions to guarantee a stable convergence for favorable results.
For accurately estimating the clean image and the stripe image, the global and local
information are both important. To this point, the most widely used loss function (mean
squared error, MSE)

LFMSE =
1
N

N

∑
i=1
‖Φ(xi)− gi‖2

2 (21)

is exploited as a global loss to perform global constraints, where Φ(·) denotes USD-Net, N
represents the total number of training image pairs {xi, gi}N

i=1, xi and gi respectively denote
the ith latent clean image in the training database and its corresponding ground-truth
image. Meanwhile, a local loss LFG is formed by the l1-norm on the gradient information
for artifacts prevention and image structure preservation in the estimated result, which is
formulated as

LFG =
1
N

N

∑
i=1
‖∇Φ(xi)−∇gi‖1, (22)

where ∇ denotes the difference in the horizontal and vertical directions. Finally, the whole
loss function of USD-Net is defined as

LFUSD−Net = LFMSE + βLFG (23)

to be minimized for training the USD-Net Φ(·), where β is the weighting parameter to
balance the effects of the two losses. Such loss function (23) is also used to train the SE-Net
Ψ(·), where the USD-Net mapping function Φ, the latent clean image x, and the ground-
truth image g in the global and local losses are respectively replaced by the SE-Net mapping
function Ψ, the contaminated stripe s, and the ground-truth stripe T.

Taking all above procedures into account, we can conclude the optimization of the
proposed dual denoiser driven convolutional neural networks for remotely sensed image
restoration as shown in Algorithm 1.
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Algorithm 1 The Optimization of Dual Denoiser Driven Convolutional Neural Networks
for Remotely Sensed Image Restoration

Initial Setting: Observed degraded image y, parameters λ1 and λ2, iteration number K,
initial noise level σ0

1 and σ0
2 , z0

1 = z0
2 = 0, and two pretrained networks (denoiser in

Equation (19) and striper in Equation (20).
while Convergence criterion Equations (24) and (25) or k ≤ K is not satisfied do

1: Computing xk using Equation (17);
2: Computing sk using Equation (18);
3: Calculating zk

1 using Equation (19);
4: Calculating zk

2 using Equation (20);
5: Updating k: k = k + 1.

end while
Output: Latent clean image xk and stripe sk.

4. Experimental Results and Discussion
4.1. Experimental Preparation
4.1.1. Experimental Environment And Data

The denoiser as well as stripe estimation models are trained in MATLAB (R2015b)
environment with MatConvNet package [80] on a PC with Intel Core i7-5960X CPU 3.0 GHz
16.0 GB memory associated with a Nvidia GTX 1080Ti GPU. The test data are downloaded
from [81–83]. In [81], the MODIS aboard Terra and Aqua level 1B data contain 36 spectral
bands, in which the data of the 36th band are degraded by both stripe and AGWN noise.
Hyperspectral data in [82] and multispectral data in [83] are selected to test the structure
preservation ability. The selected test images are cropped to 162,752 patches of size 35× 35
and are separated randomly into training and test images with a ratio of 8:2.

4.1.2. Experimental Parameters Setting

The denoiser learning network is trained by using stochastic gradient descent (SGD) [84]
with a learning rate of 10−4 and is finished after 60 epochs while the stripe estimation
network is trained by employing ADAM solver [85] with a learning rate of 10−5 and
is finished after 300 epochs. The parameter β in Equation (23) is empirically set to 0.5.
From Equation (13) to Equation (16), we can find that there are five involved parameters
including two regularization parameters λ1 and λ2, two penalty parameters µ1 and µ2,
and iteration number K to be set. Generally, the regularization parameters λ1 and λ2
come from the prior terms and keep fixed during iterations, and they are usually set as an
empirical range for favorable performance, such as λ1 ∈ [0.21, 0.53] and λ2 ∈ [0.19, 0.57].
In our experiments, we fix them to 0.25 and 0.21, respectively. Theoretically, the noise level
(σ1 =

√
λ1/µ1 or σ2 =

√
λ2/µ2) is gradually decreasing during iterations, resulting in the

continuous increment of the penalty parameters µ1 or µ2. In this paper, the initial σ0
1 is fixed

to 29 and the final σK
1 is determined by the image noise level (which is usually less than 29)

while the initial σ0
2 is set to 49 and the final σK

2 is determined by the stripe’s intensity. Both
σ1 and σ2 are uniformly sampled from the initial noise level to the final one in log space.
The convergence criterion is as follows:∥∥∥xk+1 − xk

∥∥∥2

2∥∥xk
∥∥2

2

< η1 (24)

and ∥∥∥sk+1 − sk
∥∥∥2

2∥∥sk
∥∥2

2

< η2, (25)
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where η1 = 3× 10−4 and η2 = 2× 10−4 in the following experiments. When the con-
vergence criterion is not satisfied, the total iteration number K is set to 29, which is large
enough to get a excited performance.

4.1.3. Compared Methods and Evaluation Indexes Selection

To verify the efficiency of the proposed D3CNNs, several state-of-the-arts derived from
different categories are selected to be compared, including two-stage mixed noise removal
(first denoising (Weighted Nuclear Norm Minimization, WNNM [26]), then destriping
(Weighted Double-Sparsity Unidirectional Variation, WDSUV [49]) (WNNM-WDSUV),
model-based methods (UTVSR [57] and JAWS [56]), semi-discrimination learning method
(UV-DCNN [69]), and full-discrimination learning method (HSI-DeNet [72]). In the syn-
thetic experiments, the synthesized RSIs are noised by AGWN ranged from 15 to 30 with a
step size of 5 and stripe with three intensities (10, 30, and 50) as well as three proportions
(0.1, 0.4, and 0.6), which are similar to those in Ref. [43]. Except for the visual compar-
isons, the objective indexes are also selected to quantitatively assess their ability of AGWN
and stripe noise removal. For instance, two referenced indices, peak signal-to-noise ratio
(PSNR) and structural similarity index (SSIM) [34], are employed to respectively assess the
capability of noise reduction and structure preservation in synthetic experiments. While
four reference-free metrics, mean of the mean relative deviation (MMRD) to evaluate the
performance in retaining fine details of noise-free sharp regions [49], Q-Metric (QM) to
evaluate the denoising performance [59], mean of the inverse coefficient of variation (MICV)
to reflect the level of the remaining stripe noise in homogeneous regions [86], and natural
image quality evaluator (NIQE) to evaluate the quality of the improved results [87], are
employed for quantitative evaluation in the real-world experiments. In these indices, small
MMRD and NIQE values depict that the estimated image quality is quite encouraged while
large values of other metrics indicate that the results are pleasing.

In the following test experiments, eight synthetic RSIs (as shown in Figure 5) and
seven real-life degraded RSIs (as shown in Figure 6) are selected to be experimented for the
verification of the efficiency of the proposed D3CNNs strategy.

Figure 5. Eight testing images respectively from Terra MODIS data ((a–c) named as STM1, STM2,
and STM3), Aqua MODIS data ((d–f) named as SAM1, SAM2, and SAM3), Hyperspectral data
((g) Washington DC Mall, SWDCM), and Multispectral data ((h) Washington DC, SWDC).

Figure 6. Eight real-life images respectively from Aqua MODIS data ((a–c) named as RAM1, RAM2,
and RAM3), Terra MODIS data ((d–f) named as RTM1, RTM2, and RTM3), and Hyperspectral
((g) urban) data.

4.2. Discussion of Intermediate Results

Figures 7c–e and 8h–j respectively provide the visual results of xk and sk at different
iterations on the testing images from Figure 5, while both Figures 7f and 8f show the PSNR
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convergence curves for xk and sk. From the figures, several observations can be concluded
as follows: First, the deep denoiser and the deep striper priors play the important roles
of noise removal and stripe estimation, leading to a noise-free image x and a clean stripe
s. Second, compared with intermediate results, the final results including x and s contain
more fine details while they are more visually similar to the ground-truths, meaning that
Equations (13) and (14) can iteratively recover the details with the help of two deep priors.
Third, according to Figures 7f and 8f, xk and sk enjoy a fast convergence to a fixed point.

Figure 7. The intermediate results of xk and sk on the SWDCM image in Figure 5g at different
iterations. Where noise level σ = 25, the proportion P and the intensity I of the periodical stripe are
respectively 0.1 and 50, and the width of each stripe is 20 pixels. (a) Ground-truth. (b) Degraded
SWDCM image. (c–e) Visual images respectively at the 5rd, 13th, and 19th. (f) Convergence curves of
x and s. (g) Ground-truth stripe. (h–j) Visual stripes respectively at the 5th, 13th, and 19th iteration.

Figure 8. The intermediate results of xk and sk on the STM1 image in Figure 5a at different iterations.
Where noise level σ = 30, the proportion P and the intensity I of the non-periodical stripe are
respectively 0.4 and 30. (a) Ground-truth. (b) Degraded STM1 image. (c–e) Visual images respectively
at the 3rd, 11th, and 21th. (f) Convergence curves of x and s. (g) Ground-truth stripe. (h–j) Visual
stripes respectively at the 3rd, 11th, and 21th iteration.
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4.3. Experiments on Synthetic Rsis
4.3.1. Qualitative Evaluation

To subjectively assess the efficiency of the D3CNNs approach, we select the visual
comparisons of five synthetic RSIs degraded by AGWN with different noise level and
the stripe with different types (including period, proportion, and intensity), as shown in
Figures 9–12. From the figures, we can see that all of state-of-the-arts have great ability in
denoising and removing stripe. However, their performance can be discriminated from the
enlarged visual areas, of which the observations can be concluded as follows: First, many
fine details, especially the structures along the stripe, of the image results yielded by the
UTVSR (Figures 9a, 10a and 11) and WNNM-WDSUV (Figures 9b, 10b and 11) methods
are over-smoothed. Second, the HSI-DeNet method estimates latent clean images from the
view of image decomposition and preserves more details than the prior two approaches
but is still subject to losing image details in stripe maps, resulting in the lost of many rich
details, as shown in Figures 9c, 10c, 11 and 12. Third, the UV-DCNN method plugs the
DCNN denoiser prior into the UV model, which reduces the interference of AGWN on the
recovery of the stripe to a great extent. As shown in Figures 9e, 10e, 11 and 12, the image
details in stripe maps become less while the details in estimated images are richer. Fourth,
with deep feature analysis of image and stripe, the JAWS method uses the characteristics
of both image and stripe as constrained priors for the construction of a unified model to
restore image and stripe. Compared with the forward four method, the JAWS method
produces the suitable visual results with more abundant details and more comfortable
stripes, as shown in Figures 9f, 10f, 11 and 12. Finally, the proposed D3CNNs method
yields better promising image and stripe results (as shown in Figures 9g, 10g, 11 and 12) on
details preservation in image and stripe regularity, illustrating that our method is better
than others in image restoration.

Figure 9. Visual comparisons on the SWDCM image in Figure 5g. Where noise level σ = 25, the pro-
portion P and the intensity I of the periodical stripe are respectively 0.1 and 50. (a) Upper: Degraded
SWDCM image. Down: Ground-truth stripe. (b–g) Estimated images and stripes respectively
produced by the UTVSR, WNNM-WDSUV, HSI-DeNet, UV-DCNN, JAWS, and proposed methods.
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Figure 10. Visual comparisons on the STM1 image in Figure 5a. Where noise level σ = 30, the pro-
portion P and the intensity I of the non–periodical stripe are respectively 0.4 and 30. (a) Upper:
Degraded STM1 image. Down: Ground-truth stripe. (b–g) Estimated images and stripes respectively
produced by the UTVSR, WNNM-WDSUV, HSI-DeNet, UV-DCNN, JAWS, and proposed methods.

Figure 11. Visual comparisons of the estimated results on the synthetic SAM1, SWDC, and SWDC
images. For SAM1: σ = 15, P = 0.4, and I = 10. For STM2: σ = 20, P = 0.4, and I = 30. For SWDC:
σ = 25, P = 0.6, and I = 30. The stripes on SAM1 and SWDC are nonperiodical while the stripe on
STM2 is periodical.

Figure 12. Visual comparisons of the estimated stripes corresponding to the SAM1, STM2, and SWDC
images in Figure 11.
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4.3.2. Quantitative Assessment

As noise levels especially the stripe’s types are different, we employ mean PSNR
(MPSNR) and mean SSIM (MSSIM) to objectively evaluate each method. Such indices are
defined as follows:

MPSNR =
1
N

2

∑
i1=1

3

∑
i2=1

3

∑
i3=1

PSNR(i1, i2, i3), (26)

and

MSSIM =
1
N

2

∑
i1=1

3

∑
i2=1

3

∑
i3=1

SSIM(i1, i2, i3), (27)

for each image at one noise level, where N = 2× 3× 3 = 18, i1 = 1 represents the periodical
stripe while i1 = 2 is the non-periodical stripe. i2 = 1, 2, and 3 respectively denote the
stripe’s intensity as 10, 30, and 50 while i3 = 1, 2, and 3 respectively represent the stripe’s
proportion as 0.1, 0.4, and 0.6. Quantitative MPSNR and MSSIM results are respectively
compared in Tables 1 and 2, from which the following two conclusions are involved: (1) for
each image, both MPSNR and MSSIM are decreasing along with the increment of noise
level, the larger noise level will seriously contaminate the images, making it more difficulty
in the estimated results being closer to ground-truth. (2) The proposed D3CNNs approach
generates the highest MPSNR and MSSIM values on each image at the same noise level,
illustrating that it is effective and even better than the state-of-the-arts, which is consistent
with visual comparisons.

Run time, an important index to assess the efficiency of algorithms, is tested on images
with different sizes, the results of which are shown in Table 3. From the table, we can find
several observations: First, the run time of the discriminative learning methods (the results
are marked with color font), even in the CPU version, is faster than that of the model-based
optimization approaches. Second, the pure discriminative learning (HSI-DeNet, its results
are marked with red font) gets the fastest speed on either CPU or GPU version under
the same image size, which is reasonable and is used to learn a specialized prior (such as
denoiser prior in UV-DCNN, the results are marked with green font) to be plugged into the
model-based optimization methods for improving the computation time and boosting the
modeling ability. Third, with the help of two deep priors, the proposed D3CNNs generates
the second fastest runtime, which is a little slower than that of HSI-DeNet, but it has much
better MPSNR (as shown in Table 1) and MSSIM (as shown in Table 2) than HSI-DeNet.

According to the comprehensive consideration of the comparable results, we can get
that D3CNNs is a flexible and faithful method for image restoration.

Table 1. Quantitative MPSNR comparisons of the state-of-the-arts on the synthetic optical RSIs shown
in Figure 5.

Methods
STM1 STM2 STM3

σ = 15 σ = 20 σ = 25 σ = 30 σ = 15 σ = 20 σ = 25 σ = 30 σ = 15 σ = 20 σ = 25 σ = 30

UTVSR 28.14 26.86 25.9 25.22 29.96 28.83 27.58 27.1 33.12 32.04 31.05 30.25

WNNM-WDSUV 28.82 27.52 26.62 25.94 30.91 29.63 28.75 28.09 34.55 33.42 32.61 31.98

HSI-DeNet 29.02 27.71 26.77 26.04 31.02 29.72 28.78 28.1 34.71 33.56 32.72 32.08

UV-DCNN 29.05 27.77 26.89 26.24 31.13 29.87 29 28.34 34.78 33.6 32.84 32.11

JAWS 29.24 27.86 26.93 26.25 31.21 29.93 29.03 28.36 34.86 33.71 32.93 32.28

Proposed 29.68 28.15 27.46 26.76 31.59 30.47 29.73 28.69 35.18 34.06 33.38 32.79
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Table 1. Cont.

Methods
SAM1 SAM2 SAM3

σ = 15 σ = 20 σ = 25 σ = 30 σ = 15 σ = 20 σ = 25 σ = 30 σ = 15 σ = 20 σ = 25 σ = 30

UTVSR 28.67 27.14 25.98 25.21 28.46 27.13 26.02 25.29 28.12 26.92 26.11 25.27

WNNM-WDSUV 29.31 27.75 26.62 25.74 29.25 27.81 26.84 26.09 29.01 27.74 26.88 26.25

HSI-DeNet 29.24 27.77 26.68 25.82 29.36 27.98 26.95 26.14 29.17 27.88 26.98 26.29

UV-DCNN 29.47 28.01 26.89 26 29.45 28.11 27.14 26.4 29.31 27.97 27.13 26.5

JAWS 29.52 27.99 26.82 25.97 29.58 28.18 27.2 26.44 29.32 28.05 27.17 26.52

Proposed 29.75 28.64 27.33 26.47 30.02 28.83 27.91 27.08 29.84 28.68 27.79 27.01

Methods
SWDCM SWDCM

σ = 15 σ = 20 σ = 25 σ = 30 σ = 15 σ = 20 σ = 25 σ = 30

UTVSR 28.53 27 25.68 24.8 31.03 29.71 28.85 28.33

WNNM-WDSUV 29.44 27.76 26.51 25.53 32.41 30.96 29.87 29.03

HSI-DeNet 29.5 27.91 26.72 25.75 32.61 31.2 30.06 29.16

UV-DCNN 29.52 27.87 26.57 25.69 32.69 31.27 30.26 29.27

JAWS 29.62 28.02 26.77 25.84 32.83 31.41 30.33 29.48

Proposed 29.84 28.33 27.06 26.37 33.17 31.76 30.8 29.97

Table 2. Quantitative MSSIM comparisons of the state-of-the-arts on the synthetic optical RSIs shown
in Figure 5.

Methods
STM1 STM2 STM3

σ = 15 σ = 20 σ = 25 σ = 30 σ = 15 σ = 20 σ = 25 σ = 30 σ = 15 σ = 20 σ = 25 σ = 30

UTVSR 0.7872 0.7251 0.6626 0.6205 0.815 0.7592 0.7118 0.6825 0.8766 0.8587 0.8482 0.8342

WNNM-WDSUV 0.8196 0.7748 0.7209 0.6842 0.8237 0.7734 0.7476 0.7149 0.8821 0.872 0.8567 0.8413

HSI-DeNet 0.8216 0.7843 0.7257 0.6861 0.832 0.7771 0.7471 0.7157 0.8826 0.8715 0.8559 0.8424

UV-DCNN 0.8466 0.7944 0.7318 0.6898 0.8433 0.782 0.7482 0.7179 0.8895 0.8728 0.8577 0.8426

JAWS 0.8472 0.8003 0.7356 0.6917 0.8482 0.7867 0.7488 0.7187 0.8919 0.8724 0.8585 0.8462

Proposed 0.8518 0.8126 0.7415 0.7172 0.8527 0.8037 0.7524 0.7318 0.9011 0.8829 0.8617 0.8534

Methods
SAM1 SAM2 SAM3

σ = 15 σ = 20 σ = 25 σ = 30 σ = 15 σ = 20 σ = 25 σ = 30 σ = 15 σ = 20 σ = 25 σ = 30

UTVSR 0.8908 0.8524 0.8216 0.7913 0.805 0.7249 0.6452 0.5886 0.748 0.6772 0.5981 0.5562

WNNM-WDSUV 0.8998 0.8662 0.8312 0.806 0.8127 0.7615 0.7094 0.6753 0.7846 0.7179 0.6661 0.6229

HSI-DeNet 0.905 0.8646 0.8335 0.8054 0.8225 0.7648 0.7137 0.6783 0.7763 0.7178 0.6673 0.6243

UV-DCNN 0.8996 0.8676 0.8309 0.8096 0.8266 0.7737 0.7168 0.6802 0.794 0.7196 0.6718 0.6277

JAWS 0.9064 0.8698 0.8334 0.8073 0.8272 0.7755 0.7155 0.6793 0.7992 0.7192 0.6728 0.6283

Proposed 0.9172 0.8813 0.8594 0.8216 0.8353 0.7962 0.7367 0.7015 0.8127 0.7533 0.7119 0.6527

Methods
SWDCM SWDCM

σ = 15 σ = 20 σ = 25 σ = 30 σ = 15 σ = 20 σ = 25 σ = 30

UTVSR 0.8912 0.8241 0.7802 0.7384 0.861 0.8287 0.7807 0.7477

WNNM-WDSUV 0.8937 0.8486 0.8094 0.7808 0.8645 0.83 0.7971 0.7725

HSI-DeNet 0.9003 0.8525 0.8123 0.7832 0.8619 0.8319 0.7976 0.7743

UV-DCNN 0.8978 0.8539 0.8139 0.7858 0.8651 0.8468 0.8066 0.7805

JAWS 0.9014 0.8549 0.8145 0.7833 0.8647 0.8476 0.8079 0.7817

Proposed 0.9153 0.8792 0.8386 0.8124 0.8878 0.8629 0.8237 0.8019
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Table 3. Average computation time (Unit: Seconds) comparison on different image size. For learning-
based methods, the computation times on CPU/GPU are both presented.

Image Size
Methods

UTVSR WNNM-WDSUV HSI-DeNet UV-DCNN JAWS Proposed

256× 256 653.923 108.714 1.048/0.016 1.077/0.035 874.675 1.068/0.024

512× 512 2674.641 440.283 5.869/0.027 7.953/0.142 2937.424 6.667/0.073

4.4. Applications to the Real-World Degraded Rsis

To further verify the efficiency of the proposed D3CNNs scheme, we apply it to the real-
world degraded RSIs shown in Figure 6 and compare it to state-of-the-arts qualitatively and
quantitatively. The visual comparisons of the estimated images and the calculated stripe
maps are respectively shown in Figures 13 and 14, from which we can find that the details
of images produced by our method are richer while the stripes are cleaner and more regular
than those produced by others. Such conclusions denote that the results decomposed
by our method are more faithful and are closer to original clean maps including images
and stripes.

Table 4 shows the comparisons of quantitative results generated by the state-of-the-
arts, from which several observations can be concluded: First, all of them yield considerable
QM values, illustrating that they perform well on denoising. Our method produces the
highest QM value for each RSI, showing the strongest ability of rich detail preservation.
Then, the small difference of MICV values on the same RSI represents that they are all
well in stripe removal in homogeneous regions. Meanwhile, for the same RSI, our method
produces the smallest MMRD value, reflecting that it can generate pleasing results with
more fine details in noise-free sharp regions. Finally, the smallest NIQE value obtained
by our method on the same RSI demonstrates that it can better improve the image quality
than others.

In sum, the comparisons of quantitative associated with qualitative results contribute
to validate the effectiveness of the proposed D3CNNs method.

Figure 13. Visual comparisons of the estimated results on the real-world degraded RAM1, RTM1,
and Hyperspectral urban images in Figure 6.
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Figure 14. Visual comparisons of the estimated stripes corresponding to the RAM1, RTM1, and Hy-
perspectral urban images in Figure 13.

Table 4. Quantitative comparisons of the state-of-the-arts on the real-life optical RSIs shown in
Figure 6.

Indexes Methods RAM1 RAM2 RAM3 RTM1 RTM2 RTM3 Urban

QM

UTVSR 25.18 32.37 11.82 12.57 12.83 23.78 27.58.

WNNM-WDSUV 25.47 32.69 12.24 13.08 13.26 24.33 28.81

HSI-DeNet 26.39 33.97 12.89 13.67 13.81 24.85 30.49

UV-DCNN 26.62 34.57 13.48 14.13 14.37 25.61 31.14

JAWS 26.79 34.78 14.17 14.52 14.88 25.94 31.63

Proposed 27.11 35.27 14.72 15.18 15.49 26.37 32.16

MICV

UTVSR 35.72 33.26 38.19 37.54 36.47 36.79 29.46

WNNM-WDSUV 35.91 33.67 38.42 37.76 36.65 36.92 29.58

HSI-DeNet 36.15 33.83 38.79 37.93 36.89 37.27 29.84

UV-DCNN 36.29 34.08 38.94 38.17 37.09 37.55 30.09

JAWS 36.67 34.41 39.18 38.54 37.51 37.86 30.57

Proposed 36.86 34.74 39.49 38.82 37.74 38.28 31.07

MMRD

UTVSR 0.45 0.67 0.051 0.058 0.062 0.36 0.57

WNNM-WDSUV 0.39 0.52 0.046 0.051 0.055 0.32 0.53

HSI-DeNet 0.37 0.049 0.041 0.047 0.048 0.29 0.48

UV-DCNN 0.33 0.041 0.037 0.042 0.043 0.27 0.44

JAWS 0.29 0.036 0.031 0.036 0.038 0.22 0.35

Proposed 0.21 0.026 0.022 0.027 0.029 0.19 0.27

NIQE

UTVSR 7.03 7.37 4.18 4.22 4.26 6.73 7.19

WNNM-WDSUV 6.94 7.18 4.05 4.11 4.17 6.67 7.07

HSI-DeNet 6.81 7.06 3.94 4.08 4.09 6.51 6.91

UV-DCNN 6.67 6.84 3.78 3.83 3.85 6.17 6.39

JAWS 6.46 6.61 3.62 3.67 3.71 5.95 6.08

Proposed 6.23 6.33 3.28 3.36 3.39 5.28 5.62
For each image, the best result is marked with bold font.
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5. Conclusions

Random noise (additive Gaussian white noise, AGWN) as well as stripe noise always
coexists in remotely sensed images, increasing the difficulty in constructing the inverse
problems. To cope with this problem and preserve as more details as possible in estimated
remotely sensed image, this paper had proposed a novel dual denoiser driven convo-
lutional neural networks (D3CNNs) which has the following key points: (1) two deep
learning networks are trained for different specialized tasks, specially denoising and stripe
estimation. (2) The prelearned modules are respectively employed as denoiser and striper
priors plugged into the model-based optimization method of HQS to solve the image
restoration problem. Experimental results had validated that the two deep powerful priors
can improve the effective of model-based methods, with which the proposed D3CNNs
strategy yields quite competitive visual and quantitative results compared to the state-
of-the-arts. The satisfactory run time is suitable for further applications. Although the
proposed method performs well on mixed noise removal (main for two additive noise), it is
still to be further extended to reduce other noise, such as impulse noise and Poisson noise.
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