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Abstract: Forest canopy height plays an important role in forest resource management and conserva-
tion. The accurate estimation of forest canopy height on a large scale is important for forest carbon
stock, biodiversity, and the carbon cycle. With the technological development of satellite-based
LiDAR, it is possible to determine forest canopy height over a large area. However, the forest canopy
height that is acquired by this technology is influenced by topography and climate, and the canopy
height that is acquired in complex subtropical mountainous regions has large errors. In this paper, we
propose a method for estimating forest canopy height by combining long-time series Landsat images
with GEDI satellite-based LiDAR data, with Fujian, China, as the study area. This approach optimizes
the quality of GEDI canopy height data in topographically complex areas by combining stand age and
tree height, while retaining the advantage of fast and effective forest canopy height measurements
with satellite-based LiDAR. In this study, the growth curves of the main forest types in Fujian were
first obtained by using a large amount of forest survey data, and the LandTrendr algorithm was
used to obtain the forest age distribution in 2020. The obtained forest age was then combined with
the growth curves of each forest type in order to determine the tree height distribution. Finally, the
obtained average tree heights were merged with the GEDI_V27 canopy height product in order to
create a modified forest canopy height model (MGEDI_V27) with a 30 m spatial resolution. The results
showed that the estimated forest canopy height had a mean of 15.04 m, with a standard deviation
of 4.98 m. In addition, we evaluated the accuracy of the GEDI_V27 and the MGEDI_V27 using the
sample dataset. The MGEDI_V27 had a higher accuracy (R2 = 0.67, RMSE = 2.24 m, MAE = 1.85 m)
than the GEDI_V27 (R2 = 0.39, RMSE = 3.35 m, MAE = 2.41 m). R2, RMSE, and MAE were improved
by 71.79%, 33.13%, and 22.53%, respectively. We also produced a forest age distribution map of Fujian
for the year 2020 and a forest disturbance map of Fujian for the past 32 years. The research results
can provide decision support for forest ecological protection and management and for carbon sink
analysis in Fujian.

Keywords: GEDI; canopy height; forest age; LiDAR; time-series remote sensing; Fujian

1. Introduction

Forests, as the main part of the ecosystem, are the largest carbon reservoir in terrestrial
ecosystems and make important contributions to global carbon sinks [1–3]. In order to
mitigate climate change, and to protect forest ecosystems, we need accurate access to
large-scale forest structure parameters for monitoring and managing forest resources [4].
Among the many forest parameters, forest canopy height is both a visual representation
of forest resources and an important attribute for estimating forest biomass and carbon
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stock [5,6]. At present, the accuracy of large-scale forest canopy height estimation is still
limited, especially in mountainous and hilly areas [7,8]. Therefore, the rapid and accurate
acquisition of large-scale forest canopy height and the analysis of the spatial pattern of
the forest height can provide scientific and reasonable decision support to policy makers
for forestry carbon sink trading, dynamic monitoring, and the assessment of forest carbon
neutrality [9].

The traditional methods to obtain forest canopy height over large areas are time
consuming and labor intensive, are difficult for surveyors to perform in areas with a
complex terrain, and are dangerous. The satellite-based light detection and ranging (LiDAR)
technology has the ability to actively acquire the global surface and target 3D information,
and it can play an important role in vegetation height measurement, sea surface height
measurement, and global climate monitoring, thus providing a new way to acquire forest
canopy height over large areas [10,11]. In December 2018, the National Aeronautics and
Space Administration (NASA) launched the global ecosystem dynamics investigation
(GEDI) LiDAR altimetry mission. The GEDI is equipped with the world’s first multi-beam
linear laser altimeter for high-resolution forest vertical structure measurement, which is
mainly used for the precise measurement of forest canopy height, vertical structure, and
ground elevation in tropical and temperate regions. Compared with the early full-waveform
laser altimeter ICESat (2003–2009), the GEDI provides denser coverage of observations
and more accurate estimates [12,13]. However, the GEDI data still have limitations in
their application. Firstly, the data are footprint-level and thus cannot cover the ground
comprehensively, and they are sparse in subtropical mountainous regions compared with
other regions. Secondly, they are missing time series information, which is not suitable for
tracking data information through time. These shortcomings can be effectively remedied if
the GEDI data are combined with time-series optical images.

For forest canopy height estimation, some scholars have used the spectral variation
of long-time-series remote sensing images and have extracted the time series features for
regression analysis in order to obtain the latest canopy height [14–16]. These studies have
confirmed that time series features such as forest disturbance time, disturbance intensity,
and spectral indices before and after the disturbance all have good correlation with the
canopy height. In LiDAR applications, the mainstream approach for the large-scale map-
ping of forest canopy height is to use spatially continuous satellite imagery to extrapolate
the vegetation attributes that are derived from satellite-based or airborne LiDAR [17,18].
With the availability of high-resolution satellite imagery and a new generation of on-board
LiDAR data, the accuracy of regional and global forest canopy height mapping has been
greatly improved compared to previous studies.

Potapov et al. [19] proposed a machine learning algorithm with bagged regression
trees to map a global canopy height product (GEDI_V27) at a 30 m resolution for 2019,
using the 95th percentile relative height metric from GEDI_2A footprint data as the depen-
dent variable. Compared with the GEDI validation data (RMSE = 6.6 m; MAE = 4.45 m;
R2 = 0.62) and the available airborne LiDAR (RMSE = 9.07 m; MAE = 6.36 m, R2 = 0.61),
the GEDI_V27 product is a more stable canopy height model (CHM) that is obtained by
machine learning inversion using a large number of spectral, textural, and phenological
features; however, the accuracy of GEDI_V27 product is lower in subtropical complex
mountainous regions, making it difficult to use the product for subsequent studies in
such regions. The GEDI_V27 product mainly has the following deficiencies: (1) GEDI is
easily affected by topography and thick cloud cover when collecting canopy height data,
which leads to a large instability in the accuracy of the data that is collected in subtropical
complex mountainous regions [20–22]. Therefore, during the inversion process, the value
of the dependent variable RH_95 in the mountainous region has errors, which leads to
the fact that no matter how high the model accuracy is, the results that are obtained still
have large errors. (2) This product extrapolates satellite-based LiDAR footprint data using
optical images, and the generated canopy height product still has the problem of potential
saturation [23]. (3) The product is based on a global study area, and it is difficult to take
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into account all of the regions during the sample selection for model calibration. As a re-
sult, the accuracy of the regions with a small sample size is lower [24–26]. Based on the
above-mentioned problems, we improved GEDI forest canopy height products in 2020 in
Fujian province by considering the stand age factor derived from long time-series Landsat
data from 1986 to 2020 and a large amount of local data in the paper, which reduces the
influence of complex terrain and effectively reduces the problem of data saturation. Finally,
it should be noted that the research region of this study is Fujian province, and the GEDI
collected data in Fujian from April 2019 to September 2020, therefore, the forest age and
sample set in this study were limited to this time period.

There is a very close correlation between forest stand age and its tree height, especially
for immature forests, with a very clear linear relationship [27,28]. In this paper, therefore,
we use long time series Landsat satellite data to produce a forest age distribution map and
then combine the growth curves of different forest types in order to estimate the tree height.
Finally, the tree height results are merged with the satellite-based LiDAR forest canopy
height product GEDI_V27 in order to create a modified forest canopy height distribution
map. The correlated features, such as spectral and texture features in the forest stand
images, are usually adopted for remote sensing estimation of forest age [29]. Numerous
remote sensing data have been used in order to establish the relationship between stand
age and optical, LiDAR, and microwave parameters, including MODIS, ICESat, SPOT-5,
and SAR [30–33]. Although the traditional remote sensing methods can be used to produce
thematic maps of forest age, the spectral saturation of mature forests and the frequent
areas of land change can reduce the accuracy of the forest age estimation models [34,35].
In addition, most forest age products that are estimated by traditional remote sensing have
low spatial resolution and limited time points, and thus cannot capture forest disturbance
and restore the history sufficiently in a space or time domain [33,36]. With Landsat time-
series data archived and freely available, forest disturbance information, such as forest fires,
logging, and afforestation, have been detected at a 30 m resolution over the past 35 years,
allowing researchers to obtain the time point and spatial location of the origin of most of
the existing forest stands for forest stand age estimation [37,38]. In this paper, LandTrendr,
which is a long-time-series forest disturbance and restoration detection algorithm that was
proposed by Kennedy et al. [39], was used to estimate forest age. This algorithm extracted
the change process track of the spectral index pixel by pixel, for which potential vertices
were used as segmentation nodes, and the node positions and spectral values provided
effective information that could explain the forest structure. The trajectory curves before
and after it represent the continuous changes or the stable states of the forest pixels in
the spectral trajectory. Through this method, the forest disturbance and restoration time
nodes were obtained in order to infer the starting time of afforestation, so as to obtain the
distribution map of the existing forest age.

In order to reduce the error of forest canopy height estimation in mountainous regions,
time series satellite remote sensing was adopted in order to estimate the forest stand age
factor and the forest canopy height, which, by merging the forest canopy height that is
derived from stand age, can reduce the uncertainty of exogenous factors in the process of
data acquisition by satellite-based LiDAR and improve the accuracy of the GEDI canopy
height models in mountainous regions. This study had the following four main objectives:
(1) construct the growth curves of needleleaf, broadleaf, and mixed forests in Fujian,
(2) estimate the forest age based on long time series Landsat satellite data, (3) merge the
estimated tree height with the GEDI canopy height model to develop a modified forest
canopy height model, and (4) evaluate and compare the accuracy of the modified canopy
height product in the paper with the GEDI_V27 canopy height product.

2. Materials and Data
2.1. Study Area

The study area of this paper is Fujian, which is situated in Southeastern China. Fujian
covers an area of 124,000 km2 and has a subtropical maritime monsoon climate, with
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mountains and hills accounting for more than 80% of the province’s area (Figure 1a,b).
Fujian is rich in forest resources and is a key collective forest area in Southern China, with
a forest coverage rate of over 66%. The forest types are mainly needleleaf, broadleaf, and
mixed (Figure 1c). The forest types cover map of Fujian was produced by using 2020
Sentinel satellite images (with a spatial resolution of 10 m) and China’s Gaofen series
satellites (with a spatial resolution of 1–2 m), combined with the field survey data, using the
random forest method. In order to understand the coverage of the GEDI original footprint
data in Fujian, all of the GEDI level 2A datasets in Fujian were downloaded from the Land
Processes Distributed Active Archive Center [40]. The time span of the GEDI Fujian data
collection is from April 2019 to September 2020. There are 345 GEDI track files in HDF5
format. The quality filtering and the data visualization were completed using the pyGEDI
package [41] in order to obtain 1,375,019 footprint data. The data collection of the GEDI in
the forest region of Fujian was relatively sparse, and the available footprints per square
kilometer were from 0 to 124, which partly explains the low accuracy of the GEDI_V27 in
the Fujian region.
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Figure 1. Study area. (a) The geographical location of Fujian, (b) a DEM of the study area, (c) forest
types in the study area, and (d) a density distribution map of GEDI_2A footprint data in 1 km2 of the
study area.

2.2. Landsat Time-Series Imagery and Preprocessing

The time-series Landsat dataset that has been used in this study includes the sur-
face reflectance products of Landsat-5, Landsat-7, and Landsat-8, corresponding to the
sensors TM, ETM+, and OLI, respectively. The data that were acquired from the time
range 1986–2020 were processed on the GEE platform, with the specific Landsat satellite
parameters, which are shown in Table 1.
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Table 1. Used Landsat satellite parameters.

Satellite Sensor Acquisition Years Bands (µm)

Landsat-5 TM 1984–2012

B1-Blue (0.45–0.52) B2-Green (0.52–0.60)
B3-Red (0.63–0.69) B4-NIR (0.76–0.90)

B5-SWIR (1.55–1.75) B6-LWIR (10.40–12.50)
B7-SWIR (2.08–2.35)

Landsat-7 ETM+ 1999–Ongoing

B1-Blue (0.45–0.52) B2-Green (0.52–0.60)
B3-Red (0.63–0.69) B4-NIR (0.76–0.90)

B5-SWIR (1.55–1.75) B6-LWIR (10.40–12.50)
B7-SWIR (2.08–2.35) B8-Pan (0.52–0.9)

Landsat-8 OLI 2013–Ongoing

B1-Coastal (0.43–0.45) B2-Blue (0.45–0.51)
B3-Green (0.53–0.60) B4-Red (0.63–0.68)
B5-NIR (0.85–0.89) B6-SWIR1 (1.56–1.66)

B7-SWIR2 (2.11–2.29) B8-Pan (0.50–0.68)
B9-Cirrus (1.36–1.39) B10-LWIR (10.06–11.19)

2.3. Field Survey Dataset

The field survey dataset mainly includes UAV data, forest plot inventory data, and
field measurement datasets (Figure 2). The UAV data that were used in this study include
LiDAR data and visible light images from 2020 to 2021. The distribution of the data includes
Baisha forestry farms in the city of Fuzhou, Jiangle County in Sanming, and the Hu Boliao
reserve in Zhangzhou.
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Figure 2. Distribution of field survey sample data in the study area.

The forest plot inventory data were divided into a plot according to the stand condi-
tions, the stand factors, and the harvesting methods that were consistent with the stand.
The forest plot data include information on the average tree height, the average diameter at
breast height, the denseness, and the stocking volume. The forest plot inventory data that
were used in this study include 66,413 forest plots in Mingxi County in 2008, Xiamen in
2009, Jiangle County in 2015, 2019, and 2021, the Wanmulin reserve in Nanping city in 2016,
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Yongtai County in 2021, and Yongan County in 2021. The field measurement data were
collected from October 2020 to December 2021. The average tree heights in a rectangular
sample plot with a side length of 30 m were measured and recorded, with measuring tools
such as a tape measure, a breast height ruler, a laser range altimeter, and the HUACE i70
GNSS receiver.

3. Methods

The technical flow of this study is shown in Figure 3. The first part of the research
involved fitting curves between the average forest height from inventory plots and the
forest age estimated from Landsat time series. Second, the forest age was estimated using
time series Landsat satellite data. The time nodes of forest disturbance and restoration
were obtained based on the LandTrendr algorithm using long-time-series Landsat data,
and Fujian was divided into disturbance areas and non-disturbance areas. The forest
stand age can be calculated in a disturbance area based on the recovery node; forest stand
ages in the non-disturbance area were labeled as greater than the maximum forest age in
the disturbance areas. Third, the canopy height model and the accuracy evaluation were
inverted. The average tree height was calculated based on the obtained forest age factor
and the growth curves of the different forest types in Fujian, and it was merged with the
GEDI_V27 to obtain the canopy height model of Fujian in 2020. The sample data were
used as reference data to evaluate and analyze the accuracy of the modified canopy height
model and the GEDI_V27 canopy height model obtained by the proposed method.
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Figure 3. Overall technical flowchart for estimating forest canopy height combining time-series
optical remote sensing and GEDI satellite-based LiDAR data.

3.1. Curve Fitting of Forest Age and Average Tree Height

In order to obtain growth curves for each forest type in Fujian, we collected a large
amount of historical forest plot inventory samples distributed in Xiamen, Mingxi County,
Jiangle County, and the Wanmulin reserve, as follows: 61,414 forest patches that contain
forest structure information, such as average tree height, average diameter at breast height
(DBH), forest age, and forest type. We statistically analyzed the samples and plotted the
distribution of the average tree height data corresponding to each age in the forest patches
(Figure 4a–c). We then used Origin software to determine the relationship between the
forest age and the average tree height for the following three forest types: needleleaf,
broadleaf, and mixed forests (Figure 5a–c). By comparing the accuracy of fitting results of
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various functions and analyzing the residual error, we found that the fitting effect of the
exponential function was the most consistent with the relationship between the forest age
and the average tree height. Therefore, the exponential function was selected as the optimal
fitting function between the forest age and the average tree height in this study. The graph
shows that the growth trends of the three forest types are basically the same, with faster
growth before immaturity and a gradual flattening with maturity, at which point trees no
longer increase in height. The negative values calculated for the coniferous forest equation
are replaced by minimum positive values.
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3.2. Forest Age Estimation

In order to estimate the forest age in 2020 in Fujian, the LandTrendr forest disturbance
detection algorithm, which is based on long-time-series Landsat satellite data from 1986 to
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2020, was adopted to distinguish the study area into forest disturbance and non-disturbance
areas, and the forest age in 2020 was calculated based on the forest disturbance features
extracted by the algorithm. A forest disturbance area refers to an area where the forest
status is changed, and this paper takes the forest cover in 2020 as the research object,
therefore the areas where disturbance occurs are restored to the forest, not other land types.
A forest non-disturbance area is an area where no disturbance was detected in the Landsat
time-series images during or after 1986. Since the tree height no longer changes significantly
as the trees mature, the forest age in the undisturbed areas is based on the maximum forest
age in the disturbed area as the minimum threshold.

3.2.1. The LandTrendr Algorithm

The forests in Fujian have the characteristics of short-term rotation and high productiv-
ity, and LandTrendr can identify both short-term drastic forest disturbances and determine
long-term vegetation recovery times. Therefore, long-time-series Landsat data with a large
amount of native Fujian data were used to invert the canopy height data, which can reduce
the influence of complex topography and the problem of data saturation. The LandTrendr
algorithm [39,42] is essentially a spectrum-time segmentation algorithm that focuses on
the detection of changes in the time series of medium-resolution satellite images. The
core of the algorithm lies in the segmented fitting of time series and in extracting spectral
time trajectories image by image, by which both short-term drastic forest disturbances and
long-term vegetation recoveries can be identified. The LandTrendr algorithm in general
appears to only consider the trend component of the time-series data and fits a concise
straight-line segment based on the dynamic trajectory of the spectrum (Figure 6).
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Figure 6. LandTrendr pixel time-series segmentation [42]. (a) Time series of individual bands or
spectral indicators of image elements. (b) Segmentation into a series of linear segments by identifying
vertices. (c) Significant features of each segment of the indicator trajectory.

For the selection of indices, scholars have investigated the differentiation of image
reflectance and derived vegetation indices for forest disturbance types, such as deforestation
and fire, showing that the shortwave infrared (SWIR) band reflectance has the highest
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differentiation among the disturbance types [43,44]. Kennedy et al. [39] showed that the
corresponding normalized burn ratio (NBR) has the highest sensitivity for capturing the
disturbance time of harvesting and fire. Therefore, in this study, NBR was chosen as the
spectral index to construct the time series pixel by pixel, and the NBR was calculated
as follows:

NBR = (NIR − SWIR)/(NIR + SWIR) (1)

The spectral value is the ratio of the difference between the near-infrared (NIR) and
the shortwave infrared (SWIR) values to the sum of those values. Healthy vegetation has
a high NIR value and a low SWIR value, therefore, it will have a high NBR index, which
will suddenly become smaller when healthy vegetation is disturbed, and forest status
information is detected by such a change. The LandTrendr algorithm was implemented
based on the GEE cloud platform, which can efficiently determine the forest disturbance
and restoration in Fujian. After obtaining the forest disturbance time nodes and duration,
while afforestation is generally within one year after harvesting, the afforestation time
could be inferred, and the forest age of the disturbance area could be obtained. The forest
age of the undetected disturbance area was estimated to be above the maximum forest age
in the disturbance area, and this result was used to make the overall forest age distribution
map at a 30 m resolution.

3.2.2. Accuracy Verification of Forest Age

The sample sets for verifying the accuracy of the forest age were the forest plot
inventory data from Mingxi County in 2008, Xiamen in 2009, and Jiangle County in 2019.
These data were used to verify the distribution of the forest age at different disturbance
times to verify that the disturbance recovery time occurred in areas before 2009, and to
compare the forest age of the data in 2009 with the estimated forest age results. Three
hundred forest plots were selected from the data at three sites for the validation and
accuracy evaluation of the forest age.

3.3. Canopy Height Estimation

The process of canopy height estimation has two steps (Figure 7). The first step is to
combine the forest age factor and the forest type growth curve for tree height estimation for
the average tree height distribution in Fujian. The second step is to combine that with the
average tree height distribution with the GEDI_V27 to obtain the final canopy height model:
the modified GEDI_V27 (MGEDI_V27). In terms of determining the average tree height,
this modified model has the advantage of not being limited by environmental factors, but
the tree height of the same stand age has a certain fluctuation range. The GEDI_V27 shows
a large difference in the accuracy of the canopy height estimated by the model in different
areas. Based on a large number of sample datasets, we found that the average tree height in
Fujian at the same age fluctuates within a range of 2 m, and only a small fraction will have a
relatively large error due to special tree species. Therefore, in this paper, 2 m is the threshold
value for combining the average tree height with the GEDI_V27 canopy height products.
In the area of Fujian where the slope is less than 15◦, the canopy height of the GEDI_V27 is
selected. For other areas, the following strategy was employed in the merging process: if
the difference between the mean tree height and the height value of the GEDI_V27 was
within the range of 2 m, then the GEDI_V27 was considered to be an accurate estimation,
therefore, the canopy height of the MGEDI_V27 was used as the canopy height value of the
GEDI_V27. Within a forest disturbance area, since the forest age and the average tree height
were a one-to-one correspondence, when the difference between the average tree height
and the height value of the GEDI_V27 was greater than 2 m, we decided that the GEDI_V27
deviated from the growing range of tree height and considered the average tree height as
the canopy height of the area. In an undisturbed forest area, since the average tree height
was the minimum threshold, when the height value of the GEDI_V27 was greater than this
threshold, the value of the GEDI_V27 was selected as the canopy height of the MGEDI_V27,
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and when the GEDI_V27 value was lower than the average tree height and the difference
was more than 2 m, the average tree height was used instead of the canopy height.
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Figure 7. Flow chart for estimating canopy height. The average tree height is expressed as HA, the
canopy height of the GEDI_V27 is expressed as HGEDI, and the canopy height of the MGEDI_V27
is expressed as HMGEDI. Green pixels indicate an interference area, and blue pixels indicate a
non-interference area.

3.4. Accuracy Verification of Canopy Height

The canopy height accuracy validation process is divided into the following two steps:
The first step is to use the sample set to statistically analyze the canopy height model
product GEDI_V27 and assess its accuracy through statistical quantities. The second step
is to use the sample set to evaluate the accuracy of the modified forest canopy height
model and compare it with the accuracy of the GEDI_V27 to test the effectiveness of this
study’s approach.

The sample dataset was uniformly resampled to a 30 m resolution and was then
compared with the canopy height model. The following three statistical parameters were
calculated: the coefficient of determination (R2), the root mean squared error (RMSE), and
the mean absolute deviation (MAE), as follows:

R2 =1− ∑n
i = 1(xi − yi)

2

∑n
i = 1(yi − y)2 (2)

RMSE =

√
1
n
×∑n

i = 1(xi − yi)
2 (3)

MAE =
1
n
×∑n

i = 1( |x i − yi|) (4)

where x is the canopy height of the canopy height model; y is the canopy height in the
sample data; n is the number of samples, and y is the mean of the canopy height of the
sample set.

4. Results
4.1. Forest Age Estimation Results
4.1.1. Disturbed Area Feature Extraction Results

We extracted the forest disturbance area in Fujian based on the LandTrendr algorithm.
From 1987 to 2020, strong forest disturbances, such as deforestation and forest fires, in
Fujian accounted for 13.22% of the forest area, among which the western and central
parts of Fujian were subject to more forest disturbance, and the distribution ratio of this
area per square kilometer was mostly less than 30% (Figure 8). We also plotted the time
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and temporal trends of the forest disturbance in Fujian, from which we can see that the
area of forest disturbance in Fujian did not fluctuate regularly, with a large area of forest
disturbance occurring between 2005 and 2010 (Figure 9a,b).
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Figure 9. Time-series characteristics of forest disturbance in Fujian. (a) Disturbance years from 1987
to 2020. (b) Temporal characteristics of the forest disturbance area.

4.1.2. Accuracy Evaluation of Forest Age Results

Based on the characteristics of the disturbance area, the specific forest age of the
disturbance area in Fujian can be calculated, while the age of the non-disturbance area takes
the maximum forest age of the disturbance area as the minimum threshold, and the forest
age distribution of Fujian in 2020 was mapped (Figure 10). Overall, most of the stands were
older than 32 years, while within the disturbance area, the estimated forest age had a mean
of 14.98 years, with a standard deviation of 7.5 years.
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Figure 10. Forest age distribution map of Fujian in 2020.

In this study, forest sub-compartment datasets from three cities, Mingxi, Jiangle, and
Xiamen, were selected as reference data, from which 300 samples were randomly selected
in order to verify the accuracy of the forest age. The estimated stand age results showed
good agreement with three validation datasets (Figure 11, R2 = 0.91; RMSE = 1.98 years).

Remote Sens. 2022, 14, x FOR PEER REVIEW 13 of 21 
 

 

 

Figure 10. Forest age distribution map of Fujian in 2020. 

In this study, forest sub-compartment datasets from three cities, Mingxi, Jiangle, and 

Xiamen, were selected as reference data, from which 300 samples were randomly selected 

in order to verify the accuracy of the forest age. The estimated stand age results showed 

good agreement with three validation datasets (Figure 11, R2 = 0.91; RMSE = 1.98 years). 

 

Figure 11. Accuracy verification of forest age. 

4.2. Canopy Height Estimation and Accuracy Assessment 

4.2.1. Canopy Height Estimation Results 

The GEDI_V27 canopy height product, as well as the average tree height that was 

derived from the forest age (TH_A) in this paper, are shown in Figure 12a,b. The total 

average canopy heights of the TH_A and the GEDI_V27 in Fujian were 16.07 m and 11.92 

m, with a standard deviation of 3.43 m and 4.68 m, respectively. According to the merging 

strategy in the method of this paper, the average tree height distribution was merged with 

the GEDI_V27 canopy height model in order to obtain the final canopy height distribution 

Figure 11. Accuracy verification of forest age.

4.2. Canopy Height Estimation and Accuracy Assessment
4.2.1. Canopy Height Estimation Results

The GEDI_V27 canopy height product, as well as the average tree height that was
derived from the forest age (TH_A) in this paper, are shown in Figure 12a,b. The total
average canopy heights of the TH_A and the GEDI_V27 in Fujian were 16.07 m and 11.92 m,
with a standard deviation of 3.43 m and 4.68 m, respectively. According to the merging
strategy in the method of this paper, the average tree height distribution was merged with
the GEDI_V27 canopy height model in order to obtain the final canopy height distribution
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of Fujian in 2020 at a 30 m resolution (Figure 12c). Overall, the forest canopy heights in most
of these areas ranged from 10 to 20 m. The mean of the MGEDI_V27 was 15.04 m, with a
standard deviation of 4.98 m. Based on the spatial distribution, the forests in Northwestern
and Central Fujian were relatively taller than the forests in Southeastern Fujian. The mean
canopy height of all of the prefecture-level cities in Fujian ranged from 12.53 to 26.26 m.
The differences between Xiamen and the other cities were larger than those between the
other cities (Figure 12d).
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Figure 12. Canopy height estimation results. (a) Canopy height of Fujian estimated from time-series
optical images. (b) The GEDI_V27 for the Fujian region. (c) Canopy height distribution of the
MGEDI_V27 in Fujian obtained by merging time-series optical remote sensing and the GEDI LiDAR
data. (d) Boxplots of the MGEDI_V27 forest canopy height of Fujian grouped by city.

4.2.2. Accuracy Evaluation

In order to evaluate the validity of the canopy height estimation method that was
used in this study, the accuracy of the GEDI_V27 and the MGEDI_V27 canopy height
model was evaluated using 5299 sample points. In the evaluation results, we observed that
the GEDI_V27 canopy height model has a low accuracy and a poor agreement with the
sample set (Figure 13a, R2 = 0.39, RMSE = 3.15 m, MAE = 2.37 m), while the accuracy of the
MGEDI_V27 canopy height model, which was obtained by combining the optical images
with the GEDI data, is a significant improvement (Figure 13b, R2 = 0.67, RMSE = 2.24 m, and
MAE = 1.85 m). The results thus show that the MGEDI_V27 compensates for the defects
of the GEDI satellite-based LiDAR canopy height model to a certain extent. In addition,
in order to visualize the advantages of combining the time-series optical remote sensing
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and the satellite-based LiDAR methods to estimate forest canopy height in subtropical
mountainous areas, we plotted the observed canopy height values of some of the sample
points and the two canopy height models, as shown in Figure 14. The comparison chart
shows that the MGEDI_V27 is more concentrated in the observed value range, which means
that the interference that is caused by external factors is reduced. The accuracy of the forest
canopy height estimation in Fujian is, therefore, effectively improved.
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Figure 13. Accuracy assessment results of two canopy height models. (a) Linear regression of canopy
height between the GEDI_V27 and the sample set. (b) Linear regression of canopy height between the
MGEDI_V27 and the sample set. The dotted line represents a 1:1 match, and the red line represents the
trend of the forest canopy height relationship between the field measurements and the two products.
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canopy height.

5. Discussion

Fujian is extremely rich in forest resources, and the effective monitoring of forest
resources is important for the stability of the Fujian ecosystem and the spatial analysis of
forest carbon sinks [45]. Among the many forest parameters, canopy height is extremely
important, but is difficult to obtain [46]. We attempted to use the methods from [14,15,47],
however the results were poor, and the accuracy of the obtained results was very low. In
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addition, we evaluated the new canopy height product [19,20] using a sample dataset from
Fujian and found that the accuracy was only about 0.4. The main reason for this is that
the GEDI footprint data in Fujian are too sparse, while the environmental gradients in the
mountainous region vary greatly, and the change process is highly complex and uncer-
tain [48,49]. Therefore, it is important to address how these problems can be solved while
preserving the advantages of satellite-based LiDAR for fast and effective measurements of
forest canopy height. This paper combines long-time-series remote sensing images with
satellite-based LiDAR canopy height in order to estimate the forest canopy height in a
subtropical mountainous region, compensating for the fact that using long-time-series
optical image features to estimate the forest tree height can easily reach saturation, while
reducing the errors in satellite-based LiDAR canopy height acquisition [50–53]. In order
to investigate the validity of the method, many local multi-source sample datasets were
collected in this paper, such as the following: airborne LiDAR, UAV visible light data, tree
height measurements in the field, and inventory plot data. We used these sample sets to
compare the accuracy of the satellite-based LiDAR GEDI_V27 canopy height model and the
MGEDI_V27 (R2, RMSE, and MAE improved by 71.79%, 33.13%, and 22.53%, respectively),
and the effectiveness of the method was confirmed. In addition, we also determined the
distribution of forest disturbance in Fujian since 1986, the distribution of forest disturbance
duration, the distribution of forest age in Fujian in 2020, and the growth curves of the major
forest types in Fujian. The research results can provide important technical support in
such tasks as the estimation of the stockpile volume, biomass estimation, and carbon sink
analysis, and have important significance for forest ecological protection and management
in Fujian.

In order to test the validity of this paper, we evaluated the accuracy of two canopy
height models according to different forest age groups and slope classes. The forest
age was divided into the following three age groups [54]: young forests (0–10 years),
middle-aged forests (10–20 years), and mature forests (>20 years), and the slope class
was divided into the following five classes: 0–10◦, 10–20◦, 20–30◦, 30–40◦, and >40◦. The
results suggest that the MGEDI_V27 shows an improved canopy height accuracy in all
of the age groups and in the different slope classes. For the three age groups, we used
4981 forest plots from the forest plot survey data and included the forest age attributes as
reference samples for accuracy verification. The accuracy of the GEDI_V27 was relatively
low in all of the age groups (Figure 15), especially in the young forest plots (R2 = 0.18,
RMSE = 4.03 m, MAE = 3.14 m). The MGEDI_V27 concentrated more on the forest canopy
height values from the field survey in all three of the age groups (Figure 16, R2 = 0.33–0.55,
RMSE = 2.15–2.27 m, MAE = 1.78–2.04 m). For the slope class, we used 5299 forest plotsas
a reference sample for accuracy verification. The canopy height product GEDI_V27 had the
highest accuracy in the slope range of 0–20◦, but the accuracy decreased if the slope was
greater than 20◦. However, it is worth noting that it is not that the canopy height accuracy of
the GEDI_V27 decreases with a higher slope, but that the stability of the overall accuracy of
the product of the satellite-based LiDAR decreases if the slope is greater than 20◦ (Figure 17,
R2 = 0.32–0.45, RMSE = 2.47–3.38 m, MAE = 2.31–2.49 m). The MGEDI_V27 canopy
height model is not affected by the slope (Figure 18, R2 = 0.64–0.75, RMSE = 2.01–2.34 m,
MAE = 1.71–1.99 m). The accuracy of the MGEDI_V27 had less variation under the different
slope levels and was not significantly affected by topographic factors. There are two reasons
for the lower accuracy of the GEDI_V27 (Figures 15 and 17). First, it uses the GEDI-derived
RH95 index as the canopy height, which leads to a low forest canopy height in some
areas. Second, the geographic positioning, especially in the mountainous areas where
it is more complicated, suffers from a bias. Many other canopy height products have
been obtained using satellite-based LiDAR [17,18,20,55]. In the future, we will further
combine the advantages of various products in order to optimize the forest canopy height
estimation approach.
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Though the canopy height estimation method in this study shows great potential, there
are still some limitations. First, the classification of the forest types is relatively rough, and
some special tree species categories, such as eucalyptus and bamboo forests, have growth
curves with unique characteristics. If more detailed tree species classification becomes
available, then the method in this paper will more effectively improve the accuracy of the
canopy height estimation. Second, the temporal resolution of the sample dataset that has
been used in this paper is complex, and although it is as close as possible to the time of
the GEDI data collection, there are still differences in the time of various data acquisitions,
which may also cause some deviation in the canopy height in a small number of areas.
Third, the growth curves of the forest types in this paper require a large amount of sample
data, and, due to geographical limitations, the same forest types have different growth
trajectories in different climates, therefore, the migration of the method in this paper needs
to be enhanced. Fourth, in the undisturbed forest areas in Fujian, the forest sometimes does
not grow normally, due to the influence of environmental factors. For example, the forests
in Fujian that are above 1500 m in elevation do not exceed 10 m in height. Finally, although
the GEDI footprint data are sparse in this study, the accuracy of the wall-to-wall satellite-
based LiDAR data can be improved by using more advanced interpolation methods if the
ICESat-2 data can be combined.

6. Conclusions

In this study, we demonstrate the utility of combining long time series Landsat satellite
data with GEDI satellite-based LiDAR data to estimate forest tree height. In order to
reduce the errors of satellite-based LiDAR data in complex areas, we produced a forest
age distribution map of Fujian in 2020 that was based on long-time-series Landsat images
and combined it with a large amount of historical forest plot inventory data in order
to determine the relationship between the forest age and the average tree height of the
coniferous forest, the broadleaf forest and the mixed forests in Fujian. We then combined
this with the GEDI_V27 canopy height model in order to produce a modified forest canopy
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height in 2020. The main conclusions, which were verified by the accuracy of the estimation
results, are as follows:

(1) The LandTrendr algorithm can effectively estimate forest age, and the error is about
one to two years after sample verification. The results show that most of the forest
disturbance lengths in Fujian can be recovered in a one-year time range, and there are
few forests with disturbance lengths of more than two years.

(2) The canopy height products of the satellite-based LiDAR GEDI in Fujian are influenced
by the topography and the climate, and the accuracy is lower than that of the global
scale. Through the statistical analysis of the observed data, the results show that the
R2 is 0.39, the RMSE is 3.35 m, and the MAE is 2.41 m. Therefore, relying only on
the satellite-based LiDAR canopy height model cannot meet the needs of subsequent
studies on estimating the forest stock, estimating the biomass, and analyzing the forest
carbon sink potential.

(3) The combination of long-time-series optical remote sensing images and native forest
growth curves can improve the accuracy of satellite-based LiDAR canopy height,
and, to a certain extent, compensate for the large errors of satellite-based LiDAR
data acquisition in complex terrain areas. The accuracy evaluation results of the
MGEDI_V27 canopy height that were obtained after the method of this paper were an
R2 of 0.67, an RMSE of 2.24 m, and an MAE of 1.85 m. This paper also compares the
accuracy values of the GEDI_V27 and the MGEDI_V27 by age group and slope grade.
In terms of the age groups, the accuracy of the canopy height that was obtained by
the method in this paper was significantly higher (R2, RMSE, and MAE increased by
91.5%, 27.33%, and 20.57%, on average), and the accuracy improvement of the young
forests was the highest. The accuracy of the MGEDI_V27 was generally higher than
that of the GEDI_V27 at different the slope levels, where the accuracy improvement
was more obvious in the areas with a slope that was greater than 20◦ (R2, RMSE, and
MAE increased by 80.96%, 26.82%, and 22.53%, on average).
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