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Abstract: The clumping index (CI) is a commonly used vegetation dispersion parameter used to
characterize the spatial distribution of the clumping or random distribution of leaves in canopy
environments, as well as to determine the radiation transfer of the canopy, the photosynthesis of the
foliage, and hydrological processes. However, the method of CI estimation using the measurement
instrument produces uncertain values in various forest types. Therefore, it is necessary to clarify
the differences in CI estimation methods using field measurements with various segment lengths in
different forest types. In this study, three 100 m × 100 m plots were set, and the CI and leaf area index
(LAI) values were measured. The CI estimation results were compared. The results show that the
accuracy of CI estimation was affected by different forest types, different stand densities, and various
segment lengths. The segment length had a significant effect on CI estimation with various methods.
The CI estimation accuracy of the LX and CLX methods increased alongside a decrease in the segment
length. The CI evidently offered spatial heterogeneity among the different plots. Compared with the
true CI, there were significant differences in the CI estimation values with the use of various methods.
Moreover, the spatial distribution of the CI estimation values using the ΩCMN method could more
effectively describe the spatial heterogeneity of the CI. These results can provide a reference for CI
estimation in field measurements with various segment lengths in different forest types.

Keywords: clumping index; estimation; impact analysis; field measurement

1. Introduction

As a common phenomenon in natural forests, canopy clumping can affect both gap
fraction and canopy radiation transfer [1–3]. Meanwhile, it can cause the leaf area index
(LAI) to be underestimated without considering canopy clumping [4–6]. Therefore, it is
essential to quantify the non-random distribution characteristics of the forest canopy [7].

The canopy clumping index (CI) is a commonly used vegetation dispersion parameter
used to characterize the spatial distribution of leaves or needles within the forest canopy [8].
The CI is often defined as the ratio of the effective leaf area index (LAIe) to the real leaf
area index (LAIr) [9]. The LAIr is defined as the total area of plant leaves per unit land
area, accounting for half of the land area [10,11]. The non-randomness level of foliage
distribution in the forest canopy can be quantified by the CI in real scenarios. The CI
is equal to 1.0; there is a random distribution of foliage in canopy environments, i.e.,
larger than 1.0 when the canopy offers a regular distribution and less than 1.0 when the
canopy offers an aggregated distribution [12]. An exploration into the canopy clumping
effect can not only help improve understanding around canopy efficiency in order to
intercept light, but can also quantitatively calculate the carbon capture of vegetation in
the ecosystem and the proportion of chlorophyll fluorescence photons escaping from the
canopy [13]. Therefore, accurately acquisitioning the CI is of great importance in order to
understand the distribution characteristics of leaves in the canopy and gas exchange in the
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ecosystem [14]. Meanwhile, a lack of consideration of the CI can lead to an LAI error of up
to 70% [15]. Therefore, it is essential to correctly estimate the LAI when using an indirect
optical approach that accounts for the clumping effect [16].

The current CI is a ratio of the canopy gap fraction under real and random conditions,
and it is a quantified ratio of the effective leaf area index (LAIe) to the real leaf area
index (LAIr). In many studies, the CI is used to efficiently quantify the transmittance
and interception of light and precipitation in canopy environments. Furthermore, the
primary ways of obtaining the CI include field and remote sensing methods. In field
measurements, the CI can be estimated both directly or indirectly using commercial optical
instruments [16,17]. There are usually two steps available to retrieve the forest canopy
clumping index, including the gap size estimation phase and the CI estimation phase [7].
The gap size distributions can be obtained using commercial optical instruments, such as
tracing radiation and architecture of canopy (TRAC) and digital hemispherical photography
(DHP) in-field measurements. For the CI estimation phase, there are several well-developed
and accepted methods used to quantitatively calculate the clumping degree. The finite-
length averaging method (LX) proposed by Lang and Xiang was the earliest method used
for CI estimation [18]. In this method, the whole scene was divided into different segments
according to the clustering effect of the whole scene, and the canopy was assumed as
random distributions in each segment. The LAIr in each segment was calculated by the gap
rate model and the LAIe of the whole scene was calculated by the gap rate model. Then, the
CI was calculated by the ratio of the LAIe to the LAIr. Evidently, the size of the segments
using this method will significantly affect the accuracy of CI estimation [19,20]. Chen et al.
proposed a gap size distribution model that can be used to calculate the CI. In this method,
large gaps from the measured gap size accumulation curve were sequentially removed until
the pattern of gap size accumulation resembled a random spatial distribution, and the CI
was calculated using the logarithmic gap size averaging method (the CC method) [21–23].
Unlike the LX method, this method is not limited by light conditions and has strong
applicability [17]. Additionally, this method is more commonly used for CI estimation [24].
Pisek et al. improved the CC method for CI estimation based on the original Miller’s law,
known as the CMN method. The difference between the CMN and CC methods is that the
CMN method does not consider the normalization after removing large gaps [19]. Leblanc
combined the LX and CC methods to calculate the CI from hemispheric photography (HP)
images, in what is called the CLX method [25]. As a combination of the two methods, the
CLX method was disadvantageous. It was sensitive to the segment length (similar to the
LX method) and failed to identify and eliminate small gaps, which caused increases in
the CI estimation error (similar to the CC method) [26]. To conclude, the advantages and
disadvantages of various methods in different scenes are still important to consider when
taking actual measurements.

In field measurements, the CI can also be estimated by obtaining the LAIe and LAIr and
then calculating the ratio, which can retrieve the CI. The LAIr generally adopts destructive
sampling [27], allometric growth [28], and litter collection [29]. The destructive sampling
method is used to pick leaves of all vegetation in the study area and individually measure
the leaf areas, before then calculating the LAIr. This method has certain impacts on the
ecological environment, making it unsuitable for forests with complex structures [30]. The
allometric technique depends on the relationship between the leaf area and any dimension
of the element of the woody plant, such as the green leaf biomass, the stem diameter, the
diameter at breast height, the tree height, or the volume [8]. Moreover, this relationship
is determined via destructive sampling. The allometric equation can be used to estimate
the LAIr within the study area. However, this method is disadvantageous given that
it can destroy the samples. The allometric equation is also restricted because of its site
specificity, and the relationship is stand-specific and dependent on the season, site fertility,
local climate, and canopy structure [31,32]. The measured result may be less than the
LAI, as measured by the optical instrument method [33]. The litter collection method
retrieves fallen leaves during the leaf-falling period using litter traps in the study area
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and the LAIr can be determined from the litter using the weight method. This method is
very useful for LAIr measurements, especially in deciduous forests. The accuracy of LAIr
measurements was 95% within a bias of 10% with respect to the mean with an appropriate
spatial and temporal sampling scheme [34,35]. The LAIe is generally measured with an
optical instrument, such as Demon, LAI-2200, TRAC, SunScan, and AccuPAR, or with
digital hemispheric photography (DHP). These optical instruments have usually been used
to monitor the LAI status and any small-scale dynamic changes in forest ecosystems [36–38].
Denmon is an instrument used for log-averaging the transmittance of solar beams, and its
sensor has a filter that can have a filtering effect on other scattered light measurements and
can allow the light to be measured at a wavelength of only 430 nm. However, it required
several repeated time observations and there were more complex operating procedures
compared with LAI-2200 [8]. The LAI-2200 instrument, equipped with a fisheye lens
and five concentric conical rings (7◦, 23◦, 38◦, 53◦, and 68◦), was used to record incident
light intensities. Similar to Denmon, the LAI-2200 calculated the LAIe by comparing the
different measurements among the above and below canopies. The result measured with
the LAI-2200 was usually sensitive to different light conditions, so it was used often to take
measurements before dawn or after dusk [39]. The LAI-2200 has been successfully used
to estimate LAIe in continuous and homogeneous canopies; however, the potential of the
LAI-2200 instrument is restricted by a general tendency of LAIe underestimation [6,16].
The TRAC technique can also be used to calculate the LAI by combining the average leaf
width, the needle cluster ratio, and the woody leaf area ratio of the study area [21,23].
SunScan and AccuPAR were used to calculate the LAI by measuring the solar transmittance
of the upper and lower parts of the canopy, but these two methods were not suitable for
measurements within coniferous forests [8]. The DHP method generally uses a fisheye lens
and a digital camera to measure the canopy gap ratio and the LAI. However, the accuracy
of this method depended on recognizing the algorithm of the gap ratio and woody parts,
meaning that the accuracy could be further improved by the optimization algorithm [17].
To summarize, the accuracy of LAI measurements varied among different instruments, as
did CI estimation when using the ratio of the LAIe and the LAIr.

Global- and regional-scale CI estimation methods have been generated by remote
sensing technology. Optical remote sensing, such as with POLDER, MODIS, and MISR
satellite data, has been successfully used for CI estimation purposes [40–42]. An empirical
relationship between the CI and vegetation index, such as the normalized difference
between the hotspot and dark-spot (NDHD) models, was established to obtain a clumping
index [43]. Chen et al. (2005) generated a monthly CI global mapping model from POLDER
with a 6 km resolution [44]. He et al. proposed a global CI mapping model based on the
NDHD model at a 500 m resolution by utilizing the MODIS BRDF product [40]. Fang et al.
obtained the global CI distribution data from 2000 to 2020 by calculating the NDHD based
on MODIS data and implemented the retrieval service in Google Earth Engine. The results
indicate that the global clumping index range is about 0.3–1.0 [45]. With the development
of laser ranging technology, light detection and ranging (LiDAR) data have been used
to estimate the CI through calculating the gap rate or gap fraction by CC, CLX, or other
methods [7,46,47]. Unfortunately, there is no effective and robustness algorithm used to
retrieve the clumping index in a wide range with spaceborne lidar. Therefore, optical
remote sensing is still the primary data source for CI estimation on the large spatial and
multi-temporal scale [16].

Regardless of field measurements or remote sensing estimations, accurately measuring
the CI is essential. Some studies have focused on researching the availability and accuracy
of CI calculation methods in field measurements [17,19,48]. The first factor that will have
a potential impact on the measurement results is the segment length. Segment length is
an artificially assumed variable used to estimate the CI. Before CI estimation, a cell that is
small enough for the assumption of leaf distribution randomness within a cell should be
assumed. Meanwhile, the size of this cell should be large enough so that the statistics of
the gap fraction are meaningful. Moreover, this segment size is usually called the segment
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length. A theoretical analysis of this problem suggests that the segment length should be at
least 10 times the width of a leaf [16]. However, varied segment lengths can lead to different
and random canopy situations within each segment. In the case of relatively long segments,
the canopy may have a clustered distribution. This results in a large error caused by the
calculation method [17]. Leblanc et al. compared the differences in CI estimation methods
and showed that the CLX method was less sensitive to the segment length compared to
other methods, and the LX method was more sensitive compared with other methods [26].
Pisek et al. compared the CI estimation results using the LX method and the CLX method
under various segment lengths, and showed that the segment length can have an uncertain
impact on CI estimation, though the optimal segment length for CI estimation was not
determined [19]. Woodgate found that the CLX method was better than the CC and LX
methods for CI estimation in eucalyptus forests [49]. However, Pisek et al. found that the
CLX method was more suitable for CI estimation than the CC, LX, and CMN methods
in Scots pine forests [19]. This indicates that the various types of forest will increase the
uncertainty of CI measurements [50]. Therefore, it is necessary to evaluate the differences
in CI estimation methods when taking in-field measurements with various segment lengths
in different forest types.

To sum up, the studies on the differences among CI field measuring methods were
insufficient and the influence of the segment lengths, different forest types, and tree density
in the plot on CI field measurement was also not clear. To this aim, three 100 × 100 m plots
of different forest types were set in the research region, and the CI was estimated using
the measurements from TRAC, LAI-2200, DHP, and litter collection methods. Then, the CI
estimation results were compared and the uncertainty of CI estimation was analyzed at
various segment lengths with the LX, CC, CLX, P, and CMN methods. These results could
provide a reference for CI estimation in field measurements with various segment lengths
in different forest types.

2. Materials and Methods
2.1. Study Area

The research area is located in Maoer Mountain Experimental Forest Farm of Northeast
Forestry University in Shangzhi City, Heilongjiang Province, northeast of China, with
longitude of 127◦29′–127◦44′E and a latitude of 45◦14′–45◦29′N (Figure 1). The area of the
Maoer Mountain forest farm is about 26.496 km2. The study area is a low-mountain and
hilly area with an average altitude of 300 m. The research region has a mid-temperate
continental monsoon climate with an average annual temperature of 2.7 ◦C [51]. The
hottest month is in July with an average temperature of 21.8 ◦C. The coldest month is in
January with an average temperature of −19.9 ◦C [52]. The average annual precipitation is
700–800 mm.

The vegetation type of the Maoer Mountain Experimental Forest Farm is mainly
natural secondary forest and artificial forest. The average forest coverage rate is 95%, and
the total forest volume is 3.5 million m3. The main tree species are Quercus mongolica Fisch.,
Betula platyphylla Suk., Pinus koraiensis Sieb., Fraxinus mandschurica Rupr., Phellodendron
amurense Rupr., Populus davidiana Dode, Tilia amurensis Rupr., Larix gmelini Rupr., and Betula
costata Trautv. [52,53].

2.2. Field Data
2.2.1. Field Measurement

In this study, three 100 m × 100 m plots with different forest types were set. In order
to minimize the uncertain error caused by terrain, the three selected plots were set at the
region with a flat slope. These were broad-leaved forest, coniferous forest, and mixed forest
plots. The measured forest parameters included the diameter at breast height (DBH), the
tree height, the tree density, the tree species, the relative dominance, and the specific leaf
area (SLA). The DBH above 5 cm was measured and recorded. Then, the geographical
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coordinate of each tree in one plot was recorded using the SOUTH RTK (SOUTH Inc.,
Guangzhou, China) instrument.
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the red rectangle is the coniferous forest, and the green rectangle is the mixed forest).

The plot was divided into 100 squares with an area of 10 m × 10 m. Moreover, a
1 m × 1 m litter trap was set at the center of each square (Figure 2). The leaves were then
collected twice in each month from the beginning of the season to the end of the season.
Afterwards, the area and the weight of the fresh leaves were measured. The Li-3000 was
used to measure the leaf area of the deciduous tree species. Then, the needle surface area of
the coniferous trees was measured using the volume displacement method, as reported in
Chen’s publication in 1996 [54]. All fresh leaf samples were separated by species type and
were subsequently oven-dried at 70 ◦C for 24 h. The mass of the dried leaf samples was
recorded. The specific leaf area (SLA) was then calculated as follows [55]:

SLA =
Sa

W
(1)

where Sa is the average fresh leaf area (cm2) and W is the dried weight of leaves (g). The
statistical information of the measurements can be found in Table 1.
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Figure 2. Photos of the field measurement process.

Table 1. Basic tree information table of the three plots.

Sample Type Major Species Number of
Trees (Number)

Mean
DBH (cm)

Relative
Dominance (%) SLA (cm2 × g−1)

Broad-leaved forest Juglans mandshurica Maxim. 1508 11.87 100 213.62

Coniferous forest

Pinus sylvestris Linn. 496 26.84 68.19 67
Pinus koraiensis Sieb. 192 15.91 14.37 78.91

Fraxinus mandschurica Rupr. 38 21.26 5.08 305.96
Ulmus pumila L. 200 41.99 8.94 245.48

Others 213 11.85 3.41 ——
Total 1139 26.6 100 ——

Mixed forest

Betula platyphylla Suk. 357 27.84 39.85 195.46
Fraxinus mandschurica Rupr. 244 33.41 16.61 305.96

Pinus koraiensis Sieb. 256 31.75 5.74 78.91
Quercus mongolica Fisch. 98 51.2 10.84 253.94

Larix gmelini Rupr. 112 44.07 11.66 159.22
Ulmus pumila L. 233 34.55 8.19 245.48

Others 87 14.5 7.11 ——
Total 1387 237.31 100 ——

Leaves collected from the litter trap were separated by species type and the wet weight
was measured and recorded. Then, the samples were oven-dried at 70 ◦C for 24 h and
the weights of the samples were measured. This drying process was repeated until the
measured weight of the samples was less than 0.01 g. Subsequently, the ratio of leaf dry
mass to fresh mass was calculated based on the measured dry and wet weight of samples,
following Equation (2):

a =
M0

M1
(2)

where M0 is the dried weight of leaf samples with a unit of g, M1 is the wet weight of leaves
with a unit of g, and a is the ratio of leaf dry mass to fresh mass. This calculation was made
based on the types of tree species and varied with different types of tree species.

After that, the real leaf area index of each type of tree species in the plot could be
calculated based on the specific leaf area and the ratio of dry weight to fresh weight using
litter collection method. The equation used to calculate the LAI was as follows:

LAIlitter = a ∗M ∗ SLA (3)
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where LAIlitter is the real leaf area index (cm2/cm2), a is the ratio of dry to fresh mass (g), M
is the wet weight of the samples (g), and SLA is the specific leaf area (cm2/g). With this
method, we could obtain the LAIr of each litter trap, each tree species in one plot, and the
total LAIr in the plot for further analysis.

2.2.2. Measurements of the LAIe and the CI

The LAIe and the CI were measured using the LAI-2200, TRAC, and DHP methods.
Two pieces of LAI-2200 (LI-COR Inc., Lincoln, Nebraska, USA) equipment were used to
record the light penetration into the canopy and the above canopy; as a result, the LAIe
could be calculated. Each measurement was repeated twice and a 90◦ view cap was used
to shield the sensor from the operator during the measurement stage. The measurements
were conducted near sunset or under overcast conditions. It was used to minimize the
measuring error under direct illumination [56]. The position of the measured LAI can be
found in Figure 3.
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The DHP images were taken with a fixed azimuth angle using Nikon D800 (Nikon,
Tokyo, Japan) with a 4.5 mm F2.8 EX DC circular fisheye converter. The position of the DHP
measurement can be found in Figure 3. The equipment was mounted and levelled using a
bubble level before the measurements were taken. Then, the hemispherical photographs
were taken. The effective LAI could be derived using digital hemispherical photography
(DHP) software (Natural Resources Canada, Ottawa, Canada). The measurements were
conducted under overcast conditions or the conditions of diffuse skylight were used to
minimize the error of the direct illumination. More details can be found in the Digital
Hemispherical Photography Manual [57].

The TRAC equipment was used to record the photosynthetic photon flux density
(PPFD) and to retrieve the CI of the forest canopy. In this study, five transect lines of
100 m, with an interval distance of 20 m, were set. Then, we collected the TRAC-based
PPFD gradient values along the line transects, which are perpendicular to the incident
directions of the solar beams in the plot. To compare the differences in the results with
various segment lengths, the segment lengths for TRAC measurements were set to 1 m, 2 m,
4 m, 5 m, 10 m, 20 m, 50 m, and 100 m, respectively. It helped us to create different datasets
based on the original TRAC data when transects were segmented by 1 m, 2 m, 4 m, 5 m,
10 m, 20 m, 50 m, 100 m, respectively. At last, the forest canopy CI was computed using the
TRACWin software (Natural Resources Canada, Ottawa, ON, Canada). To minimize the
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influence of the different zenith angles on the CI measurements, a zenith angle of 57.5◦ was
used during the measurement stage [56–58].

2.3. Methodology of CI Estimation

In this study, we compared the CI estimation performances using the LX, P, CC, CMN,
and CLX methods. Moreover, the theory of these methods is described as follows.

2.3.1. Theory of the LX Method

The LX method was the first method used for LAI estimation, which took the logarith-
mic averages with a solid statistical background [25]. Thus, LAI estimation can have greater
accuracy when the canopy transmittance is logarithmically averaged in a discontinuous
or clumped canopy, referred to as method of LX. The LX method assumed that the foliage
within the finite length was random and that the segment contained gaps.

ΩLX(θ) =
ln
[

P(θ)
]

ln[P(θ)]
(4)

where P(θ) is the average of the canopy gap fraction and ln[P(θ)] is the logarithmic mean
gap fractions for all segments. This method may give erroneous results due to the short
length of the segments in a clumped canopy [59,60]. The short length of the segments is
also called segment length, and is defined as the various lengths of all the sunlit segments
occurring along this line that can be expressed as a statistical distribution function under
given canopy [61]. In addition, the segment length is considered an essential factor for CI
estimation [62].

2.3.2. Theory of the P method

The p method is based on the gap size distribution [63]. The gap size distribution of
the canopy with a random canopy spatial distribution can be described as follows:

P(ι) = e−LP(1+ι/wep) (5)

where P(ι) is the probability that a probe with length ι will completely fall into a light spot.
wep is the mean width of the element shadows cast on the transect. LP is the projected
foliage element area.

The P(l) for the clumped canopy can be determined with the following formula:

P(l) = Pc(l) + PE1(l)Pc1 + PE2(l)Pc2 + . . . + PEn(l)Pcn = Pc(l) + ∑n
i=1 PEi(l)Pci (6)

The term Pc(l) refers to the sunfleck size distribution beneath a canopy with opaque
clumps. Pci is the probability of i number of clumps overlapping in the sun’s direction, and
the PEi is a sunfleck size distribution within the intersection of i clumps. These terms are
defined as follows:

Pc(l) = exp
[
−Lcθ

(
1 + l/wep

)]
(7)

PEi(l) = exp
[
−iLEP

(
1 + l/wep

)]
(8)

Pci =
exp(−Lcθ)× Ln

cθ

i!
(9)

where Leθ is the intercept of the plot of gap size distribution for a clumped canopy and Lcθ

is the intercept found from extrapolating the straight portion of the curve at large l value.
In addition, LEP was calculated using Leθ and Lcθ from Equation (10).

LEP = ln (
(1 + α)Lcθ exp(−LCθ)√

2(1 + α) exp[−(Leθ + Lcθ)]− (1 + 2α) exp(−2Lcθ)− exp(−Lcθ)
) (10)
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In this equation, α = Lcθ PE1(0)/3 can be derived from Equation (6) after being trun-
cated at i = 2.

The gaps can be measured along the transects and P(l) can be calculated following
methods proposed by Chen and Cihlar (1995) [22,23]. Meanwhile, the clumping index of
the leaves can be determined from:

ΩP =
Leθ

LEPLcθ
(11)

2.3.3. Theory of the CC Method and CMN Method

The ΩCC method is improved on the basis of the F-Approach proposed by Chen
et al. [22,23]. It measures the width of the sunlit patches on the transect when the light
enters the canopy. The width of the canopy gaps on the transect can be calculated with
consideration of the penumbra effect. Then, the accumulated gap size distribution F(λ)
can be formed using the calculated gaps and by sorting them in ascending order based on
their size. The random distribution of canopy gaps can be described as follows:

F(λ) =
(

1 + Lp ·
λ

wep

)
exp

[
−Lp

(
1 +

λ

wep

)]
(12)

where F(λ) is the faction of the transect occupied by the gap larger than or equal to λ. λ is
the size of the gaps. wep is the mean width of the element shadows cast on the transect. LP
is the projected foliage element area.

In a clumped canopy, a measured gap size distribution Fm(λ) will deviate from F(λ).
The non-randomness of the gaps can also be removed by comparing the difference between
Fm(λ) and F(λ). A new distribution of gaps denoted by Fmr(λ) can be formed after the
gap removal, i.e., Fm(λ) closest to F(λ). In this case, Fmr(0) is the total gap fraction in the
canopy as if the canopy is random, and the clumping index for the clumped canopy can be
calculated as:

ΩCC =
ln[Fm(0, θ)]

ln[Fmr(0, θ)]
· 1− Fmr(0, θ)

1− Fm(0, θ)
(13)

If the normalization factor after the removal of large gaps in Equation (14) is neglected,
the element clumping might be calculated simply as [19]:

ΩCMN =
ln[Fm(0, θ)]

ln[Fmr(0, θ)]
(14)

This simplified equation of CI estimation was named the CMN method.

2.3.4. Theory of the CLX Method

Leblanc et al. developed a CI estimation method that combined the gap size distribu-
tion and the finite-length methods to address the problems of segment length associated
with the finite-length method. In this method, the gap size distribution method is used
to assess the foliage heterogeneity within a larger segment due to the non-homogeneous
canopy in a larger segment. This method is called the CLX method. The clumping index
can then be calculated as follows:

ΩCLX =
n ln

[
P(θ)

]
∑n

k=1 ln[Pk(θ)]/ΩCCk(θ)
(15)

where n is the number of segments, Pk(θ) is the gap fraction of the k-th segment, and
ΩCCk(θ) is the elements’ clumping index of the segment k using the CC method.
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2.3.5. Comparation of Different CI Estimating Methods

When comparing various methods for CI estimation, it is found that using different
methods leads to them making an error in CI estimation. To clarify this error and increase
the accuracy of CI measurement, we performed CI measurement experiments at three plots
with different forest types. We measured CI at various segment lengths by using TRAC.
Then CI value was extracted using the ΩLX, ΩCC, ΩCLX, ΩP, and ΩCMN methods. Then the
results were compared with litter collection method and DHP. The error was calculated
and the effect of the different CI estimating methods, measuring strategy, and forest type
on CI measurement was analyzed.

2.4. Verification and Analysis

The real leaf area index was measured by the litter collection method, and the LAIe
was obtained by the LAI-2200. The real CI within the canopy was estimated by the ratio
between the LAIe and the LAIr. Then, the estimated CI value was extracted using the
ΩLX, ΩCC, ΩCLX, ΩP, and ΩCMN methods with the help of the TRAC, DHP, and LAI-2200,
respectively. Then, the CI estimating results from different forest types, different section
lengths, and different tree densities were evaluated using a normal distribution hypothesis
test. After that, the difference and accuracy of CI estimation values using various methods
with different segment lengths and tree densities in various forest types were compared
using the one-way analysis of variance assay (ANOVA). In addition, the relative error was
used to compare the results using various methods. The relative error is calculated using
the following equation:

erelative error =
(Ωmethod −Ωr)

Ωr
× 100% (16)

where Ωmethod is the estimated CI using the ΩLX, ΩCC, ΩCLX, ΩP, and ΩCMN methods, and
Ωr is the real CI.

Boxplots were used to compare the differences in the results using the LX, CC, CLX,
P, and CMN methods; kernel density analysis was used to represent the plant number
densities of broad-leaved, coniferous, and mixed forests; and contour plots were used to
represent the relationship between the stand density and the CI.

3. Results
3.1. Comparison of CI Estimation Results Using Various Methods

We set five transects, 100 m in length, to obtain the gap size distributions of foliage
elements using the TRAC and DHP methods (Figure 3). The segment length was set to
a width of 20 m with the suggestion of TRAC manuals and publications [64]. Then, the
clumping index of the plot was estimated using the methods mentioned above. Moreover,
the estimated CI was compared with the real clumping index (Ωr) using various methods in
different forest types. These results show that the CI estimation results varied depending on
the method selected (Figure 4). For DHP measurements, the relative errors of CI estimation
using the ΩLX, ΩCC, ΩCLX, ΩP, and ΩCMN, and Ωr methods were 53.6%, 44%, 28.1%, 45.3%,
and 36.4%, respectively. For TRAC measurements, the relative errors of CI estimation using
the ΩLX, ΩCC, ΩCLX, ΩP, and ΩCMN, and Ωr methods were 50.2%, 36.2%, 29.8%, 40.4%,
and 31.2%, respectively. CI estimation using the ΩCLX method exhibited the best accuracy
among the five methods. The relative errors of CI estimation using the ΩCLX method
were 28.1% and 29.8% for the DHP and TRAC measurements, respectively. Moreover, the
accuracy values of CI estimation using the TRAC measurements were better than those of
the DHP measurements, indicating that the TRAC measurements have better robustness
for CI estimation.
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3.2. Comparison of CI Estimation Results Using Various Methods

We compared the CI estimation results using various methods in different forest types.
These results can be found in Figure 5. For broadleaf forests, CI estimation values using
the ΩLX, ΩCC, ΩCLX, ΩP, and ΩCMN methods from TRAC measurements were 0.97 ± 0.04,
0.88 ± 0.05, 0.83 ± 0.06, 0.91 ± 0.05, and 0.82 ± 0.08, respectively. The CI estimation of the
ΩLX, ΩCC, ΩCLX, ΩP, and ΩCMN methods exhibited an overestimating trend with relative
errors of 59.6%, 45.7%, 37%, 51.1%, and 36.4%, respectively. CI estimation values using
the ΩLX, ΩCC, ΩCLX, ΩP, and ΩCMN methods from DHP measurements were 0.98 ± 0.03,
0.93 ± 0.04, 0.89 ± 0.05, 0.94 ± 0.04, and 0.87 ± 0.06, respectively. The relative errors of CI
estimation using the ΩLX, ΩCC, ΩCLX, ΩP, and ΩCMN methods from DHP measurements
were 62.1%, 53.9%, 47.5%, 55.1%, and 44%, respectively.
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For coniferous forests, CI estimation values using the ΩLX, ΩCC, ΩCLX, ΩP, and ΩCMN
methods from TRAC measurements were 0.92± 0.09, 0.83± 0.19, 0.8± 0.1, 0.84± 0.19, and
0.83 ± 0.1, respectively. The relative errors of CI estimation using the ΩLX, ΩCC, ΩCLX, ΩP,
and ΩCMN methods were 74.6%, 56.2%, 51.1%, 57.9%, and 56.8%, respectively. CI estimation
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values using the ΩLX, ΩCC, ΩCLX, ΩP, and ΩCMN methods from DHP measurements were
0.95 ± 0.06, 0.88 ± 0.12, 0.75 ± 0.08, 0.89 ± 0.12, and 0.85 ± 0.14, respectively. The relative
errors of CI estimation using the ΩLX, ΩCC, ΩCLX, ΩP, and ΩCMN methods from DHP
measurements were 80%, 66.9%, 41%, 67.3%, and 60.1%. At the same time, CI measurement
values from TRAC and DHP were overestimated compared with the true values.

For mixed forests, CI estimation values using the ΩLX, ΩCC, ΩCLX, ΩP, and ΩCMN
methods from TRAC measurements were 0.96 ± 0.06, 0.87 ± 0.06, 0.83 ± 0.06, 0.91 ± 0.05,
and 0.83± 0.08, respectively. The relative errors of CI estimation using the ΩLX, ΩCC, ΩCLX,
ΩP, and ΩCMN methods were 25.9%, 14.8%, 9.3%, 19.7%, and 9%, respectively. CI estimation
values using the ΩLX, ΩCC, ΩCLX, ΩP, and ΩCMN methods from DHP measurements were
0.98 ± 0.04, 0.91 ± 0.07, 0.79 ± 0.05, 0.93 ± 0.05, and 0.86 ± 0.09, respectively. The relative
errors of CI estimation using the ΩLX, ΩCC, ΩCLX, ΩP, and ΩCMN methods from DHP
measurements were 28.4%, 20%, 3.6%, 22.1%, and 13.4%, respectively.

A comparison between the CI estimation results using both TRAC and DHP methods
shows that there were no significant differences, even for the same CI estimation methods.
For broadleaf forests, the relative errors of CI estimation using the ΩLX, ΩCC, ΩCLX, ΩP,
and ΩCMN methods between different pieces of equipment were 1.5%, 5.4%, 7.2%, 2.6%,
and 5.6%, respectively. Moreover, the differences in CI estimation for coniferous forests
were 6.9%, 3%, 6.7%, 5.9%, and 5.5%, respectively. For mixed forests, these values changed
to 4.5%, 2%, 5.2%, 2%, and 3.9%, respectively.

3.3. The Effect of the Segment Length on CI Estimation Using Different Methods

Optical methods were non-destructive and cheaper, but the CI estimation results were
affected by the segment length on the transect [21]. Meanwhile, the segment size in the field
measurements was usually arbitrarily decided, whereas the difference in the choices were
derived from the difference in the CI estimation values [16]. Thus, we compared the CI
estimation result with various segment lengths and discussed the influence of the segment
length on CI estimation.

We estimated CI values with segment lengths of 1 m, 2 m, 4 m, 5 m, 10 m, 20 m, 50 m,
and 100 m. CI estimation values using the ΩP method at various segment lengths were
0.97 ± 0.03, 0.97 ± 0.03, 0.96 ± 0.04, 0.93 ± 0.04, 0.99 ± 0.04, 0.92 ± 0.03, 0.93 ± 0.03, and
0.85 ± 0.03, respectively. CI estimation values using the ΩCC method at various segment
lengths were 0.98 ± 0.04, 0.98 ± 0.04, 0.98 ± 0.03, 0.95 ± 0.04, 0.99 ± 0.02, 0.92 ± 0.06,
0.91 ± 0.03, and 0.84 ± 0.02, respectively. CI estimation values using the ΩLX method at
various segment lengths were 0.73 ± 0.1, 0.69 ± 0.06, 0.73 ± 0.09, 0.79 ± 0.09, 0.90 ± 0.01,
0.88 ± 0.03, 0.93 ± 0.04, and 1.0 ± 0.01 respectively. CI estimation values using the ΩCLX
method at various segment lengths were 0.72 ± 0.01, 0.62 ± 0.03, 0.79 ± 0.02, 0.72 ± 0.05,
0.92± 0.04, 0.81± 0.04, 0.85± 0.03, and 0.84± 0.03, respectively. CI estimation values using
the ΩCMN method at various segment lengths were 0.97 ± 0.04, 0.98 ± 0.04, 0.97 ± 0.05,
0.84 ± 0.04, 1.0 ± 0.03, 0.91 ± 0.05, 0.89 ± 0.02, and 0.8 ± 0.04, respectively. The figure
shows the estimated CI values with segment lengths of 1 m, 2 m, 4 m, 5 m, 10 m, 20 m,
50 m, and 100 m (Figure 6).

The results show that the CI estimations using the ΩLX and ΩCLX methods were more
sensitive to the changes in the segment length compared with other methods. Furthermore,
the ability to estimate the average CI was most stable when the segment length was between
10 and 50 m (the real CI Ωr = 0.532). CI estimation using the other three methods was less
affected by the segment length compared to the results derived from the ΩLX and ΩCLX
methods. This is because other methods do not rely on the random situation of the canopy
within each segment. However, the CLX method can achieve the assumption of a random
canopy in the segment by eliminating large light spots in the segment, indicating that the
CLX method is less sensitive to the segment length compared to the LX method [17,19].
Compared with DHP measurements, there were similar results taken from the TRAC
method. However, compared with DHP measurements, CI estimation values using the
ΩCC, ΩP, and ΩCMN methods from the TRAC method were more stable. This was because
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the three methods had similar principles for CI estimation. Moreover, these methods were
less affected by the segment length. Meanwhile, the estimated CI values using the ΩLX
and ΩCLX methods were close to the real clumping index when the segment length was
2 m. However, the CI estimation values became closer and closer to the true value with an
increase in the segment length. This is because the smaller the segment length, the more
random the canopy distribution within the segment. However, if the segment length is
too small, the possibility of a zero gap or a full gap in the segment increases, resulting in
errors in the algorithm processing [48]. In addition, we found the smallest deviation with a
segment length in the range of 10 m–50 m among different methods. The CI estimation
values deviated the most when the segment length was 2 m. Furthermore, similar results
can be found in different forest-type plots. Therefore, the segment length can affect CI
estimation and the segment length should be determined by CI estimation methods.
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3.4. The Effect of the Tree Density on CI Estimation

Various tree density values affect the transmission of direct sunlight in canopy environ-
ments and canopy gap distributions [19]. This may also have an impact on CI estimation
using different methods. We calculated the tree density of plots in the broadleaf forest, the
coniferous forest, and the mixed forest. Additionally, the tree density ranged from 0 to
0.08 (tree/m2), 0.08 to 0.16 (tree/m2), 0.16 to 0.24 (tree/m2), and 0.24 to 0.32 (tree/m2).
The figure shows that the distribution of the trees had an obviously spatial heterogeneity
effect in the different plots (Figure 7). This affects the sunlight transmitted to the canopy
and leads to uncertainties in CI estimation when using optical equipment. Therefore, we
compared the results of CI estimation among the scale plots in the different forest types.

We calculated the true clumping index using the litter trap, and then CI estimation
was performed using the five methods mentioned above with TRAC measurements. Next,
the contour lines of CI estimation using various methods were extracted with ARCGIS
software. Finally, the results were overlapped in different tree density mapping studies, as
shown in Figure 7. The results show that the real CI had an obviously spatial heterogeneity
effect among the different plots too, and this feature was related to the spatial distribution
of trees in the plot. The real CI increased when the tree density increased in the plots.
This was because the distribution of the trees becomes random with an increase in the
number of trees in one plot. In contrast, when the number of trees is smaller, the aggregated
distribution becomes more obvious. According to the results shown in Figure 8, the CI
estimation values varied with different methods. The relative error of CI estimation using
the ΩLX method ranged from 41% to 67%. The relative error of CI estimation using the
ΩCC method ranged from 31% to 62%. This value changed from 18% to 56% when the
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ΩCLX method was used. The relative error of CI estimation using the ΩP method ranged
from 41% to 56%. This value changed from 18% to 60% when the ΩCMN method was used.
In contrast, the accuracy of CI estimation using the ΩCLX method was better than that
of other methods. The CI value estimated by the ΩCLX method was more similar to the
real CI, followed by that of the ΩLX, ΩCC, ΩP, and ΩCMN methods. At the same time, the
difference in the spatial distribution of the CI in plot scale was also obvious. Compared
with the results used by other methods, the spatial distribution of CI estimation using the
ΩCMN method was richer for describing the spatial heterogeneity of the CI. However, the
accuracy of this method was not as good as the ΩCLX method.
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4. Discussion

As a parameter used to describe the distribution of canopy foliage elements, the
clumping index (CI) is a measurement of the clumping or random distribution of canopy
environments in space, and it is very important to determine the radiation transfer of the
canopy, the photosynthesis of the foliage, and the hydrological processes. At the moment,
there are many methods used to obtain the CI, such as commercial optical instruments
or satellite data [18]. The DHP, LAI-2200, and TRAC methods have frequently been used
to estimate the CI during field measurements [16,17,21]. However, CI estimation varies
depending on the estimation method and the accuracy of the different methods is still
unverified. Meanwhile, the choice of a specific method varies depending on the vegetation
type and field conditions [12]. Therefore, we compared the CI estimation values with the
CI value (calculated by the litter collection method) using the LX, CC, CLX, P, and CMN
methods. The advantages and disadvantages of different methods were compared and the
influence factors were analyzed.

4.1. Differences in CI Estimation Methods

In this study, the accuracy values of CI estimation using the LX, CC, CLX, P, and
CMN methods were compared. The results show different CI estimation methods lead to
huge differences in the estimation results. Zou et al. conducted a comparative study of CI
estimation on three algorithms, namely, the gap size distribution method, the finite-length
average method, and the segregation coefficient method [17]. The results showed that
there were great differences among the three algorithms, and that the gap size distribution
method and the segregation coefficient method were the most stable. However, the results
of the segregation coefficient method were seriously low compared with the other two
methods. Similar results can also be found in this study. We compared the accuracy of
CI estimation using the LX, CC, CLX, P, and CMN methods. The results indicate that CI
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estimation using the ΩCLX method exhibited better results compared to the other methods.
Similar results can also be found in previous research [21–23]. Chen mentioned that the
CI calculated by the CC method was different from that of the P method [22,23]. Chu
et al. compared the CI estimation values using the finite-length average method, the gap
size distribution method, and the path length distribution method. The results indicate
an overestimating trend for the LX method in the low clumping area or during the low
clumping growth period. This was because this method can fail when there is no gap in
the finite length. Instead, in the high clumping area or during the high clumping growth
period, the gap size distribution method will underestimate the clumping effect [58].

In addition, we found that the accuracy values of CI estimation using TRAC mea-
surements were different from those for DHP measurements. This was because the DHP
method offered a directional sampling of canopy gaps and because the accuracy of CI
estimation from the DHP method was dependent on the subjective classification procedure
of plant pixels and gaps [8]. However, the TRAC method calculated the canopy gap size
distribution using transmitted sunlight recordings along a transect. These results are influ-
enced by a solar zenith angle, a limited field-of-view light beam, a gap threshold, and a gap
removal procedure [16,22,23].

4.2. Effecting Factors of the CI Estimation Method

Indirect optical methods for CI estimation were non-destructive and cost-effective, but
these common instruments such as DHP, LAI-2200, and TRAC were subject to the influence
of segment selection. In this study, we estimated the CI with segment lengths of 1 m, 2 m,
4 m, 5 m, 10 m, 20 m, 50 m, and 100 m, and compared the CI estimation results with various
segment lengths. The results indicate that the ΩLX and ΩCLX methods were more sensitive
to the changes in the segment length compared with other methods. This result was similar
to previous research findings. Pisek et al. concluded that both the LX and CLX methods
were highly sensitive to segment length compared to the actual measurements of DHP and
TRAC, and the CI estimation error when using the DHP and TRAC methods decreased
with a decrease in the segment length [19]. Woodgate found that the LX method was more
sensitive to segment length than the CC or CLX methods, among others [49]. In addition,
we found that the accuracy of CI estimation decreased with a decrease in the segment
length. Gonsamo et al. measured the canopy gap with DHP and CI estimation using the LX
method. The results indicate that the CI estimation values decreased with a decrease in the
segment size from 15◦ to 2.5◦ [65]. This was because the random assumption for low plants
was not true and because it was not feasible to measure the small segment size with the high
probability of obtaining a zero-gap fraction. To solve the problem, some scholars proposed
to add sky pixels into the fragment [25,66]. Gonsamo et al. improved the LX method by
merging the gap-free part with the adjacent gap-filled part, but this improvement affected
the choice of optimal segment length and thus impacted CI estimation [65].

The various tree densities affect the transmission of direct sunlight and gap distribu-
tions in canopy environments [19]. Therefore, this may have an impact on CI estimation
when different methods are used. In this study, we calculated CI estimation values using
different methods and compared the results among various tree densities in the broadleaf
forest, the coniferous forest, and the mixed forest. The results indicate that the clumping
index had significant spatial heterogeneity. The estimation results in different forest types
also varied. Some research results have indicated that different stand types have different
CI estimation values when different methods are used [17,19,67]. Craig Macfarlane et al.
found that the CLX method had significant advantages over the CC method in a jarrah
forest in Australia [68]. Woodgate found that the CLX method provided better CI estimation
values than the CC and LX methods in eucalyptus forests [49]. Pisek et al. found that the
CLX method performed better compared to the CC, LX, and CMN methods in Scots pine
forests [19]. Similar results can also be found in this study. In general, the CLX method is
better than the other methods used in this study. This is because the CLX method can not
only eliminate the problem of the non-randomness in the canopy inside the segment, but
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can also normalize the whole line, resulting in more obvious random effects at the transect
level [19]. In addition, the ΩCMN method can effectively describe the spatial distribution
of the CI. Moreover, it can reflect the change characteristics of the clumping index with
various tree densities. Therefore, in field measurements, the CI estimation method should
be decided after considering the light conditions, the solar zenith, the segment length or
size, and the stand types [69,70].

5. Conclusions

In this study, we set three 100 × 100 m plots of different forest types and estimated the
clumping index using the measurements from TRAC, LAI-2200, DHP, and litter collection
methods. Then, the results of CI estimation at various segment lengths using the LX, CC,
CLX, P, and CMN methods were compared. The results indicate the following:

(1) The segment length has a significant effect on CI estimation with various methods. The
CI estimation accuracy values of the LX and CLX methods increase with a decrease in
segment lengths. The CI estimation results using the CC, P, LX, and CLX methods are
the most similar under the segment lengths in the range of 10 m to 50 m. Moreover,
CI estimation using the CLX method is most effective at a segment length of 2 m.

(2) The CI has an obviously spatial heterogeneity effect in the different plots. Compared
with the true CI, there is significant difference in CI estimation when using various
methods. Moreover, the spatial distribution of the CI, estimated using the ΩCMN
method, is more useful when describing the spatial heterogeneity patterns of the CI.

Author Contributions: Y.Y. and X.Y. conceived and designed the experiments; Z.L. performed the
experiments and analyzed the data; X.Y. and Z.L. wrote the paper; X.Y., Y.Y. and W.F. reviewed and
edited the paper. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (grant
numbers 31870621 and 31971580); the Fundamental Research Funds for the Central Universities of
China (grant numbers 2572021BA08, 2572019BA10, and 2572019CP12); and the China Postdoctoral
Science Foundation (grant number 2019M661239).

Data Availability Statement: Not application.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Peng, J.; Fan, W.; Wang, L.; Xu, X.; Li, J.; Zhang, B.; Tian, D. Modeling the Directional Clumping Index of Crop and Forest. Remote

Sens. 2018, 10, 1576. [CrossRef]
2. Duthoit, S.; Demarez, V.; Gastellu-Etchegorry, J.-P.; Martin, E.; Roujean, J.-L. Assessing the effects of the clumping phenomenon

on BRDF of a maize crop based on 3D numerical scenes using DART model. Agric. For. Meteorol. 2008, 148, 1341–1352. [CrossRef]
3. Qi, J.; Xie, D.; Jiang, J.; Huang, H. 3D radiative transfer modeling of structurally complex forest canopies through a lightweight

boundary-based description of leaf clusters. Remote Sens. Environ. 2022, 283, 113301. [CrossRef]
4. Nilson, T. Inversion of gap frequency data in forest stands. Agric. For. Meteorol. 1999, 98, 437–448. [CrossRef]
5. Fassnacht, K.S.; Gower, S.T.; Norman, J.M.; McMurtric, R.E. A comparison of optical and direct methods for estimating foliage

surface area index in forests. Agric. For. Meteorol. 1994, 71, 183–207. [CrossRef]
6. Jonckheere, I.; Fleck, S.; Nackaerts, K.; Muys, B.; Coppin, P.; Weiss, M.; Baret, F. Review of methods for in situ leaf area index

determination: Part I. Theories, sensors and hemispherical photography. Agric. For. Meteorol. 2004, 121, 19–35. [CrossRef]
7. Ma, L.; Zheng, G.; Wang, X.; Li, S.; Lin, Y.; Ju, W. Retrieving forest canopy clumping index using terrestrial laser scanning data.

Remote Sens. Environ. 2018, 210, 452–472. [CrossRef]
8. Chen, J.M.; Black, T. Defining leaf area index for non-flat leaves. Plant Cell Environ. 1992, 15, 421–429. [CrossRef]
9. Nilson, T. A theoretical analysis of the frequency of gaps in plant stands. Agric. Meteorol. 1971, 8, 25–38. [CrossRef]
10. Hilty, J.; Muller, B.; Pantin, F.; Leuzinger, S. Plant growth: The What, the How, and the Why. New Phytol. 2021, 232, 25–41.

[CrossRef]
11. Fang, H.; Baret, F.; Plummer, S.; Schaepman-Strub, G. An Overview of Global Leaf Area Index (LAI): Methods, Products,

Validation, and Applications. Rev. Geophys. 2019, 57, 739–799. [CrossRef]
12. Fang, H.; Liu, W.; Li, W.; Wei, S. Estimation of the directional and whole apparent clumping index (ACI) from indirect optical

measurements. ISPRS J. Photogramm. Remote Sens. 2018, 144, 1–13. [CrossRef]

http://doi.org/10.3390/rs10101576
http://doi.org/10.1016/j.agrformet.2008.03.011
http://doi.org/10.1016/j.rse.2022.113301
http://doi.org/10.1016/S0168-1923(99)00114-8
http://doi.org/10.1016/0168-1923(94)90107-4
http://doi.org/10.1016/j.agrformet.2003.08.027
http://doi.org/10.1016/j.rse.2018.03.034
http://doi.org/10.1111/j.1365-3040.1992.tb00992.x
http://doi.org/10.1016/0002-1571(71)90092-6
http://doi.org/10.1111/nph.17610
http://doi.org/10.1029/2018RG000608
http://doi.org/10.1016/j.isprsjprs.2018.06.022


Remote Sens. 2023, 15, 471 18 of 20

13. Yang, K.; Ryu, Y.; Dechant, B.; Berry, J.A.; Hwang, Y.; Jiang, C.; Kang, M.; Kim, J.; Kimm, H.; Kornfeld, A. Sun-induced chlorophyll
fluorescence is more strongly related to absorbed light than to photosynthesis at half-hourly resolution in a rice paddy. Remote
Sens. Environ. 2018, 216, 658–673. [CrossRef]

14. Béland, M.; Baldocchi, D. Is foliage clumping an outcome of resource limitations within forests? Agric. For. Meteorol. 2020, 295,
108185. [CrossRef]

15. Woodgate, W.; Disney, M.; Armston, J.D.; Jones, S.D.; Suarez, L.; Hill, M.J.; Wilkes, P.; Soto-Berelov, M.; Haywood, A.; Mellor, A.
An improved theoretical model of canopy gap probability for Leaf Area Index estimation in woody ecosystems. For. Ecol. Manag.
2015, 358, 303–320. [CrossRef]

16. Fang, H. Canopy clumping index (CI): A review of methods, characteristics, and applications. Agric. For. Meteorol. 2021, 303,
108374. [CrossRef]

17. Zou, J.; Zhuang, Y.; Chianucci, F.; Mai, C.; Lin, W.; Leng, P.; Luo, S.; Yan, B. Comparison of Seven Inversion Models for Estimating
Plant and Woody Area Indices of Leaf-on and Leaf-off Forest Canopy Using Explicit 3D Forest Scenes. Remote Sens. 2018, 10, 1297.
[CrossRef]

18. Lang, A.; Yueqin, X. Estimation of leaf area index from transmission of direct sunlight in discontinuous canopies. Agric. For.
Meteorol. 1986, 37, 229–243. [CrossRef]

19. Pisek, J.; Lang, M.; Nilson, T.; Korhonen, L.; Karu, H. Comparison of methods for measuring gap size distribution and canopy
nonrandomness at Järvselja RAMI (RAdiation transfer Model Intercomparison) test sites. Agric. For. Meteorol. 2011, 151, 365–377.
[CrossRef]

20. Demarez, V.; Duthoit, S.; Baret, F.; Weiss, M.; Dedieu, G. Estimation of leaf area and clumping indexes of crops with hemispherical
photographs. Agric. For. Meteorol. 2008, 148, 644–655. [CrossRef]

21. Leblanc, S.G. Correction to the plant canopy gap-size analysis theory used by the Tracing Radiation and Architecture of Canopies
instrument. Appl. Opt. 2002, 41, 7667–7670. [CrossRef]

22. Chen, J.M.; Cihlar, J. Quantifying the effect of canopy architecture on optical measurements of leaf area index using two gap size
analysis methods. IEEE Trans. Geosci. Remote Sens. 1995, 33, 777–787. [CrossRef]

23. Chen, J.M.; Cihlar, J. Plant canopy gap-size analysis theory for improving optical measurements of leaf-area index. Appl. Opt.
1995, 34, 6211–6222. [CrossRef]

24. Ryu, Y.; Sonnentag, O.; Nilson, T.; Vargas, R.; Kobayashi, H.; Wenk, R.; Baldocchi, D.D. How to quantify tree leaf area index in an
open savanna ecosystem: A multi-instrument and multi-model approach. Agric. For. Meteorol. 2010, 150, 63–76. [CrossRef]

25. Leblanc, S.G.; Chen, J.M.; Fernandes, R.; Deering, D.W.; Conley, A. Methodology comparison for canopy structure parameters
extraction from digital hemispherical photography in boreal forests. Agric. For. Meteorol. 2005, 129, 187–207. [CrossRef]

26. Leblanc, S.; Fournier, R. Hemispherical photography simulations with an architectural model to assess retrieval of leaf area index.
Agric. For. Meteorol. 2014, 194, 64–76. [CrossRef]

27. Chen, J.M. Optically-based methods for measuring seasonal variation of leaf area index in boreal conifer stands. Agric. For.
Meteorol. 1996, 80, 135–163. [CrossRef]

28. Bréda, N.J. Ground-based measurements of leaf area index: A review of methods, instruments and current controversies. J. Exp.
Bot. 2003, 54, 2403–2417. [CrossRef]

29. Jurik, T.W.; Briggs, G.M.; Gates, D.M. A comparison of four methods for determining leaf area index in successional hardwood
forests. Can. J. For. Res. 1985, 15, 1154–1158. [CrossRef]

30. Liu, Z.; Chen, J.M.; Jin, G.; Qi, Y. Estimating seasonal variations of leaf area index using litterfall collection and optical methods in
four mixed evergreen–deciduous forests. Agric. For. Meteorol. 2015, 209, 36–48. [CrossRef]

31. Le Dantec, V.; Dufrêne, E.; Saugier, B. Interannual and spatial variation in maximum leaf area index of temperate deciduous
stands. For. Ecol. Manag. 2000, 134, 71–81. [CrossRef]

32. Mencuccini, M.; Grace, J. Climate influences the leaf area/sapwood area ratio in Scots pine. Tree Physiol. 1995, 15, 1–10. [CrossRef]
[PubMed]

33. Smith, N. Predicting radiation attenuation in stands of Douglas-fir. For. Sci. 1991, 37, 1213–1223.
34. Marshall, J.; Waring, R. Comparison of methods of estimating leaf-area index in old-growth Douglas-fir. Ecology 1986, 67, 975–979.

[CrossRef]
35. Liu, Z.; Jin, G.; Chen, J.M.; Qi, Y. Evaluating optical measurements of leaf area index against litter collection in a mixed

broadleaved-Korean pine forest in China. Trees 2015, 29, 59–73. [CrossRef]
36. Guindin-Garcia, N.; Gitelson, A.A.; Arkebauer, T.J.; Shanahan, J.; Weiss, A. An evaluation of MODIS 8-and 16-day composite

products for monitoring maize green leaf area index. Agric. For. Meteorol. 2012, 161, 15–25. [CrossRef]
37. Myneni, R.B.; Ramakrishna, R.; Nemani, R.; Running, S.W. Estimation of global leaf area index and absorbed PAR using radiative

transfer models. IEEE Trans. Geosci. Remote Sens. 1997, 35, 1380–1393. [CrossRef]
38. Curran, P. Multispectral remote sensing for the estimation of green leaf area index. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys.

Sci. 1983, 309, 257–270.
39. Chen, J.M.; Rich, P.M.; Gower, S.T.; Norman, J.M.; Plummer, S. Leaf area index of boreal forests: Theory, techniques, and

measurements. J. Geophys. Res. Atmos. 1997, 102, 29429–29443. [CrossRef]
40. He, L.; Chen, J.M.; Pisek, J.; Schaaf, C.B.; Strahler, A.H. Global clumping index map derived from the MODIS BRDF product.

Remote Sens. Environ. 2012, 119, 118–130. [CrossRef]

http://doi.org/10.1016/j.rse.2018.07.008
http://doi.org/10.1016/j.agrformet.2020.108185
http://doi.org/10.1016/j.foreco.2015.09.030
http://doi.org/10.1016/j.agrformet.2021.108374
http://doi.org/10.3390/rs10081297
http://doi.org/10.1016/0168-1923(86)90033-X
http://doi.org/10.1016/j.agrformet.2010.11.009
http://doi.org/10.1016/j.agrformet.2007.11.015
http://doi.org/10.1364/AO.41.007667
http://doi.org/10.1109/36.387593
http://doi.org/10.1364/AO.34.006211
http://doi.org/10.1016/j.agrformet.2009.08.007
http://doi.org/10.1016/j.agrformet.2004.09.006
http://doi.org/10.1016/j.agrformet.2014.03.016
http://doi.org/10.1016/0168-1923(95)02291-0
http://doi.org/10.1093/jxb/erg263
http://doi.org/10.1139/x85-187
http://doi.org/10.1016/j.agrformet.2015.04.025
http://doi.org/10.1016/S0378-1127(99)00246-7
http://doi.org/10.1093/treephys/15.1.1
http://www.ncbi.nlm.nih.gov/pubmed/14966005
http://doi.org/10.2307/1939820
http://doi.org/10.1007/s00468-014-1058-2
http://doi.org/10.1016/j.agrformet.2012.03.012
http://doi.org/10.1109/36.649788
http://doi.org/10.1029/97JD01107
http://doi.org/10.1016/j.rse.2011.12.008


Remote Sens. 2023, 15, 471 19 of 20

41. Gonsamo, A.; Chen, J.M. Improved LAI algorithm implementation to MODIS data by incorporating background, topography,
and foliage clumping information. IEEE Trans. Geosci. Remote Sens. 2013, 52, 1076–1088. [CrossRef]

42. Chen, J.M.; Mo, G.; Pisek, J.; Liu, J.; Deng, F.; Ishizawa, M.; Chan, D. Effects of foliage clumping on the estimation of global
terrestrial gross primary productivity. Glob. Biogeochem. Cycles 2012, 26, GB1019. [CrossRef]

43. Dong, Y.; Jiao, Z.; Yin, S.; Zhang, H.; Zhang, X.; Cui, L.; He, D.; Ding, A.; Chang, Y.; Yang, S. Influence of snow on the magnitude
and seasonal variation of the clumping index retrieved from MODIS BRDF products. Remote Sens. 2018, 10, 1194. [CrossRef]

44. Chen, J.; Menges, C.; Leblanc, S. Global mapping of foliage clumping index using multi-angular satellite data. Remote Sens.
Environ. 2005, 97, 447–457. [CrossRef]

45. Li, Y.; Fang, H. Real-Time Software for the Efficient Generation of the Clumping Index and Its Application Based on the Google
Earth Engine. Remote Sens. 2022, 14, 3837. [CrossRef]

46. Bao, Y.; Ni, W.; Wang, D.; Yue, C.; He, H.; Verbeeck, H. Effects of tree trunks on estimation of clumping index and LAI from
HemiView and Terrestrial LiDAR. Forests 2018, 9, 144. [CrossRef]

47. Li, Y.; Guo, Q.; Su, Y.; Tao, S.; Zhao, K.; Xu, G. Retrieving the gap fraction, element clumping index, and leaf area index of
individual trees using single-scan data from a terrestrial laser scanner. ISPRS J. Photogramm. Remote Sens. 2017, 130, 308–316.
[CrossRef]

48. Woodgate, W. In-Situ Leaf Area Index Estimate Uncertainty in Forests: Supporting Earth Observation Product Calibration and Validation;
RMIT University Melbourne: Melbourne, VIC, Australia, 2015.

49. Woodgate, W.; Armston, J.D.; Disney, M.; Jones, S.D.; Suarez, L.; Hill, M.J.; Wilkes, P.; Soto-Berelov, M. Quantifying the impact of
woody material on leaf area index estimation from hemispherical photography using 3D canopy simulations. Agric. For. Meteorol.
2016, 226, 1–12. [CrossRef]

50. Yin, S.; Jiao, Z.; Dong, Y.; Zhang, X.; Cui, L.; Xie, R.; Guo, J.; Li, S.; Zhu, Z.; Tong, Y. Evaluation of the Consistency of the Vegetation
Clumping Index Retrieved from Updated MODIS BRDF Data. Remote Sens. 2022, 14, 3997. [CrossRef]

51. Zhao, Y.; Ma, Y.; Quackenbush, L.J.; Zhen, Z. Estimation of Individual Tree Biomass in Natural Secondary Forests Based on ALS
Data and WorldView-3 Imagery. Remote Sens. 2022, 14, 271. [CrossRef]

52. Masinda, M.M.; Li, F.; Liu, Q.; Sun, L.; Hu, T. Prediction model of moisture content of dead fine fuel in forest plantations on
Maoer Mountain, Northeast China. J. For. Res. 2021, 32, 2023–2035. [CrossRef]

53. Wang, C. Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests. For. Ecol. Manag. 2006, 222,
9–16. [CrossRef]

54. Chen, J.M.; Cihlar, J. Retrieving leaf area index of boreal conifer forests using Landsat TM images. Remote Sens. Environ. 1996, 55,
153–162. [CrossRef]

55. Eriksson, H.; Eklundh, L.; Hall, K.; Lindroth, A. Estimating LAI in deciduous forest stands. Agric. For. Meteorol. 2005, 129, 27–37.
[CrossRef]

56. Baret, F.; de Solan, B.; Lopez-Lozano, R.; Ma, K.; Weiss, M. GAI estimates of row crops from downward looking digital photos
taken perpendicular to rows at 57.5◦ zenith angle: Theoretical considerations based on 3D architecture models and application to
wheat crops. Agric. For. Meteorol. 2010, 150, 1393–1401. [CrossRef]

57. Nomura, K.; Saito, M.; Kitayama, M.; Goto, Y.; Nagao, K.; Yamasaki, H.; Iwao, T.; Yamazaki, T.; Tada, I.; Kitano, M. Leaf area index
estimation of a row-planted eggplant canopy using wide-angle time-lapse photography divided according to view-zenith-angle
contours. Agric. For. Meteorol. 2022, 319, 108930. [CrossRef]

58. Wei, S.; Fang, H. Estimation of canopy clumping index from MISR and MODIS sensors using the normalized difference hotspot
and darkspot (NDHD) method: The influence of BRDF models and solar zenith angle. Remote Sens. Environ. 2016, 187, 476–491.
[CrossRef]

59. Whitford, K.; Colquhoun, I.; Lang, A.; Harper, B. Measuring leaf area index in a sparse eucalypt forest: A comparison of estimates
from direct measurement, hemispherical photography, sunlight transmittance and allometric regression. Agric. For. Meteorol.
1995, 74, 237–249. [CrossRef]

60. Chen, J.; Black, T. Foliage area and architecture of plant canopies from sunfleck size distributions. Agric. For. Meteorol. 1992, 60,
249–266. [CrossRef]

61. Miller, E.E.; Norman, J.M. A Sunfleck Theory for Plant Canopies I. Lengths of Sunlit Segments along a Transect 1. Agron. J. 1971,
63, 735–738. [CrossRef]

62. Hu, R.; Yan, G.; Mu, X.; Luo, J. Indirect measurement of leaf area index on the basis of path length distribution. Remote Sens.
Environ. 2014, 155, 239–247. [CrossRef]

63. Yan, G.; Hu, R.; Luo, J.; Weiss, M.; Jiang, H.; Mu, X.; Xie, D.; Zhang, W. Review of indirect optical measurements of leaf area index:
Recent advances, challenges, and perspectives. Agric. For. Meteorol. 2019, 265, 390–411. [CrossRef]

64. Kuusk, A.; Pisek, J.; Lang, M.; Märdla, S. Estimation of Gap Fraction and Foliage Clumping in Forest Canopies. Remote Sens. 2018,
10, 1153. [CrossRef]

65. Gonsamo, A.; Walter, J.-M.N.; Pellikka, P. Sampling gap fraction and size for estimating leaf area and clumping indices from
hemispherical photographs. Can. J. For. Res. 2010, 40, 1588–1603. [CrossRef]

66. Van Gardingen, P.; Jackson, G.; Hernandez-Daumas, S.; Russell, G.; Sharp, L. Leaf area index estimates obtained for clumped
canopies using hemispherical photography. Agric. For. Meteorol. 1999, 94, 243–257. [CrossRef]

http://doi.org/10.1109/TGRS.2013.2247405
http://doi.org/10.1029/2010GB003996
http://doi.org/10.3390/rs10081194
http://doi.org/10.1016/j.rse.2005.05.003
http://doi.org/10.3390/rs14153837
http://doi.org/10.3390/f9030144
http://doi.org/10.1016/j.isprsjprs.2017.06.006
http://doi.org/10.1016/j.agrformet.2016.05.009
http://doi.org/10.3390/rs14163997
http://doi.org/10.3390/rs14020271
http://doi.org/10.1007/s11676-020-01280-x
http://doi.org/10.1016/j.foreco.2005.10.074
http://doi.org/10.1016/0034-4257(95)00195-6
http://doi.org/10.1016/j.agrformet.2004.12.003
http://doi.org/10.1016/j.agrformet.2010.04.011
http://doi.org/10.1016/j.agrformet.2022.108930
http://doi.org/10.1016/j.rse.2016.10.039
http://doi.org/10.1016/0168-1923(94)02189-Q
http://doi.org/10.1016/0168-1923(92)90040-B
http://doi.org/10.2134/agronj1971.00021962006300050024x
http://doi.org/10.1016/j.rse.2014.08.032
http://doi.org/10.1016/j.agrformet.2018.11.033
http://doi.org/10.3390/rs10071153
http://doi.org/10.1139/X10-085
http://doi.org/10.1016/S0168-1923(99)00018-0


Remote Sens. 2023, 15, 471 20 of 20

67. Kucharik, C.J.; Norman, J.M.; Gower, S.T. Characterization of radiation regimes in nonrandom forest canopies: Theory, measure-
ments, and a simplified modeling approach. Tree Physiol. 1999, 19, 695–706. [CrossRef]

68. Macfarlane, C.; Hoffman, M.; Eamus, D.; Kerp, N.; Higginson, S.; McMurtrie, R.; Adams, M. Estimation of leaf area index in
eucalypt forest using digital photography. Agric. For. Meteorol. 2007, 143, 176–188. [CrossRef]

69. Leblanc, S.G.; Chen, J.M. A practical scheme for correcting multiple scattering effects on optical LAI measurements. Agric. For.
Meteorol. 2001, 110, 125–139. [CrossRef]

70. Zou, J.; Yan, G.; Chen, L. Estimation of canopy and woody components clumping indices at three mature picea crassifolia forest
stands. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 1413–1422. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1093/treephys/19.11.695
http://doi.org/10.1016/j.agrformet.2006.10.013
http://doi.org/10.1016/S0168-1923(01)00284-2
http://doi.org/10.1109/JSTARS.2015.2418433

	Introduction 
	Materials and Methods 
	Study Area 
	Field Data 
	Field Measurement 
	Measurements of the LAIe and the CI 

	Methodology of CI Estimation 
	Theory of the LX Method 
	Theory of the P method 
	Theory of the CC Method and CMN Method 
	Theory of the CLX Method 
	Comparation of Different CI Estimating Methods 

	Verification and Analysis 

	Results 
	Comparison of CI Estimation Results Using Various Methods 
	Comparison of CI Estimation Results Using Various Methods 
	The Effect of the Segment Length on CI Estimation Using Different Methods 
	The Effect of the Tree Density on CI Estimation 

	Discussion 
	Differences in CI Estimation Methods 
	Effecting Factors of the CI Estimation Method 

	Conclusions 
	References

