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Abstract: It is a challenge for automatic modulation recognition (AMR) methods for radiation
source signals to work in environments with low signal-to-noise ratios (SNRs). This paper proposes a
modulation feature extraction method based on data rearrangement and the 2D fast Fourier transform
(FFT) (DR2D), and a DenseNet feature extraction network with early fusion is constructed to recognize
the extracted modulation features. First, the input signal is preprocessed by DR2D to obtain three
types of joint frequency feature bins with multiple time scales. Second, the feature fusion operation is
performed on the inputs of the different layers of the proposed network. Finally, feature recognition is
completed in the subsequent layers. The theoretical analysis and simulation results show that DR2D
is a fast and robust preprocessing method for extracting the features of modulated radiation source
signals with less computational complexity. The proposed DenseNet feature extraction network with
early fusion can identify the extracted modulation features with less spatial complexity than other
types of convolutional neural networks (CNNs) and performs well in low-SNR environments.

Keywords: automatic modulation recognition (AMR); data rearrangement and the 2D FFT (DR2D);
DenseNet feature extraction network with early fusion; radiation source signal

1. Introduction

Automatic modulation recognition (AMR) is a process for automatically identifying
the modulation type of a received signal without prior knowledge of the radiation source
system [1,2]. AMR is widely used in civil and military applications and plays an important
role in cognitive radio techniques that work in various cooperative and non-cooperative con-
texts, such as signal confirmation, interference identification, and spectrum sensing [3–5].
In fact, the modulation types of radiation source signals are complex and variable, and they
have gradually changed from a single continuous wave type to complex modulation types
such as multi-waveform frequency, pulse amplitude, and binary-code phase modulations.
Moreover, the radiation source signals are often in electromagnetic environments with
low signal-to-noise ratios (SNRs), reducing the identification and analysis capabilities of
cognitive radio systems. It is important to correctly recognize radiation source signals with
low SNRs in a short period to make appropriate decisions [6,7].

AMR can be broadly classified into three categories: likelihood-based AMR (LB-
AMR) [8], distribution test-based AMR (DB-AMR) [9], and feature-based AMR (FB-AMR) [10].
FB-AMR extracts feature from modulated signals and then completes the recognition pro-
cess by using a certain classifier. Many studies have been carried out on FB-AMR in
recent years, most of which have employed time-frequency analysis and machine-learning
methods. Reference [11] proposed a method for radar emitter recognition based on a scale-
invariant feature transform (SIFT) position and scale features by performing a short-time
Fourier transform (STFT) on the radar emitter signal, extracting SIFT scale and position
features from the time-frequency image, and using a support vector machine (SVM) for
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automatic recognition. Reference [12] proposed a low intercept probability (LPI) radar
waveform recognition method based on a dual-channel convolutional neural network
(CNN) and feature fusion by converting LPI radar waveforms into two-dimensional time-
frequency images through the Choi–Williams distribution (CWD), extracting a directional
histogram of oriented gradient (HOG) features, and depth features from the time-frequency
images through the dual-channel CNN and using a multilayer perceptron (MLP) network
to fuse these features and distinguish the types of LPI radar signals. Reference [13] used
the Fourier-based synchrosqueezing transform (FSST) as a means of data augmentation
and transformation, demonstrating that a CNN can better learn time-frequency image
features from the FSST than from the STFT. Reference [14] demonstrated that in radar-
communication coexistence and shared-spectrum scenarios, a CNN model with the FSST
time-frequency analysis method has good waveform classification performance. Refer-
ence [15] addressed the problem of automatic waveform recognition in coexistence radar-
communication systems by using a smooth pseudo-Wigner–Ville distribution (SPWVD) for
time-frequency analysis, and proposed an efficient CNN with several processing blocks
that integrate residual connections and attention connections. The average recognition
accuracy was approximately 17.6% higher than that of a fuzzy SVM recognition model.

The AMR methods described above obtain modulation characteristics mainly by
generating time-frequency images. Time-frequency energy aggregation methods can retain
clear and sufficient features for recognition in low-SNR environments but have large
computational complexity levels. A feature recognition model using a machine learning
method cannot be effectively adapted to the time-frequency image feature analysis situation,
resulting in unnecessary floating-point computations and model parameters. Aiming
at the above problems, this paper proposes a feature extraction method based on data
rearrangement and the 2D fast Fourier transform (FFT) (DR2D) to obtain the joint frequency
features of the input modulated signal at multiple time scales and constructs a DenseNet
feature extraction network with early fusion to recognize the joint frequency features
of the rearranged signal. The theoretical analysis and simulation results show that the
proposed network combined with the DR2D preprocessing method can quickly recognize
the modulation types of radiation source signals and achieve good recognition accuracy in
low-SNR environments.

2. Feature Extraction Method Based on Data Rearrangement and the 2D FFT
2.1. Data Rearrangement

In linear frequency modulation continuous wave (LFMCW) radar, the echo pulses
of different distance units are rearranged into a two-dimensional matrix, while the dis-
tance and velocity of the target are determined by the 2D FFT operation [16]. Synthetic
aperture radar (SAR) achieves dual localization of the target in terms of distance and
orientation by segmenting and storing the echoes of different pulse intervals in the form of
a two-dimensional array and also performing a 2D FFT operation [17]. All these methods
essentially segment one-dimensional signals at slow and fast time scales, rearrange them
into corresponding two-dimensional data and realize the dual confirmation of frequency
features at the two time scales via the 2D FFT operation. Theoretically, the joint frequency
characteristics of an unknown radiation source signal can be obtained by rearranging
one-dimensional data into multidimensional arrays with multiple time scales and using a
multidimensional FFT algorithm.

The process of the modulation feature extraction method based on DR2D is shown
in Figure 1. First, the received signal is segmented at the slow time scale, and then the
fragments with the slow time scales are further segmented at two different time scales:
inferior-fast and fast time scales. Second, the signal segments with the inferior-fast and fast
time scales are rearranged into two-dimensional matrices, called data slices, and stacked
at a slow time scale into a rearranged data bin. Finally, the joint frequency feature slices
are obtained by performing 2D FFT operations on the different data slices and are further
rearranged into a joint frequency feature bin by performing stacking on the slow time scale.
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Figure 1. Modulation feature extraction based on DR2D.

2.2. Two-Dimensional FFT

We assume that the i th data slice of the input signal is an M×M matrix Xi , on which
a 2D FFT operation is performed to obtain the i th spectral matrix and the corresponding
joint frequency feature slice as follows:

Yi(m, n) =
M−1

∑
k=0

M−1

∑
l=0

Xi(k, l)e−j 2π
M kme−j 2π

M ln (1)

Yi(m, n) =
|Yi(m, n)| − ymin

ymax − ymin
(2)

where the modulo numbers of the spectral matrix, Yi, are normalized as the joint frequency
feature slice Yi, ymax and ymin are the maximum and minimum values in Yi, and m, n =
0, 1, · · · ,M− 1 , which means that Xi and Yi will have the same sizes and dimensions.

Yi can be seen either as a magnitude spectrum of two-dimensional data in the frequency
domain or a grayscale image reflecting the changing patterns of the signal. In contrast
to performing a 1D FFT on the real signal, which gives a spectrum that is symmetrically
distributed about the zero frequency point, implementing a 2D FFT on the data slices gives
a joint frequency feature slice that is centrosymmetrically distributed about the center point.

From the perspective of signal analysis, performing a 2D FFT operation on the data
slice is equivalent to performing a 1D FFT operation on each row of the data matrix (i.e.,
data points on the fast time scale), and then performing a 1D FFT operation on each column
of the data matrix (i.e., data points on the inferior-fast time scale), as shown in Figure 2.
The former can effectively reflect the carrier frequency characteristic of the signal, while
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the latter can better reflect the frequency bias characteristic of the signal, and the variation
exhibited by the feature slices at a slow time scale can reflect the modulation pattern of the
signal. The smaller the data slices are, the denser the segmentation at the slow time scale,
while the frequency variation of the signal will be reflected in more detail. If N data slices
are segmented at a slow time scale with no overlap, the result is called an N-level dense
rearrangement pattern (DRP). If the number of overlap points is 1/K for each data slice,
this result is called an N/K-level DRP. The different joint frequency feature slices represent
the local features of the signal at different periods.

Figure 2. Two-Dimensional FFT of the data slice.

From the perspective of image processing, the normalized data slice can be regarded
as an image with a certain texture feature, as shown in Figure 3. The 2D FFT operation
implemented on the image reflects the composition of the plane wave of each frequency
component in the original image. The center point of the feature image corresponds
to the zero frequency, the part near the center point corresponds to the low-frequency
components, and the part far from the center corresponds to the high-frequency component.
The frequency level reflects the change pattern of the original grayscale image. The larger
the data slice is, the more the data points will be aggregated, and the more distinct the
texture features are. If the slow time scale overlaps with the inferior-fast time scale, the
signal is rearranged into one data slice as a whole, and the 2D FFT reflects the global feature,
which is called the overall rearrangement pattern (ORP) of the signal.
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Figure 3. Image of texture features of the data slice.

2.3. Feature Feasibility Analysis

Time-frequency analysis is often used to extract the joint time-frequency characteristics
of modulated radiation source signals in AMR, such as STFT and a Wigner–Ville distribu-
tion (WVD). The longer the time window of the STFT is, the worse the time resolution and
the better the frequency resolution that can be shown. At the same time, this also makes
the frequency energy scattered throughout the window length, which is not conducive to
feature discrimination. The synchrosqueezing transform (SST) can effectively concentrate
the original dispersion of the time-frequency distribution in the time-frequency component
where the useful features are located [18,19]. The WVD algorithm has better time-frequency
resolution, but due to the bilinear nature of the transform, there are cross terms in the
distribution of the sum of different signal components. The SPWVD algorithm retains
the good time-frequency aggregation characteristic of the WVD, while greatly suppress-
ing the generation of cross terms, allowing for better discrimination of time-frequency
characteristics in low-SNR environments [20,21].

The 2D FFT is linearly weighted like the 1D FFT, and there are no cross terms between
different signal components. The frequency features extracted by DR2D are more aggre-
gated in terms of energy because of the intersection of the smearing of energy distribution
at horizontal and vertical frequency components, resulting in a strong fixed frequency
characteristic. Thus, even with a small-sized data slice, the frequency resolution is still
good in low-SNR environments, and the signal components that overlap in the frequency
domain can also be effectively separated.

Due to the centrosymmetry of the spectrum obtained by the 2D FFT, the joint frequency
feature slices obtained by DR2D can be cut in half and concatenated to easily observe the
local features of the signal. Four typical modulation types of radiation source signals
are selected for the analysis: the carrier frequency of the continuous wave signal and
the other three types of radiation source signals, all at 5 GHz; a triangle wave frequency
modulation signal modulated at a frequency of 100 kHz with a bandwidth of 400 MHz;
a pulse amplitude modulation signal with a pulse width of 50 ns and a duty cycle of 1%;
and a binary phase shift keying signal with a code element width of 50 ns. Please see
Appendix A for the models of the modulation signals. The four radiation source signals
are under 32/2-level DRPs and ORPs in the SNR environment of 20 dB, with the joint
frequency features shown in Figure 4. It can be seen that the continuous wave signal shows
a cross-shape joint frequency feature in both patterns, with the frequency components
concentrated at the center of the cross; it has a strong fixed frequency characteristic. The
triangle wave frequency modulation signal produces a linear shift in the joint frequency
feature, with the frequency components broadening on the inferior-fast time scale under the
DRP; it exhibits a regular pinstripe with the frequency components extending to the entire
inferior-fast time scale under the ORP, reflecting the modulation pattern and bandwidth
characteristic of the signal. The pulse amplitude modulation signal only shows the specific
frequency characteristics in the data slices where the pulse exists under the DRP, while it
shows a regular dotted line under the ORP. The binary phase shift keying signal shows an
irregularly spreading shape in both patterns.

For two different triangle wave frequency modulation signals with overlap in the
frequency domain, the carrier frequencies are 5 GHz and 5.1 GHz, the modulation fre-
quencies are 100 kHz and 1 MHz, and the modulation bandwidths are 400 MHz and 600
MHz. In SNR environments of 20 dB and −15 dB, the joint frequency features under a
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128/2-level DRP and the time-frequency images obtained by the FSST and SPWVD are
shown in Figure 5 (the red line and the white line represent the modulation patterns of the
two signals, respectively). It can be seen that neither the FSST nor the SPWVD is able to
discriminate the multicomponent signals with overlap in the frequency domain, while the
feature extraction method based on DR2D can better reflect the details of the modulation
pattern under the DRP with good noise immunity and high resolution for signals with
different parameters that overlap in the frequency domain, even in a low-SNR environment.

(a) (b)

(c) (d)

(e) (f)

Figure 4. Cont.
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(g) (h)

Figure 4. DR2D features of typical radiation source signals. (a) DRP of a continuous wave signal;
(b) ORP of a continuous wave signal; (c) DRP of a triangle wave frequency modulation signal;
(d) ORP of a triangle wave frequency modulation signal; (e) DRP of a pulse amplitude modulation
signal; (f) ORP of a pulse amplitude modulation signal; (g) DRP of a binary phase shift keying signal;
(h) ORP of a binary phase shift keying signal.

(a) (b)

(c) (d)

Figure 5. Cont.
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(e) (f)

Figure 5. Feature analysis of the signals overlapping in the frequency domain. (a) FSST (20 dB);
(b) FSST (−15 dB); (c) SPWVD (20 dB); (d) SPWVD (−15 dB); (e) DR2D (20 dB); (f) DR2D (−15 dB).

The relative bandwidth of the signal affects the visualization range of the useful
frequency components on the feature image. The greater the relative bandwidth, the larger
the visualization range. The modulation bandwidth of the radiation source signal is fBW ,
and the carrier frequency is fc; thus, the relative bandwidth can be expressed as follows:

f f oc =
fBW
fc

(3)

For triangle wave frequency modulation signals with the same frequency modulation
slope and different relative bandwidths, the feature images obtained by DR2D and the
SPWVD are shown in Figure 6. It can be seen that the discernibility of frequency changes
in the time-frequency image is very much limited by the relative bandwidth, and the joint
frequency feature of DR2D shows a cyclic pattern of changes in the vertical direction,
with the changes being displayed from the opposite end when they exceed the size of the
slice. On the one hand, the DR2D feature images are disconnected at a certain point under
continuously varying frequencies. On the other hand, this cyclic pattern results in better
discernibility and a better visualization range for the useful frequency components, which
is advantageous for modulation recognition with a low relative bandwidth.

(a) (b) (c)

Figure 6. Cont.
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(d) (e) (f)

Figure 6. Feature images of triangle wave frequency modulation signals with different relative
bandwidths. (a) SPWVD ( f f oc = 0.02 ); (b) SPWVD ( f f oc = 0.04 ); (c) SPWVD ( f f oc = 0.08 ); (d) DR2D
( f f oc = 0.02 ); (e) DR2D ( f f oc = 0.04 ); (f) DR2D ( f f oc = 0.08 ).

3. Feature Recognition Via the DenseNet Feature Extraction Network with Early Fusion

A schematic diagram of the feature recognition process using the DenseNet feature
extraction network with early fusion is shown in Figure 7. The radiation source signal
was segmented and rearranged under three different rearrangement patterns, and the
feature slices obtained by 2D FFT processing were fed into different layers of the network
as input grayscale feature maps and concatenated for model training and classification.
Consequently, the modulation type of the radiation source signal was recognized by the
trained model.

3.1. Signal Preprocessing

The data slices were considered texture images for analysis and needed to be nor-
malized; i.e., the original signal values were mapped to pixel values in the range of 0∼1,
which is equivalent to the superimposition of a DC component after imposing an overall
enlargement or reduction on the original signal. Therefore, the zero-frequency maxima in
the center of the feature slice image should first be removed after the 2D FFT operation and
before normalization.

To fully extract the modulation features, the DR2D preprocessing method was per-
formed on the radiation source signal under three rearrangement patterns, which are
shown in Figure 8. With 448× 448 points in length, a 64× 56× 56 joint frequency feature
bin was obtained by a 64-level DRP, reflecting the frequency variation features in detail;
a 16× 112× 112 joint frequency feature bin was obtained by a 32-level DRP, which also
reflects changes of the joint frequency features with more aggregation in case of overly
dense segmentation by the 64-level DRP; and a 1× 448× 448 joint frequency feature bin
was obtained under the ORP to reflect the texture feature of the signal as a whole. Three
joint frequency feature bins needed 64× 2× 56 56-point FFTs, 16× 2× 112 112-point FFTs
and 1× 2× 448 448-point FFTs, respectively. The obtained feature bins were used as the
grayscale input feature maps of different layers of the network, and the feature fusion oper-
ation was completed in those layers as well. On the one hand, we choose 448× 448 points
to fully reflect the modulation feature of the radiation source signal with high frequency.
On the other hand, the feature maps obtained from the three rearrangement patterns can
be concatenated at the same size after performing convolution and pooling operations.
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Figure 7. Feature recognition process of the DenseNet feature extraction network with early fusion.

3.2. DenseNet Feature Extraction Network with Early Fusion

ResNet allows a deeper network to be easily trained and optimized by introducing a
residual learning framework, which can effectively alleviate the problems of vanishing gra-
dients, exploding gradients, and network degradation caused by network deepening [22].
DenseNet directly reuses features by establishing dense connections between all previous
layers and the current layer, which naturally integrates the properties of identity map-
pings and deeply strengthens the informational flow, resulting in higher performance with
substantially fewer parameters and computations than those required by ResNet [23,24].

The basic modules of DenseNet include dense blocks and transition layers.
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Figure 8. DR2D preprocessing of the radiation source signal.

3.2.1. Dense Block

In the dense block, the feature maps output from all previous layers are concatenated
and used as inputs of the current layer to achieve dense connections between the layers.
Assuming that a nonlinear transformation function can be fitted between the input and the
output of a layer, the `th-layer nonlinear transformation functions H`(·) of the conventional
CNN, ResNet, and DenseNet are:

x` = H`(x`−1) (4)

x` = H`(x`−1) + x`−1 (5)

x` = H`([x0, x1, ..., x`−1]) (6)

where x` and x0, x1, ..., x`−1 represent the outputs of the `th layer and all previous
layers, respectively.

Unlike the post-activation architecture in the conventional CNN and ResNet, DenseNet
utilizes pre-activation architecture by applying batch normalization (BN) and a rectified
linear unit (ReLU) activation function, before performing convolution (Conv) rather than
after. This minor change yields better performance.

Assuming that k0 input feature maps are placed into a dense block and each layer
has k output channels, then the `th layer has k0 + k · (l − 1) input feature maps, where k is
called the growth rate of the network. A 4-layer dense block is shown in Figure 9.
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Figure 9. 4-layer dense block.

3.2.2. Transition Layer

The purpose of the transition layer was to connect adjacent dense blocks by adjusting
the number and sizes of feature maps. The transition layer shown in Figure 10 consists of
two main parts, convolution and average pooling. The 1× 1 convolutional layer after the
BN operation and the ReLU function was used to adjust the number of feature maps and
prevent the network depth from drastically increasing due to the concatenation processes
in the dense blocks. The 2× 2 average pooling layer compressed the feature map size to
1/4 of the original size by downsampling. The convolution layer and the average pooling
layer together served to reduce the dimensionality of the network.

Figure 10. Transition layer.

3.2.3. Network Architecture

A DenseNet feature extraction network with early fusion was denoted as DenseNet-F.
DenseNet-F22 was constructed as shown in Figure 11. The feature fusion module was
used for multi-feature inputs by adjusting the input feature maps of different patterns to
the same size. First, a 7× 7 convolutional layer (stride 2) and a 3× 3 max pooling layer
(stride 2) adjusted the size of input joint frequency feature bin 1 (1× 448× 448) to feature
maps with the same size as input joint frequency feature bin 2 (16× 112× 112), so that joint
frequency feature bin 1 and joint frequency feature bin 2 had the same feature information
weight, and 32× 112× 112 fused feature maps were obtained by concatenating the adjusted
feature maps with joint frequency feature bin 2. Second, a 3× 3 convolutional layer (stride
2) followed by BN and the ReLU function, adjusted the 32× 112× 112 fused feature maps
to the same size as input joint frequency feature bin 3 (64× 56× 56), at which time joint
frequency feature bin 3 had the largest feature information weight to reflect more detail.
Finally, the same concatenation process was performed to complete the feature fusion
procedure for the three joint frequency feature bins. The feature extraction module of the
network consisted of four 4-layer dense blocks and three transition layers. Each dense
block had a growth rate of k = 32 (which was proven to be effective in [23,24]), so that the
number of feature maps output by a 4-layer dense block was still the same as the number
of input feature maps, which was 128. The size of 7× 7 output feature maps could be
obtained after the adjustment performed by three transition layers for the global pooling
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operation. The DenseNet-F22 structure described above allowed for a stable depth and a
small number of network parameters.

Figure 11. The structure of DenseNet-F22.

4. Simulation Analysis
4.1. The Simulation Environment

In this paper, the operating computer system was Windows 10, the CPU was an Intel(R)
Core(TM) i7-10875H @ 2.30 GHz, the GPU was an NVIDIA GeForce RTX 2060 with Max-Q
Design (6 GB), the radiation source signals were preprocessed in the MATLAB environment,
and the feature recognition networks were trained and tested in the PyTorch environment.

4.2. Computational Complexity of the Preprocessing Methods

The DR2D, FSST, and SPWVD preprocessing methods were implemented separately
on the received radiation source signal. The three rearrangement patterns of DR2D can
be considered the 56-point, 112-point, and 448-point time windows, so a window length
in the range of 56 to 448 is appropriate for conducting a time-frequency analysis. The
FSST used a 256-point Hamming window in the time domain, and the SPWVD used
255-point Hamming windows in the time and the frequency domains. Considering the
resolution of the time-frequency analysis, the smaller the hop size of the time domain
window, the better was the time resolution, but more computations were also needed. We
set the hop size to be 1/8 of the window length, which means the time domain windows
all utilized 32-point hop steps in this paper, for good time resolutions and acceptable
computations. We assumed that the radiation source signals had N = n× n points, and na
points were calculated in one FFT after performing zero padding. Considering the number
of multiplications, the computational complexity of an na-point FFT was O(nalog2na) [25].
As regards to DR2D preprocessing method, 64× n

8 ×
n
8 , 16× n

4 ×
n
4 and 1× n× n sizes

of joint frequency feature bins could be obtained under three rearrangement patterns,
needing 64× 2× n

8
n
8 -point FFTs, 16× 2× n

4
n
4 -point FFTs, and 1× 2× n n-point FFTs,

respectively, due to the 1D FFT operations performed on each row and column. As regards
to the FSST preprocessing method, there were n2

32 na-point FFTs, n2

32 times of time domain
windowing, and na times of multiplications for each windowing operation. As regards
to SPWVD preprocessing method, there were n2

32 times of correlation calculations for the

points in time domain windows, n2

32 2na-point FFTs due to the correlation calculation, n2

32
times of both time domain windowing and frequency domain windowing, na times of
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multiplications for each windowing operation, and n2
a times of multiplications for each

correlation calculation. Please see Appendix B for the FSST and SPWVD equations. The
computational complexities of the three preprocessing methods are shown in Table 1. It can
be seen that the computational complexity of the DR2D preprocessing method was much
lower than that of FSST and SPWVD.

Table 1. Computational complexities of the DR2D, FSST and SPWVD preprocessing methods.

Preprocessing Method DR2D FSST SPWVD

Computational complexity

O[2n× 2nalog2(2na)

+16× 2× n
4 ×

na
2 log2

na
2

+64× 2× n
8 ×

na
4 log2

na
4 ]

= O[4nna(3log2na − 2)]

O( n2

32 × nalog2na +
n2

32 × na)

= O[ n2na
32 (log2na + l)]

O[ n2

32 × 2nalog2(2na)

+ n2

32 × (n2
a + na + na)]

= O[ n2na
32 (2log2na + na + 4)]

We recorded each signal preprocessing time and took the average value. The average
processing times were 18.30 ms for DR2D, 128.75 ms for the FSST, and 207.13 ms for the
SPWVD, showing that the DR2D preprocessing method can significantly reduce the time
spent on modulation feature extraction compared to that required for the time-frequency
analysis process.

4.3. Network Architectures for Feature Recognition

The architectures of the 22-layer DenseNet feature extraction network with early fusion,
the conventional 22-layer DenseNet, and an 18-layer ResNet [22] are shown in Table 2. It
can be seen that DenseNet-F22 and DenseNet-22 have significantly fewer parameters and
floating-point operations (FLOPs) than ResNet-18. DenseNet-F22 had the smallest numbers
of parameters and FLOPs compared to DenseNet-22 and ResNet-18, which means that
DenseNet-F22 required less spatial complexity and fewer computations.

As a GPU is limited by the memory access costs and the optimization degrees of
different modules, the CPU performance could more accurately reflect the inference times
achieved with the same hardware resources. We recorded each signal feature inference
time and took the average value. Average inference times were 32.12 ms for DenseNet-F22,
34.32 ms for DenseNet-22, and 35.69 ms for ResNet-18 (the inference times produced by the
same network for the FSST and SPWVD time-frequency images were comparable, so the
average value was taken here as well). The simulation showed that the average inference
time of DenseNet-F22 was shorter than those of DenseNet-22 and ResNet-18.

Taking the preprocessing and inference times into account, the DenseNet feature
extraction network with early fusion combined with the DR2D preprocessing method had
a faster modulation type recognition process with less resource consumption than other
common CNNs combined with time-frequency analysis methods.
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Table 2. Network architectures of DenseNet-F22, DenseNet-22 and ResNet-18.

Layers
DenseNet-F22 DenseNet-22 ResNet-18

Layers
(DenseNet) (ResNet)

-
Input Size (1): Input Size (1): Input Size (1):

-1× 448× 448 1× 224× 224 1× 224× 224

Convolution
7× 7 conv, stride 2

Convolution(Output Size: 16× 224× 224) (Output Size: 32× 112× 112) (Output Size: 1× 112× 112)

Pooling
3× 3 max pooling, stride 2

-
3× 3 max pooling, stride 2

Pooling(Output Size: 16× 112× 112) (Output Size: 1× 56× 56)

-
Input Size (2):

- - -32× 112× 112 (concat)

Convolution
3× 3 conv, stride 2 3× 3 conv, stride 2

- -(Output Size: 64× 56× 56) (Output Size: 128× 56× 56)

-
Input Size (3):

- - -128× 56× 56 (concat)

Dense [3× 3 conv]× 4, k = 32
[

3× 3 conv, 64
3× 3 conv, 64

]
×2 Residual

Block (1) (Output Size: 256× 56× 56) (Output Size: 64× 56× 56) Block (1)

1× 1 conv

- -
Transition (Output Size: 128× 56× 56)

Layer (1) 2× 2 average pooling, stride 2
(Output Size: 128× 28× 28)

Dense [3× 3 conv]× 4, k = 32
[

3× 3 conv, 128
3× 3 conv, 128

]
× 2 Residual

Block (2) (Output Size: 256× 28× 28) (Output Size: 128× 28× 28) Block (2)

1× 1 conv

- -
Transition (Output Size: 128× 28× 28)

Layer (2) 2× 2 average pooling, stride 2
(Output Size: 128× 14× 14)
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Table 2. Cont.

Layers
DenseNet-F22 DenseNet-22 ResNet-18

Layers
(DenseNet) (ResNet)

Dense [3× 3 conv]× 4, k = 32
[

3× 3 conv, 256
3× 3 conv, 256

]
×2 Residual

Block (3) (Output Size: 256× 14× 14) (Output Size: 256× 14× 14) Block (3)

1× 1 conv

- -
Transition (Output Size: 128× 14× 14)

Layer (3) 2× 2 average pooling, stride 2
(Output Size: 128× 7× 7)

Dense [3× 3 conv] ×4, k = 32
[

3× 3 conv, 512
3× 3 conv, 512

]
× 2 Residual

Block (4) (Output Size: 256× 7× 7) (Output Size: 512× 7× 7) Block (4)

7× 7 global average pooling 7× 7 global average pooling
Classification (Output Size: 256× 1× 1) (Output Size: 512× 1× 1) Classification

flatten

Layer 256-D fully connected, 512-D fully connected, Layer
softmax softmax

Params 0.9 M 1.0 M 11.2 M Params

FLOPs 1.0974× 109 1.1386× 109 1.7473× 109 FLOPs
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4.4. Recognition Accuracy

Six typical radiation source signal modulation types were selected for recognition, in-
cluding continuous wave (CW) modulation, triangle wave frequency modulation (TRIFM),
sine wave frequency modulation (SINFM), pulse amplitude modulation (PAM), binary
phase shift keying (BPSK), and linear frequency modulation pulsing (LFM_PULSE). The
DR2D, FSST, and SPWVD preprocessing methods were used to produce the corresponding
datasets. In environments in the SNR range of 5 dB to−10 dB, 1000 samples were produced
for each radiation source signal modulation type with the three preprocessing methods.
We divided 80% of the samples into training sets and 20% into testing sets. The parameters
of typical radiation source signals are listed in Table 3, where CF is the carrier frequency,
MF is the modulation frequency, FD is the frequency deviation, PW is the pulse width, DC
is the duty cycle, and EW is the code element width.

Table 3. The parameters of different radiation source signals.

Modulation
Type CF (GHz) MF (KHz) FD (MHz) PW (ns) DC EW (ns)

CW [1, 5] - - - - -
TRIFM [1, 5] [200, 500] [100, 200] - - -
SINFM [1, 5] [200, 500] [100, 200] - - -
PAM [1, 5] - - [40, 70] [1%, 4%] -
BPSK [1, 5] - - - - [50, 80]

LFM_PULSE [1, 5] - [20, 40] [200, 500] [20%, 33%] -

DenseNet-F22 combined with the DR2D preprocessing method was trained and tested
on the dataset. The number of training epochs was set to 60, and the learning rate was set
to 0.00001. The training and testing loss curves and the corresponding accuracy curves
versus the number of epochs are shown in Figure 12. It can be seen that both the training
set and testing set loss functions converged quickly and gradually stabilized, which means
that the parameters of DenseNet-F22 were rational and that the model was effective for
AMR tasks.

Figure 12. The training and testing loss curves and the corresponding accuracy curves versus the
number of epochs.
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DenseNet-F22, DenseNet-22, and ResNet-18 combined with different preprocessing
methods were trained and tested on the different datasets, and the trained models were used
to recognize the six different radiation source signal modulation types in environments with
SNRs ranging from 0 dB to −20 dB. Consequently, the average recognition accuracy curves
obtained from the simulation are shown in Figure 13. It can be seen that both DenseNet-F22
and DenseNet-22 were able to achieve comparable or even higher accuracy than ResNet-18
with fewer model parameters under a similar number of network layers. DenseNet-22
and ResNet-18 combined with the SPWVD preprocessing method had relatively lower
average recognition accuracy with SNRs lower than −12dB. DenseNet-F22 combined with
the DR2D preprocessing method maintained an average recognition accuracy of more
than 90% in environments with SNRs higher than −14 dB, which is comparable to that of
DenseNet-22 combined with the FSST preprocessing method.

Figure 13. The average recognition accuracy curves of DenseNet-F22, DenseNet-22, and ResNet-18
feature recognition networks in environments with different SNRs.

The recognition accuracy of each modulation type in environments with different
SNRs is shown in Figure 14. DenseNet-22, combined with FSST was better at the recognition
of CW and PAM, ResNet-18 combined with FSST was better at the recognition of PAM
and SINFM, while DenseNet-22 and ResNet-18 combined with SPWVD were better at the
recognition of PAM and BPSK. It can be seen that DenseNet-22 and ResNet-18 combined
with FSST and SPWVD preprocessing methods had better recognition performance of
certain modulation types, but worse for others, which means DenseNet-22 and ResNet-18
feature recognition networks had difficulty in avoiding the overfitting of certain modulation
types, and were not conducive to the overall recognition. DenseNet-F22 combined with
the DR2D preprocessing method maintained a recognition accuracy of more than 60% for
each modulation type in environments with SNRs higher than -14 dB, providing the most
robust recognition performance.
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Figure 14. The recognition accuracy achievements for each modulation type in environments with
different SNRs.

We constructed 18-layer and 34-layer CNNs integrating residual and attention connec-
tions as described in reference [15], denoted ResNet-A18 and ResNet-A34, respectively. In
addition, we combined them with the FSST and SPWVD preprocessing methods for modu-
lation recognition. We compared ResNet-A18 with DenseNet-22 and ResNet-18 combined
with the FSST and SPWVD preprocessing methods, and the simulation results are shown
in Figure 15. We also compared ResNet-A models combined with the FSST and SPWVD
preprocessing methods with DenseNet-F models combined with the DR2D preprocessing
method, and the simulation results are shown in Figure 16. Figure 15 shows that the
recognition accuracy can be improved by changing the network architecture of the FSST
preprocessing method. ResNet-A18, which adds attention connections to the ResNet-18
network architecture, had a higher average recognition accuracy than ResNet-18 and was
comparable to DenseNet-22; however, it also had the largest numbers of parameters and
FLOPs (12.6 M and 13.7274× 109, respectively), which greatly affected the recognition
efficiency of the network. Moreover, changing the network architecture did not improve
the recognition accuracy of the SPWVD preprocessing method. Figure 16 shows that the
average recognition accuracy of DenseNet-F22 combined with the DR2D preprocessing
method was comparable to that of ResNet-A18 with the FSST preprocessing method; for
the network architecture proposed in reference [15], increasing the number of network
layers did not significantly improve its accuracy. In contrast, increasing the number of
network layers could significantly improve the accuracy of the DenseNet feature extraction
network with early fusion proposed in this paper with the same growth rate. In summary,
the preprocessing method utilized determined the upper recognition accuracy limit, while
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changing the network architecture had a limited effect on the attained recognition accuracy
improvement. For AMR tasks, the priority was to choose an appropriate preprocessing
method, and then a suitable feature recognition network could be selected according to the
actual needs, such as the required inference time.

Figure 15. The average recognition accuracy curves of ResNet-A18, DenseNet-22, and ResNet-18
combined with the FSST and SPWVD preprocessing methods in environments with different SNRs.

Figure 16. The average recognition accuracy curves produced with different numbers of layers for
the DenseNet-F models and ResNet-A models proposed in reference [15] in environments with
different SNRs.

5. Conclusions

For the quick and accurate AMR of radiation source signals in cognitive radio systems,
this paper proposes a DR2D preprocessing method for modulation feature extraction
and constructs a DenseNet feature extraction network with early fusion to recognize
the extracted features. The DR2D method has less computational complexity than time-
frequency analysis methods and can produce three types of joint frequency feature bins
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for one radiation source signal in less time. The DenseNet feature extraction network
with early fusion has fewer model parameters and FLOPs than other CNNs and is able
to complete the recognition process in a short time. The simulation results show that
DenseNet-F22 combined with the DR2D preprocessing method maintains an average
recognition accuracy of more than 90% and a recognition accuracy of more than 60% for
each modulation type in environments, with SNRs exceeding −14 dB. The model has
good recognition performance in low-SNR environments. Furthermore, by comparing
the recognition accuracies of multiple recognition networks with different preprocessing
methods, we find that the upper recognition accuracy limit is determined by the selected
preprocessing method rather than the network architecture; thus, it is very important to
choose an appropriate preprocessing method before selecting a suitable feature recognition
network for AMR tasks.
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Appendix A

Appendix A.1

The model of a triangle wave frequency modulation signal can be expressed as follows:

sFM(t) =
{

AFM cos{2π[ fc + (4n + 1)∆F]t− πβt2 + ϕ0}, nT ≤ t ≤ nT + T
2

AFM cos{2π[ fc − (4n + 3)∆F]t + πβt2 + ϕ0}, nT + T
2 ≤ t ≤ (n + 1)T

(A1)

where AFM is the carrier signal amplitude, fc is the carrier frequency, ϕ0 is the initial phase
angle, T is the modulation period, n = 0, 1, 2, · · · is the number of the modulation period,
and the frequency modulation slope can be defined as β = 4∆F/T. The frequency variation
of the triangle wave frequency modulation signal is shown in Figure A1.

Figure A1. The frequency variation of the triangle wave frequency modulation signal.

Appendix A.2

The model of a pulse amplitude modulation signal can be expressed as follows:

sPULSE(t) = APULSER[
t

τ0
] cos(2π fct + ϕ0) (A2)
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R
[

t
τ0

]
=

{
1, nT ≤ t ≤ nT + τ0
0, others

(A3)

where APULSE is the carrier signal amplitude, fc is the carrier frequency, ϕ0 is the initial
phase angle, T is the modulation period, n = 0, 1, 2, · · · is the number of the modulation
period, τ0 is the pulse width, and R[·] is the periodic rectangular function.

Appendix A.3

The baseband signal of a binary phase shift keying signal can be expressed as follows:

p(t) =
∞

∑
n=0

P−1

∑
i=0

CiR
[

t− iTc − nT
Tc

]
(A4)

rect
[

t
Tc

]
=

{
1, 0 ≤ t ≤ Tc
0, others

(A5)

where Ci ∈ {0, 1} is the binary code, Tc is the code element width, n = 0, 1, 2, · · ·, P− 1 is
the number of the binary code in a modulation period, P is the total number of the binary
code in a modulation period, T is the modulation period , n = 0, 1, 2, · · · is the number of
the modulation period, and rect[·] is the single rectangular function.

Then the model of a binary phase shift keying signal can be expressed as follows:

sBPSK(t) = ABPSK p(t) cos(2π fct + ϕ0) (A6)

where ABPSK is the carrier signal amplitude, fc is the carrier frequency, and ϕ0 is the initial
phase angle.

Appendix B

Appendix B.1

For a discrete signal s(n), n = 0, 1, · · ·, N − 1, the STFT is:

STFTg
s (m, k) =

M−1

∑
n=0

s(n)g∗(n−mN)Wnk
M , k = 0, 1, · · ·, M− 1 (A7)

where g(n) is a M-point time window, N is the step of the time window, and the exponent
factor Wnk

M = e−j 2π
M nk.

The local instantaneous frequency can be defined as follows:

Ωg
s (m, k) =

1
2π j

∆STFTg
s (m, k)

STFTg
s (m, k)

= k− 1
2π j

STFT∆mg
s (m, k)

STFTg
s (m, k)

(A8)

where STFT∆mg
s (m, k) denotes g (which is in STFTg

s (m, k)), differentiate of the m.
The SST frequency redistribution operator is used to collect the dispersive time-

frequency coefficients of the STFT:

Tg,s(m, l) =
M−1

∑
k=0

STFTg
s (m, k)W−mk

M δij(l −Ωg
s (m, k)) (A9)

where δij(·) is the Kronecker function and the exponent factor W−mk
M = ej 2π

M mk can be
integrated into (A7) for calculation.

The STFT processed by SST is referred to as the FSST.

Appendix B.2

For a discrete signal s(n), n = 0, 1, · · ·, N − 1, the WVD is:
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WVDs(m, k) =
N

∑
n=−N

s(m + n/2)s∗(m− n/2)Wnk
N (A10)

The SPWVD integrates two real-even windows into the WVD to smooth the time-
frequency distribution for the time and frequency domains, respectively, which can be
expressed as follows:

SPWVDs(m, k) =
N

∑
n=−N

g(m)h(k)s(m + n/2)s∗(m− n/2)Wnk
N (A11)

where g(m) is the time window and h(k) is the frequency window.
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