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Abstract: Bamboo forest is a unique forest landscape that is mainly composed of herbal plants.
It has a stronger capability to increase terrestrial carbon sinks than woody forests in the same
environment, thus playing a special role in absorbing atmospheric CO2. Accurate and timely bamboo
forest maps are necessary to better understand and quantify their contribution to the carbon and
hydrological cycles. Previous studies have reported that the unique phenology pattern of bamboo
forests, i.e., the on- and off-year cycle, can be detected with time-series high spatial resolution remote
sensing (RS) images. Nevertheless, this information has not yet been applied in large-scale bamboo
mapping. In this study, we innovatively incorporate newly designed phenology features reflecting the
aforementioned on- and off-year cycles into a typical end-to-end classification workflow, including
two features describing growing efficiency during the green-up season and two features describing
the difference between annual peak greenness. Additionally, two horizonal morphology features
and one tree height feature were employed, simultaneously. An experiment in southeast China was
carried out to test the method’s performance, in which seven categories were focused. A total of
987 field samples were used for training and validation (70% and 30%, respectively). The results
show that combining the time-series features based on spectral bands and vegetation indices and
newly designed phenology and morphology patterns can differentiate bamboo forests from other
vegetation categories. Based on these features, the classification results exhibit a reasonable spatial
distribution and a satisfactory overall accuracy (0.89). The detected bamboo area proportion in
82 counties agrees with the statistics from China’s Third National Land Survey, which was produced
based on high resolution images from commercial satellites and human interpretation (correlation
coefficient = 0.69, and root mean squared error = 5.1%). This study demonstrates that the new scheme
incorporating phenology features helps to map bamboo forests accurately while reducing the sample
size requirement.

Keywords: bamboo forest mapping; phenology features; morphology features; tree height

1. Introduction

Bamboo forest is a special landscape where Poaceae herbs dominate the forest eco-
community and is mainly distributed in tropical and subtropical regions with sufficient
radiation and precipitation, such as South Asia and Central Africa [1]. In addition to
providing necessary habitats for specific species such as giant pandas [2] and alleviating
local poverty [3], bamboo forests also contribute to carbon sequestration [4,5]. While most
woody species need decades to reach their maturity, bamboo only takes several months to
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years and is considered to be the fastest-growing plant in the world. Achieving China’s
newly introduced “Carbon Neutrality” goal requires considerable afforestation to absorb
atmospheric CO2, thus offsetting anthropogenic emissions [6]. Accurate and timely bamboo
distribution mapping is beneficial to this goal as it helps to quantify the contribution of
bamboo forests to carbon sequestration [7].

Compared with traditional field surveys, remote sensing (RS) technology is more
cost-effective in terrestrial classification and mapping, enabling a wall-to-wall land cover
map covering inaccessible regions [8]. Sensors with different spectral bands and resolutions
permit repeatable observation, providing necessary features for differentiating categories.
The classification methods are then designed based on these features.

The basis for RS-based classification is the difference in spectral signals between differ-
ent land use land cover (LULC) categories, and spectral vegetation indices can highlight
such differences [9–11]. With data from a single date, simple decision rules could be
effective in detecting specific categories [12–14]. Compared to mono-temporal features,
multi-temporal patterns that can provide phenological information are more powerful in
distinguishing vegetation-related LULC categories [10,15–17]. Incorporating this pheno-
logical information can enhance the difference between vegetation categories or species
since the biochemical traits of different species sometimes exhibit diverse responses to local
climate [18–20], and thus have been widely applied [21]. Multitemporal-based methods are
sometimes challenged by image availability that are reduced because of cloud contamina-
tion and annual changes of phenological cycles caused by weather [22]. To mitigate these
negative impacts, a percentile composition of temporal features was introduced to match
the temporal curve with key percentiles [10]. This strategy is less susceptible to missing
data and phenology variation [14] and has thus been adapted in large-scale forest and crop
mapping [10,14,23].

In the early years, imagery with high spatial resolution had the capacity to differentiate
bamboo from woody in small regions, but required plenty of visual interpretation [24]. The
classifying accuracy of this strategy depends highly on the experience of the interpreter,
leading to a substantial cost in a large-scale application chasing accuracy. Currently,
multitemporal medium-resolution imagery is widely used to map large-scale bamboo
distributions with the help of cloud computational platforms, such as the Google Earth
Engine (GEE) platform [25]. For example, reference [23–25] employed Landsat imagery
and demonstrated the effectiveness of spectral features to distinguish bamboo and woody
forests in tropical and subtropical climate zones. In addition to spectral features, Liu
et al. (2018) suggested that texture information with 30 m resolution extracted with gray-
level matrix could boost classification performance [26]. Qi et al. (2022) integrated the
aforementioned feature schemes and first mapped the country-scale distribution of bamboo
forests in China on GEE [1].

Unlike common categories in large-scale land cover mapping, such as evergreen
woody forests or grasslands, bamboo forests were not usually considered as an independent
category, meaning that the bottleneck for large-scale bamboo mapping is the access to field
samples rather than a lack of computational capacity [27] since bamboo samples are only
collected in specific field campaigns. This lack of samples also increases the difficulty of
monitoring the historical variation in bamboo forests. This raises the question of whether
the bamboo classification in sample-sparse applications can benefit from related prior
knowledge. That is, employing the unique pattern from bamboo forests to maintain the
mapping accuracy under data-sparce circumstances.

Although Li et al. (2019) demonstrated that a unique interannual phenological pattern,
i.e., on-year and off-year cycle, of moso-bamboo forest could be detected by time-series
optical RS images, it has not yet been applied in large-scale bamboo mapping [28]. This
two-year cycle is caused by intrinsic physiological properties: there are more bamboo
shoots growing in the on-year spring and thus more leaves and a higher greenness signal,
whereas there are almost no new shoots in the off-year spring [28]. Reflectance in the red-
edge band from Sentinel-2 during the spring season substantially enhances the difference
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between bamboo and woody categories [28]. Nevertheless, typical bamboo forest mapping
methods were developed using Landsat imagery due to its long-term continuity, which
lacks red-edge features [28]. Additionally, employing the temporal pattern highlights
the differences between forest categories. Natural time-series reflectance, or time-series
reflectance composited by percentiles to overcome cloud contamination [10], is generally
produced and input directly into machine learning (ML)-based classification algorithms,
such as random forest (RF). Typical ML-based algorithms, however, cannot fully utilize the
information from the temporal domain. It is counterintuitive that the temporal order in
which the images are presented has little influence on the classification results [29].

In addition to commonly used auxiliary information such as topography and soil
properties, morphological features can also be applied in vegetation mapping [30]. To our
knowledge, bamboos usually exhibit smaller and shorter canopies than woody species
since they have a younger age. The horizontal texture pattern can be described using the
gray-level cooccurrence matrix (GLCM) and has been demonstrated to benefit bamboo map-
ping [1,26]. Vertically, the tree height information can refine the classification results, since
different vegetation species have different heights. A review concluded that information
from the highest horizontal layer was highly ranked as one of the most effective features
for species discrimination [30]. However, these studies based on airborne laser scanning
signals were only applied at a small scale [31]. Recent wall-to-wall tree height products
covering a large part of the earth with high spatial resolution (i.e., 30 m) generated from the
Global Ecosystem Dynamics Investigation (GEDI) provide a new chance for differentiating
species and bamboo mapping [32,33]. However, how well will these features benefit the
classification of bamboo forests remains unclear.

In this study, we map bamboo forests covering a large spatial range by incorporating
phenological and morphological features to enhance the difference between bamboo and
other vegetation categories. An experiment in southeast China is designed to evaluate the
results and answer the following questions: I. if the current feature scheme is sufficient
for differentiating bamboo from other categories; II. if the newly designed phenology and
morphology features can benefit large-scale bamboo mapping.

2. Materials and Methods
2.1. Study Area

Our focal area is in the southeastern hilly region of China, which is located at the inter-
section of three provinces (i.e., Anhui, Zhejiang and Jiangsu) with an area of 120,000 km2

(Figure 1). This study area has a typical subtropical monsoon climate, with a mean annual
temperature of approximately 15 ◦C and a mean annual precipitation of approximately
1000 mm yr−1. The fertile and humid condition makes it an ideal place for bamboo growth.
Therefore, there is a long history of bamboo cultivation. This area is a typical region where
bamboo and woody forest both account for a considerable proportion [34]. The northern
part is a plain (altitude < 50 m) with considerable areas of wheat and rice fields, as well
as large areas of open water such as Taihu Lake. Woody and bamboo forests are mainly
distributed in the southern hilly part (altitude > 200 m) where there are less croplands.

2.2. Data
2.2.1. Field Samples

Field samples were collected during the field survey in 2020 (Figure 1). The field trip
was designed to randomly distribute and cover the entire study area. Samples that were not
located in homogeneous patches (i.e., anomalous reflectance in a 3 × 3 spatial domain) were
removed using manual quality control. Finally, a total of 909 samples shown in Figure 1
were used, covering seven categories: evergreen woody forest (240 samples), deciduous
woody forest (119 samples), bamboo forest (238 samples), cropland (218 samples), open wa-
ter surface (12 samples), artificial surface (44 samples) and barren (38 samples). Shrubland
is rarely distributed in this region and is ignored in the current study. Aforementioned field
campaigns were carried out focusing on vegetation categories. To avoid model bias towards
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the categories with larger sample sizes, we manually supplemented samples for artificial
surface and an open water surface (45 and 27, respectively) based on existing land cover
products and very high-resolution imagery [21,35]. Seventy percent of all field samples
were randomly selected as a training set (687), with the other thirty percent as the validation
set (294). It should be noted that all bamboo forests in this study are moso-bamboo, which
accounts for a majority of the total bamboo forest area in China [36].

Figure 1. Study area. Boundaries and field-ground truth samples are labelled in the figure (a). The
altitude profile is displayed in the subpanel. The altitude profile representing the average altitude of
pixels with the same latitude is displayed in the panel (b). The relative position of the study area is
shown in panel (c).

2.2.2. Remote Sensing Data

We used three different remote sensing products to map bamboo forests in this study:
optical bands and derived metrics from Sentinel-2; topography information derived from
the Shuttle Radar Topography Mission (SRTM) with 90-m resolution [37]; and a wall-to-wall
tree height product with 30-m resolution [33]. All involved data are publicly available
(Table 1).

Table 1. Remote sensing product used in this study.

Product Variable Time Interval Website

Sentinel-2 Level 2A

RS reflectance Monthly
https://earth.esa.int/web/sentinel/user-guides/sentinel-
2-msi/product-types/level-2a (accessed on 12 January 2023)

Vegetation indices Monthly
Phenology Yearly

Morphology Static

SRTM
Elevation

Static https://srtm.csi.cgiar.org/ (accessed on 12 January 2023)Slope
Aspect

NNGI Tree height Static http://www.3decology.org/dataset-software/ (accessed on
12 January 2023)

In total, 4707 images from the Sentinel-2 level-2A surface reflectance (SR) product were
collected and processed to provide time-series spectral features from 2019 and 2020. A state-
of-the-art method based on machine learning provided pixelwise cloud probability [38].
We adapted a 10% threshold to mask the pixels with cloud contamination. Original
Sentinel2 imagery has a temporal interval of 5-days. Time-series reflectance was composited
into a monthly median. Six optical bands were selected as the input: blue, green, red,

https://earth.esa.int/web/sentinel/user-guides/sentinel-2-msi/product-types/level-2a
https://earth.esa.int/web/sentinel/user-guides/sentinel-2-msi/product-types/level-2a
https://srtm.csi.cgiar.org/
http://www.3decology.org/dataset-software/
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red-edge, near infrared (NIR-1), and shortwave near infrared (SWIR-2). Additionally,
five vegetation indices were used; the normalized difference vegetation index (NDVI),
enhanced vegetation index (EVI) [39], green chlorophyll vegetation index (GCVI) [40],
MERIS terrestrial chlorophyll index (MTCI) [41] and land surface water index (LSWI) [42].
The equations of the selected vegetation indices are shown in Table 2.

Table 2. Equations of selected vegetation indices. Rx represents the reflectance of band x of Sentinel-2.

Index Equation

NDVI (RNIR − Rred)/(RNIR + Rred)
EVI 2.5 × (RNIR − Rred)/(RNIR + 6 × Rred − 7.5 × Rblue + 1)

GCVI RNIR/Rgreen − 1
MTCI (RNIR2 − RNIR1)/(RNIR1 − Rred)
LSWI (RNIR − RSWIR1)/(RNIR + RSWIR1)

Since the typical RF classification algorithm shows weak capacity in fully utilizing the
temporal behavior for classes with evolution over time [29] (e.g., forest categories in this
study), we generated four phenology features based on time-series patterns to highlight
the difference between different forests (Figure 2). We can observe that the annual peak EVI
and red-edge reflectance (di f fEVI in Figure 2b and di f fred−edge in Figure 2c) can describe the
difference in peak canopy greenness between on- and off-year bamboo forests. It should be
noted that this difference in the greenness signal can be affected by annual meteorological
conditions. The bamboo forests have a denser canopy, i.e., a stronger greenness signal,
in on-year [28], thus creating a different absolute di f fEVI and di f fred−edge compared with
woody forests. However, the widely used NDVI fails to detect this feature due to its
saturation in densely vegetated areas (Figure 2a). In addition, bamboo forests produce
more new shoots in on-years. These shoots have a faster growth rate to maturity during the
green-up season (spring and early summer, shaded period in Figure 2). The growth rate
can be reflected by EVI and red-edge reflectance (dashed line in Figure 2, represented by
slopeEVI and slopered−edge respectively), and is helpful to differentiate bamboo from other
categories. Therefore, these four phenology features (di f fEVI , di f fred−edge, slopeEVI , and
slopered−edge) are calculated and composited with other features.

To represent the horizontal morphology features, we used GLCM-derived features
suggested by Liu et al. (2018) [26] and Qi et al. (2022) [1]: calculate the first component
image from a principal component analysis (PCA) on a yearly maximum composition of all
bands [1,26]. Since Lu et al. (2014) showed that some of the GLCMs were well correlated,
two related metrics, homogeneity and variance, were then calculated using a moving
window [43]. It should be noted that the GLCM features were calculated based on Landsat
imagery with a 9 × 9 moving window in previous studies, and we adjusted it to 18 × 18 to
enable the morphological features to be detected from the same spatial domain.

A wall-to-wall tree height product, which was produced based on the neural network
guided interpolation method (NNGI) for 2019, was composited with the aforementioned
features [33]. This product integrates spaceborne Light Detection and Ranging (LiDAR)
observations and Sentinel-2 images. Compared with regression-based tree height products,
NNGI overcomes the saturation effect of optical bands benefiting from spatial interpolation.
Additionally, more field-samples and air-drone LiDAR were used to constrain the network
in China, leading to a more satisfying accuracy than global-scale tree height products.

2.2.3. Statistical Data

We collected country-scale bamboo forest areas in statistical reports from China’s Third
National Land Survey. This nationwide survey started in 2017 and integrated commercial
satellite images with extremely high spatial resolution (finer than 10 m grid), unmanned
aerial vehicle images and an enormous artificial interpretation. A total of 126 counties’
entire area are covered by the current study area. Bamboo area results from 82 of them are
available online and were collected.
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Figure 2. Example of time-series patterns for typical vegetation categories (bamboo, deciduous
forest, evergreen woody forest and crop land). Solid lines in this figure represent the average of
all field samples. The NDVI, EVI and red-edge reflectance from 2019 to 2020 are shown in panels
(a–c), respectively. The difference in the peak value for the EVI and red-edge band (di f fEVI and
di f fred−edge) is demonstrated in panels (b,c). The fitting slope for the red-edge reflectance in the
green-up season (shade area) is demonstrated in panel (c).

2.3. Workflow

A typical GEE-based classification workflow was employed in this study (Figure 3). All
Sentinel-2 images covering the spatial and temporal range of this study were collected using
a filter. Cloud pixels on all images were masked with the corresponding cloud probability
product. The monthly median reflectance for each grid was then reduced. This processed
time-series reflectance was then employed to calculate indices and phenology features: the
fitting slope of the red edge and EVI during the spring season and the difference in annual
peak values and morphology features. Static features such as tree height and topography
were also composited with time-series features. All features were then input into an RF
classifier with 300 trees and a minimum of five nodes for each tree. The resulting map
with 10 m spatial resolution was evaluated using the validation set of field samples and
statistical data.

Overall accuracy (OA), F1-score, and the confusion matrix were selected for the
accuracy assessment to evaluate model performance. OA is the most intuitive performance
measure, and it is simply a ratio of correctly predicted observations to the total observations,
which can be written as:

OA = Sd/n × 100, (1)

where S_d is the total number of correctly classified targets and n is the total number of
validation targets.
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Figure 3. Workflow of this study. Data and features are represented by blocks. RF in the circle
represents the random forest classifier. The numbers in the brackets represent the numbers of features
and timesteps. Blue and orange colour represents the data preparation and classification-validation
steps, respectively.

The user’s accuracy (UA) measures the fraction of true positive detections (Xij/Xj ×
100), and the producer’s accuracy (PA) measures the fraction of correctly identified positives
(Xij/Xi × 100), where Xij is the observation in row i column j in the confusion matrix, Xi
is the marginal total of row i and Xj is the marginal total of column j in the confusion
matrix. These two metrics reflect the portion of samples that were correctly identified and
the portion of samples that were correctly identified. The F1-score is the harmonic average
of UA and PA:

F1 − score =
UA × PA
UA + PA

× 2, (2)

Additionally, we employed an importance score for each feature to evaluate the
discriminative power of all input features, especially the contribution from newly designed
features [1].

3. Results
3.1. Patterns for Time-Series and Static Features

Overall, the time-series patterns of reflectance and index provide sufficient information
for classification (Figure 4). All vegetation categories (bamboo forests, woody forests, and
croplands) exhibit periodical reflectance patterns, i.e., annual cycles of green-up in spring
and summer and senescence in autumn and winter (Figure 4a–f). A combination of
information from RS bands and indices helped to differentiate these three categories. For
example, evergreen woody forest has a stronger reflectance in the red-edge and NIR bands,
while cropland has lower NDVI and GCVI values throughout the growing season since
the herbal crop species in this region (mainly winter wheat and rice) have limited canopy
height and leaf area. Although deciduous forest only occupies a limited part of the study
area, its unique strong reflectance in the green and red bands during the summer season can
easily be detected. However, the difference between bamboo forests and evergreen woody
forests exhibited a close temporal trend and magnitude for vegetation indices, indicating
that merely employing spectral band-derived indices may have failed to differentiate these
two categories. Non vegetation categories (barren, artificial surface and open water surface)
exhibited less temporal variance than vegetation categories.

Topography patterns also helped to constrain the classification (Figure 5a,b). The three
forest categories are more likely to be distributed in hill regions with steep slopes, while
cropland and artificial surfaces are mainly distributed in plain regions (altitude < 100 and
slope < 5◦). It should also be noted that the open water surface can hardly be distributed
on the slope, which was also reported by a previous study [10].
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Figure 4. Temporal patterns for different categories. (a–f) display the temporal patterns for the
reflectance of six bands. (g–k) display the temporal patterns for five vegetation indices. The shade of
each line represents the standard error calculated from all field samples.

The newly designed phenology features enhanced the bamboo mapping (Figure 5c–f).
The fitting slope of the EVI in the green-up season shows that the growing efficiency of
bamboo forest was weaker than that of deciduous forest but was stronger than that of
other vegetation categories. The peak value difference of EVI and red edge reflectance
demonstrated that the unique phenological pattern of bamboo forest can be quantified and
help the classification.

Among all three morphological features, tree height makes the strongest contribution
to differentiating forest (usually 10–30 m) and non forest categories (usually shorter than
5 m). However, we did not find a significant difference among categories from the two
texture bands (homogeneity and variance), indicating their limited contribution to the
classification results.
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Figure 5. Static patterns for different categories. The width of each violin represents the relative
density at different values. The black line is the median of each category;(a,b) display the topography
patterns; (c–f) display the phenology patterns; (g–i) display morphological patterns. BF = bamboo
forest, DF = deciduous forest, EF = evergreen woody forest, CRO = cropland, AS = artificial surface,
BAR = barren, WS = water surface. Different colour represents different categories.

3.2. Classification Results

The classification result revealed that croplands, water surfaces and artificial surfaces
are mainly distributed in the north plain whereas forest is mainly distributed in the south
hill region (Figure 6). Bamboo forests are located more in the lower part of mountains with
gentler slopes than woody forests, which benefits residents for management and harvesting.
This pattern is also indicated in Figure 5a,b. Due to the humid and warm climate in our
study area, there is only a sparse distribution of deciduous forest and barren land (<2% for
both). The location and shape of the water surface and artificial surface agree with existing
land cover product [21].
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Figure 6. Spatial distribution of classification result. Abbreviation has the same meaning as in
Figure 5.

A comparison against field samples demonstrated the satisfactory accuracy of the
classification result: OA = 89, and >80% of F1-score for vegetation categories (Table 3).
Although bamboo forests and evergreen woody species exhibit similar temporal patterns
in visible bands and NDVI, the F1-score of these two categories indicated a satisfactory
classification performance (0.91 and 0.92, respectively). This distinction was contributed
by the difference in red-edge bands (Figure 4d) and the constraints from newly designed
phenology features (Figure 5e, f). The limited area proportion of deciduous forest and thus
limited sample amounts led to an F1-score of 0.83. Our method can also differentiate forests
and croplands with a satisfying performance (F1-score = 0.94). This success was attributed
to two reasons. First, crops in this region are mainly herbivorous species such as winter
wheat and summer maize, leading to lower VIs during growing season (Figure 4). Second,
most of the croplands are distributed in plain regions without a slope, indicating that the
terrain information helps to constrain the results (Figure 5). Given that croplands and
forests both exhibit similar periodic parabolic patterns for several bands and indices, this
result demonstrates that the success of tree height features can constrain the classification
result. Artificial surfaces and barren land have similar patterns for most of the features
and sometimes contain each other, causing a diminution in result accuracy (0.73 and 0.67,
respectively).

Table 3. Confusion matrix of the resulting bamboo map. Abbreviation has the same meaning as in
Figure 5.

Predicted Label

BF DF EF CRO AS BAR WS UA

Field
samples

BF 65 4 2 0 0 0 0 0.92
DF 4 32 1 0 0 0 0 0.86
EF 3 3 66 0 0 0 0 0.92

CRO 0 1 0 63 2 0 0 0.95
AS 0 0 2 4 20 2 0 0.71

BAR 0 0 0 0 5 7 0 0.58
WS 0 0 0 1 0 0 10 0.91

PA 0.90 0.80 0.93 0.93 0.74 0.78 1.00
OA = 0.89F1-score 0.91 0.83 0.92 0.94 0.73 0.67 0.95

The comparison against the National Land Survey supports the robustness and ac-
curacy of our method (Figure 7). The bamboo area proportion in 82 counties agrees well
with the result using extremely high-resolution images with intensive artificial interpre-
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tation (R2 = 0.69 and RMSE = 5.1), indicating that the automatic workflow of our method
significantly reduced human labor while achieving a comparable accuracy. However, there
is an overestimation of the bamboo area in the counties with approximately 10,000 ha of
bamboo forests. Most of these counties have a high heterogeneity, i.e., bamboo grows in
small patches surrounded by cropland or woody forest patches. The fuzzy boundary of
patches leads to a mismatch of classification results based on different input resolutions
and thus to this mismatch of result areas.

Figure 7. Comparison of bamboo area proportion (%) in this study and China’s Third National Land
Survey. The linear fitted line and 1:1 line (y = x) are labelled in the figure by solid line and dashed
line respectively. R2 represents the correlation coefficient, and RMSE represents the root mean square
error. N is the number of sample plots.

3.3. Feature Contribution

Time-series reflectance and indices contributed more to the result than static features
(Figure 8). The SWIR band acted as the most important input feature (9.6%). NDVI, EVI,
GCVI and LSWI are all important to the result (approximately 8%). The blue band and
MTCI exhibited only approximately 1% relative importance. As static features, altitude,
slope, fitting slope for EVI, interannual difference of peak value for EVI, and tree height
contributed more to the result (also see Figure 5). This result also supports the reasonability
of the newly designed phenology and vertical morphology features in this study. The im-
portance of homogeneity and variance was less than 1%, indicating the limited contribution
from horizontal morphology features.
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Figure 8. Relative importance for input features.

4. Discussion
4.1. Success of Mapping Bamboo Forests Based on Phenology and Morphology Features

In this study, we mapped large-scale bamboo forests following the typical end-to-end
classification workflow on GEE as previous studies have undertaken and incorporated
the unique phenology features caused by the bamboo on- and off-year cycle and used
vertical and horizontal morphology features to constrain the classification. The results
in Section 3.1 have demonstrated that the aforementioned features provided sufficient
information for differentiating bamboo forests from other vegetation and non vegetation
categories. All features together contribute to a reasonable resulting map and a satisfactory
resulting accuracy (see Section 3.2). The OA in this study was close to the accuracy of
existing bamboo classifications (0.93 in [1] and 0.92 in [44]). Additionally, we received a
better UA than Qi et al. (2022), indicating that our method missed less bamboo forest by
including phenological features. Although there is a mismatch of spatial resolution between
the bamboo map in this study (10 m) and the result of the National Land Survey (less
than 10 m), and a difference between the classification systems, the comparison shows a
satisfactory consistency. However, there are some counties, such as Dangtu and Tongxiang,
with sparse bamboo areas reported by the National Land Survey, but greater than 5% of the
bamboo area detected in this study, which reduces the R-square of Figure 7. Most of these
counties are located in the northern part of the study area and have small bamboo patches.
Future comparison with the bamboo map from the National Land Survey will improve our
classification. An object-oriented classification may also improve our bamboo mapping by
reducing the salt-pepper noise. Last but not least, the results in Section 3.3 support that the
newly designed phenology and tree height features contribute substantially to the result,
indicating the reasonability of our method.

The main reason for achieving the aforementioned success and the novelty of our
method was because we used unique phenological features for bamboo classification.
Commonly used classification algorithms, such as the random forest, have limited capacity
to utilize the intrinsic logical constraint from time-series signals, i.e., the order of the signal
has a rare influence on the results [29]. This means that although unique phenology patterns
of bamboo forests have been reported [28], these patterns may not be detected and utilized
in some applications. We bypassed this shortcoming by employing artificially designed
phenological features based on time-series RS signals; fitting the slope of the green-up
season and the deficit between the annual peak EVI and red-edge reflectance. The two
slope-based features describe the growing efficiency during the green-up season, and the
two differences in peak values describe the interannual difference in canopy density and
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greenness. These features were designed to show that the unique temporal signal can be
detected and can magnify the difference between vegetation categories (Figure 5c–f) but do
not break the end-to-end workflow, which is suitable for being transplanted. Additionally,
incorporating this newly designed phenological feature scheme into an RF-based classifier
not only provides an important structural tendency (represented by the increase in NDVI
and EVI), but can also indicate the biochemical tendency if the calculation of increasing
slope is extended to other spectral bands.

We also employed three morphology features, the LiDAR-based tree height product
and two texture features, to constrain the classification. The results in Section 3 demonstrate
that the tree height feature contributes to the classification. Compared with previous
space-borne LiDAR sensors, the GEDI has a smaller footprint (25 m diameter) and higher
sampling density, making it possible to map tree height with a 30 m resolution covering
a large area. Although this information is helpful in differentiating forest and non forest
categories, it has not yet been widely applied in large-scale classification. In addition to
the tree height feature (usually the 95% percentile height of the canopy) [32], the GEDI
also provides a vertical profile described by the full waveform signal for each footprint.
Since some of the forest categories, such as bamboo and other artificial forests, have simpler
vertical structures than natural forest categories under the same climate conditions, the
vertical profile can be utilized to extend the field samples in the future.

4.2. Mapping Bamboo at a Larger Scale

The newly designed phenology and morphology features would also benefit bamboo
mapping at a larger scale. We collected 981 samples covering the main categories in the
current study with satisfactory quality, which is sufficient for training the classification.
However, this density would not be maintained if we extended the spatial range in future
studies since large-scale field surveys usually require unacceptable human labor and
historical samples in some applications are not available. The condition would be even
more difficult when the focus category is bamboo forest. Increasing the sparsity of the
training set can lead to a less satisfactory result accuracy. The newly designed features can
help to maintain the OA of classification when we artificially decrease the training samples
(Figure 9). As can be concluded, incorporating the new feature scheme slightly improves the
result accuracy under the default training strategy (1% better), but significantly increases
the accuracy if the training set is reduced by 30%. We believe that this feature engineering
based on plant physiology and phenology knowledge will make the classification algorithm
work better in future large-scale applications which lack a sufficient sample density.

Figure 9. Relationship between result overall accuracy and sample size (%). Two feature schemes are
compared: with four phenology and three morphology features and without these seven features.
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Cloud contamination is another inevitable issue for large-scale bamboo classification
based on optical features. Bamboo forests in China are more likely to be distributed in
humid and warm climates, indicating a considerable cloud frequency (76%, Figure 10).
Bamboo forests in Southeast Asia, America and Africa also have such habitats [45]. In this
study, we employed imagery from Sentinel-2 to provide time-series features. More than 85%
of pixels have over 20 effective observations (24 in total for the two years). This proportion
will be greatly reduced if we extend the region to the entire area of China and southeast
Asia, leading to a possible loss of key phenology features such as the peak EVI [44]. Unlike
the large scale classification in existing literatures [10,14], no synthetic aperture radar (SAR)
images were employed in this study, although they are capable of penetrating clouds
and can therefore provide observations under most weather conditions [46]. Compared
with other wavelengths, C-band SAR has a medium penetration depth into the canopy
to reflect structural information for the top canopy layer [47]. A state-of-the-art self-
supervised SAR denoising method with a satisfactory denoising and feature restoration
performance will make it a promising dataset for mapping bamboo forests [48]. However,
SAR signals contain different physical information compared to spectral bands [45], and the
phenological feature scheme needs to be adjusted based on the temporal tendency of SAR.

Figure 10. Map of yearly global cloud frequency and terrestrial bamboo forest in mainland China.
Cloud frequency is calculated using the quality control band from MODerate-resolution Imaging
Spectroradiometer (MODIS) observations from 2003 to 2020. Provinces with bamboo distribution
in China are labelled according to Qi et al. (2022) [1]. The boxplot in the subpanel displays the
distribution of cloud frequency in this region.

4.3. The Optimal Time Window for Bamboo Classification

In this study, we used 24 monthly composites to describe the temporal tendency of RS
reflectance and indices (from January 2019 to December 2020). However, it does not indicate
that the length of temporal features is necessary to achieve the classification performance
in this study. To illustrate this, we conducted extra experiments using time windows with
varying lengths (Table 4). All experiments used reflectance and index features, but no
phenological and morphological features. For each time window, we ran classifications for
all possible time windows between 2019 and 2020. For example, the experiment using a
1-month time window would have 24 classifications, referring to 24 months in 2019 and
2020. Features from a single month led to poorly performing and unstable classifiers, i.e.,
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the average F1-score and OA were low and the standard deviation was large. A one-year
length provided sufficient discrimination between different classes and reached an OA of
0.87. Using a longer window (e.g., 24-months) helped identify bamboo, as it highlighted the
unique phenological patterns of on-year/off-year bamboos, whereas the improvements in
other classes were limited. There is a phenomenon that the result accuracy would improve
if more images from the first half of the years (i.e., the green-up season, Jan. to Jun.) were
employed, which supports the reasonability of the newly designed phenological features
in this study. This conclusion implies that employing an extra band selection to select the
most useful bands and reduce the calculation may improve the efficiency of the large scale
application [31]. Overall, we conclude that the classification performance was improved
by employing features from a lengthier time window. The longer the time period is, the
more distinguishable are phenological features of bamboo forests. However, considering
the tradeoff between performance and efficiency, a reasonable length of time window is
between 12 months or 24 months.

Table 4. Statistics of classification performance using different lengths of time windows. Mean value
represents average resulting F1-score/OA of using all possible input feature schemes. Std is the
standard error of using all possible schemes. The best performance of each category is labeled in bold.

Window Item BF DF EF CRO AS BAR WT OA

1-month
Mean 0.53 0.54 0.67 0.51 0.57 0.53 0.84 0.57

Std 0.15 0.12 0.16 0.2 0.13 0.16 0.71 0.13

4-month
Mean 0.77 0.77 0.81 0.8 0.77 0.72 0.91 0.77

Std 0.09 0.15 0.04 0.07 0.05 0.07 0.01 0.03

6-month
Mean 0.81 0.86 0.88 0.81 0.8 0.73 0.85 0.86

Std 0.04 0.07 0.02 0.03 0.03 0.09 0.02 0.02

12-month
Mean 0.86 0.91 0.92 0.88 0.81 0.72 0.90 0.87

Std 0.02 0 0.01 0.01 0.02 0.07 0.02 0.03

24-month
Mean 0.91 0.9 0.92 0.90 0.73 0.67 0.92 0.88

Std - - - - - - - -

5. Conclusions

In this study, we have mapped large-scale bamboo forests following the typical end-to-
end classification workflow on GEE, which incorporates phenology features describing the
unique on- and off-year pattern for bamboo forests. We have also employed a wall-to-wall
tree height product, together with two texture features, to describe the morphology features.
The experiment was carried out in the southeastern hilly region of China, where bamboo
forests occupy a proportionately large area. The unique pattern of bamboo forests can be
detected using time-series features from optical images and static features. A satisfactory
result accuracy against field samples and statistics can thus be expected and achieved. Since
employing the newly designed phenology and morphology features significantly reduces
the requirement of training set size, we hope to further develop this method with features
from SAR images and map bamboo forests on a larger scale.
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